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Abstract 

Acoustic tomography can be used to measure temperature field from the time-of-flight (TOF). In order to capture 

real-time temperature field change and accurately yield quantitative temperature image, two improvements on 

the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF 

collection along multiple ray paths, and offline iteration reconstruction algorithm. In system operation, all the 

acoustic transceivers send the modulated and filtered wideband Kasami sequence simultaneously to facilitate 

fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, iteration 

process is separated and executed offline beforehand to shorten computational time for online temperature field 

reconstruction. The feasibility and effectiveness of the developed methods are validated in simulation study. 

Simulation results show that the proposed method can reduce the processing time per frame from 160 ms to 20 

ms, and the reconstruction error remains less than 5%. Hence the proposed method has the potential of 

monitoring rapid temperature change with good temporal and spatial resolution. 

Keywords: acoustic tomography, real-time temperature field reconstruction, offline iteration, Kasami sequence 

1. Introduction 

To improve the understanding of the combustion 

process and to evaluate the combustion efficiency, a 

great demand has been growing for an advanced 

measurement technique to measure real-time 

temperature inside the sensing area. There are a large 

number of efforts in developing robust and accurate 

temperature measurement techniques. Thermocouples 

are the mostly used devices but they have the drawbacks 

including intrusive, single-point sensing and corrosion 

in harsh environment. For the non-intrusive methods, 

laser based techniques, including Rayleigh scattering 

technique with aid of particle image velocimetry and 

laser Doppler velocimetry, has the disadvantage of 

being expensive and difficult to implement. Passive 

optical tomography with multi-camera tomography 

systems is able to provide non-invasive 3D flame 

monitoring and characterisation on laboratory scale 

furnaces with good spatial resolution. However, it also 

requires the object to be luminous and translucent in order 

to get the side view measurements [1]. Compared to other 

measurement techniques, acoustic tomography is one of 

few that can deliver accurate quantitative reconstruction 

of the whole temperature field with lower equipment 

cost. 

Early application of acoustic tomography for 

monitoring temperature and wind velocity, was 

proposed in 1990 by Spiesberger [2] and in 1994 by 

Wilson and Thomson [3]. Later, imaging the near 

ground air temperature and wind flow with acoustic 

tomography was demonstrated in field experiments [3, 

4], then extended to industrial applications like 

temperature field reconstruction [5-7]. 

Acoustic tomography uses the Time-Of-Flight (TOF) of 

sound to derive temperature image, because the sound 

speed in the sensing area is affected by the temperature 

of the intervening medium. The major challenge to 

employ acoustic tomography for real-time monitoring is 

the reconstruction accuracy and temporal resolution. In 

order to capture the dynamical changing temperature 

field and at the same time give accurate quantitative 

temperature reconstruction, processing time of TOF 

measurements and reconstruction computational time 

should be reduced.  

In this paper, simultaneous TOF transmission and 

collection, and offline iteration reconstruction methods 

are studied to accelerate multichannel TOF 

measurement and online image reconstruction. Firstly, 

all the acoustic transceivers send the modulated and 

filtered wideband Kasami sequence simultaneously to 

facilitate fast and accurate TOF measurement using 

cross-correlation detection. Secondly, offline iteration 

reconstruction technique using smooth filter (OIRTF) is 

employed to improve image reconstruction. Unlike the 

conventional reconstruction algorithm, the iterative 

calculation is divided into two steps. The first one is 

independent from TOF measurement so that it can be 

calculated beforehand iteratively for high image quality. 

The second one is dependent on TOF, which should be 

calculated online non-iteratively for real-time 
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monitoring. Numerical simulations have been carried 

out to validate the performance of the proposed 

methods.

2. Methodology 

2.1. Acoustic tomography  

Simulation setup of the acoustic tomography system 

used in furnace is illustrated in figure 1. 16 acoustic 

transceivers are uniformly placed around the boundary 

of the sensing area to measure the TOF in 120 

transceiver pairs. The sensing area with 1 m radius is 

divided into 1296 5 cm x 5 cm square pixels in 

reconstruction process.  

 

Figure 1. Acoustic tomography setup with 16 acoustic 

transceivers and 120 straight rays 

Tomographic reconstruction is to firstly obtain the 

Laplace’s sound speed, which is associated with 

temperature distribution, then corresponding 

temperature distribution can be calculated from the 

TOFs by solving a tomographic inverse problem. It has 

been mathematically proven that TOFs are sufficient to 

reconstruct the correct temperature field [8]. 

The forward problem of acoustic tomography is to 

define the relationship between TOFs and sound speed. 

Instead of modelling the forward problem using the 

wave equation, travel-time tomography employs the 

principles of geometrical acoustics to reconstruction 

sound speed distribution [9]. For finite bandwidth sound 

waves used for imaging, it is assumed that energy 

travels from the transmitter to the receiver along a ray 

path [10]. 

