
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Online Self-Healing Control Loop to Prevent and Mitigate Faults
in Scientific Workflows

Citation for published version:
Ferreira da Silva, R, Filgueira, R, Deelman, E, Pairo-Castineira, E, Overton, I & Atkinson, M 2016, Online
Self-Healing Control Loop to Prevent and Mitigate Faults in Scientific Workflows. in SuperComputing 16:
WORKS’16 Workshop.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SuperComputing 16: WORKS’16 Workshop

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Jun. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/158138813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/online-selfhealing-control-loop-to-prevent-and-mitigate-faults-in-scientific-workflows(e5263fe0-b8bf-465f-aa47-f8eb143ea456).html


Online Self-Healing Control Loop to Prevent and Mitigate Faults in Scientific Workflows

Rafael Ferreira da Silvaa,∗, Rosa Filgueirab, Ewa Deelmana, Erola Pairo-Castineirac, Ian Overtonc, Malcolm Atkinsonb

aUniversity of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
bSchool of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK

cMRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK

Abstract

Scientific workflows have become mainstream for conducting large-scale scientific research. As a result, many workflow appli-
cations and Workflow Management Systems (WMSs) have been developed as part of the cyberinfrastructure to allow scientists
to execute their applications seamlessly on a range of distributed platforms. In spite of many success stories, a key challenge for
running workflow in distributed systems is failure prediction, detection, and recovery. In this paper, we present a novel online
self-healing framework, where failures are predicted before they happen, and are mitigated when possible. The proposed approach
is to use control theory developed as part of autonomic computing, and in particular apply the proportional-integral-derivative con-
troller (PID controller) control loop mechanism, which is widely used in industrial control systems, to mitigate faults by adjusting
the inputs of the mechanism. The PID controller aims at detecting the possibility of a fault far enough in advance so that an action
can be performed to prevent it from happening. To demonstrate the feasibility of the approach, we tackle two common execution
faults of the Big Data era—data footprint and memory usage. We define, implement, and evaluate PID controllers to autonomously
manage data and memory usage of a bioinformatics workflow that consumes/produces over 4.4TB of data, and requires over 24TB
of memory to run all tasks concurrently. Experimental results indicate that workflow executions may significantly benefit from PID
controllers, in particular under online and unknown conditions. Simulation results show that nearly-optimal executions (slowdown
of 1.01) can be attained when using our proposed control loop, and faults are detected and mitigated far in advance.

Keywords: Scientific workflows, Self-healing, Fault detection and handling

1. Introduction

Modern science often requires the processing and analysis of
vast amounts of data in search of postulated phenomena, and the
validation of core principles through the simulation of complex
system behaviors and interactions. This is the case in fields such
as astronomy, bioinformatics, physics, climate and ocean mod-
eling [1]. In order to support the computational and data needs
of today’s science, new knowledge must be gained on how to
deliver the growing capabilities of the national cyberinfrastruc-
ture and more recently commercial cloud to the scientist’s desk-
top in an accessible, reliable, and scalable way. Scientific work-
flows have emerged as a flexible representation to declaratively
express complex such applications with data and control de-
pendencies, and have become mainstream to support computa-
tional sciences. One of the challenges in workload management
in distributed system is failure prediction, detection, and recov-
ery, both at the application and resource-level. Failures affect
the turnaround time of the applications, and that of the greater

∗Corresponding address: USC Information Sciences Institute, 4676 Admi-
ralty Way Suite 1001, Marina del Rey, CA, USA, 90292

Email addresses: rafsilva@isi.edu (Rafael Ferreira da Silva),
rosa.filgueira@ed.ac.uk (Rosa Filgueira), deelman@isi.edu (Ewa
Deelman), Erola.Pairo-Castineira@igmm.ed.ac.uk (Erola
Pairo-Castineira), ian.overton@ed.ac.uk (Ian Overton),
mpa@staffmail.ed.ac.uk (Malcolm Atkinson)

analysis and therefore the productivity of the scientists that de-
pend on the power of distributed computing to do their work.

In this work, we investigate how the proportional-integral-
derivative controller (PID controller) control loop mechanism,
which is widely used in industrial system, can be applied to
predict and prevent failures on end-to-end workflow executions
across a distributed, heterogeneous computational environment.
The basic idea behind a PID controller is to read data from a
sensor, then compute the desired actuator output by calculating
proportional (P), integral (I), and derivative (D) responses and
summing those three components to compute the output. Each
of the components can often be interpreted as the present er-
ror (P), the accumulation of past errors (I), and a prediction of
future errors (D), based on current rate of change. The main
advantage of using a PID controller is that the control loop
mechanism progressively monitors the evolution of the work-
flow execution, detecting possible faults far in advance, and
when needed performs actions to lead the execution to a steady-
state.

The main contributions of this paper include:

1. An online self-healing control loop using PID controllers
to prevent and mitigate faults on workflow executions un-
der unknown conditions;

2. The evaluation of the proposed control loop to tackle two
major problems of the Big Data era: data footprint and

Preprint submitted to Future Generation of Computer Systems May 15, 2016



memory usage;

3. The characterization of a bioinformatics workflow, which
consumes/produces over 4.4TB of data, and requires over
24TB of memory;

4. An experimental evaluation via simulation to demonstrate
the feasibility of the proposed self-healing process using
simple PID controllers; and

5. A performance optimization study to tune the parameters
of the control loop to provide nearly-optimal workflow ex-
ecutions, where faults are detected and handled far in ad-
vance.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of related work. Section 3 describes
the general self-healing process and presents the concepts of
PID, while Section 4 describes the two types of faults evalu-
ated in this paper. The experimental evaluation is presented in
Section 5, and Section 6 presents a study to tune the gain pa-
rameters of the PID controllers to improve error detection and
handling. Section 7 summarizes our results and identifies future
work.

2. Related Work

Several strategies and techniques were developed to detect
and handle failures during scientific workflow executions [2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12]. Nevertheless, they are either offline,
i.e. cannot be computed during the execution of the application,
and/or make strong assumptions about resource and application
characteristics. Task resubmission [13, 14] and task replica-
tion [10, 15] are two of the most common online techniques for
handling failures. They are used to increase the probability of
having a successful execution in another computing resource,
however they should be used sparingly to avoid overloading the
execution platform [16]. In previous works, we proposed a pi-
oneer autonomic method described as a MAPE-K loop (Mon-
itoring, Analysis, Planning, Execution, and Knowledge) [17]
to cope with online non-clairvoyant workflow executions faults
on grids [18, 19, 20], where unpredictability is addressed by
using a-priori knowledge extracted from execution traces, de-
tailed monitoring, and analysis of the execution behavior. On-
line problems are addressed by periodic monitoring updates.
Instances are modeled as Fuzzy Finite State Machines (FuSM),
where an external curative process determines state degrees of
membership. Degrees of membership are computed from met-
rics assuming that faults have outlier performance. Based on
fault degrees, the healing process identifies severity levels of
faults using thresholds determined from execution traces. A
specific set of actions is then selected from association rules
among fault levels. Although this is the first work on self-
healing of workflow executions in online and unknown condi-
tions, experimental results on a real platform show an important
improvement of the QoS delivered by the system. However, the
method does not prevent faults from happening (actions are per-
formed once faults are detected).

