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To appear in European Journal of Operational Research

Abstract

The Capacitated Vehicle Routing Problem (CVRP) is a classic com-
binatorial optimization problem for which many heuristics, relaxations
and exact algorithms have been proposed. Since the CVRP isNP-hard
in the strong sense, a natural research topic is relaxations that can be
solved in pseudo-polynomial time. We consider several old and new
relaxations of this kind, all of which are based on column generation.
We also analyze the effect of adding some known inequalities. Compu-
tational experiments demonstrate that the best of our new relaxations
yields extremely tight lower bounds.

Keywords: vehicle routing, integer programming, column generation.

1 Introduction

Vehicle routing problems form a much-studied family of combinatorial opti-
mization problems, due to their many important practical applications (see,
e.g., [11, 18, 33] for surveys). This paper is concerned with the capacitated
vehicle routing problem (CVRP), which Dantzig and Ramser [4] defined as
follows. A fleet of identical vehicles, each with a known (positive integer) ca-
pacity Q, is located at a depot. There are n customers that require service.
For i = 1, . . . , n, customer i has a known integer demand qi with 0 < qi ≤ Q.
The (positive) cost of travel between any pair of customers, or between any
customer and the depot, is also known. The task is to find a minimum-cost
collection of vehicle routes, each starting and ending at the depot, such that
each customer is visited by exactly one vehicle, and no vehicle visits a set
of customers whose total demand exceeds Q.

Several different integer programming formulations have been proposed
for the CVRP. These include so-called two-index and three-index vehicle-flow
formulations, single-commodity, two-commodity and multi-commodity flow
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formulations, and set partitioning formulations (see, e.g., [17, 18, 23, 24, 32]
for surveys). At present, the most successful exact algorithms for the CVRP
are based on set partitioning formulations augmented with various families
of cutting planes (see, e.g., [1, 8, 29, 31]).

The CVRP is NP-hard in the strong sense, since it contains the well-
known Travelling Salesman and Bin Packing problems as special cases. This
leads us to ask the following question: what is the strongest linear program-
ming relaxation of the CVRP that can be solved in pseudo-polynomial time
(i.e., in time bounded by a polynomial in n and Q)? After surveying the
known relaxations with this property, we propose several new ones, and
prove that the best one dominates all of the others. Computational exper-
iments show that, in practice, this best relaxation yields remarkably tight
lower bounds.

The structure of the paper is as follows. The literature is reviewed in
Section 2. The new formulations and relaxations are presented in Section 3.
Theoretical results, concerned with the strength of the new relaxations and
their solvability in pseudo-polynomial time, are given in Section 4. Compu-
tational results are given in Section 5, and concluding remarks are made in
Section 6.

Throughout the paper, we assume that the travel costs are asymmetric
and the fleet is unlimited. Our approach can easily be adapted to the cases
with symmetric costs and/or with a limited number of vehicles. We also use
the following notation. We have a complete directed graph G with node set
V = {0, 1, . . . , n} and arc set A. We write Vc for V \{0}, the set of customer
nodes, and Ac for the arcs (i, j) ∈ A with i, j ∈ Vc. For any i, j ∈ Vc with
i 6= j, we exclude (i, j) and (j, i) from A if qi + qj > Q. Node 0 represents
the depot, and nodes 1, . . . , n represent customers. By convention, q0 = 0.
For any S ⊂ V , we use δ+(S) (respectively, δ−(S)) to denote the set of arcs
(i, j) with i ∈ S and j ∈ V \ S (respectively, with i ∈ V \ S and j ∈ S).
If S = {i}, we just write δ+(i) and δ−(i). Also, for any set of customers
S ⊂ Vc, let q(S) =

∑
i∈S qi. The cost of traversing arc (i, j) ∈ A is cij .

Finally, given a vector x ∈ [0, 1]|A| and a set A′ ⊂ A, we write x(A′) for∑
a∈A′ xa.

2 Literature Review

Now we review some of the existing formulations for the CVRP. For brevity,
we cover only two-index vehicle flow, set partitioning and multi-commodity
flow formulations. For details on other formulations, see the surveys men-
tioned in the introduction.
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2.1 The two-index vehicle flow formulation

Laporte & Nobert [19] presented what is now called the two-index vehicle
flow formulation. For all (i, j) ∈ A, define a binary variable xij , taking
the value 1 if and only if some vehicle traverses the arc (i, j). Then the
formulation is:

min
∑

(i,j)∈A

cijxij (1)

s.t. x(δ+(i)) = x(δ−(i)) = 1 (i ∈ Vc) (2)

x(δ+(S)) ≥ dq(S)/Qe (S ⊆ Vc). (3)

xij ∈ {0, 1} ((i, j) ∈ A) (4)