For the typical furnaces environment, the refraction 

effect of sound propagation will affect the accuracy of 

the tomographic reconstruction. However, according to 

Green’s research on the acoustic tomography 

measurement error for temperature field in combustion 

gas [11], in the worst case, refraction effects cause about 

2% reconstruction error. Therefore, a straight ray 

model, where the acoustic signal travels along a straight 

line between transmitter and receiver, is often used in 

acoustic tomography for simplicity [12-14].  

Based on the straight ray model, TOF is defined as: 

 τ = ∫
𝑑𝑠

𝐶𝑒𝑓𝑓Γ  (1) 

where τ  is the TOF measurement, 𝑑𝑠  is the path 

element along ray Γ, and 𝑐𝑒𝑓𝑓  is the effective sound 

speed along the path element. 𝑐𝑒𝑓𝑓 is composed of a 

temperature dependent component, the Laplace's sound 

speed  𝑐𝐿(𝑇) and the flow dependent component, the 

flow velocity in the direction of sound propagation 𝑣. 

 𝑐𝑒𝑓𝑓(𝑇, 𝑣) = 𝑐𝐿(𝑇) + 𝑣 (2) 

Reciprocal sound transmission is employed in acoustic 

tomography system. The average of these reciprocal 

travel times is used to reconstruct  𝑐𝐿(𝑇), so that the 

small effect from flow velocity 𝑣  can be ignored. As 

described in equation (3), the approximation is valid 

since 𝑣2 is much smaller than 𝑐𝐿
2(𝑇) in the furnace. 

𝜏+ + 𝜏− = ∫
𝑑𝑠

𝑐𝐿(𝑇) + 𝑣Γ

+ ∫
𝑑𝑠

𝑐𝐿(𝑇) − 𝑣Γ

= ∫
2𝑐𝐿(𝑇) 𝑑𝑠

𝑐𝐿
2(𝑇) − 𝑣2

Γ

 

 ≈ ∫
2 𝑑𝑠

𝑐𝐿 (𝑇)Γ  (3) 

Apply equation (3) to equation (1) then the forward 

problem can be modified as: 

 
𝜏++𝜏−

2
= 𝑙Γ = ∫

𝑑𝑠

𝑐𝐿(𝑇)Γ
 (4) 

Then equation (4) can be discretised as: 

 𝑙Γ𝑖
= ∑ 𝑎𝑖,𝑗𝑠𝑗

𝑁
𝑗=1  (5) 

where 𝑙Γ𝑖
 is the average of reciprocal travel times along 

𝑖-th ray path, 𝑠𝑗 =
1

𝑐𝐿,𝑗(𝑇)
 is defined as the slowness in 𝑗-

th pixel, 𝑎𝑖,𝑗  is the segment length for each ray path 

across one pixel, N = 1296 is the total pixels number 

of an image.  

The inverse problem of acoustic tomography is to 

reconstruct the slowness distribution 𝑠 from the average 

of these reciprocal travel times 𝑙Γ based on equation (5). 

Equation (5) is not accurate.  The inaccuracy is incurred 

by the discretization using a coarse mesh grid, and the 

ignorance of refraction effect and flow velocity effect. 

The details of the reconstruction algorithm will be given 

in section 2.3. 

The Laplace's sound speed depends on temperature 𝑇 

and properties of the medium, as defined in equation 

(6).  

 𝑐𝐿 =
1

𝑠
= √𝑅𝛾𝑇 (6)  

where 𝑅 = 287 𝐽 𝑘𝑔−1 𝐾−1 is the gas constant and 

specific heat ratio 𝛾 = 1.4 assuming gas composition is 

nearly constant in dry air. 



3 

Generally, in acoustic tomography the straight ray 

model is applied in the forward problem, then reciprocal 

tomography is used to obtain the average TOF along  

 

Figure 2. Kasami sequence (red) and the output signal (blue) after modulation and band-pass filter. 

each ray path. Therefore the effect on the sound speed 

caused by the flow velocity can be ignored and the 

average TOF is the longitudinal line integral of 

Laplace’s sound speed 𝑐𝐿(𝑇). By solving the inverse 

problem, 𝑐𝐿(𝑇)  is reconstructed. Finally, the 

corresponding temperature distribution is calculated 

based on equation (6). 

2.2. Simultaneous transmission and TOF 

measurement 

In conventional acoustic tomography system, each 

transceiver is switched on sequentially to transmit 

acoustic signals to the receivers. That approach is easy 

to be implemented and has small interference for TOF 

detection as acoustic signals from different sources are 

separated in different time slot at the receiver. However, 

the temporal resolution of the system is sacrificed and it 

may not able to capture the dynamic temperature 

changes in the sensing area. 