Figure 1: Overview of the MAPE-K loop.

Figure 2: General PID control system loop.

To the best of our knowledge, this is the first work that uses
PID controllers to mitigate faults in scientific workflow execu-
tions under unknown conditions.

3. General Healing Process

In this work, we present a novel self-healing learning pro-
cess for autonomous detection and handling of possible-future
faults in scientific workflow executions, under online and un-
predictable conditions. The process uses the MAPE-K loop
principle as a basis for constantly performing online monitor-
ing, analysis, planning, and execution of a set of preventive
and/or corrective actions (Figure 1). In this process, when an
event occurs during the workflow execution (e.g. job comple-
tion, failures, or timeouts), an analysis event is triggered on the
PID controller. If the controller detects that the system is mov-
ing towards an unstable state, the controller will trigger actions
to prevent or mitigate faults.

3.1. PID Controllers

The keystone component of the healing process is
the proportional-integral-derivative controller (PID con-
troller) [21] control loop mechanism, which is widely used in
industrial control systems, to mitigate faults by adjusting the
process control inputs. Examples of such systems are the ones
where the temperature, pressure, or the flow rate, need to be
controlled. In such scenarios, the PID controller aims at detect-
ing the possibility of a fault far enough in advance so that an
action can be performed to prevent it from happening.

Figure 2 shows the general PID control system loop. The
setpoint is the desired or command value for the process vari-
able. The control system algorithm uses the difference between
the output (process variable) and the setpoint to determine the
desired actuator input to drive the system.

2



Figure 3: Response of a typical PID closed loop system.

Figure 4: General PID control system loop of our process.

The control system performance is measured through a step
function as a setpoint command variable, and the response of
the process variable. The response is quantified by measuring
defined waveform characteristics as shown in Figure 3. Raise
time is the amount of time the system takes to go from about
10% to 90% of the steady-state, or final, value. Percent over-
shoot is the amount that the process variable surpasses the final
value, expressed as a percentage of the final value. Settling time
is the time required for the process variable to settle to within a
certain percentage (commonly 5%) of the final value. Steady-
state error is the final difference between the process variable
and the setpoint. Dead time is a delay between when a process
variable changes, and when that change can be observed.

Process variables (output) are determined by fault-specific
metrics quantified online. The setpoint is constant and defined
as 1. The PID controller for the self-healing process proposed
in this work provides an input value for a Curative Agent, which
determines whether an action should be performed (Figure 4).
Negative input values mean the control system is raising too
fast and may tend to the overshoot state (i.e., a faulty state),
therefore preventive or corrective actions should be performed.
Actions may include task pre-emption, task resubmission, task
clustering, task cleanup, storage management, etc. In contrast,
positive input values mean that the control system is smoothly
rising to the steady state. The control signal u(t) (output) is
defined as follows:

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)
dt
, (1)

where Kp is the proportional gain constant, Ki is the integral
gain constant, Kd is the derivative gain constant, and e is the
error defined as the difference between the setpoint and the pro-
cess variable value.

Tuning the proportional (Kp), integral (Ki), and derivative
(Kd) gain constants is challenging and a research topic by itself.
Therefore, in this paper we initially assume Kp = Ki = Kd = 1
for the sake of simplicity and to demonstrate the feasibility of

Control Type Kp Ki Kd

P 0.50 · Ku – –
PI 0.45 · Ku 1.2 · Kp/Tu –
PID 0.60 · Ku 2 · Kp/Tu Kp · Tu/8

Table 1: Ziegler-Nichols tuning, using the oscillation method [23]. Note that
these gain values are applied to the parallel form of the PID controller, which
is the object of study in this paper. When applied to a standard PID form, the
integral and derivative parameters are only dependent on the oscillation period
Tu.

the process, and then we use the Ziegler-Nichols closed loop
method [22] for tuning the PID controllers.

Ziegler-Nichols closed loop method. This is one of the most
common heuristics that attempts to produce tuned values for the
three PID gain parameters (Kp, Ki, and Kd) given two measured
feedback loop parameters derived from the following measure-
ments: (1) the period Tu of the oscillation frequency at the sta-
bility limit, and (2) the gain margin Ku for loop stability. In this
method, the Ki and Kd gains are first set to zero. Then, the pro-
portional gain Kp is increased until it reaches the ultimate gain
Ku, at which the output of the loop starts to oscillate. Ku and
the oscillation period Tu are then used to set the gains according
to the values described in Table 1 [23]. In this paper, we will
use the Ziegler-Nichols method to determine tuned gain values
for each PID controller used to prevent and mitigate faults in
workflow executions.

3.2. Metrics
Fault-specific metrics used to set process variables in the

PID controller rely on historical information (mostly workload
traces) to define fault degrees. More specifically, they rely on
workflow structure metrics as shown in [5, 12]. The metrics
target the optimization of quality of service (QoS) factors of a
workflow execution such as the workflow makespan (time be-
tween the start and finish of all workflow tasks), the number of
predicted faults, the number of detected faults, and the number
of unhandled faults during a workflow runs.

In our previous work [18, 19, 20], faults are classified into
degrees of membership computed from metrics assuming that
faults have outlier performance. Although a fault could fall into
several degrees, the mechanism is limited to the use of correc-
tive actions once a fault is detected, i.e., no preventive actions
are performed. This approach can be represented as a PI con-
troller, where the derivative response (prediction of future er-
rors) is not considered. In this work, we pay particular attention
to the definition of metrics to compute the derivative response
(D), and their associated preventive actions. The main advan-
tage of using a PID controller is that the healing mechanism
progressively monitors the evolution of the workflow execution,
detecting possible faults far in advance, and when needed per-
forms actions to lead the execution to a steady-state.

4. Defining Control Loops

In the proposed self-healing process, a PID controller is de-
fined and used for each possible-future fault identified from

3



workload traces (historical data). Therefore, our healing pro-
cess is composed of a set of independent PID controllers. In
some cases, particular type of faults cannot not be modeled as
a full PID controller, i.e., there are faults that cannot be pre-
dicted far in advance (e.g., unavailability of resources due to a
power cut). In this case, a PI (proportional-integral) controller,
for instance, can be defined and deployed. In this paper, we
demonstrate the feasibility of the use of PID controllers as part
of a self-healing control loop by tackling two major issues of
workflow executions: data and memory footprint.

4.1. Workflow Data Footprint and Management

In the era of Big Data Science, applications are producing
and consuming ever-growing data sets in domains such as as-
tronomy, physics, climate science, earthquake science, biology
and others. A run of scientific workflows that manipulate these
data sets may lead the system to an out of disk space fault if
no mechanisms are in place to control how the available stor-
age is used. To prevent this fault, data cleanup tasks are often
automatically inserted into the workflow by the workflow man-
agement system [2], or the number of concurrent executions is
limited to prevent data usage overflow. Cleanup tasks remove
data sets that are no longer needed by downstream tasks but
nevertheless they add an important overhead to the workflow
execution. Thus, these tasks should be strategically positioned
in a workflow in order to minimize the disk space usage while
adding the minimum overhead to the execution.