The constraints (3) are called rounded capacity (RC) inequalities [28].
The complexity of separation for them is unknown, but effective heuristics
are available [25]. Moreover, separation can be solved efficiently for the
following weaker inequalities [28]:

• The fractional capacity (FC) inequalities:

x(δ+(S)) ≥ q(S)

Q
(S ⊆ Vc). (5)

• The subtour elimination (SE) inequalities:

x(δ+(S)) ≥ 1 (S ⊆ Vc). (6)

Many other families of inequalities have been developed for the 2-index
formulation (see [23, 25, 28, 32] for surveys). Of interest to us are:

• The generalized large multistar (GLM) inequalities (see [13]):

x(δ+(S)) ≥ 1

Q

∑
i∈S

(qi +
∑

j∈Vc\S

qj(xij + xji)) (S ⊆ Vc). (7)

• The knapsack large multistar (KLM) inequalities (see [22]):

x(δ+(S)) ≥ 1

β

∑
i∈S

(αi +
∑

j∈Vc\S

αj(xij + xji)) (S ⊆ Vc), (8)

where α ∈ Rn
+ and β ∈ R+ are such that the inequality αT y ≤ β is

valid for the following 0-1 knapsack polytope:

conv

{
y ∈ {0, 1}n :

∑
i∈Vc

qiyi ≤ Q

}
. (9)

The GLM inequalities dominate the FC inequalities, and the KLM inequal-
ities include the GLM and SE inequalities as special cases. The separation
problem for the GLM inequalities can be solved in polynomial time [25].
The complexity of separation for the KLM inequalities is unknown.
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2.2 Set partitioning formulations

The set partitioning formulation is due to Balinski & Quandt [2]. Let Ω
denote the set of possible routes for a single vehicle, and let zr for each
r ∈ Ω be a binary variable taking the value 1 if and only if that route is
used. Define the constant air for each i ∈ Vc and r ∈ Ω, taking the value 1
if customer i is served in route r, and 0 otherwise. Finally let cr denote the
cost of route r. Then the formulation is:

min
∑
r∈Ω

crzr (10)

s.t.
∑
r∈Ω

airzr = 1 (i ∈ Vc) (11)

zr ∈ {0, 1} (r ∈ Ω). (12)

Since |Ω| can be exponential in n, a column-generation technique is nec-
essary to efficiently solve the LP relaxation of this formulation. The column
generation requires solving a pricing subproblem which is itself stronglyNP-
hard. Foster & Ryan [7] noted that pricing becomes easier if one enlarges Ω
by permitting routes in which vehicles may visit customers more than once
(now called non-elementary routes). The pricing subproblem can then be
solved in O(n2Q) time by dynamic programming. See, e.g., [8, 29, 27] for
details.

We will call the formulation with only elementary routes “SPE”, and the
one with non-elementary routes “nSP”. As noted in [8], the x variables of
the two-index formulation can be linked to the z variables of nSP via the
equations

xij =
∑
r∈Ω

bijrzr ((i, j) ∈ A), (13)

where the constant bijr counts the number of times arc (i, j) is traversed
on route r. (Note that bijr can be larger than 1 when route r is non-
elementary.) This enables one to strengthen the LP relaxation of nSP by
adding valid inequalities that involve the x variables.

In [23] we proved that the projection of the LP relaxation of SPE into x-
space satisfies all KLM inequalities, whereas the projection for nSP satisfies
only a subset of them that includes the GLM inequalities but not the SE
inequalities. This means that it is worth adding RC, SE or KLM inequalities
to nSP, but not FC or GLM inequalities.

2.3 Multi-commodity flow formulations

As mentioned above, several commodity-flow formulations are analysed in
[23, 24]. For brevity, we focus on just one multi-commodity flow formula-
tion, called MCF2b in [24]. It involves binary variables fkij and gkij , indicating
whether a vehicle traverses the arc (i, j) on the way to customer k or after

4



visiting customer k, respectively. It has the objective (1) and the constraints
(2), (4) from the two-index vehicle-flow formulation, together with the fol-
lowing constraints:

fk(δ+(0)) = fk(δ−(k)) = gk(δ+(k)) = gk(δ−(0)) = 1 (k ∈ Vc) (14)

fk(δ−(0)) = fk(δ+(k)) = gk(δ−(k)) = gk(δ+(0)) = 0 (k ∈ Vc) (15)

fk(δ−(l)) = fk(δ+(l)) = gl(δ−(k)) = gl(δ+(k)) (k, l ∈ Vc : l 6= k)(16)∑
k∈Vc\{i,j}

qk(fkij + gkij) ≤ (Q− qi − qj)xij ((i, j) ∈ A) (17)

fkij + gkij ≤ xij (k ∈ Vc, (i, j) ∈ A)(18)

fkij , g
k
ij ∈ {0, 1} (k ∈ Vc, (i, j) ∈ A).(19)

It is shown in [24] that the LP relaxation of MCF2b dominates the LP
relaxation of all other known polynomial-sized commodity-flow formulations
for the CVRP with general demands. (See [12] for alternative formulations
for the CVRP with unit demands.) It is also shown in [24] that the LP
relaxation of MCF2b satisfies all of the SE and GLM inequalities.

