
June 1, 2018 Optimization output

To appear in Optimization
Vol. 00, No. 00, Month 20XX, 1–28

Primal and Dual Algorithms for Optimisation over the Efficient Set

Zhengliang Liua∗ and Matthias Ehrgottb

aSchool of Electronic Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, United Kingdom

bDepartment of Management Science, Lancaster University Management School, Bailrigg,
Lancaster LA1 4YX, United Kingdom

(Received 00 Month 20XX; accepted 00 Month 20XX)

Optimisation over the efficient set of a multi-objective optimisation problem is a mathematical model for the
problem of selecting a most preferred solution that arises in multiple criteria decision making to account for
trade-offs between objectives within the set of efficient solutions. In this paper we consider a particular case of
this problem, namely that of optimising a linear function over the image of the efficient set in objective space
of a convex multi-objective optimisation problem. We present both primal and dual algorithms for this task.
The algorithms are based on recent algorithms for solving convex multi-objective optimisation problems in
objective space with suitable modifications to exploit specific properties of the problem of optimisation over
the efficient set. We first present the algorithms for the case that the underlying problem is a multi-objective
linear programme. We then extend them to be able to solve problems with an underlying convex multi-
objective optimisation problem. We compare the new algorithms with several state of the art algorithms from
the literature on a set of randomly generated instances to demonstrate that they are considerably faster than
the competitors.

Keywords:Multi-objective optimisation, optimisation over the efficient set, objective space algorithm,
duality.

1. Introduction

Multi-objective optimisation deals with optimisation problems with multiple conflicting
objectives. It has many applications in practice, e.g. minimising cost versus minimising
adverse environmental impacts in infrastructure projects [13], minimising risk versus
maximising return in financial portfolio management [23] or maximising tumour control
versus minimising normal tissue complications in radiotherapy treatment design [11].
Because a feasible solution simultaneously optimising all of the objectives does not usually
exist, the goal of multi-objective optimisation is to identify a set of so-called efficient
solutions. Efficient solutions have the property that it is not possible to improve any of
the objectives without deteriorating at least one of the others. In practical applications of
multi-objective optimisation it is generally necessary for a decision maker to select one
solution from the efficient set for implementation. This selection process can be modelled
as the optimisation of a function over the efficient set of the underlying multi-objective
optimisation problem. For example, an investor may aim at minimising the transaction
cost of establishing a portfolio with high return and low risk. If such a function that
describes the decision maker’s preferences is explicitly available, one might expect that it
is computationally easier to directly optimise the function over the efficient set rather than
to solve the multi-objective optimisation problem first and then obtain a most preferred

∗Corresponding author. Email: zliu082@gmail.com

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/158138676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

June 1, 2018 Optimization output

efficient solution – in particular because the efficient set can in general be an infinite set
(see Figures 1 and 2 below). Secondly, decision makers may be overwhelmed by the large
size of the whole efficient set and may not be able to choose a preferred solution from it in
a very effective manner. These considerations have motivated research on the subject of
optimisation over the efficient set since the 1970s.
We contribute to this research with new algorithms and new results on how to identify

optimal solutions of this problem. In Section 2 we provide the mathematical preliminaries
on multi-objective optimisation and necessary notation. A revised version of Benson’s
outer approximation algorithm and its dual variant are summarised in Section 3. In Section
4, we survey algorithms for optimisation over the efficient set from the literature. As a new
contribution, we identify a subset of the vertices of the feasible set in objective space at
which an optimal solution must be attained. Based on the outer approximation algorithm
we then propose a new primal algorithm in the all linear case by incorporating a bounding
procedure in the primal algorithm of [18] in Section 5. Furthermore, this primal algorithm
is extended to maximise a linear function over the non-dominated set of a convex multi-
objective optimisation problem. Section 6 proposes a new dual algorithm for optimisation
over the non-dominated set, which makes use of a new result providing a geometrical
interpretation of optimisation over the non-dominated set. This dual algorithm is also
further developed to maximise a linear function over the non-dominated set of a convex
problem. The numerical experiments in Section 7 compare the performance of our new
primal and dual algorithms with algorithms from the literature that we discuss in Section
4. The results reveal that our algorithms, in particular the dual algorithm in the linear case,
are much faster (up to about 10 times) than comparable algorithms from the literature.

2. Preliminaries

A multi-objective optimisation problem (MOP) can be written as

min{ f (x) : x ∈ X}, (1)

where f : Rn → Rp is a function, which we assume to be continuous, and X is a
feasible set in decision space Rn. Let Y := { f (x) : x ∈ X} denote the image of X in
objective space Rp. We assume that X is a nonempty and compact set. Therefore, Y
is nonempty and compact, too. The feasible set Y in objective space is bounded by the
vectors of componentwise minima and maxima denoted by yI and yAI , respectively, i.e.,
yI
k
5 yk 5 yAI

k
for all y ∈ Y. These two points are called the ideal and anti-ideal point,

respectively.
We use the following notation to compare vectors y1, y2 ∈ Rp: y1 < y2 if y1

k
< y2

k
for

k = 1, . . . , p; y1 5 y2 if y1
k
is componentwise less than or equal to y2

k
and y1 ≤ y2 if

y1 5 y2 but y1 , y2. We also define Rp
= := {y ∈ Rp : y = 0} and Rp

≥ := {y ∈ Rp : y ≥
0} = Rp

= \ {0}. Sets R
p
5, R

p
≤ and R

p
< are defined analogously.

Definition 1 A feasible solution x̂ ∈ X is called a (weakly) efficient solution of (1) if there
is no x ∈ X such that f (x) ≤ (<) f (x̂). The set of all (weakly) efficient solutions is called
the (weakly) efficient set in decision space and is denoted by X(W)E . Correspondingly,
ŷ = f (x̂) is called a (weakly) non-dominated point and Y(W)N := { f (x) : x ∈ X(W)E } is
the (weakly) non-dominated set in objective space.

Throughout this article we assume that the multi-objective optimisation problem is
nontrivial, i.e. yI < Y and Y , YN , which means that the objectives do not have a common
minimiser and that not every feasible point is non-dominated. If yI ∈ Y then YN = {y

I }.