In the real-time acoustic tomography system, all the 

acoustic transceivers transmitting and receiving 

acoustic signals simultaneously. As a result, the 

measuring time is significantly reduced compared to the 

pairwise sequential measurement strategy. In this 

operation, each received signal is a summation of all 

other 15 delayed source signals.  

 𝑦𝑗(𝑡) = ∑ 𝑥𝑖(𝑡 − ∆𝑡𝑖,𝑗)16
𝑖=1 + 𝑛𝑗(𝑡) , i ≠ j  (7) 

where 𝑦𝑗(𝑡) refers to the received signal at j-th receiver, 

𝑥𝑖(𝑡) is the source signal from i-th transmitter and ∆𝑡𝑖,𝑗 

represents their corresponding delay time, which is the 

TOF in i-th ray path. 𝑛𝑗(𝑡) is the local noise received at 

j-th receiver.  

The summed source signals must be separated at the 

receiver first, then their individual delay time ∆𝑡𝑘,𝑗 can 

be estimated based on the cross-correlation detection 

defined as below. 

𝑅𝑦𝑗𝑥𝑘
(𝑙) = ∑ [𝑦𝑗(𝑡)𝑥𝑘(𝑡 − 𝑙)]+∞

𝑙=−∞ =

∑ [[∑ 𝑥𝑖(𝑡 − ∆𝑡𝑖,𝑗)16
𝑖=1,𝑖≠𝑗 + 𝑛𝑗(𝑡)]𝑥𝑘(𝑡 − 𝑙)]+∞

𝑙=−∞   

              = ∑ 𝑅𝑥𝑖𝑥𝑘
(𝑙 − ∆𝑡𝑖,𝑗)16

𝑖=1,𝑖≠𝑗,𝑖≠k + 

 𝑅𝑥𝑘𝑥𝑘
(𝑙 − ∆𝑡𝑘,𝑗) + 𝑅𝑛𝑗𝑥𝑖

(𝑙)   (8) 

where l denotes the correlation delay and noise term 

𝑛𝑗(𝑡) is uncorrelated with the source signal 𝑥𝑖, and 𝑥𝑘 

is the 𝑘-th reference signal waveform for cross-

correlation detection. 

In order to minimise the interference term 

∑ 𝑅𝑥𝑖𝑥𝑘
(𝑙 − ∆𝑡𝑖,𝑗)16

𝑖=1,𝑖≠𝑗,𝑖≠k  and noise term  𝑅𝑛𝑗𝑥𝑘
(𝑙) , 

all the source signal waveforms should have good 

correlation property, such as sharp auto-correlation 

peak, but low cross-correlation value, for arbitrarily 

random delay ∆𝑡𝑖,𝑗 and uncorrelated to the noise at the 

receiver. 

Maximum Length Sequence (MLS) has a good 

asynchronous orthogonal property, which could be used 

to separate different source signals with arbitrary 

delay at the receiver. However, when a large number of 

simultaneous acoustic sources have to be used, like 16 

in this case, the cross-correlation property of MLS is 

relatively poor. Selecting and combining the preferred 

pairs of MLS together can improve cross-correlation 

property, like the Kasami sequence. In fact, the Kasami 

sequence has near optimal cross-correlation values 

close to the Welch lower bound. 

Therefore, the Kasami sequence shown in figure 2 is 

selected to generate acoustic signals for source signal 

separation and TOF detection. However, it is difficult to 

practically generate and transmit the Kasami sequence 
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with the acoustic transceivers, because the spectrum of 

the Kasami sequence is arbitrarily wide with sharp 

edges and discontinuity in time domain, but the 

transceiver is restricted to a limited bandwidth around a 

certain frequency. Therefore, before transmission, it is 

necessary to modulate the Kasami sequence with fixed 

carrier frequency, then a band-pass filter is used to 

smooth the Kasami sequence and control its bandwidth.  

 

Figure 3. Kasami sequence (red) and modulated and filtered output sequence (blue) in frequency domain. After 

modulation and band-pass filter, the bandwidth of output signal is limited and centred at the 40 kHz carrier frequency. 

 

Figure 4. Cross-correlation of Kasami sequence (red) and modulated and filtered sequence output (blue). The cross-

correlation value of the filtered sequence is much larger than the Kasami sequence, which results in a larger 

interference in TOF detection. 

 

As shown in figure 3, compared with the original 

Kasami sequence, the modulated and filtered Kasami 

sequence has a narrower bandwidth, which can meet the 

transmission requirement for acoustic transceivers. 