One big drawback however is that MCF2b has O(n3) variables and con-
straints, which makes even solving the LP relaxation time-consuming.

MCF2b was strengthened in [24] by adding exponentially many variables,
as follows. Let Π be the set of all possible loading patterns of a single vehicle.
That is, each member of Π is a subset of Vc whose total demand does not
exceed Q. Observe that each member of Π corresponds to an extreme point
of the knapsack polytope (9). For each (i, j) ∈ A and each P ∈ Π, let σPij be
a binary variable indicating whether a vehicle departs from the depot with
loading pattern P and traverses the arc (i, j) at some point. (This implies
that i ∈ P when i 6= 0, and that j ∈ P when j 6= 0.) Then we add the
following constraints to MCF2b:

xij =
∑

P∈Π: i,j∈P
σPij ((i, j) ∈ Ac) (20)

fkij + gkij =
∑

P∈Π: i,j,k∈P
σPij ((i, j) ∈ Ac, k ∈ Vc \ {i, j}). (21)

Accordingly, we called the strengthened formulation “MCF2K”. It is shown
in [24] that one can price the σ variables in O(n3Q) time, by reduction to
a series of knapsack problems. It was also shown that the LP relaxation
of MCF2K satisfies the KLM inequalities (8), which is not true for MCF2b in
general. Unfortunately, solving the LP relaxation of MCF2K is even more
time-consuming than solving that of MCF2b.

Finally, we mention that a different way of strengthening MCF2b, us-
ing additional linear ordering variables, can be found in a recent paper by
Leggieri and Haouari [20].
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3 New Formulations and Relaxations of the CVRP

In this section, we present new formulations and relaxations of the CVRP.
Our starting point, in Subsection 3.1, is a new formulation of the CVRP that
we call the arc-packing formulation. Some equivalent formulations are dis-
cussed in Subsection 3.2. Then, in Subsection 3.3, we present two additional
formulations.

3.1 The arc-packing formulation

Before presenting our new formulation, we will need the following lemma:

Lemma 1 The LP relaxation of MCF2b is unchanged if we replace the equa-
tions (14) with the equations:

xij = f jij (j ∈ Vc, i ∈ V \ {j}) (22)

xij = giij (i ∈ Vc, j ∈ V \ {i}). (23)

We can also remove constraints (15) by eliminating all f and g variables
involved.

Proof. For a given k ∈ Vc, the n+ 1 flow-conservation equations involving
the fk variables are linearly dependent. In particular, any one of them is
implied by the other n. This allows us to remove the equations involving
the depot in (14) from the system (14)–(16). Now, it is shown in Subsection
3.2 of [24] that the equations (22) and (23) are satisfied by all solutions
to the LP relaxation. So, we can add them. Once they are added, the
remaining equations in (14) are equivalent to the equations (2). So, they
can be deleted. �

Now, from Lemma 1, we can write MCF2b with the constraints (2), (4),
(15)–(19), (22) and (23). Now, note that the constraints (4), (17)–(19),
(22) and (23) decompose into n(n+ 1) independent blocks, one for each arc
(i, j) ∈ A. Thus, it is natural to apply Dantzig-Wolfe decomposition [5],
putting those constraints into the subproblems and leaving constraints (2)
and (16) in the master problem.

Now consider the constraint block for a fixed arc (i, j). Note that the
variables involved in the block are xij and the fkij and gkij . Moreover, in any

feasible solution to the block, the set of indices k such that fkij + gkij = 1
must correspond to a feasible loading of the vehicle.

To explain this more precisely, we will need a little more notation. For
a given arc (i, j) ∈ A and a given pair (S, T ) with S, T ⊆ Vc, let us say that
(S, T ) is compatible with (i, j) if it satisfies the following conditions:

• S, T ⊆ Vc, S ∩ T = ∅, S ∪ T 6= ∅;
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• q(S) + q(T ) ≤ Q;

• if j = 0 then T = ∅, otherwise j ∈ T ;

• if i = 0 then S = ∅, otherwise i ∈ S.

Note that, if j = 0 then i ∈ S ∈ Π. Similarly, if i = 0 then j ∈ T ∈ Π.
Otherwise, S ∪ T ∈ Π with i ∈ S and j ∈ T . Let Fij denote the set of all
pairs compatible with (i, j).