2

June 1, 2018 Optimization output

In this case, as well as if YN = Y the optimisation problem we study in this paper becomes
either trivial or becomes a standard single objective optimisation problem.
In case all objectives of (1) are linear and the feasible set X is polyhedral (1) is called a

multi-objective linear programme (MOLP) and can be written as

min{Cx : x ∈ X}, (2)

where C is a p × n matrix. The feasible set X is defined by linear constraints Ax = b,
where A ∈ Rm×n and b ∈ Rm. A polyhedral convex set such as X has a finite number of
faces. A subset F of X is a face if and only if there are ω ∈ Rn \ {0} and γ ∈ R such
that X ⊆ {x ∈ Rn : ωT x = γ} and F = {x ∈ Rn : ωT x = γ} ∩ X. We call a hyperplane
H = {x ∈ Rn : ωT x = γ} supporting X at x0 if ωT x = γ for all x ∈ X and ωT x0 = γ. The
proper (r − 1)-dimensional faces of an r-dimensional polyhedral set X are called facets of
X. Proper faces of dimension zero are called extreme points or vertices of X.
In Example 1 we provide a numerical example of a multi-objective linear programme,

which we shall use throughout the paper.

Example 1

min
(
1 0
0 1

) (
x1
x2

)

s.t.

©«

4 1
3 2
1 5
−1 −1
1 0
0 1

ª®®®®®®®¬
(
x1
x2

)
=

©«

4
6
5
−6
0
0

ª®®®®®®®¬
Figure 1 shows the feasible setX of Example 1 as well as its imageY in objective space

(due to C being the identity matrix). The bold line segments compose the non-dominated
set YN . Furthermore, in this example XE is the same as YN .

y1

y2

1 2 3 4 5 6

1

2

3

4

5

6

0

Y

a

b

c
d e

f

Figure 1. The image of the feasible set of the MOLP of Example 1 in objective space.

A convex multi-objective optimisation problem (CMOP) is a multi-objective optimisa-
tion problem with convex objective functions and a convex feasible set X = {x ∈ Rn :
g(x) 5 0}, where g : Rn → Rm. Example 2 provides a simple example of a CMOP that
we shall use throughout the paper.

3

June 1, 2018 Optimization output

Example 2

min
(
1 0
0 1

) (
x1
x2

)
s.t.
(x1 − 3)2

9
+
(x2 − 2)2

4
5 1.

The image of the feasible set in objective space is illustrated in Figure 2. The bold curve
is the non-dominated set of the CMOP.

y1

y2

0 1 2 3 4 5 6

1

2

3

4

Y

Figure 2. The image of the feasible set of the CMOP of Example 2 in objective space.

To solvemulti-objective optimisation problems is generally understood as obtainingYN ,
and for each point y ∈ YN some x ∈ XE with f (x) = y. This paper is concerned with the
optimisation of a function over the efficient set of a multi-objective optimisation problem,

max {Φ(x) : x ∈ XE } , (3)

where Φ(x) : Rn → R is a function of x.
In general, (3) is a difficult global optimisation problem [6, 17, 20, 24, 25]. This is due to

the fact that the efficient set of even a multi-objective linear programme is nonconvex (see
Example 1). As such, there exist local optima, which may differ from global optima. In
Example 1, assumingΦ(x) = x1+ x2, (0, 4)T is a local optimal solution. Along the efficient
edges from (0, 4)T to (0.4, 2.4)T and (9/13, 20/13)T the objective value decreases, before
increasing again to the global optimal solution at (5, 0)T . Furthermore, since the feasible
set of (3) is the efficient set of an MOP it can in general not be explicitly expressed in the
form of a system of inequalities prior to solving the problem.
Fülöp [16] has shown the equivalence of optimisation over the efficient set to a bilevel

optimisation problem and NP-hardness of the problem. In Example 3 we demonstrate that
the bilevel optimisation approach even in the case of optimising a linear function over the
efficient set of an MOLP does in general lead to a nonlinear optimisation problem.

Example 3 Consider an all linear version of (3), i.e.,

max
{
µTCx : x ∈ XE

}
, (4)

where XE is the efficient set of the MOLP

min {Cx : Ax = b}. (5)

4

June 1, 2018 Optimization output

(4) and (5) can be regarded as a bilevel optimisation problem, where (4) is the upper level
problem and (5) is the lower level problem. The constraint x ∈ XE in (4) can be replaced
by the well known optimality conditions for MOLP, see e.g. Ehrgott [10]. Feasible solution
x ∈ X is efficient if and only if there exist λ ∈ Rp

> and u ∈ Rm= such that ATu = λTC and
λTCx = bTu.
Therefore (4) can be rewritten as

max
{
µTCx : Ax = b, ATu = CTλ, λTCx = bTu, u = 0, λ > 0

}
. (6)

While (6) has a linear objective function and some linear constraints, it also has quadratic
constraints and requires that λ be strictly positive. Hence solving (6) will be considerably
more difficult than solving a linear programme. Example 3 thus provides one motivation
for research in algorithms to solve (3) in the linear case: is it possible to derive algorithms
that only make use of linear programming techniques?