PID Controller. The controller process variable (output) is de-
fined as the ratio of the estimated disk space required by current
tasks in execution, and the actual available disk space. The sys-
tem is in a non-steady state if the total amount of disk space
consumed is above (overshoot) a predefine threshold (setpoint),
or the amount of used disk space is below the defined optimal
capacity. Figure 5 shows an example of a response curve of a
simple PID controller for the management of disk usage during
a workflow execution. The raise time is the amount of time re-
quired by the system to gather information about the user’s disk
quota and actual disk usage. The proportional (P) response is
computed as the error between the desired amount of disk space
usage, and the actual used disk space; the integral (I) response
is computed from the sum of the disk usage errors for all task
executions; and the derivative (D) response is computed as the
difference between the current and the previous disk overflow
(or underutilization) error values.

Corrective Actions. The output of the PID controller (control
signal u(t), Equation 1) indicates whether the system is in a
non-steady state. Negative values indicate that the current disk
usage trespass the threshold of the minimum required available
disk space. In contrast, positive values indicate that the cur-
rent running tasks do not use the desired disk capacity. For
values of u(t) < 0, (1) data cleanup tasks can be added to the
current workflow execution to remove unused intermediate data
(adding cleanup tasks may imply rearranging the priority of all
tasks in the queue), or (2) tasks can be preempted due to the
inability to remove data–the inability of cleaning up data may

Figure 5: Example of a response curve from a PID controller for the manage-
ment of the workflow data footprint.

lead the execution to an unrecoverable state, and thereby to a
failed execution. Otherwise (for u(t) > 0), the number of con-
current task executions may be increased.

4.2. Workflow Memory Usage and Management

Large scientific computing applications rely on complex
workflows to analyze large volume of data. These jobs are of-
ten running in HPC resources (clusters/cloud) over thousands of
CPU cores and simultaneously performing data accesses, data
movements, and computation, dominated by memory-intensive
operations, which are not designed to take full advantage of
these HPC capabilities. The performance of those memory-
intensive operations (e.g., reading a large volume of data from
disk, decompressing in memory massive amount of data or per-
forming a complex calculation which generates large datasets,
etc.) are quite often limited to the memory capacity of the re-
source where the application is being executed. Therefore, if
those operations overflow the physical memory limit it can re-
sult to application’s performance degradation or application’s
failure. Typically, the application end-user is responsible for
optimizing the application, modifying the code if it is needed
for complying the amount of memory that can be used on that
resource, which implies that scientists get distracted by details
of the computing resource they use instead of being focus on
their research.

This work addresses the memory challenge proposing an in-
situ analysis of memory, to adapt the number of concurrent
tasks executions according to the memory usage required by
an application at runtime.

PID Controller. The controller process variable (output) is de-
fined as the ratio of the estimated total peak memory usage re-
quired by current tasks in execution, and the actual available
memory. The system is in a non-steady state if the amount of
available memory is below the setpoint, or if the current avail-
able memory is above the minimum required. Figure 6 shows
an example of a response curve of a simple PID controller for
the management of memory usage during a workflow execu-
tion. The raise time is the amount of time required by the sys-
tem to gather information about the current memory usage, and
isolate the amount of memory consumed by the workflow tasks,

4



Figure 6: Example of a response curve from a PID controller for the manage-
ment of the workflow memory footprint.

and the memory consumed by system-level applications. The
proportional (P) response is computed as the error between the
memory consumption setpoint for running tasks, and the actual
memory usage; the integral (I) response is computed from the
sum of the memory usage errors for all task executions; and the
derivative (D) response is computed as the difference between
the current and the previous memory overflow (or underutiliza-
tion) error values.

Corrective Actions. Negative values for the control signal u(t)
indicate that the ensemble of running tasks are leading the sys-
tem to an overflow state, thus some tasks should be preempted
to prevent the system to run out of memory. For positive u(t)
values, the memory consumption of current running tasks is be-
low a predefined memory consumption setpoint. Therefore, the
workflow management system may spawn additional tasks for
concurrent execution.

When managing a set of controllers, it is important to ensure
that an action performed by a controller does not counteract an
action performed by another one. In this paper, the metrics (and
thereby the PID controller) defined to tackle data and memory
issues perform independent actions that do not (directly) affect
the workflow execution performance. The analysis of simulta-
neous multiples control loops is out of the scope of this paper,
although we plan to evaluate such conditions in the future.

5. Experimental Evaluation

5.1. Scientific Workflow Application

Patterns of mutation in human populations can provide a ci-
pher to interpret the human genome’s 3 billion letters in the
context of health and disease. For example, knowledge about
the prevalence and co-occurrence of mutations can illuminate
new biology and advance the design of more effective thera-
pies [24, 25]. The 1000 genomes project provides a reference
for human variation, having reconstructed the genomes of 2,504
individuals across 26 different populations to energize these ap-
proaches [24]. The test case used in this work identifies muta-
tional overlaps using data from the 1000 genomes project in
order to provide a null distribution for rigorous statistical eval-
uation of potential disease-related mutations.

This test case has been designed and implemented as a sci-
entific workflow (Figure 7) using the Pegasus workflow man-
agement system [26]. The purpose of this workflow is to fetch,
parse, and analyze data from the 1000 genomes project, and it
is composed of five different tasks1 described as follows:

Individuals. This task fetches and parses the Phase 3 data2 [24]
from the 1000 genomes project by chromosome, downloading
and decompressing the corresponding chromosome file. These
files list all of Single nucleotide polymorphisms (SNPs) variants
in that chromosome and which individuals have each one. SNPs
are the most common type of genetic variation among people,
and are the ones we consider in this work. An individual task
creates output files for each individual of rs numbers 3, where
individuals have mutations on both alleles.

Populations. The 1000 genome project has 26 different popula-
tions, which are part of our study, from many different locations
around the globe. Detailed information of the 26 populations
can be found at [27]. A population task downloads a file
per population selected. For this work, we have used five su-
per populations: African (AFR), Mixed American (AMR), East
Asian (EAS), European (EUR), and South Asian (SAS). Further-
more, we have also selected ALL population, which means that
all individuals from the latest release are considered.

Sifting. A sifting task computes the SIFT scores of all of
the SNPs variants, as computed by the Variant Effect Predictor
(VEP). SIFT is a sequence homology-based tool that Sorts In-
tolerant From Tolerant amino acid substitutions, and predicts
whether an amino acid substitution in a protein will have a
phenotypic effect. In other words, SIFT classifies the sub-
stitutions as tolerated or deleterious. Therefore, VEP deter-
mines the effect of an individual variants on genes, transcripts,
and protein sequence, as well as regulatory regions [28]. For
each chromosome, the population task downloads and de-
compresses the corresponding VEP, and selects only the SNPs
variants that has a SIFT score, recording in a file (per chro-
mosome) the SIFT score and the SNPs variants ids, which
are: (1) rs number, (2) ENSEMBL GEN ID (a gene annota-
tion provided by Ensembl project [29]), and (3) HGNC ID (the
HUGO Gene Nomenclature Committee (HGNC) [30] is the
only worldwide authority that assigns standardized nomencla-
ture to human gene).