The variables in the master problem are then obtained as follows. For
all (i, j) ∈ A and all (S, T ) ∈ Fij , let ΦST

ij be a binary variable, taking the
value 1 if and only if a vehicle traverses arc (i, j) having already visited the
customers in S (and no others) and being about to visit the customers in T
(and no others). The objective function in the master problem is then:

min
∑

(i,j)∈A

cij
∑

(S,T )∈Fij

ΦST
ij .

The master contains the following constraints, which come from equa-
tions (2):∑

j∈V \{i}

∑
(S,T )∈Fij

ΦST
ij =

∑
j∈V \{i}

∑
(S,T )∈Fji

ΦST
ji = 1 (i ∈ Vc).

It also has the following constraints, which come from equations (16):∑
j∈V \{l}

∑
(S,T )∈Fjl: k∈T

ΦST
jl =

∑
j∈Vc\{l}

∑
(S,T )∈Flj : k∈T

ΦST
lj =

∑
j∈Vc\{k}

∑
(S,T )∈Fjk: l∈S

ΦST
jk =

∑
j∈V \{k}

∑
(S,T )∈Fkj : l∈S

ΦST
kj (k, l ∈ Vc : l 6= k).

(24)
Finally, it also has the binary conditions:

ΦST
ij ∈ {0, 1} ((i, j) ∈ A, (S, T ) ∈ Fij). (25)

Since the Φ variables are concerned with the “packing” of the vehicle on
each arc traversed, we call this new formulation an arc-packing formulation
and denote it by “AP”. Note that AP has O(n2) constraints. By definition,
the LP relaxation of AP dominates that of MCF2b. We will show in the next
section that it dominates that of MCF2K as well.

3.2 Alternative representations of the arc-packing formula-
tion

A concept that will simplify the proofs in the following section is that of an
explicit master (see [30]). An explicit master is a formulation that contains
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both the original variables and those obtained by Dantzig-Wolfe decomposi-
tion. In our case, the explicit master of AP can be obtained simply by taking
MCF2b and adding the constraints (25), along with the following linking con-
straints:

xij =
∑

(S,T )∈Fij

ΦST
ij ((i, j) ∈ A) (26)

fkij =
∑

(S,T )∈Fij :k∈T

ΦST
ij ((i, j) ∈ A, k ∈ Vc \ {i, j}) (27)

gkij =
∑

(S,T )∈Fij :k∈S

ΦST
ij ((i, j) ∈ A, k ∈ Vc \ {i, j}). (28)

It follows from the main result in [30] that the LP relaxation of the explicit
master is of equal strength to that of the standard master.

It is also possible to construct an ‘intermediate’ formulation, which has
x and Φ variables but no f and g variables. This formulation consists of the
objective function (1) and the constraints (2), (24), (25) and (26). We will
call this third formulation the semi-explicit master problem of AP. Using
exactly the same argument that was used in [30], one can show that the LP
relaxation of the semi-explicit master is of equal strength to those of the
other two formulations.

3.3 Other formulations

Now, recall the definition of the formulation nSP from Subsection 2.2. One
can obtain a “hybrid” of nSP and AP simply by taking the semi-explicit mas-
ter of AP and adding the constraints (12) and (13). We call this formulation
“nSP+AP”. By definition, the LP relaxation of nSP+AP is at least as strong
as the LP relaxations of either nSP or AP. (Of course, this comes at the cost
of increasing the number of pricing problems that need to be solved.)

For the sake of completeness, we briefly mention one last formulation.
It is obtained by adding the SE inequalities to the explicit master of nSP.
We call it “nSP+SE”. Note that nSP+SE has an exponential number of both
variables and constraints.

4 Some Theoretical Results

In this section, we prove some theoretical results concerned with the LP
relaxations of the formulations presented in the previous section. In Subsec-
tion 4.1, we compare the new relaxations with existing relaxations in terms
of strength. In Subsection 4.2, we show that the relaxations of AP, nSP+AP
and nSP+SE can be solved in pseudo-polynomial time.
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4.1 The strength of the new relaxations

As mentioned at the end of Subsection 3.1, the LP relaxation of AP is at
least as strong as that of MCF2b, the strongest known polynomial-sized mul-
ticommodity flow formulation. The following proposition shows something
stronger.

Proposition 1 The LP relaxation of AP is at least as strong as that of
MCF2K.

Proof. As mentioned above, the LP relaxation of the explicit master of AP
is of equal strength to that of AP itself. The only difference between the LP
relaxation of the explicit master and that of MCF2K is that the former has
constraints (26)–(28) (plus non-negativity on the Φ variables), whereas the
latter has constraints (20) and (21) (plus non-negativity on the σ variables.
Note however that we have the following identities:

σPij =
∑

(S,T )∈Fij :S∪T=P

ΦST
ij ((i, j) ∈ A,P ∈ Π).