In multi-objective optimisation it is well known that, because the number of objective
functions is usually much smaller than the number of decision variables, the structure of
Y is most often simpler than the structure of X. In particular, in multi-objective linear
programming, the structure and properties of XE and YN are well investigated. [9] notes
that Y often has fewer extreme points and faces than X. [8] illustrates the concept of
“collapsing”, which means that faces of X shrink into nonfacial subsets of Y. [1] shows
that the dimension of efficient faces in the feasible set always exceeds or equals the
dimension of their images in Y. Hence, it is arguably more computationally efficient
to employ techniques and methods to solve (3) in objective space, and algorithms for
optimisation over the efficient set have followed this trend since 2000. The algorithms we
propose in this paper fall in this category, too.
In this context, we assume that the objective function Φ of (3) is a composite function

of a function M : Rp → R and the objective function f of the underlying MOP, i.e.,
Φ = M ◦ f . Therefore, Φ(x) = M(f (x)). Substituting y = f (x) into (3), we derive the
problem of optimising M over the non-dominated set YN of an MOP:

max {M(y) : y ∈ YN } . (7)

Problem (7) is essentially the same problem as (3) but appears to be more intuitive than
(3), because in practice decision makers typically choose a preferred solution based on the
objective function values rather than the value of decision variables.
In this article, the problems we are interested in are two special cases of (7) namely (8)

and (10) defined below.

max
{
µT y : y ∈ PN

}
, (8)

where µ ∈ Rp and PN is the non-dominated set of the upper image P := Y + Rp
= of

an MOLP (2). Note that the set of vertices of P, VP ⊂ PN = YN , i.e., all vertices of P
are non-dominated, and the non-dominated sets of Y and P coincide. Moreover, PN is a
subset of the boundary of P, see for example [10], Proposition 2.4. It is easy to see that
Theorem 1 holds for problem (8).

Theorem 1 There exists an optimal solution y∗ of (8) at a vertex of P, i.e., y∗ ∈ VP , the
set of vertices of P.

In the second special case, we consider a CMOP as underlying MOP. Then using once
again PN = YN, problem (9) optimises a linear function over the non-dominated set PN

5

June 1, 2018 Optimization output

of the upper image Y + Rp
= of of a CMOP.

max
{
µT y : y ∈ PN

}
. (9)

Because the upper image P of a CMOP is a convex (but not necessarily polyhedral) set,
we will in general not be able to compute it or its non-dominated subset exactly. Hence we
consider approximations of PN using the concept of ε-non-dominance as defined below.

Definition 2 Let ε ∈ R, ε > 0. A point y is called (weakly) ε-non-dominated if y+εe ∈ Y,
where e is a column vector with all elements being one, and there does not exist any ŷ ∈ Y
such that ŷ ≤ (<)y.

Consequently we change Problem (9) by replacing PN with PεN , an ε-non-dominated
set of the upper image of a CMOP.

max
{
µT y : y ∈ PεN

}
. (10)

3. Outer Approximation Algorithms in Multi-objective Optimisation

3.1. Multi-objective linear programming

Theorem 1 suggests that in order to solve (8) an algorithm to identify extreme points
(vertices) of P is needed. Benson [2] proposed an outer approximation algorithm to
compute the non-dominated set YN of an MOLP. The authors of [12] revised this method
in such a way that it considers P rather than Y and in [18] it was further developed by
reducing the number of LP subproblems that need to be solved (1 rather than 2 in each
iteration). This revised version of Benson’s algorithm first constructs a p-dimensional
polyhedron S0 := yI + R

p
= such that P ⊆ S0. In every iteration it chooses a vertex si

from the vertex set VSi−1 which is not in P and constructs a supporting hyperplane to P
by solving an LP and obtaining its dual variable values. Si is then defined by intersecting
Si−1 with the halfspace of the supporting hyperplane containing P and updating the vertex
set of Si. The algorithm terminates as soon as no such si ∈ Si−1 \ P can be found and
therefore Si = P. At termination both a vertex and an inequality representation of P are
known. [12] propose a dual variant of Benson’s algorithm to solve (13), which has been
further developed by [18].
We first provide notation that will facilitate the description of the subsequent algorithms.

For y ∈ Rp and v ∈ Rp, let

λ(v) :=

(
v1, ..., vp−1, 1 −

p−1∑
i=1

vi

)T
, (11)

λ∗(y) :=
(
y1 − yp, ..., yp−1 − yp,−1

)T
. (12)

Consider the weighted sum scalarisation P1(v) of (2)

min {λ(v)TCx : x ∈ Rn, Ax = b}. (P1(v))

Proposition 1 is well known, see e.g. [14].

6

June 1, 2018 Optimization output

Proposition 1 Let v ∈ Rp
≥ such that

∑p
k=1 vk 5 1. Then an optimal solution x̂ to (P1(v))

is a weakly efficient solution to the MOLP (2).

The dual D1(v) of P1(v) is

max
{
bTu : u ∈ Rm, u = 0, ATu = CTλ(v)

}
. (D1(v))

Given a point y ∈ Rp in objective space, the following LP (P2(y)) serves to check the
feasibility of y, i.e., if the optimal value ẑ > 0, then y is infeasible, otherwise y ∈ P. An
optimal solution (x̂, ẑ) ∈ X ×R to (P2(y)) provides a weakly non-dominated point ŷ = Cx̂
of P.

min {z : (x, z) ∈ Rn × R, Ax = b,Cx − ez 5 y}. (P2(y))

The following LP (D2(y)) is the dual of (P2(y)).

max
{
bTu − yTλ : (u, λ) ∈ Rm × Rp, (u, λ) = 0, ATu = CTλ, eTλ = 1

}
. (D2(y))

Proposition 2 is the key result for the revised version of Benson’s algorithm.

Proposition 2 [18] Let (u∗, λ∗) be an optimal solution to (D2(y)). Then

p∑
k=1

λ∗k yk = bTu∗

is a supporting hyperplane to P.

Therefore, by solving (P2(y)), we not only check the feasibility of point y but also obtain
the dual variable values (u∗, λ∗) as optimal solutions to (D2(y)) by which we construct a
supporting hyperplane to P.
[19] introduced a concept of geometric duality for multi-objective linear programming.

This theory relates an MOLP with a dual multi-objective linear programme in dual ob-
jective space Rp . In dual objective space, we use the following notation to compare two
vectors v1, v2 ∈ Rp. We write v1 >K v2 if v1

k
= v2

k
for k = 1, . . . , p − 1 and v1

p > v2
p;

v1 =K v2 if v1
k
= v2

k
for k = 1, . . . , p − 1 and v1

p = v2
p. Moreover v1 ≥K v2 is the same as

v1 >K v2.
The dual of MOLP is

max
K

{
(λ1, ..., λp−1, bTu)T : (u, λ) = 0, ATu = CTλ, eTλ = 1

}
, (13)

where (u, λ) ∈ Rm × Rp. K := {v ∈ Rp : v1 = v2 = · · · = vp−1 = 0, vp =
0} is the ordering cone in the dual objective space, and maximisation is with re-
spect to the order defined by K. Let V denote the feasible set in the dual objec-
tive space, then its lower image is D := V − K. The K-maximal set of D is
DK =

{
v ∈ V : v = maxK {(λ1, ..., λp−1, bTu)T : (u, λ) = 0, ATu = CTλ, eTλ = 1}

}
. Fig-

ure 3 shows the lower image D in the dual objective space of Example 1. The bold line
segments compose DK .
In [19] two set-valued maps H and H∗ are defined to relate P and D.