Pair Overlap Mutations. This task measures the overlap in
mutations (also called SNPs variants) among pairs of indi-
viduals by population and by chromosome. Considering two
individuals, if both individuals have a mutation in a given
SNPs then they are considered to have a mutation overlap. A

1The workflow’s tasks source code are available online at
https://github.com/rosafilgueira/Mutation Sets.

2The sequencing of the 1000 genome project was carried out in phases one
and three of the main project. In this work, we have used only the data from the
third phase.

3 Reference SNP cluster ID (rs numbers) is an identifier used by researchers
and databases to refer to specific SNPs variant.

5



...c1 c2 c3 c4 c22 ...s1 s2 s3 s4 s22...p1 p2 pn

... fc 2505fc 1 fs 3fp 1 fp 2 fp n...

...m1 m2 m3 m154 ...fr1 fr2 fr3 fr154

i 3 pop 2 sh 3

om 1

Data Preparation
Populations Sifting

Individuals
1000 Genome Populations Sifting

Pair
Overlap

Mutations

Individuals

Analysis

ofm 1

Input Data

Output Data fom 2 fog 2

Frequency
Overlap

Mutations

Figure 7: Overview of the 1000 genome sequencing analysis workflow.

pair overlap mutation task performs several correlations
by using different configurations: (1) modifying the number of
pair of individuals (all individuals, half of individuals, and 100
random individuals), and (2) modifying the number of SNPs
variants (only the SNPs variants with a score less than 0.05 and
all the SNPs variants). As an input, this task requires (1) all the
individuals files generated by the Individual task for the par-
ticular chromosome being analyzed; (2) the file generated by
the sifting task for that particular chromosome; and (3) the
population file generated by the population task according
with the selected population. For performing those analyses,
the task computes an array (per chromosome, population, and
SIFT level selected) which has as many entries as individuals,
and each entry contains the list of SNPs variants that each indi-
vidual has according with the SIFT score select. These analyses
have been repeated 100 times. The results of these correlations
are stored as text files and plot figures, producing a total of 12
files and figures per population, per chromosome, and per run.
Furthermore, two colour distribution maps are computed for
visualizing the correlation matrix of all the individuals among
themselves (with and without taking account the SIFT scores),
by population, chromosome, and number of run.

Frequency Overlap Mutations. This tasks measures the fre-
quency of overlapping in mutations by selecting a number of
random individuals (in this work we have selected 26 ran-
dom individuals), and selecting all SNPs variants without tak-
ing into account their SIFT scores. This analysis has been re-
peated 100 times. This task requires the same input files as for
pair overlap mutation, and it also computes an array (per
chromosome and population), which has as many entries as in-
dividuals, and each entry contains the list of SNPs variants be-
longing to each individual. For each run, the task randomly se-

lects a group of 26 individuals from this array and computes the
number of overlapping in mutations among that group (given a
SNPs variant the task counts the total of individuals that has that
variant in that group). Then, the task computes the frequency
of mutations that has the same number of overlapping in mu-
tations (e.g., if variant 1, variant 12, variant 31, and variant
35 are the only variants which presents 3 overlapping among
individuals, we could say that the frequency of 3 overlapping
among that group of individuals is 4 mutations). The results are
stored as a text file and as a histogram plot per population, per
chromosome, and per run.

5.2. Workflow Characterization

We profiled the 1000 genome sequencing analysis workflow
using the Kickstart [31] profiling tool. Kickstart monitors and
records task execution in scientific workflows. It captures fine-
grained profiling data such as process I/O, runtime, memory
usage, and CPU utilization. Runs were conducted on the Ed-
die Mark 3, which is the third iteration of the University of
Edinburgh’s compute cluster. The cluster is composed of some
4,000 cores with up to 2 TB of memory. Tasks are scheduled us-
ing the Open Grid Scheduler batch system onto Scientific Linux
7. For running the characterization experiments, we have used
three types of nodes, depending of the size of memory required
for each task:

1. 1 Large node with 2 TB RAM, 32 cores, Intel R©

Xeon R© Processor E5-2630 v3 (2.4 GHz), for running the
individual tasks;

2. 1 Intermediate node with 192GB RAM, 16 cores, Intel R©

Xeon R© Processor E5-2630 v3 (2.4 GHz), for running the
sifting tasks;

6



3. 2 Standards nodes with 64 GB RAM, 32 cores, Intel R©

Xeon R© Processor E5-2630 v3 (2.4 GHz), for running the
remaining tasks.

Table 2 shows the execution profile of the workflow. Most
of the workflow execution time is allocated to the individual
tasks. These tasks are in the critical path of the workflow due
to their high demand of disk (174GB in average per task) and
memory (411GB in average per task). The total workflow data
footprint is about 4.4TB. Although the large node provides 2
TB of RAM and 32 cores, we would only be able to run up
to 4 concurrent tasks per node. In Eddie Mark 3, the standard
disk quota is 2GB per user, and 200GB per group. Since this
quota would not suffice to run all tasks of the 1000 genome se-
quencing analysis workflow (even if all tasks run sequentially),
we had a special arrangement to increase our quota to 500GB.
Note that this increased quota allow us to barely run up to 3 con-
current individual tasks in the large node, and some of the
remaining tasks in smaller nodes. Therefore, data and mem-
ory management is crucial to perform a successful run of the
workflow execution, while increasing user satisfaction.

In online environments, one simple (and typically used) ap-
proach for estimating the runtime, data footprint, and memory
of future workflow tasks is to use the mean values of previous
executions of similar tasks. Most of the memory peak tasks
shown in Table 2 have small standard deviation values com-
pared to the mean, thus the estimation of these requirements
based on the mean value would yield reasonable accuracy. On
the other hand, runtime and data footprint standard deviation
values are too high to have reasonable accuracy using the mean.
In the experiments, we compare the efficiency between an on-
line method using the mean to estimate task requirements, and
an online method where task scheduling is driven by the PID
controllers.

5.3. Experiment Conditions

The experiments use trace-based simulation. We developed
an activity-based simulator that implements the self-healing
loop described in this paper. The simulator provides support
for task scheduling and resource provisioning at the workflow
level. The simulated computing environment represents the
three nodes from the Eddie Mark 3 cluster described in Sec-
tion 5.2. Additionally, we assume a shared network file system
among the nodes with total capacity of 500GB.

We use a random based policy with task preemption for task
scheduling that traverses the workflow in a breadth-first search
manner. To avoid unrecoverable faults (workflow failure) due
to run out of disk space, we implemented a data cleanup mecha-
nism to remove data that are no longer required by downstream
tasks [2]. Nevertheless, data cleanup tasks are only triggered if
the maximum storage capacity is reached. In this case, all run-
ning tasks are preempted, the data cleanup task is executed, and
the workflow resumes its execution. Note that this mechanism
may add an important overhead to the workflow execution.

The goal of this experiment is to ensure that correctly de-
fined executions complete, that performance is acceptable, and

that possible-future faults are quickly detected and automati-
cally handled before they lead the workflow execution to an
unrecoverable state (measured by the number of data cleanup
tasks used). Therefore, we do not attempt to optimize task pre-
emption (which criteria should be used to select tasks for re-
moval) since our goal is to demonstrate the feasibility of the
approach with simple use case scenarios.