Under this mapping, (i) (26) is equivalent to (20), (ii) (27) and (28) imply
(21), and (iii) non-negativity on Φ implies non-negativity on σ. �

Proposition 1 has the following corollary.

Corollary 1 The LP relaxation of AP satisfies all KLM inequalities (and
therefore all FC, SE and GLM inequalities).

Proof. It was shown in Section 4 of [24] that the LP relaxation of MCF2K

satisfies all KLM inequalities. �

We will see in Section 5 that, in fact, the LP relaxation of AP is stronger
than that of MCF2K on many instances. An informal explanation of this fact
is that MCF2K is obtained by “convexifying” over 0-1 knapsack polytopes of
the form:

conv

(f, g) ∈ {0, 1}2n :
∑
k∈Vc

qk(fk + gk) ≤ Q

 ,

whereas AP is obtained by “convexifying” over smaller polytopes of the form

conv

(f, g) ∈ {0, 1}2n :
∑
k∈Vc

qk(fk + gk) ≤ Q, fk + gk ≤ 1 (k ∈ Vc)

 .

These latter polytopes can be viewed as 0-1 multiple-choice knapsack poly-
topes (see e.g. [16]).
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We remark that, in the unit-demand case, the 0-1 multiple-choice knap-
sack polytopes have the “integrality property” in the sense of Geoffrion [10].
From this it can be shown that the LP relaxations of MCF2b, MCF2K and AP

have equal strength in the unit-demand case.
Now, recall the formulation nSP+AP from Subsection 3.3. By definition,

the lower bound associated with nSP+AP dominates those obtained from nSP

and AP (and therefore also MCF2b and MCF2K). A natural question is how it
compares with the lower bound associated with SPE. The following theorem
settles this question:

Theorem 1 If z∗ is a solution to the LP relaxation of SPE, then there exists
a solution (x∗, f∗, g∗, z∗,Φ∗) to the LP relaxation of nSP+AP that has the
same cost.

Proof. We showed in Theorem 5 of [24] how to construct the triple
(x∗, f∗, g∗), so it suffices to show how to construct Φ∗. For any (i, j) ∈ A,
r ∈ Ω and (S, T ) ∈ Fij , let tSTijr be a binary constant which takes the value
1 if and only if a vehicle following the elementary route r departs from the
depot, visits the customers in S, traverses the arc (i, j), visits the customers
in T , and finally returns to the depot. The desired vector Φ∗ is then created
by setting ΦST

ij to the value
∑

r∈Ω t
ST
ijr z

∗
r for all (i, j) ∈ A and (S, T ) ∈ Fij .

�

Theorem 1 implies that the lower bound from nSP+AP is dominated by the
lower bound from SPE. We stress however that the former bound can be com-
puted in pseudo-polynomial time, whereas the latter bound cannot (unless
P = NP).

As for the formulation nSP+SE, the fact that AP satisfies all SE inequali-
ties implies that the bound from nSP+AP dominates the one from nSP+SE.

To aid the reader, we display in Figure 1 a hierarchy of formulations.
An arrow from one class to another means that the lower bound from the
latter is at least as strong as the one for the former. By “RC”, we mean
the 2-index formulation (1)-(4), which is based on the RC inequalities (3).
By “FC” and “GLM”, we mean the formulations obtained from the 2-index
formulation by replacing the RC inequalities with the FC inequalities (5) and
GLM inequalities (7), respectively. Finally, “FC+SE” and “GLM+SE” indicate
that the SE inequalities (6) have been added.

4.2 Solving the new relaxations

Now we consider the time taken to solve the new LP relaxations.

Theorem 2 The LP relaxation of AP can be solved in pseudo-polynomial
time.
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GLM GLM+SE MCF2b MCF2K
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6 6
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6

Figure 1: Hierarchy of CVRP formulations.

Proof. It suffices to show that the LP relaxation of the associated explicit
master (see Subsection 3.2) can be solved in pseudo-polynomial time. Due to
the polynomial equivalence between separation and optimization [15], along
with LP duality, it follows that this can be done if and only if the pricing
problem for the Φ variables can be solved in pseudo-polynomial time.

Now observe that the only constraints in the explicit master that involve
the Φ variables (apart from the binary conditions) are equations (26)–(28).
Let α, β and γ denote the dual prices of these equations, respectively. (One
can think of βkij and γkij as representing estimates of the potential benefit
of visiting customer k after traversing the arc (i, j), or before traversing it,
respectively.) The reduced cost of a column ΦST

ij is

−αij −
∑
k∈T

βkij −
∑
k∈S

γkij .