H : Rp ⇒ Rp,H(v) :=
{
y ∈ Rp : λ(v)T y = vp

}
and (14)

7

June 1, 2018 Optimization output

0 1

D

v1

v2

Figure 3. Lower image of (13) for the MOLP of Example 1.

H* : Rp ⇒ Rp,H*(y) :=
{
v ∈ Rp : λ∗(y)T v = −yp

}
. (15)

Given a point v ∈ Rp in dual objective space H(v) defines a hyperplane in primal
objective space. Similarly, given a point y ∈ Rp in primal objective space H∗(y) is a
hyperplane in dual objective space.Theorems 2 and 3 state a relationship between proper
K-maximal faces of D and proper weakly non-dominated faces of P.

Theorem 2 [19]

(1) A point v is a K-maximal vertex of D if and only if H(v) ∩ P is a weakly non-
dominated facet of P.

(2) A point y is a is a weakly non-dominated vertex of P if and only if H∗(y) ∩ D is a
K-maximal facet of D.

[19] define a duality map Ψ : 2Rp
→ 2Rp . Let F ∗ ⊂ Rp, then

Ψ(F ∗) :=
⋂
v∈F∗

H(v) ∩ P .

Theorem 3 [19]Ψ is an inclusion reversing one-to-one map between the set of all proper
K-maximal faces of D and the set of all proper weakly non-dominated faces of P and the
inverse map is given by

Ψ
−1(F) =

⋂
y∈F

H∗(y) ∩ D .

Moreover, for every proper K-maximal face F ∗ of D it holds that dimF ∗ + dimΨ(F ∗) =
p − 1.

Therefore, given a non-dominated extreme point yex ∈ P, the correspondingK-maximal
facet of D is H∗(yex) ∩ D.
The revised version of Benson’s algorithm applies an outer approximation to P in the

primal objective space, whereas its dual variant does the same to D in the dual objective
space. [18] detail the dual algorithm. It iteratively generates supporting hyperplanes of
D, which correspond to weakly non-dominated faces of P. Eventually a complete set of
hyperplanes that define D as well as the set of all extreme points of D are obtained.

8

June 1, 2018 Optimization output

3.2. Multi-objective convex optimisation

We review an extension of Benson’s outer approximation algorithm proposed by [22]. It
provides a set of ε-non-dominated points bymeans of approximating the non-dominated set
of a convexMOP. Similar to the revised version of Benson’s algorithm for computingPN in
the case of anMOLP this algorithm iteratively constructs a polyhedral outer approximation
of the upper image P of a CMOP. It starts with a polyhedron S0 = yI +R

p
= containing P.

In each iteration i, a vertex of Si−1 that is not an ε-non-dominated point of P is randomly
chosen to generate a supporting hyperplane to P. Then the approximating polyhedron
is updated by intersecting it with the half-space containing P defined by the supporting
hyperplane. The algorithm terminates when all of the vertices of Si are ε-non-dominated
with a vertex and inequality representation of polyhedron Si containing P .
We introduce two pairs of single objective optimisation problems to facilitate the de-

scription of algorithms later. Problem P1(v) is a weighted sum problem. Solving P1(v)
results in a weakly non-dominated point. Problem D1(v) is the Lagrangian dual of P1(v).
Because we work with Lagrangian duals, we will from now on assume that the functions
defining the MOP are differentiable. Problems P2(y) and D2(y) are employed to generate
supporting hyperplanes. These four optimisation problems are the nonlinear extensions of
the LPs P1(v), D1(v), P2(y) and D2(y), respectively. They involve nonlinear convex terms
making them harder to solve than their LP counterparts.

min
{
λ(v)T f (x) : x ∈ Rn, g(x) 5 0

}
. (P1(v))

max
{
min
x∈X

[
λ(v)T f (x) + uTg(x)

]
: u = 0

}
. (D1(v))

min {z ∈ R : g(x) 5 0, f (x) − ze − y 5 0}. (P2(y))

max
{
min
x
{uTg(x) + λT f (x)} − λT y : u = 0, eTλ = 1, λ = 0

}
. (D2(y))

The outer approximation algorithm of [22] for convex MOPs approximates the non-
polyhedral P (see Example 2) generating a set of ε-non-dominated points. Löhne et al.
[22] propose a dual variant of the convex version of Benson’s algorithm (see Section 5.3).
The geometric dual of a convex MOP is defined as

max
K
{D(v) : v ∈ Rp, λ(v) ≥ 0} , (16)

where D(v) =
{
v1, . . . , vp−1,minx∈X

[
λ(v)T f (x)

]}
. The ordering cone K := {v ∈ Rp :

v1 = v2 = · · · = vp−1 = 0, vp = 0} is the same as in (13), and maximisation is with respect
to the order defined by K. Let V denote the feasible set in the dual objective space, then
its lower image in the dual objective space is D := V −K. The K-maximal set of (16) is

DK = max
K

{
(λ1, ..., λp−1,min

x∈X

[
λ(v)T f (x)

]
)T : (u, λ) = 0, eTλ = 1

}
.

Figure 4 shows the lower image of Example 2 in dual objective space and the bold curve
is the K-maximal set. For computational purposes we consider an approximation of the

9

June 1, 2018 Optimization output

K-maximal set. This is modelled by the concept of εK-maximum, which is defined in
Definition 3.

Definition 3 Let ε ∈ R and ε > 0. A point v is called an εK-maximal point if v−εep ∈ D
and there does not exist any v̂ ∈ D such that v̂j = vj for j = 1, . . . , p − 1 and v̂p > vp.