PID Controllers. The response variable of the control loop that
leads the system to a setpoint (or within a steady-state error) is
defined as waveforms, which can be composed of overshoots or
underutilization of the system. In order to accommodate over-
shoots, we define our settling point as 80% of the maximum to-
tal capacity (for both storage and memory usage), and a steady-
state error of 5%. As aforementioned, for this experiment we
assume Kp = Ki = Kd = 1 to demonstrate the feasibility of
the approach regardless the use of tuning methods. Note that a
single PID controller is used to manage disk usage (shared net-
work file system), while an independent memory controller is
deployed for each computing node. The controller input value
indicates the amount of disk space or memory that should be
consumed by tasks. If the input value is positive, more tasks
are scheduled (resp. tasks are preempted). The control loop
process uses then the mean values presented in Table 2 to esti-
mate the number of tasks to be scheduled/preempted. Note that
due to the high values of standard deviation, estimations are not
accurate. Task characteristics estimation is beyond the scope
of this work, and sophisticated methods to provide accurate es-
timates can be found in [32, 33]. However, this work intend
to demonstrate that even using inaccurate estimation methods,
PID controllers can cope with the estimation error.

Reference Workflow Execution. In order to measure the effi-
ciency of our online method under unknown conditions, we
compare the workflow execution performance (in terms of the
turnaround time to execute all tasks, a.k.a. makespan) to a ref-
erence workflow—computed offline under known conditions,
i.e., all requirements (e.g., runtime, disk, memory) are known
in advance. Due to the randomness inherent to the schedul-
ing algorithm used in this work, we performed several runs for
the reference workflow, which yields an averaged makespan of
382,887.7s (∼106h), with a confidence level of 95%.

5.4. Experimental Results and Discussion

This subsection shows the experimental results of using PID
controllers to prevent and circumvent faults in the 1000 genome
sequencing analysis workflow. We have conducted workflow
runs with three different types of controllers: (P) only the pro-
portional component is evaluated—kp = 1, and Ki = Kd = 0;
(PI) the proportional and integral components are enabled—
kp = ki = 1, and kd = 0; and (PID) all components are
activated—kp = ki = kd = 1. The reference workflow execu-
tion is reported as Reference (Figure 8). We have performed
several runs of each configuration to produce results with a con-
fidence level of 95%. The simulator code, as well as the work-
flow description are available as part of the research object of
this paper [34].

7



Task Count Runtime Data Footprint Memory Peak
Mean (s) Std. Dev. Mean (GB) Std. Dev. Mean (GB) Std. Dev.

Individual 22 31593.7 17642.3 173.79 82.34 411.08 17.91
Population 7 1.14 0.01 0.02 0.01 0.01 0.01
Sifting 22 519.9 612.4 0.94 0.43 7.95 2.47
Pair Overlap Mutations 154 160.3 318.7 1.85 0.85 17.81 20.47
Frequency Overlap Mutations 154 98.8 47.1 1.83 0.86 8.18 1.42

Total (cumulative) 359 590993.8 – 4410.21 – 24921.58 –

Table 2: Execution profile of the 1000 genome sequencing analysis workflow.

0

50

100

P PI PID Reference

M
ak

es
pa

n 
(h

ou
rs

)

Figure 8: Average workflow makespan for different configurations of the con-
trollers: (P) proportional, (PI) proportional-integral, and (PID) proportional-
integral-derivative. Under online and unknown conditions, the PID controller
produces the lowest slowdown (1.08), while the slowdown for the PI and P con-
trollers are 1.19 and 1.30, respectively. Reference denotes the makespan of a
reference workflow execution computed offline and under known conditions.

Overall makespan evaluation. Figure 8 shows the average
makespan (in hours) for the three configurations of the con-
troller and the reference workflow execution. The degradation
of the makespan when using controllers is expected due to the
online and unknown conditions (no information about the tasks
is know in advance). In spite of the mean does not provide accu-
rate estimates, the use of a control loop mechanism diminishes
this effect. Moreover, if tasks were scheduled only using the
estimates from the mean, the workflow would not complete its
execution due to lack of disk space or memory overflows.

Executions using PID controllers outperforms executions us-
ing only the proportional (P) or the PI controller. The PID con-
troller slows down the application of 1.08 (average makespan
413,850s), while the application slowdown is 1.19 and 1.30 for
the PI (average makespan 456,083s) and P (average makespan
499,538s) controllers, respectively. This result suggests that the
derivative component (prediction of future errors) has signifi-
cant impact on the workflow executions, and that the accumu-
lation of past errors (integral component) also has important
contribution to prevent and mitigate faults. Therefore, below
we analyze how each of these components influence the number
of tasks scheduled, and the peaks and troughs of the controller
response function.

Controller # Tasks Preempted # Cleanup Tasks

P 7225 0
PI 168 48
PID 73 4

Table 3: Average number of tasks preempted and cleanup tasks executed per
workflow run for the P, PI, and PID controllers.

Due to the randomness inherent to the scheduling algorithm,
we did not perform runs where mixed PID, PI, and P controllers
were part of the same simulation, since it would be very difficult
to determine the influence of each controller.

Data footprint. Figure 9 shows the time series of the number of
tasks scheduled or preempted during the workflow executions.
For each controller configuration, we present a single execu-
tion which the makespan is the closest to the average makespan
value shown in Figure 8. Task preemption is represented as neg-
ative values (red bars), while positive values (blue bars) indicate
the number of tasks scheduled at an instant of time. Addition-
ally, the right y-axis shows the step response of the controller
input value (black line) for disk usage during the workflow ex-
ecution. Recall that positive input values (u(t) > 0, Equation 1)
trigger task scheduling, while negative input values (u(t) < 0)
trigger task preemption.

The proportional controller (P, Figure 9a) is limited to
the current error, i.e., the amount of disk space that is
over/underutilized. Since the controller input value is strictly
proportional to the error, there is a burst on the number of tasks
to be schedule at the beginning of the execution. This bursty
pattern and the nearly constant variation of the input value lead
the system to an inconsistent state, where the remaining tasks
to be scheduled cannot lead the controller within the steady-
state. Consequently, tasks are constantly scheduled and then
preempted. In the example scenario shown in Figure 9a, this
process occurs during about 4h, and performs more than 6,000
preemptions. Table 3 shows the average number of preemp-
tions and cleanup tasks occurrences per workflow execution.
In average, proportional controllers produced more than 7,000
preemptions, but no cleanup tasks. The lack of cleanup tasks
indicate that the number of concurrent executions is very low
(mostly influenced by the number of task preemptions), which
is observed from the low average application speedup of 1.18.