For a fixed arc (i, j), the problem of finding sets S and T leading to the
minimum reduced cost can be modelled by introducing binary variables uk
and vk for all k ∈ Vc \ {i, j}, with the meaning uk = 1 iff k ∈ S and vk = 1
iff k ∈ T , respectively. We then have to solve:

max
∑

k∈Vc\{i,j}

(βkijvk + γkijuk)

s.t.
∑

k∈Vc\{i,j}

qk(uk + vk) ≤ Q− qi − qj

uk + vk ≤ 1 (k ∈ Vc \ {i, j})
uk, vk ∈ {0, 1} (k ∈ Vc \ {i, j}).

This is a 0-1 multiple-choice knapsack problem and it aims at determining
S \ {i} and T \ {j}. It can be reduced to a standard 0-1 knapsack problem
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(KP) by setting the item set to Vc \ {i, j}, the capacity of the knapsack
to Q − qi − qj , the weight of item k to qk, and the profit of item k to the
maximum of βkij and γkij . This 0-1 KP can be solved in O(nQ) time via
dynamic programming [3]. A column of negative cost exists, for the given
arc (i, j), if and only if the profit of the 0-1 KP solution plus αij + βjij + γiij
is positive. �

We now make some remarks about Theorem 2.

• If one uses dynamic programming to price the Φ variables, it takes
O(n3Q) time, since a 0-1 KP must be solved for each arc. By compar-
ison, pricing the z variables in nSP takes O(n2Q) time (see Subsection
2.2).

• In practice, one can usually solve the 0-1 KPs much more quickly
using a branch-and-bound algorithm, such as the one in Martello &
Toth [26].

• The LP relaxation of the semi-explicit master of AP can be solved in a
similar way. Let (i, j) ∈ A be given, let (ρ, τ, σ) be the dual vectors for
the three families of equations (24), and let α be as before. To price
the Φ variables, it suffices to set

βkij = ρkj − ρki + τki

γkij = σjk − σik − τjk,

and then proceed as in the proof of Theorem 2.

Finally, we consider the other two formulations that were presented in
Subsection 3.3.

Proposition 2 The LP relaxation of nSP+AP can be solved in pseudo-polynomial
time.

Proof. This follows from the fact that the pricing subproblems for the z
and Φ variables can be solved in O(n2Q) time and O(n3Q) time, respectively.
�

Proposition 3 The LP relaxation of nSP+SE can be solved in pseudo-polynomial
time.

Proof. Since the pricing subproblem for nSP can be solved in pseudo-
polynomial time, we can separate over the associated polyhedron (in (x, z)-
space) in pseudo-polynomial time. Together with the fact that the separa-
tion problem for the SE inequalities can be solved in polynomial time, this
implies that the separation problem for the LP relaxation of nSP+SE can also
be solved in pseudo-polynomial time. This in turn implies the result. �
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5 Computational Experiments

In this section, we present the results of some computational experiments.
We describe the test instances in Subsection 5.1. In Subsection 5.2, we
present results for five relaxations that can be solved in pseudo-polynomial
time. Then, in Subsection 5.3, we examine what happens when certain
cutting planes (RC inequalities) are added to the relaxations.

All experiments were conducted on a Dell Precision T5400 desktop com-
puter, with a 3.16 GHz Intel Xeon X5460 processor, running Windows 10
64-bit. Our code, which involves both column and row generation, was writ-
ten in Microsoft Visual C, using IBM ILOG Cplex 12.6 as LP solver. Primal
and dual simplex were used to re-optimize after adding columns and rows,
respectively.

5.1 Test instances

We used similar instances to those used in [24]. These instances have n =
16, which is small by today’s standards (see [31, 34]), but big enough to
establish dominance relationships between the various bounds. There are
two kinds of instances: asymmetric and symmetric. In the asymmetric
instances, the costs cij were random integers uniformly distributed between
l and 500. In the symmetric instances, the costs were obtained by computing
the Euclidean distance between locations randomly distributed in a square of
width 500, and then rounding to the nearest integer. (The depot was located
in the center of the square.) We created instances with general demands
(random integers in the range [25, 33]) and instances with only unit demands.
For the instances with general demands, we considered Q ∈ {100, 150, 200}.
For the instances with unit demands, we considered Q ∈ {4, 6, 8}. This led
to twelve families of instances, and for each family we generated 20 instances.

These 240 instances are available in the VRP-REP repository. We re-
mark that the instances with Q = 100 are surprisingly hard to solve for their
size, due no doubt to the fact that the “bin packing” aspect of the CVRP
plays a key role in such instances.

5.2 Results with five relaxations

We began by considering five LP relaxations that can be solved in pseudo-
polynomial time. These are the relaxations of the following formulations:

• nSP: the set partitioning formulation (10)–(12), with non-elementary
routes permitted.

• nSP+SE: the same, but with SE inequalities (6) added (see Subsection
3.3).