However, modulation and filtering will also weaken the 

correlation property of waveform. The auto- and cross-

correlation comparison is given in figure 4 and 5 

respectively. The auto-correlation coefficients of the 

filtered Kasami sequence is a smoothed version of the 

original correlation of Kasami sequence. The auto-

correlation peak value is reduced while the cross-

correlation value, which can be considered as the 

interference in TOF detection, is increased. Once the 

interference and noise overwhelms the auto-correlation 

peak value, it is impossible to detection accurate travel-

time delay from the received signal. Besides, at the 

receiver, it is difficult to build an inverse filter to remove 

the smooth effect, as many zeros exist in the impulse 

response of the band-pass filter. The only way to 

enhance the auto-correlation property is to increase the 

length of Kasami sequence and produce a sharp auto-

correlation peak. Meanwhile a good temporal resolution 

must remain for the acoustic tomography system. The 

selection of the parameters of Kasami sequence will be 

discussed in section 3.2.  
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In summary, in order to improve the temporal resolution 

of TOF measurement, the wideband acoustic signal 

waveform is designed based on modulated and filtered 

Kasami sequence, which allows simultaneous signal 

transmission and data collection from all the acoustic 

ray paths. Then accurate TOF measurements along each 

ray path can be calculated by correlation detection. 

2.3. Temperature field reconstruction 

The inverse problem of acoustic tomographic is to 

reconstruct the slowness 𝑠 distribution from a limited 

number of TOF measurements, as defined in equation 

(4). There are two major difficulties associated with this 

inverse problem. Firstly, it is under-determined because 

the number of unknowns N = 1296  (the number of 

pixels) is much larger than the number of equations 

M = 120  (the number of TOF measurements). 

Therefore, the solution is not unique. Secondly, 

equation (4) is an integral equation, which is ill-posed, 

and its corresponding discrete form, equation (5), is ill- 

 

 

Figure 5. Auto-correlation of Kasami sequence (red) and modulated and filtered output sequence (blue). The auto-

correlation of the filtered sequence has larger sidelobes and lower peak value than that of the Kasami sequence.  

 

conditioned. This means that the solution of equation 

(5) is sensitive to small perturbations in TOF 

measurements. 

Numerous algorithms are available to solve the inverse 

problem. These algorithms can be categorised into three 

main branches including algebraic-based algorithms [8, 

15, 16], sparse reconstruction framework [12-14] and 

stochastic-based algorithms [3, 7, 17-19].  

Among these algorithms, sparse reconstruction 

framework assumes that the temperature distribution 

can be represented as a linear combination of some 

kernel functions (e.g., set of different bases) where most 

of the coefficients are zero. Stochastic-based method 

assumes that the sensing field is statistically 

homogeneous in space. Without much prior knowledge, 

it is difficult to apply these methods for arbitrary 

temperature or velocity field. Algebraic-based 

algorithm is used in our study for real-time image 

reconstruction.   

2.3.1.  Conventional reconstruction methods 

Algebraic-based algorithms are conventional image 

reconstruction methods. A number of new or different 

algorithms have been developed to address the under-

determined and ill-conditioned inverse problems using 

non-iterative (i.e. single step) algorithms and iterative 

algorithms. 

Non-iterative algorithms include the Linear Back 

Projection (LBP) method, Standard Tikhonov 

Regularisation (STR) method and subspace projection 

method [6, 20, 21]. Usually LBP and STR suffer from 

low imaging accuracy. The reconstruction performance 

of the subspace projection method heavily relies on the 

selection of basis function, because the dominant 

features of slowness distribution can be represented by 

a low-dimension basis function. Weighted Radial Basis 

Functions (RBF) are popular in subspace projection 

methods but the approximation error of RBF increases 

due to perturbations of the temperature field. Moreover, 

this projection typically leads to a rank deficient inverse 

problem and it amplifies the noise in TOF 

measurements. 

For iterative algorithm, an upgrade of Simultaneous 

Iterative Reconstruction Technique (SIRT) algorithm 

was applied by Ziemann [4] to solve the inverse 

problem for acoustic tomography system. This 

algorithm is favoured for its fast convergence and 

stability. Generally, it is defined as follow: 

     𝑠𝑗
𝑡+1 = 𝑠𝑗

𝑡 +
α

∑ 𝑎𝑖,𝑗
𝑀
𝑖=1

∑
𝑎𝑖,𝑗(𝜏𝑖−∑ 𝑎𝑖,𝑗𝑠𝑗

𝑡𝑁
𝑗=1 )

∑ 𝑎𝑖,𝑗
𝑁
𝑗=1

𝑀
𝑖=1         (9) 

where 𝜏𝑖 is the element of TOF measurement along i-th 

ray path. 𝑠𝑗
𝑡 is the element of slowness in j-th pixel in t-
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th iteration, 𝑎𝑖,𝑗 is the segment length for each ray path 

across one pixel, 𝛼 is the constant iteration step size, N 

is the total number of the pixels (1296) and M is the 

number of measurement (120). 