The proportional-integral controller (PI, Figure 9b) aggre-
gates the cumulative error when computing the response of the
controller. As a result, the bursty pattern is smoothed along the

8



(a) Proportional Controller (P)

(b) Proportional-integral Controller (PI)

(c) Proportional-integral-derivative Controller (PID)

Figure 9: Data Footprint: Number of tasks scheduled (blue bars for positive values) and preempted (red bars for negative values) during the lifespan of a workflow
execution (left y-axis). The right y-axis represents the step response of the controller input value (black line) during the workflow execution. Note that 1.0 is the
setpoint, i.e., no action is required.

execution, and task concurrency is increased. The cumulative
error tend to increase the response of the PI controller at each
iteration (both positively or negatively). Thus, task preemption
occurs earlier during execution. On the other hand, this behav-
ior mitigates the vicious circle present in the P controllers, and
consequently the average number of preempted tasks is sub-
stantially reduced to 168 (Table 3). A drawback of using a PI

controller, is the presence of cleanup tasks, which is due to the
higher level of concurrency among task executions.

The proportional-integral-derivative controller (PID, Fig-
ure 9c) gives significant importance to the previous response
produced by the controller (the last computed error). The
derivative component drives the controller to trigger actions
once the current error follows (or increase) the previous error
trend. In this case, the control loop only performs actions when
disk usage is moving towards an overflow or underutilization

state. Note that the number of actions (scheduling/preemption)
triggered in Figure 9c is much less than the number triggered
by the PI controller: the average number of preempted tasks is
73, and only 4 cleanup tasks in average are spawned (Table 3).

Memory Usage. Figure 10 shows the time series of the
number of tasks scheduled or preempted during the work-
flow executions. Similarly, for each controller configura-
tion, we present a single execution representing the av-
erage makespan value shown in Figure 8. The right y-
axis shows the step response of the controller input value
(black line) for memory usage during the workflow execu-
tion. We present the response function of a controller attached
to a standard cluster (32 cores, 64GB RAM, Section 5.2),
which runs the population, pair overlap mutations, and
frequency overlap mutations tasks (total of 315 tasks).

9



(a) Proportional Controller (P)

(b) Proportional-integral Controller (PI)

(c) Proportional-integral-derivative Controller (PID)

Figure 10: Memory Usage: Number of tasks scheduled (blue bars for positive values) and preempted (red bars for negative values) during the lifespan of a workflow
execution (left y-axis). The right y-axis represents the step response of the controller input value (black line) during the workflow execution. Note that 1.0 is the
setpoint, i.e., no action is required. This figure shows the step response function of a controller attached to a standard cluster (32 cores, 64GB RAM), which has
more potential to arise memory overflows.

The total memory allocation required to run all these tasks is
over 4TB, which might lead the system to memory overflow
states.

When using the proportional controller (P, Figure 10a), most
of the actions are triggered by the data footprint controller (Fig-
ure 9a). As aforementioned, memory does not become an issue
when only the proportional error is accounted, since task ex-
ecution is nearly sequential (low level of concurrency). As a
result, only a few tasks (in average less than 5) are preempted
due to memory overflow. Note that the process of constant task
scheduling (around 50h of execution) is strongly influenced by
the memory controller. Also, the step response shown in Fig-
ure 10a highlights that most of the task preemptions occur in
the standard cluster. This result suggests that actions performed
by the global data footprint controller is affected by actions trig-

gered by the local memory controller. The analysis of the in-
fluence of multiple concurrent controllers is out of the scope
of this paper, however this result demonstrates that controllers
should be used sparingly, and actions triggered by controllers
should be performed by priority or according to the controller
hierarchical level.

The proportional-integral controller (PI, Figure 10b) miti-
gates this effect, since the cumulative error prevents the con-
troller to trigger repeatedly actions. Observing the step re-
sponse of the PI memory controller and the PI data footprint
controller (Figure 9b), we notice that most of the task preemp-
tions are triggered by the memory controller, particularly in
the first quarter of the execution. The average data footprint
per task of the population, pair overlap mutations, and
frequency overlap mutations tasks is 0.02GB, 1.85GB,

10



and 1.83GB (Table 3), respectively. Thus, the data footprint
controller tends to increase the number of concurrent tasks.
If there were no memory controllers, the workflow execution
would tend to memory overflow, and thereby into a failed state.

The derivative component of the PID controller (Figure 10c)
acts as a catalyzer to improve memory usage: it decreases the
overshoot and the settling time without affecting the steady-
state error. As a result, the number of actions triggered by the
PID memory controller is significantly reduced when compared
to the PI or P controllers.

Although the experiments conducted in this feasibility study
considered equal weights for each of the components in a PID
controller (i.e., kp = ki = kd = 1), we have demonstrated that
correctly defined executions complete with acceptable perfor-
mance, and that faults were detected far in advance, and auto-
matically handled before they lead the workflow execution to
an unrecoverable state. In the next section, we explore the use
of a simple and commonly used tuning method to calibrate the
three PID gain parameters (Kp, Ki, and Kd).

6. Tuning PID Controllers

The goal of tuning a PID loop is to make it stable, respon-
sive and to minimize overshooting. However, there is no opti-
mal way to achieve responsiveness without compromising over-
shooting, or vice-versa. Therefore, a plethora of methods have
been developed for tuning PID control loops. in this paper, we
use the Ziegler-Nichols method to tune the gain parameters of
the data footprint and memory controllers. The Ziegler-Nichols
closed loop method was briefly introduced in Section 3.1, and a
detailed explanation of the method can be found in [22]. Thus,
in the section we will present how we determine the period Tu,
and the gain margin Ku for loop stability.

6.1. Determining Tu and Ku

The Ziegler-Nichols oscillation method is based on experi-
ments executed on an established closed loop. The overview of
the tuning procedure is as follows [35]:

1. Turn the PID controller into a P controller by setting Ki =

Kd = 0. Initially, Kp is also set to zero;

2. Increase Kp until there are sustained oscillations in the sig-
nal in the control system. This Kp value is denoted the
ultimate (or critical) gain, Ku;

3. Measure the ultimate (or critical) period Tu of the sus-
tained oscillations; and

4. Calculate the controller parameter values according to Ta-
ble 1, and use these parameter values in the controller.

Since workflow executions are intrinsically dynamic (due to
the arrival of new tasks at runtime), it is difficult to establish a
sustained oscillation in the signal. Therefore, in this paper we
measured sustained oscillation in the signal within the execu-
tion of long running tasks—in this case the individual tasks

Controller Ku Tu Kp Ki Kd

Data Footprint 0.58 3.18 0.35 0.22 0.14
Memory Usage 0.53 12.8 0.32 0.05 0.51

Table 4: Tuned gain parameters (Kp, Ki, and Kd) for both the data footprint
and memory usage PID controllers. Ku and Tu are computed using the Ziegler-
Nichols method, and represent the ultimate period and critical gain, respec-
tively. The gain parameters are computed using the formulas for the controller
parameters in the Ziegler-Nichols’ closed loop method (Table 1).

(Table 2). We conducted several runs (O(100)) with the pro-
portional (P) controller to compute the period Tu and the gain
margin Ku. Table 4 shows the values for Ku and Tu for each
controller used in the paper, as well as the tuned gain values for
Kp, Ki, and Kd for the PID controller.