• MCF2K: the best multi-commodity flow formulation from [24].
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Relaxation Variables Constraints

nSP xij , zr (2), (11), (13)
nSP+SE xij , zr (2), (11), (13), (6)
MFC2K xij , fkij , gkij , σ

P
ij (2), (14)–(21)

AP xij , ΦST
ij (2), (24), (26)

nSP+AP xij , zr , ΦST
ij (2), (11), (13), (24), (26)

Table 1: Variables and constraints involved in the first five relaxations.

• AP: the arc-packing formulation.

• nSP+AP: the formulation combining both set partitioning and arc-
packing variables described in Subsection 3.3.

Table 1 shows the variables and constraints that are present in these
relaxations (where non-negativity on all variables is assumed). For ease of
implementation, we include the x variables in all relaxations (that is, we
use explicit or semi-explicit master LPs). For the same reason, we include
(2) in all relaxations, even if they are redundant in some cases. We also
include in all relaxations the RC inequality on the set Vc, i.e., the inequality
x(δ+(0)) ≥ dq(Vc)/Qe. This inequality lower bounds the number of vehicles
leaving the depot. Although it was not included in the relaxations analyzed
in [24], we found that it tends to slightly improve the lower bounds from all
five relaxations.

We used a time limit of 2 hours for each instance and each relaxation.
Table 2 displays, for each set of 20 instances and each of the five relaxations,
the average ratio between the resulting lower bound and the optimum, ex-
pressed as a percentage. The letters ‘A’ and ‘S’ in the first column indicate
asymmetric and symmetric instances, respectively. The letters ‘G’ and ‘U’
refer to general and unit demands. (For one of the A-G-200 instances, we
were unable to solve the last relaxation within the time limit. For this rea-
son, we give an interval instead of a precise figure. (The lower and upper
limits were obtained by computing near-optimal dual and primal solutions,
respectively, whenever the relaxation could not be solved exactly within the
2 hours.)

We see that all five relaxations are rather strong. Interestingly, however,
AP gives a significantly stronger lower bound than nSP for symmetri in-
stances, but the reverse is true for asymmetric instances (with the exception
of A-U-8). We do not have an explanation for this phenomenon.

Table 3 displays, for the same set of instances, the average amount of
time taken (in seconds) to solve the five relaxations. (An entry of “T.L.”
indicates that the given relaxation could not be solved exactly for all 20
instances within the time limit.) We see that the last three relaxations took
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Type nSP nSP+SE MCF2K AP nSP+AP

A-G-100 99.65 99.65 98.86 99.38 99.66
A-G-150 97.84 97.94 96.23 96.45 98.27
A-G-200 97.83 98.30 97.58 97.60 [98.37, 98.41]

A-U-4 98.78 98.78 98.08 98.08 98.88
A-U-6 98.12 98.40 97.69 97.69 98.61
A-U-8 98.07 98.52 98.51 98.51 98.85

S-G-100 95.16 97.30 95.10 97.87 97.87
S-G-150 90.94 96.89 96.36 97.18 97.26
S-G-200 88.46 96.86 97.12 97.41 97.48

S-U-4 92.78 96.87 97.32 97.32 97.44
S-U-6 88.79 96.98 97.15 97.15 97.26
S-U-8 86.28 97.49 98.10 98.10 98.14

Table 2: Average percentage ratios for five relaxations that can be solved in
pseudo-polynomial time.

considerably longer to solve than the first two. We tried some simple tricks
to speed up the computation (such as pricing heuristics, dual stabilisation,
and the use of an interior-point LP solver), but they did not lead to a
significant improvement. An examination of detailed output from the LP
solver indicated that the long computing times were almost entirely due to
massive primal degeneracy in the master LP. (Indeed, for most instances,
over 95% of the pivots were degenerate.) Possible ways of addressing this
issue are discussed in the conclusions.

5.3 Results with cutting planes

One can of course obtain stronger relaxations by adding cutting planes.
Since the RC inequalities (3) are important cutting planes in practice (see
[8, 25]), we experimented with five relaxations: the LP relaxation of the 2-
index formulation (1)–(4), which we call “RC”, and the relaxations obtained
by adding RC inequalities to nSP, MCF2K, AP and nSP+AP. We call the latter
four relaxations “nSP+RC”, “MCF2K+RC” and so on.

We remark that the separation problem for the RC inequalities has re-
cently been proved to be NP-hard, and is conjectured to be NP-hard in the
strong sense [6]. If that is correct, then the five relaxations mentioned cannot
be solved in pseudo-polynomial time. Fortunately, since our instances have
n = 16, we were able to solve the separation problem exactly, by brute-force
enumeration.

Table 4 displays the average ratio between the lower bounds and the
optimum, again expressed as a percentage. (Again, for one set of instances,
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Type nSP nSP+SE MCF2K AP nSP+AP

A-G-100 0.02 0.02 4.45 4.99 14.61
A-G-150 0.04 0.04 13.51 36.69 326.04
A-G-200 0.07 0.07 85.54 121.04 T.L.