The 𝑘-th iteration can be rewritten in a matrix form as 

 𝒔𝑘+1 = 𝒔𝑘 + 𝛼𝑫𝒑(𝑫𝒓𝑨)𝑇(𝝉 − 𝑨𝒔𝑘)    (10) 

where  

 𝑫𝒑 = diag(1/𝐿𝑃1, 1/𝐿𝑃2, … ,1/𝐿𝑃𝑁) 

 𝑫𝒓 = diag(1/𝐿𝑅1, 1/𝐿𝑅2, … , 1/𝐿𝑅𝑀)    (11) 

𝐿𝑃𝑗 = ∑ 𝑎𝑖,𝑗
𝑀
𝑖=1  and 𝐿𝑅𝑖 = ∑ 𝑎𝑖,𝑗

𝑁
𝑗=1  .  𝛼  is set as 1for 

the conventional SIRT in equation (9). A is the matrix 

containing all  𝑎𝑖,𝑗 . Recent research showed the 

reconstruction performance depended on the 

appropriate iteration step size [22]. The optimal step 

size will be discussed in equation (15) and equation 

(16). 

𝐿𝑃𝑗  is the segment total length for all the ray paths 

across j-th pixel and  𝑫𝒑 is the diagonal preconditioner 

which is used to geometrically weight the least square 

cost function. 𝐿𝑅𝑖  is the length of i-th ray path and 

 𝑫𝒓 is the normalised operator to make sure that the sum 

of each row of A equals to 1. By weighting 𝑫𝒓, when 

residual norm is minimised, the rays that intersect larger 

portions of image can tolerate larger errors than the rays 

that are much shorter. 

2.3.2.  Regularisation and iteration step size 

The iterative reconstruction algorithm described above 

does not guarantee a correct unique solution, as the 

inverse problem itself is very ill-posed. The 

conventional way to deal with ill-posed problem is to 

add a regularisation term in the reconstruction cost 

function [23]. For most cases, Tikhonov regularisation 

is used. The iteration correction using Tikhonov 

regularisation is  

𝒔𝑘+1 = 𝒔𝑘 + 𝛼𝑫𝒑(𝑫𝒓𝑨)𝑇(𝝉 − 𝑨𝒔𝑘) + 𝜂𝜞𝑻𝜞𝒔𝑘  (12) 

where 𝜂  is the regularisation parameter and 𝜞  is the 

regularisation matrix.  

In addition to the Tikhonov regularisation method, the 

projection operator is also used to improve the 

convergence rate and stabilise the solution, mostly in 

space domain based on a fixed or adaptive threshold.  

However, space domain projection is not suitable for the 

offline iteration reconstruction method, because the 

projection operator is not linear and the results depend 

on measurements. Moreover, it is difficult to choose an 

optimal fixed threshold for unpredictable changes in the 

temperature field. To solve this problem, a smooth filter 

is applied, which can be considered as a frequency 

domain projection, assuming that the temperature field 

is generally smooth.   

The iteration correction using the smooth filter operator 

is defined as 

    𝒔𝑘+1 = 𝓟(𝒔𝑘 + 𝛼𝑫𝒑(𝑫𝒓𝑨)𝑇(𝝉 − 𝑨𝒔𝑘))        (13) 

Both 𝜞  in Tikhonov regularisation and 𝓟  in smooth 

filter operator can be defined by a 2D Gaussian low-

pass filter 

 𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2   (14) 

where x and y are coordinates, and 𝜎 is the variance 

controlling the shape of the Gaussian kernel.  

The convergence analysis of regularised SIRT was 

given by Jiang [24]. The near-optimal fixed step size 𝛼 

was studied by Gregor and Fessler [22]. 

For the additive Tikhonov regularised case, the iteration 

step size 𝛼 is  

 
𝛼 =

2

1+
𝑡𝑟(𝑫𝒑𝑨𝑻𝑫𝒓𝑨)

𝑁
+𝜂(

1

𝑚𝑖𝑛
𝑗

𝐿𝑃𝑗
+

1

𝑚𝑎𝑥
𝑗

𝐿𝑃𝑗
)    (15) 

For the filtered regularised case, the iteration step size 

𝛼 is 

 𝛼 =
2

𝜆𝑚𝑖𝑛+𝜆𝑚𝑎𝑥
= 2    (16) 

where 𝜆𝑚𝑖𝑛  and 𝜆𝑚𝑎𝑥  mean the smallest and largest 

Eigen value of matrix 𝓟𝑫𝒑𝑨𝑻𝑫𝒓𝑨，𝜆𝑚𝑎𝑥 = 1  as a 

result of preconditioning and  𝜆𝑚𝑖𝑛 = 0 for the matrix 

that has no full column rank. 