D

v1

v2

0

Figure 4. The lower image of the CMOP of Example 2 in dual objective space.

The dual version of the convex Benson algorithm for solving CMOPs performs an
outer approximation to D. This algorithm first chooses an interior point in D. This is
implemented in the way stated in Algorithm 2, Step i1 in [12]. Then a polyhedron S0

containing D is constructed. In each iteration a vertex si of Si−1 that does not belong
to DεK is chosen. By solving (P1(si)), a supporting hyperplane to D is determined.
Eventually, a set of εK-maximal points of D is obtained, the convex hull of which
extended by −K is an outer approximation polyhedron of D .

4. A Review of Algorithms for Optimisation over the Efficient Set

In the literature there are two main categories of algorithms for optimisation over the effi-
cient set: Algorithms based on decision space methods and algorithms based on objective
space methods. The former approaches search for optimal solutions in decision space,
whereas the latter ones explore the non-dominated set in objective space. In this section,
we review some algorithms of the latter class, to which our new algorithms are compared
in computational experiments. A more comprehensive review of the literature up to 2001
can be found in [25].

4.1. Bi-objective branch and bound algorithm

In this section we describe a bi-objective branch and bound algorithm to solve a special
case of (7), where M(y) is a lower semi-continuous function on the non-dominated set of a
bi-objective linear programming problem. The bi-objective linear programming problem
possesses some special properties, which help exploit the structure of the problem. This
method was first proposed by Benson and Lee [4] and further improved by Fülöp and Muu
[17].
Let m1 = min {y1 : y2 = yI2, y ∈ Y}, and m2 = min {y2 : y1 = yI1 , y ∈ Y}. Let

y1 = (yI1,m2)
T , and y2 = (m1, y

I
2)

T . These two points are non-dominated and feasible,
hence they can be used to find a lower bound on M(y). Then optimisation problem (17) is
solved to obtain an upper bound,

10

June 1, 2018 Optimization output

max
{

M(y) : (y2
2 − y1

2)y1 + (y
1
1 − y2

1)y2 = y1
1 y

2
2 − y1

2 y
2
1, y ∈ Y

}
. (17)

In the objective space, (17) means to find an optimal point over the region bounded by the
non-dominated set and the line connecting y1 and y2. Having solved problem (17), we have
found an upper bound. In the case that M(y) is nonlinear, branching steps may now take
place. Let the line segment connecting y1 and y2 shift parallel until it becomes a supporting
hyperplane to Y at some point q. By connecting both y1 and y2 with q, the branching
process splits the problem into two subproblems. For each of the subproblems the same
process is repeated until the upper bound and the lower bound coincide. Computational
experiments can be found in [17].
In [21] this method is extended to maximise an increasing function M(y) over the non-

dominated set of a convex bi-objective optimisation problem. The first step is to determine
y1 and y2 and a lower bound in the same way as the linear version by [17]. These two
points and the ideal point yI define a simplex. The objective function M(y) is maximised
over the intersection ofY and the simplex so that an upper bound on the optimal objective
function value can be attained. A point q at the intersection of a ray emanating from the
origin and Y is determined. Point q splits the simplex into two, each of which is to be
explored in the subsequent iterations. The simplices with upper bounds that are worse than
the incumbent objective function values are pruned. This process is iterated until the gap
between the upper bound and the lower bound is within a tolerance determined initially
by the decision maker.

4.2. Conical branch and bound algorithm

Another branch and bound algorithm was proposed in [24] to optimise a continuous
function over the non-dominated set of an MOP. A conical partition technique is employed
as the branching process. Cone yAI −Rp

= with vertex y
AI is constructed. This cone contains

Y. Along each extreme direction −ek of the cone, the intersection point yk of the direction
and the weakly non-dominated set PWN of the upper image P = Y + Rp

= of the MOP is
obtained. If any of these points is non-dominated a lower bound is found. Then solving
problem (18), a relaxation of (7), finds an upper bound.

max

{
M(y) : y −Uλ = yAI,

p∑
i=1

λi = 1, λ = 0, y ∈ Y

}
, (18)

whereU is a matrix containing column vectors yk− yAI for k = 1, . . . , p. For the branching
step, a ray emanating from yAI and passing through the centre point of the simplex spanned
by the yk vectors hits the boundary of Y at a non-dominated point and a lower bound is
achieved. The initial cone is partitioned. By evaluating each new cone, the gap between
the upper bound and the lower bound is narrowed. A cone is called active if there is a gap
between the upper bound and lower bound. An active cone will be further explored. A
cone is incumbent if the upper bound meets the lower bound with the best objective value
so far. A cone is fathomed if the best feasible solution found in this cone is suboptimal.
An optimal point is obtained when the upper bound coincides with the lower bound.
This algorithm can also deal with optimisation over the non-dominated set of a CMOP.

A cone is constructed that contains Y. An upper bound for M(y) can be found through
maximising M(y) over the intersection of the cone with Y. A ray emanating from yAI

intersects the non-dominated set of Y at some point providing a lower bound and par-
titioning the cone. The objective function M(y) is maximised over each of the regions

11

June 1, 2018 Optimization output

obtained by intersecting the smaller cones with the feasible set in objective space, which
provides new upper bounds. This process is repeated until the upper bound and the lower
bound coincide or the gap between them is small enough.

4.3. Outcome space algorithm

A branch and bound technique also plays an essential role in the algorithm of [3]. This
algorithm is designed for globally optimising a finite, convex function over the weakly ef-
ficient set of a nonlinear multi-objective optimisation problem that has nonlinear objective
functions and a convex, non-polyhedral feasible region. An initial simplex containingY is
constructed and a branching procedure is performed. However, compared to the case where
all of the constraints and objectives are linear, it is more complicated to find a feasible
point and therefore to establish lower bounds. In order to find lower bounds, a subroutine
is developed that requires solving several optimisation problems to detect feasible points.
A relaxed problem is used to find upper bounds by using a convex combination of the
vertices of the simplex. The reader is referred to [3] for more details.