A-U-4 0.02 0.01 6.45 22.05 88.74
A-U-6 0.03 0.02 17.30 98.29 421.73
A-U-8 0.05 0.04 269.75 412.26 T.L.

S-G-100 0.01 0.02 4.37 3.91 8.49
S-G-150 0.01 0.06 14.20 26.19 223.96
S-G-200 0.02 0.05 62.95 69.19 554.45

S-U-4 0.00 0.02 7.88 14.39 53.98
S-U-6 0.00 0.03 25.80 49.06 258.71
S-U-8 0.01 0.03 163.08 69.83 1281.69

Table 3: Average times (in seconds) for five relaxations that can be solved
in pseudo-polynomial time.

this time A-U-8, one of the figures is given as an interval.) We see that all
five relaxations are very strong. As before, AP performs better than nSP for
symmetric instances, but worse for asymmetric instances. Also, a compar-
ison of Table 4 with Table 2 shows that nSP+AP consistently gives better
bounds than RC on symmetric instances, but worse bounds on asymmetric
ones. Again, we are not sure why.

Finally, Table 5 displays the running times. One result that may seem
surprising is that nSP+AP+RC sometimes takes less time to be solved than
the weaker nSP+AP. The explanation is that, when solving nSP+AP+RC, we
gave cutting priority over pricing. In other words, in each major iteration,
pricing was invoked only when no more violated RC inequalities could be
found. This strategy seems to have pushed the x variables to “promising”
values early on, leading to a substantial decrease in the number of pricing
calls.

6 Conclusion

In this paper, we have considered five CVRP relaxations that can be solved
in pseudo-polynomial time, two of which are completely new. The strongest
one yields remarkably tight lower bounds, especially in the case of symmetric
CVRP instances. On the other hand, the time taken to solve the new
relaxations was excessive.

We can think of several interesting topics for future research. The most
pressing one is whether the new relaxations can somehow be solved more
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Type RC nSP+RC MCF2K+RC AP+RC nSP+AP+RC

A-G-100 92.61 99.79 99.06 99.46 99.79
A-G-150 94.12 98.23 96.66 96.79 98.46
A-G-200 98.05 98.91 98.58 98.59 98.99

A-U-4 96.89 99.56 99.01 99.01 99.59
A-U-6 98.75 99.32 99.15 99.15 99.44
A-U-8 98.62 98.85 98.95 98.95 [99.05,99.07]

S-G-100 98.70 99.39 99.08 99.59 99.59
S-G-150 99.62 99.67 99.67 99.70 99.72
S-G-200 99.64 99.70 99.70 99.72 99.72

S-U-4 99.98 100.00 100.00 100.00 100.00
S-U-6 99.95 99.95 99.96 99.96 99.96
S-U-8 100.00 100.00 100.00 100.00 100.00

Table 4: Average percentage ratios with exact separation of RC inequalities.

Type RC nSP+RC MCF2K+RC AP+RC nSP+AP+RC

A-G-100 0.00 0.20 39.76 6.65 13.75
A-G-150 0.00 1.42 82.02 43.97 357.49
A-G-200 0.00 0.47 53.48 109.90 T.L.

A-U-4 0.00 0.18 23.27 26.61 79.55
A-U-6 0.00 0.20 34.93 96.68 528.61
A-U-8 0.00 0.37 106.40 227.22 T.L.

S-G-100 0.01 0.37 46.75 10.46 22.46
S-G-150 0.01 2.92 70.50 33.57 210.12
S-G-200 0.00 1.34 50.60 66.79 445.19

S-U-4 0.01 0.27 5.90 25.98 68.03
S-U-6 0.01 0.30 25.75 61.45 237.61
S-U-8 0.00 1.25 63.98 108.26 1078.48

Table 5: Average times (in seconds) with exact separation of RC inequalities.
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quickly, so that they can be used to compute strong bounds for instances
of larger size (such as those described in [34]). Perhaps one of the recently-
developed techniques for alleviating primal degeneracy, surveyed in [9], could
be useful. Alternatively, one could apply Lagrangian relaxation instead of
Dantzig-Wolfe decomposition to MCF2b, and then solve the Lagrangian dual
via a method with proven fast convergence (see, e.g., [14, 21]).

Other interesting topics are the derivation of strong valid inequalities
that involve the new arc packing variables, the derivation of specialised
branching rules that involve the new variables, and explaining why some
formulations work better for symmetric instances, whereas some work better
for asymmetric ones. Finally, it may be that arc packing formulations can be
useful for generalisations of the CVRP in which the cost of traversing each
arc depends on the commodities that the vehicle is carrying at the time.
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