2.3.3.  Offline iteration method 

In most real-time monitoring system, non-iterative 

methods are preferred for fast reconstruction speed. To 

improve the accuracy of non-iterative method, many 

researchers tried to iteratively calculate the optimal 

inversion operator beforehand for non-iterative online 

reconstruction, for instance,  Offline Iteration Online 

Reconstruction (OIOR) [25] based on Landweber 

iteration, and Direct Landweber (DLW) based on 

modified Landweber [26]. In order to build a real-time 

acoustic tomography system, the offline iteration 

method is applied based on the SIRT method defined in 

equation (12) and equation (13), named offline iteration 

reconstruction technique using Tikhonov regularisation 

(OIRTT) and smooth filter (OIRTF). Consequently, the 

processing time of online reconstruction can be reduced 

to the same level as non-iterative method like LBP. 

The principle of this method is to design an iteration 

method, whose iteration procedure is linear and 

independent of measurement data, which means that the 

iteration of equation (12) and equation (13) can be 

rewritten as 

 𝒔𝒌+𝟏 = 𝑩𝒔𝒌 + 𝑫𝝉 (17) 

where 𝐁 = (𝑰 − 𝜶𝑫𝒑(𝑫𝒓𝑨)𝑻𝑨 + 𝜂𝜞𝑻𝜞)  and 𝑫 =

𝛼𝑫𝒑(𝑫𝒓𝑨)𝑇  for OIRTT, and 𝑩 = 𝓟(𝑰 −

𝛼𝑫𝒑(𝑫𝒓𝑨)𝑇𝑨) and 𝑫 = 𝛼𝓟𝑫𝒑(𝑫𝒓𝑨)𝑇 for OIRTF. 

For the purpose of reconstruction independent of 

measurement data, the solution  𝒔𝒌+𝟏  is decomposed 

into two part, iterative term 𝑪𝒌+𝟏 and non-iterative term 

𝜺 
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 𝒔𝒌+𝟏 = 𝑪𝒌+𝟏𝜺 (18) 

Substituting equation (18) into equation (17)  

 𝑪𝑘+1 𝜺 = 𝑩𝑪𝑘 𝜺 + 𝑫𝝉 (19) 

Let 𝜺 = 𝝉, then the iterative term 𝑪𝒌+𝟏 is independent 

of TOF measurement 𝝉 and can be calculated offline in 

advance using equation below. 

 𝑪𝑘+1 = 𝑩𝑪𝑘 + 𝑫 (20) 

Given the iteration number k, after C is iteratively 

obtained offline and all the TOF 𝝉  is measured, the 

speed slowness s can be determined by equation (21). 

Finally, temperature is derived from equation (6). 

 𝒔 = 𝑪𝝉 (21) 

For the offline iteration calculation of 𝑪, its iteration 

number 𝑘 need to be determined beforehand.  

In summary, offline iteration reconstruction methods 

with Tikhonov regularisation (OIRTT) and smooth 

filter (OIRTF) are developed to improve online 

reconstruction speed of the real-time acoustic 

tomography system. These methods are able to 

iteratively calculate the inverse operator beforehand and 

reduce the online computational time to the same level 

of non-iterative algorithm. At the same time the 

reconstruction accuracy is close to the iterative 

methods. Iteration number 𝑘 for offline iteration and 

type of regularisation term will be determined based on 

numerical simulation results described in section 3.3. 

 

Figure 6. Temperature fields in the simulation (a) one heat source (b) multiple heat sources (c) turbulent flow 

 

 

Figure 7. Change of TOF detection error with normalised band-pass filter bandwidth 

 

3. Simulation results and discussions 

3.1. Simulation setup 

The forward problem of acoustic tomography is solved 

in Finite Element method simulation environment using 

COMSOL Multiphysics pressure acoustic module. The 

acoustic wave propagation is studied in an ideal 

isentropic process, where all the thermodynamic 

process is assumed reversible and adiabatic. The 

acoustic signal is considered as a longitudinal wave and 

a flow of energy with the rapid change above a static 

value. The governing equation below is based on the 

conservation of mass and momentum [27] 

 
1

𝜌0𝑐2

𝜕2𝑃′

𝜕𝑡2 + 𝛻 ∙ (−
1

𝜌0
𝛻𝑝′) = 0 (22) 

The small parameter expansion is performed on a 

stationary fluid with density 𝜌0 and pressure 𝑝0 , such 

that 𝑝 = 𝑝0 + 𝑝′ and 𝜌 = 𝜌0 + 𝜌′. 𝑐 is the sound speed. 

In the forward model, the solution to acoustic problems 

is wavelike and the wave is characterised by a 

wavelength λ in space. According to the Nyquist’s law, 
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there should be at least 2 samples per wavelength for 

discretisation. In this simulation 10 samples per 

wavelength is used.  As the propagation direction is 

unknown beforehand, an isotropic free tetrahedral mesh 

is employed. The maximum element size is set as λ/10. 

The sensing area is divided into 1296 pixels, surrounded 

by 16 acoustic transceivers which give 120 TOF 

measurements per image. Figure 6 shows three different 

cases in simulation to verify the performance of the 

algorithms. In the first scenario, temperature field is 

simulated with one heat source. In the second one, 

multiple heat sources are set up. In the third scenario, 

temperature field is a turbulent flow, and the data come 

from Wiens’s work [21]. 