5. The Primal Algorithms

5.1. Properties of optimisation over the non-dominated set of an MOLP

In this section, we investigate some properties of problem (8). It is well known that an
optimal solution to (3) with linear function Φ and underlying MOLP is attained at an
efficient vertex ofX, see [5]. The version of this result for problem (8), Theorem 1, implies
that a naïve algorithm for solving (8) is to enumerate the vertices of P and determine
which one has the largest value of µT y. This is summarised in Algorithm 1.

Algorithm 1 Brute force algorithm.
Input: A, b,C, µ
Output: y∗, an optimal solution to (8)

Phase 1: Obtain VP .
Phase 2: y∗ = argmax

{
µT y : y ∈ VP

}
.

In Phase 1 both the revised Benson algorithm and its dual variant are capable of finding
VP . However, taking advantage of properties of (8) may dispense with the enumeration of
all vertices of P. We start this discussion by investigating the vertices of Y more closely.
Let [a − b] denote an edge of polyhedron Y with vertices a and b. We call points a and b
neighbouring vertices and denote with N(a) the set of all neighbouring vertices of vertex
a.

Definition 4 Let [a − b] be an edge of Y. [a − b] is called a non-dominated edge if for
some point y in the relative interior of [a − b], y ∈ YN .

According to [26] (Chapter 8) a point in the relative interior of a face of Y is non-
dominated if and only if the entire face is non-dominated.

Definition 5 Vertex a ∈ VP is called a complete vertex if all faces F of P containing a
are non-dominated, otherwise it is called an incomplete vertex. Let Vc

P
denote the set of

complete vertices of P, and define V ic
P

:= VP \ Vc
P
as the set of incomplete vertices.

Definition 5 provides a partition of the vertices of P into complete and incomplete
ones.In Figure 1 the complete vertices are b and c. The incomplete vertices are a and d,

12

June 1, 2018 Optimization output

whereas e and f are vertices of Y but not of P.

Proposition 3 Let a be a vertex of Y. If there does not exist a vertex b ∈ N(a) such that
µT (b − a) > 0, then a is an optimal solution of the linear programme (19),

max
{
µT y : y ∈ Y

}
. (19)

Proof. Assume a is not an optimal solution, then there exists at least one vertex b ∈ N(a)
such that µT b > µT a, which means µT (b − a) > 0, a contradiction. �

Theorem 4 (19) has at least one optimal solution that is also an optimal solution to (8)
if and only if µ ∈ Rp

5 .

Proof. (1) Let µ ∈ Rp
5 . Define µ′ := −µ, then µ′ ∈ R

p
= and we rewrite (19) as

min{µ′TCx : x ∈ X}, which is a weighted sum scalarisation of the underlying
MOLP. It is well known that there exists an efficient solution x∗ ∈ X which is an
optimal solution to this problem. Therefore, y∗ = Cx∗ ∈ PN . Hence, y∗ is an optimal
solution to (8).

(2) Now, let µ < Rp
5 and assume that y∗ is an optimal solution to (8). Choose d ∈ R≥

such that dj = 1 if µj > 0 and dj = 0 otherwise. Let y′ = y∗ + εd and ε > 0. Since
P = Y+R

p
=, y

′ ∈ Y for sufficiently small ε . However, µT y′ = µT y∗+ε µT d > µT y∗

and so y∗ is not an optimal solution to (19).
�

Using similar arguments as in the proof of Theorem 4 it is in fact possible to show that
µ ∈ R

p
< if and only if the set of optimal solutions of both (8) and (19) is identical.

Proposition 4 Let µ ∈ Rp \ R
p
5. If y ∈ Vc

P
, then there exists y′ ∈ N(y) such that

µT (y′ − y) > 0.

Proof. Let µ and y be as in the proposition. If there were no y′ ∈ N(y) such that
µT (y′ − y) > 0, then by Proposition 3, y would be an optimal solution to (19). As y is also
a non-dominated point, y would be an optimal solution to (8). According to Theorem 4
this implies µ ∈ Rp

5, a contradiction. �

The main result of this section is Theorem 5.

Theorem 5 For all µ ∈ Rp \ R
p
5 there exists an optimal solution y∗ of (8) in V ic

P
∩ VP ,

i.e. at an incomplete non-dominated vertex.

Proof. Under the assumptions of the theorem, assume thatV ic
P

does not contain an optimal
solution of (8), then because of Theorem 1 there exists an optimal solution y∗ ∈ Vc

P
.

According to Proposition 4, there exists y ∈ N(y∗) such that µT y > µT y∗. Since y ∈ YN ,
y is feasible for (8) and a contradiction is obtained. �

According to Theorem 4, whenever µ 5 0, (8) can be solved by solving the LP (19). In
case µ ∈ Rp \R

p
5, an optimal solution to (8) must be obtained at an incomplete vertex of P.

Algorithm 1 can therefore be restricted to incomplete vertices. Unfortunately, due to the
fact that the structure of PN can be very complex (see for example [15] for an investigation
of the structure of the non-dominated set of tri-objective linear programmes), a necessary
and sufficient condition for checking a vertex to be incomplete is not known. In the next
section, we provide an algorithm that uses cutting planes to avoid the enumeration of all
vertices of P.

13

June 1, 2018 Optimization output

Theorem 5 also explains why optimising over the non-dominated set of a bi-objective
linear programme is easy. In the case p = 2 the extreme points of P can be ordered
according to increasing values of one objective and therefore decreasing order of the other
objective. It follows that Y has exactly two incomplete non-dominated extreme points (in
Figure 1 these are a and d). These two extreme points are the non-dominated extreme
points obtained by lexicographically optimising the objectives in the order (1,2) and (2,1)
respectively. Hence for p = 2 objectives, (8) can be solved by linear programming, solving
two lexicographic LPs or four single objective LPs.