6.2. Experimental Evaluation and Discussion

We have conducted runs with the tuned PID controllers for
both the data footprint and memory usage. Figure 11 shows
the time series of the number of tasks scheduled or preempted
during the workflow executions, and the step response of the
controller input value (right y-axis). The average workflow exe-
cution makespan is 386,561s, which yields a slowdown of 1.01.
Additionally, the average number of preempted tasks is around
18, and only a single cleanup task was used in each workflow
execution. The controller step responses, for both the data foot-
print (Figure 11a) and the memory usage (Figure 11b), show
lower peaks and troughs values during the workflow execution
when compared to the PID controllers using equal weights for
each gain parameter (Figures 9c and 10c, respectively). More
specifically, the controller input value is reduced of about 30%
for the memory controller attached to a standard cluster. This
behavior is attained through the ponderations provided by the
tuned parameters. However, tuning the gain parameters cannot
ensure that an optimal scheduling will be produced for work-
flow runs (mostly due to the dynamism inherent to workflow
executions), since few preemptions are still triggered.

Although the Ziegler-Nichols provides quasi-optimal work-
flow executions (for the workflow studied in this paper), the key
factor of its success is due to the specialization of the controllers
to a single application. In production systems, such methodol-
ogy may not be realistic because of the variety of applications
running by different users—deploying a PID controller per ap-
plication and per component (e.g., disk, memory, network, etc.)
may significantly increase the complexity of the system and the
system’s requirements. On the other hand, controllers may be
deployed on the user’s space (or per workflow engine) to man-
age single (or a few) workflow executions, ensuring that cor-
rectly defined workflow complete with acceptable performance.
In addition, the time required to process the current state of the
system and decide whether to trigger an action is nearly instan-
taneous, what favors the use of PID controllers on online and
real-time workflow systems. More sophisticated methods (e.g.,
using machine learning) may provide better approaches to tune
the gain parameters. However, they may also add an important
overhead to the system.

11



(a) PID Data Footprint Controller

(b) PID Memory Controller

Figure 11: Tuning PID Controllers: Number of tasks scheduled (blue bars for positive values) and preempted (red bars for negative values) during the lifespan of a
workflow execution (left y-axis). The right y-axis represents the step response of the controller input value (black line) during the workflow execution. Note that 1.0
is the setpoint, i.e., no action is required. The bottom of the figure shows the step response function of a memory controller attached to a standard cluster (32 cores,
64GB RAM), which has more potential to arise memory overflows. The average workflow makespan is 386,561s, i.e. an average application slowdown of 1.01.

7. Conclusion

In this paper, we have introduced, evaluated, and discussed
the feasibility of using simple PID (proportional-integral-
derivative) controllers to prevent and mitigate faults in work-
flow executions. We have presented a general self-healing con-
trol loop to constantly monitor the workflow execution, and
trigger preventive or corrective actions to avoid leading work-
flow executions to unrecoverable states. We have then ad-
dressed two common faults of today’s science applications,
data footprint and memory usage (main issues in data-intensive
workflows, i.e., Big Data), as use cases to demonstrate the fea-
sibility of the proposed approach. Additionally, our self-healing
mechanism works online and under unknown conditions—task
requirements are not known in advance.

Experimental results using simple defined control loops (no
tuning) show that faults are detected and prevented far in ad-
vance, leading workflow execution to its completion with ac-
ceptable performance (slowdown of 1.08). The experiments
also demonstrated the importance of each component in a PID
controller. We then used the Ziegler-Nichols method to tune
the gain parameters of the controllers (both data footprint and
memory usage). Experimental results show that the control
loop system produced nearly optimal scheduling—slowdown
of 1.01.

Results of this work open a new venue of research in work-
flow management systems. Although in this paper PID con-
trollers have been used to prevent and mitigate faults in work-

flow executions at runtime, this approach could be extended
beyond the application level, for example resource provision-
ing algorithms may use PID controllers to balance the tradeoff

between performance and cost in cloud computing.
We acknowledge that PID controllers should be used spar-

ingly, and metrics (and actions) should be defined in a way
that they do not lead the system to an inconsistent state—as ob-
served in this paper when only the proportional component was
used. Therefore, we plan to investigate the simultaneous use
of multiple control loops at the application and infrastructure
levels, to determine to which extent this approach may nega-
tively impact the system. We also plan to share execution traces
of the workflow application used in this work, and extend our
synthetic workflow generator [36] (that can produce realistic
synthetic workflows based on profiles extracted from execution
traces) to generate estimates of data and memory usages based
on the gathered measurements.

Acknowledgments

This work was funded by DOE contract number
#DESC0012636, “Panorama—Predictive Modeling and
Diagnostic Monitoring of Extreme Science Workflows”, and
the Postdoctoral and Early Career Researcher Exchanges
(PECE) fellowship funded by the Scottish Informatics and
Computer Science Allience (SICSA) in 2016.

12



References

[1] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, Workflows for e-
Science: scientific workflows for grids, Springer Publishing Company,
Incorporated, 2014.

[2] S. Srinivasan, G. Juve, R. Ferreira da Silva, K. Vahi, E. Deelman,
A cleanup algorithm for implementing storage constraints in scientific
workflow executions, in: 9th Workshop on Workflows in Support of
Large-Scale Science, WORKS’14, 2014, pp. 41–49. doi:10.1109/

WORKS.2014.8.
[3] A. Bala, I. Chana, Intelligent failure prediction models for scientific work-

flows, Expert Systems with Applications 42 (3) (2015) 980–989.
[4] N. Muthuvelu, C. Vecchiola, I. Chai, E. Chikkannan, R. Buyya, Task

granularity policies for deploying bag-of-task applications on global
grids, Future Generation Computer Systems 29 (1) (2013) 170–181.

[5] W. Chen, R. Ferreira da Silva, E. Deelman, R. Sakellariou, Balanced
task clustering in scientific workflows, in: IEEE 9th International Con-
ference on eScience, eScience’13, 2013, pp. 188–195. doi:10.1109/

eScience.2013.40.
[6] G. Kandaswamy, A. Mandal, D. A. Reed, Fault tolerance and recovery

of scientific workflows on computational grids, in: Cluster Computing
and the Grid, 2008. CCGRID’08. 8th IEEE International Symposium on,
IEEE, 2008, pp. 777–782.

[7] Y. Zhang, A. Mandal, C. Koelbel, K. Cooper, Combined fault tolerance
and scheduling techniques for workflow applications on computational
grids, in: Proceedings of the 2009 9th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, IEEE Computer Society, 2009,
pp. 244–251.

[8] J. Montagnat, T. Glatard, D. Reimert, K. Maheshwari, E. Caron, F. De-
sprez, Workflow-based comparison of two distributed computing infras-
tructures, in: Workflows in Support of Large-Scale Science (WORKS),
2010 5th Workshop on, IEEE, 2010, pp. 1–10.

[9] W. Cirne, F. Brasileiro, D. Paranhos, L. F. W. Góes, W. Voorsluys, On
the efficacy, efficiency and emergent behavior of task replication in large
distributed systems, Parallel Computing 33 (3) (2007) 213–234.

[10] O. A. Ben-Yehuda, A. Schuster, A. Sharov, M. Silberstein, A. Iosup, Ex-
pert: Pareto-efficient task replication on grids and a cloud, in: Parallel
& Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Interna-
tional, IEEE, 2012, pp. 167–178.