3.2. TOF measurement 

For the purpose of real-time measurement, the acoustic 

signal waveform is designed based on the modulated 

and filtered Kasami sequence. Correlation detection is 

used to estimate the TOF. In the simulation, all the 

transmitted signals reached the receivers with preset 

delay and the detection error change with the bandwidth 

of band-pass filter. The relation between TOF detection 

error and normalised bandwidth   of band-pass filter 

(the ratio of the bandwidth of filter and the sampling 

frequency) is shown in figure 7. It is clear that, for the 

accuracy of TOF detection, the normalised bandwidth 

should be larger than 0.1, which means that the output 

signal bandwidth should be at least 1/10  of the 

sampling frequency. As mentioned in section 2.2, there 

is a trade-off between Kasami sequence length and 

system temporal resolution. The bandwidth of output 

signal is 40kHz which requires that the sampling 

frequency to be 400kHz. As the TOF varying from 0.5 

ms to 6 ms, these TOFs will cause 200 to 2400 samples 

delay in the receiver. In order to maintain a good cross-

correlation property of the received signal with up to 

2400 samples delay, the signal sequence length should 

be larger than 4000 samples, which means that the 

output signal last for 10 ms.   

 

Figure 8: Received signal at one transceiver from all other 15 sources. All the transceivers send acoustic signals for 

10ms. The measurement time for each image lasts for 20ms. 
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Figure 9. Cross-correlation TOF detection results from simulation. The preset delay is marked with ‘*’ and the detected 

delay is marked in the red circles.  

 

Generally, compared with the pairwise TOF 

measurement process, the length of the transmitted 

signal is increased from 5 ms to 10 ms and total 

measuring time for each transceiver pairs increase from 

10 ms to 20 ms. However, because the total measuring 

time per frame is reduced from 160 ms to 20 ms, 

therefore the system speed is still improved from 6.25 

frames per second to 50 frames per second. All the 

parameters of transmitted acoustic waveform is listed in 

table 1. An example of the received signal is showed in 

figure 8, which is the summation of all 15 sources. The 

cross-correlation detection of TOFs is showed in figure 

9, where the arrival time of transmitted signal from the 

transceiver 1 to the transceiver 3, 5, 7 and 9 is indicated 

on the cross-correlation peaks. The overlaps between 

preset delay and detected delay demonstrate the very 

good accuracy of TOF detection. 

Table 1. Parameters for generating acoustic waveform 

Sampling frequency 400 kHz 

Carrier frequency 40 kHz 

Band-pass filter bandwidth 40 kHz 

Filter normalised bandwidth 0.1 

Filter length 81 

Filter window Kaiser 

Total measurement time per image 20 ms 

Pulse duration 10 ms 

Kasami code polynomial [14, 13, 8, 4, 0] 

 

3.3. Reconstruction results 

 

 

Figure 10. TOF errors of different ray paths in case 1, case 2 and case 3. 
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Figure 11. Simulation scenarios and reconstructed temperature fields using different algorithms. The reconstruction 

error (%) is shown beneath each image

The reconstruction process is to calculate sound speed 

distribution from TOF measurements based on equation 

(5). As mentioned in section 2.1, equation (5) is not 

accurate. The inaccuracy is incurred by the 

discretisation using a coarse mesh grid, and the 

ignorance of refraction effect and flow velocity effect. 

The inaccuracy of equation (5) will cause the modelling 

error. The difference between the longitudinal integrals 

𝑙Γ  calculated from simulated TOFs and  ∑ 𝑎𝑖,𝑗𝑠𝑗
𝑁
𝑗=1 , 

known as the total TOF error which contains both 

inaccuracy of the forward problem and TOF detection 

error, is defined in equation (23).  

 𝑒𝑓𝑖 =
(𝑙Γ𝑖−∑ 𝑎𝑖,𝑗𝑠𝑗

𝑁
𝑗=1 )

2

𝑙Γ𝑖
2

 (23) 

The 𝑒𝑓𝑖 for three cases are given in figure 10. The TOF 

detection error of cross-correlation detection is much 

smaller than the modelling error, which can be ignored. 

Therefore the modelling error can be estimated from 𝑒𝑓𝑖. 

The modelling error can be reduced by a non-linear 

acoustic tomography system which allows updating the 

ray path iteratively with the temperature field 

reconstruction. But this is not quite suitable for the real-

time monitoring system. However, the average forward 

problem inaccuracy  is 1.3%, 1.19% and 0.34% for 

three cases respectively, which means the equation (5) 

can still be used in reconstruction.    

The performance of proposed algorithms, 

computational time and reconstruction error, is 

evaluated based on the simulated TOF measurements 

from the three cases shown in section 3.1. The OIRTT 

and OIRTF method is compared with other non-

iterative reconstruction algorithms, i.e. LBP, standard 

Tikhonov regularisation (STR), subspace projection 

methods using RBF network [21].  