5.2. The primal algorithm for solving (8)

Algorithm 1 has two distinct phases, vertex generation and vertex evaluation. Combining
both phases and exploiting the results of Section 5.1 we expect that we can save computa-
tional effort, since not all vertices of P need to be enumerated. More specifically, once a
new hyperplane is generated and added to the inequality representation of P, a set of new
extreme points of the outer approximating polyhedronSi is found. Evaluating µT y at these
extreme points, we select the one with the best function value as si+1 in the next iteration. If
the selected point is infeasible, we proceed with adding a cut

{
y ∈ Rp :

∑p
k=1 λk yk = bTu

}
as in the revised version of Benson’s algorithm. We call this an improvement cut. Other-
wise we have a feasible solution to (8) and therefore a lower bound on its optimal value
and we add what we call a threshold cut. A threshold cut is {y ∈ Rp : µT y = µT ŷ}, where
ŷ is the incumbent solution, i.e., the best feasible non-dominated point found so far. A
threshold cut removes the region where points are worse than ŷ. This primal method is
detailed in Algorithm 2.

Algorithm 2 Primal algorithm for solving (8).
Input: A, b,C, µ
Output: y∗, an optimal solution to (8)
1: Compute the optimal value yI

k
of (P1(ek)), for k = 1, . . . , p.

2: Set S0 :=
{
yI

}
+ R

p
=, i := 1 and VS0 :=

{
yI

}
.

3: Threshold := False.
4: while VSi−1 1 P do
5: si ∈ argmax

{
µT y : y ∈ VSi−1

}
,

6: if si ∈ P and Threshold = False then
7: Si := Si−1 ∩ {y ∈ Rp : µT y = µT si}. Update VSi . Threshold := True.
8: else
9: Compute an optimal solution (ui, λi) of D2(si).

10: Set Si := Si−1 ∩

{
y ∈ Rp :

p∑
k=1

λi
k
yi
k
= bTui

}
. Update VSi . Threshold := False.

11: end if
12: Set i := i + 1.
13: end while
14: y∗ := si.

Example 4 The primal algorithm is illustrated in Figure 5 by maximising y1 + y2 over the
non-dominated set of Example 1.

14

June 1, 2018 Optimization output

Y

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S0

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S1

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S2

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S3

y1

y2

1 2 3 4 5 6

1
2
3
4
5
6

0

S4

Figure 5. Iterations of the primal algorithm 2 in Example 4.

Table 1. Iterations of the primal algorithm 2 in Example 4.
i Vertex si Cut type Candidates Non-dominated points µT y

1 (0,0) Improvement (2,0),(0,3) ∅ 3
2 (0,3) Improvement (2,0) (0,4), (0.4,2.4) 4
3 (0,4) Threshold (4,0) (0,4) 4
4 (4,0) Improvement ∅ (0,4), (5,0), (3.75,0.25) 5

Figure 5 and Table 1 show in each iteration the extreme point chosen, the type of cut
added and the incumbent objective function value. In the first iteration, an improvement cut
is added generating two new vertices, (2, 0)T and (0, 3)T . Then (0, 3)T is chosen in the next
iteration because it provides the best objective function value so far. The second iteration
improves the function value to 4. Since (0, 4)T is feasible, a threshold cut, y1 + y2 = 4, is
then added. Although it does not improve the objective function value, this cut generates a
new infeasible vertex (4, 0)T . An optimal point, (5, 0)T , is found after another improvement
cut has been generated.

5.3. The primal algorithm for solving (10)

A naïve algorithm for (approximately) solving (10) is to obtain a set of ε-non-dominated
points of P (vertices of Si) through the algorithm of [22] and to determine which one has
the largest value of µT y, in the same way as in Algorithm 1.
Now we extend the primal Algorithm 2 to solve (10). The algorithm starts with a

polyhedron S0 containing P. In each iteration a hyperplane is generated and added to the
inequality representation of Si−1 resulting in a set of new extreme points. Evaluating µT y
at these points, we select the one with the best function value to construct the cut for the
next iteration. If the selected point is an ε-non-dominated point, a threshold cut is added.
Otherwise an improvement cut

{
y ∈ Rp :

∑p
k=1 λ

i
k
yi
k
= bTui

}
as in the algorithm of [22]

for convex MOPs is added. A threshold cut is {y ∈ Rp : µT y = µT ŷ}, where ŷ is the

15

June 1, 2018 Optimization output

incumbent solution. A threshold cut removes the region where points are worse than ŷ. At
the end of the algorithm, an ε-non-dominated point y∗ is obtained, which is an optimal
solution to (10). Furthermore, By solving (P2(y

∗)), we can find an element ŷ of PN , which
is an approximate solution to (9). We also know that y∗ 5 ŷ 5 y∗ + εe, where ε is the
approximation error predetermined by the decision maker. As a result, we have solved (10)
exactly and determined an approximate solution ŷ to (9). This primal algorithm is detailed
in Algorithm 3.

Algorithm 3 Primal algorithm for solving (10).
Input: f , g, µ, ε
Output: y∗, an optimal solution to (10) and ŷ, an approximately optimal solution to (9)
1: Compute the optimal value yI

k
of (P1(ek)), for k = 1, . . . , p.

2: Set S0 :=
{
yI

}
+ R

p
= and i := 1.

3: Threshold = False.
4: while VSi−1 1 PεN do
5: si ∈ argmax

{
µT y : y ∈ VSi−1

}
.

6: if si ∈ PεN and if Threshold = False then
7: Si := Si−1 ∩

{
y ∈ Rp : µT y = µT si

}
. Threshold := True.

8: else
9: Compute an optimal solution (ui, λi) of D2(si).

10: Set Si := Si−1 ∩

{
y ∈ Rp :

p∑
k=1

λi
k
yi
k
= bTui

}
. Threshold = False. Update VSi .

11: end if
12: Set i := i + 1.
13: end while
14: y∗ ∈ argmax

{
µT y : y ∈ VSi−1

}
.

15: Find an optimal solution x̂ to P2(y
∗). An approximately optimal solution to (10) is

ŷ = f (x̂).