[11] H. Arabnejad, J. Barbosa, Fairness resource sharing for dynamic work-
flow scheduling on heterogeneous systems, in: Parallel and Distributed
Processing with Applications (ISPA), 2012 IEEE 10th International Sym-
posium on, IEEE, 2012, pp. 633–639.

[12] W. Chen, R. Ferreira da Silva, E. Deelman, R. Sakellariou, Using im-
balance metrics to optimize task clustering in scientific workflow ex-
ecutions, Future Generation Computer Systems 46 (0) (2015) 69–84.
doi:10.1016/j.future.2014.09.014.

[13] D. Poola, K. Ramamohanarao, R. Buyya, Enhancing reliability of work-
flow execution using task replication and spot instances, ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS) 10 (4) (2016) 30.

[14] W. Chen, R. Ferreira da Silva, E. Deelman, T. Fahringer, Dynamic
and fault-tolerant clustering for scientific workflows, IEEE Transactions
on Cloud Computing 4 (1) (2016) 49–62. doi:10.1109/TCC.2015.

2427200.
[15] I. Casas, J. Taheri, R. Ranjan, L. Wang, A. Y. Zomaya, A balanced sched-

uler with data reuse and replication for scientific workflows in cloud com-
puting systems, Future Generation Computer Systems.

[16] H. Casanova, On the harmfulness of redundant batch requests., in: hpdc,
2006, pp. 255–266.

[17] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Com-
puter 36 (1) (2003) 41–50.

[18] R. Ferreira da Silva, T. Glatard, F. Desprez, Self-healing of workflow
activity incidents on distributed computing infrastructures, Future Gen-
eration Computer Systems 29 (8) (2013) 2284–2294. doi:10.1016/j.
future.2013.06.012.

[19] R. Ferreira da Silva, T. Glatard, F. Desprez, Controlling fairness and task
granularity in distributed, online, non-clairvoyant workflow executions,
Concurrency and Computation: Practice and Experience 26 (14) (2014)
2347–2366. doi:10.1002/cpe.3303.

[20] R. Ferreira da Silva, T. Glatard, F. Desprez, Self-managing of opera-
tional issues for grid computing: The case of the virtual imaging plat-
form, in: S. Bagchi (Ed.), Emerging Research in Cloud Distributed

Computing Systems, IGI Global, 2015, pp. 187–221. doi:10.4018/

978-1-4666-8213-9.ch006.
[21] S. W. Sung, J. Lee, I.-B. Lee, Proportional–integral–derivative control,

Process Identification and PID Control (2010) 111–149.
[22] J. G. Ziegler, N. B. Nichols, Optimum settings for automatic controllers,

trans. ASME 64 (11).
[23] A. S. McCormack, K. R. Godfrey, Rule-based autotuning based on fre-

quency domain identification, Control Systems Technology, IEEE Trans-
actions on 6 (1) (1998) 43–61.

[24] . G. P. Consortium, et al., A global reference for human genetic variation,
Nature 526 (7571) (2015) 68–74.

[25] C. J. Ryan, C. J. Lord, A. Ashworth, Daisy: picking synthetic lethals from
cancer genomes, Cancer cell 26 (3) (2014) 306–308.

[26] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger, Pegasus,
a workflow management system for science automation, Future Genera-
tion Computer Systems 46 (0) (2015) 17–35. doi:10.1016/j.future.
2014.10.008.

[27] Populations - 1000 genome, http://1000genomes.org/category/
population.

[28] Variant effect predictor, www.ensembl.org/info/docs/tools/vep.
[29] Ensembl genome browser 84, http://uswest.ensembl.org.
[30] Hugo gene nomenclature committee, http://www.genenames.org/

help/symbol-report.
[31] G. Juve, B. Tovar, R. Ferreira da Silva, D. Król, D. Thain, E. Deel-

man, W. Allcock, M. Livny, Practical resource monitoring for robust
high throughput computing, in: 2nd Workshop on Monitoring and Anal-
ysis for High Performance Computing Systems Plus Applications, HPC-
MASPA’15, 2015, pp. 650–657. doi:10.1109/CLUSTER.2015.115.

[32] R. Ferreira da Silva, G. Juve, M. Rynge, E. Deelman, M. Livny, Online
task resource consumption prediction for scientific workflows, Parallel
Processing Letters 25 (3). doi:10.1142/S0129626415410030.

[33] R. Ferreira da Silva, M. Rynge, G. Juve, I. Sfiligoi, E. Deelman, J. Letts,
F. Würthwein, M. Livny, Characterizing a high throughput computing
workload: The compact muon solenoid (CMS) experiment at LHC, Pro-
cedia Computer Science 51 (2015) 39–48, international Conference On
Computational Science, {ICCS} 2015 Computational Science at the Gates
of Nature. doi:10.1016/j.procs.2015.05.190.

[34] Research object: Workflows and pid controllers, http://scitech.

isi.edu/ro/pid.
[35] F. Haugen, Ziegler-nichols’ closed-loop method, Tech. rep., TechTeach

(2010).
[36] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community

resources for enabling and evaluating research on scientific workflows,
in: 10th IEEE International Conference on e-Science, eScience’14, 2014,
pp. 177–184. doi:10.1109/eScience.2014.44.

13

http://dx.doi.org/10.1109/WORKS.2014.8
http://dx.doi.org/10.1109/WORKS.2014.8
http://dx.doi.org/10.1109/eScience.2013.40
http://dx.doi.org/10.1109/eScience.2013.40
http://dx.doi.org/10.1016/j.future.2014.09.014
http://dx.doi.org/10.1109/TCC.2015.2427200
http://dx.doi.org/10.1109/TCC.2015.2427200
http://dx.doi.org/10.1016/j.future.2013.06.012
http://dx.doi.org/10.1016/j.future.2013.06.012
http://dx.doi.org/10.1002/cpe.3303
http://dx.doi.org/10.4018/978-1-4666-8213-9.ch006
http://dx.doi.org/10.4018/978-1-4666-8213-9.ch006
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1016/j.future.2014.10.008
http://1000genomes.org/category/population
http://1000genomes.org/category/population
www.ensembl.org/info/docs/tools/vep
http://uswest.ensembl.org
http://www.genenames.org/help/symbol-report
http://www.genenames.org/help/symbol-report
http://dx.doi.org/10.1109/CLUSTER.2015.115
http://dx.doi.org/10.1142/S0129626415410030
http://dx.doi.org/10.1016/j.procs.2015.05.190
http://scitech.isi.edu/ro/pid
http://scitech.isi.edu/ro/pid
http://dx.doi.org/10.1109/eScience.2014.44

	Introduction
	Related Work
	General Healing Process
	PID Controllers
	Metrics

	Defining Control Loops
	Workflow Data Footprint and Management
	Workflow Memory Usage and Management

	Experimental Evaluation
	Scientific Workflow Application
	Workflow Characterization
	Experiment Conditions
	Experimental Results and Discussion

	Tuning PID Controllers
	Determining Tu and Ku
	Experimental Evaluation and Discussion

	Conclusion