Figure 11 shows the reconstruction performance of 

these non-iterative and offline iterative methods in all 

three cases. Image reconstruction error defined in 

equation (24) is employed to quantitatively compare 

different algorithms  

 𝑒 =
‖𝑇𝑟𝑒−𝑇𝑜𝑟𝑖‖2

‖𝑇𝑜𝑟𝑖‖2
 (24) 

where 𝑇𝑜𝑟𝑖 stands for the original temperature values set 

in simulation and 𝑇𝑟𝑒  represents the reconstructed 

temperature values. 

Both LBP and STR are not able to give a good 

reconstruction of the temperature field. For the subspace 

projection methods, the reconstruction error can be split 

into two part, the approximation error of RBF modelling 

of the temperature field and the calculation error using 

Truncated Singular Value Decomposition (TSVD) to 

solve the inverse problem. In case 1 and 3 the 

temperature field is smooth with small fluctuation, 

which allows the RBF representation to catch the 

dominant features, therefore the image error is small. In 

the image reconstruction, as most energy is stored in the 

largest few SVD basis with respect to the number of 

largest singular values. TSVD method can help to 

remove the noise effect and reconstruct the original 

image. However in case 2, not only the image 

reconstruction error increases but also the calculation 
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error increases due to severe rank efficiency problem, 

which indicates that subspace projection method is not 

a good option for recovering image with sharp peaks 

and large fluctuation.  

The iteration convergence rate of the offline OIRTT and 

OIRTF in figure 12 shows that smooth filter operator 

has slightly faster convergence rate than Tikhonov 

regularisation. In all three cases, the offline iteration 

number is 100 for both OIRTT and OIRTF. The 

regularisation parameter η in equation (12) is 0.005 and 

the Gaussian kernel variance 𝜎 in equation (14) is 1.  

Generally, offline iteration methods has a better 

reconstruction performance compared to other non-

iterative methods, especially in case 2 with a large 

variation of temperature distribution.  Besides, in all 

three cases the reconstruction error of OIRTF is much 

smaller than OIRTT. One of possible reasons is that the 

smooth filter can be considered as frequency domain 

projection, and then the iterative calculation defined in 

equation (13) can be considered as a projected 

Landweber with preconditioning which helps to 

accelerate convergence. It follows from many 

numerical simulations and practical applications that 

this method can provide much better estimations than 

the usual linear regularisation methods [28].

The computational time of different reconstruction 

methods is compared in table 2. The specifications of 

the computer used for comparison are Intel(R) Xeon(R) 

CPU E5-1660 v3, 31.3 GB RAM, Scientific Linux 7.2 

with MATLAB R2015b. The LBP method has the least 

computational cost since its reconstruction process is 

simplified as matrix multiplication. The RBF method 

uses TSVD to solve the inverse problem, where SVD 

decomposition can be calculated offline and only few 

singular values is used for reconstruction online. The 

STR method needs more computation time to calculate 

the pseudo inverse solution. As for OIRTF, about 4000 

ms is spent on offline iteration beforehand, whereas 

online reconstruction only takes over 0.1 ms to 

reconstruct one temperature image, which is close to 

LBP. The computational time of OIRTT is similar to 

that of OIRTF. 

In conclusion, to solve the ill-posed inverse problem, 

offline iteration reconstruction method with a filter 

regularisation is developed. The smooth filter operator 

is built based on a pre-defined Gaussian smooth kernel.

 

 

Figure 12: Offline iteration convergence rate of OIRTT(blue) and OIRTF(red)

 

Table 2. Computational time per temperature image of different reconstruction methods 

Computational 

time (ms) 
LBP STR RBF 

OIRTF 

Offline iteration Online reconstruction 

Case 1 0.09592 359.4 46.93 4012.3 0.1134 

Case 2 0.05724 253.3 59.31 3910.7 0.1021 

Case 3 0.03197 234.4 69.13 4142.2 0.1108 
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4. Conclusions  

In this paper, two improvements on the conventional 

acoustic tomography system are studied for temperature 

field measurement: simultaneous acoustics signal 

transmission and time-of-flight (TOF) collection along 

multiple ray paths, and offline iteration reconstruction 

algorithm. In this mode of operation, TOF detection 

process for different paths is performed simultaneously 

based on cross-correlation detection. For image 

reconstruction, iterative reconstruction with the smooth 

filter operator is applied in an offline mode for accurate 

online temperature field reconstruction with good 

quantitative accuracy. Acoustic propagation in three 

temperature fields are simulated to evaluate imaging 

error and computational time. The results of feasibility 

study demonstrate that improved acoustic tomography 

can achieve 50 frames of temperature images per second 

with less than 5% reconstruction error. 
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