Example 5 We illustrate Algorithm 3 through maximising 5y1 + 7y2 over the non-
dominated set of the CMOP of Example 2.

y1

y2

yI 1 2 3 4 5 6

1
2
3
4 S0

(a)
y1

y2

0 1 2 3 4 5 6

1
2
3
4 S1

(b)
y1

y2

0 1 2 3 4 5 6

1
2
3
4 S2

(c)

y1

y2

0 1 2 3 4 5 6

1
2
3
4 S3

(d)
y1

y2

0 1 2 3 4 5 6

1
2
3
4 S4

(e)
y1

y2

0 1 2 3 4 5 6

1
2
3
4 S5

(f)

Figure 6. Iterations of Algorithm 3 in Example 5.

16

June 1, 2018 Optimization output

Table 2. Iterations of Algorithm 3 in Example 5.
i Vertex si Cut type Candidates ε-non-dominated points µT y

1 (0,0) Improvement (0,1.27),(1.61,0) ∅ 8.88
2 (0,1.27) Improvement (1.61,0) (0.32,1.01), (0,1.71) 11.94
3 (0,1.71) Threshold (2.39,0) (0,1.71) 11.94
4 (2.39,0) Improvement ∅ (2.9,0), (2.3,0.06) 14.51

Figure 6 and Table 2 show the iterations of Algorithm 3. In the first iteration, an
improvement cut is added generating two new vertices, (0, 1.27)T and (1.61, 0)T . Then
(0, 1.27)T is chosen in the next iteration because it provides the best objective function
value so far. The second iteration improves the function value to 11.94. Since (0, 1.71)T is
ε-non-dominated, a threshold cut, 5y1 + 7y2 = 11.94, is then added. Although it does not
improve the objective function value, this cut generates a new infeasible vertex (2.39, 0)T .
An ε-non-dominated point y∗ = (2.9, 0)T , is found after another improvement cut has been
generated. By solving P2(y

∗)we obtain an approximately optimal solution (2.9001, 0.001)T
and objective function value 14.5075.

6. The Dual Algorithms

In this section, we introduce dual algorithms to solve (8) and (10) in dual objective space.
The dual algorithms are derived from dual variants of Benson’s algorithm [18, 22]. We
commence the discussion with some properties of (8) in dual objective space. We then
introduce the dual algorithms for solving (8) and (10).

6.1. The dual algorithm for solving (8)

In this section, we explore some properties of (8) in dual objective space, which enable
us to solve (8) more efficiently than by the primal algorithm of Section 5. We call the
resulting algorithm the dual algorithm.
Let yex be an extreme point of P. Hence yex ∈ YN . Via set-valued map H∗, yex

corresponds to a hyperplane H∗(yex) in the dual objective space,

H∗(yex) =
{
v ∈ Rp : λ∗(yex)T v = −yexp

}
,

=
{
v ∈ Rp : (yex1 − yexp)v1+, ...,+(y

ex
p−1 − yexp)vp−1 − vp = −y

ex
p

}
.

Moreover, µ and yex define a hyperplane Hyex in primal objective space

Hyex =
{
y ∈ Rp : µT y = µT yex

}
. (20)

We notice that without loss of generality we can assume that µ ≥ 0. Otherwise we set
µ̂k = −µk and ŷk = −yk whenever µk < 0 and µ̂k = µk and ŷk = yk whenever µk = 0 to
rewrite (20) as

Hŷex =
{
ŷ ∈ Rp : µ̂T ŷ = µ̂T ŷex

}
. (21)

Let us now define µ′ :=
∑p

i=1 µi and divide both sides of the equation in (21) by µ′ to
obtain

Hyex =

{
ŷ ∈ Rp :

µ̂T ŷ

µ′
=
µ̂T ŷex

µ′

}
. (22)

17

June 1, 2018 Optimization output

Since (22) is a hyperplane in the primal objective space, it corresponds to a point vµ in
dual objective space. According to geometric duality theory, in particular (12), this point
is nothing but

vµ =

(
µ1

µ′
, ...,

µp−1

µ′
,
µT yex

µ′

)T
.

Notice that only the last element of vµ varies with yex , i.e., the first p − 1 elements of
vµ are merely determined by µ. Geometrically, it means that vµ with respect to various
extreme points yex lies on a vertical line Lµ := {v ∈ Rp : v1 = v

µ
1 , ..., vp−1 = v

µ
p−1}.

Furthermore, the last element of vµ is equal to the objective function value of (8) at yex
divided by µ′. Hence, geometrically, (8) is equivalent to finding a point vµ with the largest
last element along Lµ.

Theorem 6 The point vµ lies on H∗(yex).

Proof. Substitute the point vµ into the equation of H∗(yex). The left hand side is

LHS = (yex1 − yexp)
µ1

µ′
+, ...,+(yexp−1 − yexp)

µp−1

µ′
−
µT yex

µ′

=

(
p−1∑
i=1

µiy
ex
i − yexp

p−1∑
i=1

µi −

p−1∑
i=1

µiy
ex
i − µpy

ex
p

)
1
µ′

= −

p∑
i=1

µi

µ′
yexp = −y

ex
p .

�

This discussion shows that, because we are just interested in finding a hyperplane
H∗(yex) that intersects Lµ at the highest point, i.e., the point with the largest last element
value, it is unnecessary to obtain the completeK-maximal set ofD. We now characterise
which elements of this set we need to consider.
In Section 5, we reached the conclusion that an optimal solution to (8) can be found at

an incomplete vertex ofY. An analogous idea applies to the facets of the dual polyhedron.
In the rest of this section, we develop this idea through the association between the upper
image P of the primal MOLP and the lower image D of the dual MOLP, and exploit it to
propose the dual algorithm.
In the discussion that follows, we make use of Theorem 2. Let yi, i = 1, . . . , r be the

extreme points of P. Then we know that the facets of D are Fi := Ψ−1(yi) ∩ D for
i = 1, . . . , r .

18

June 1, 2018 Optimization output

1

1

v1

v2

P(F1)

P(F2)

P(F3)

P(F4)

P(F5)

Figure 7. Projection of a three dimensional lower image D onto the v1-v2 coordinate plane.

Figure 7 shows the projection of a three dimensional lower image D onto the v1 and
v2 coordinate plane. The cells P(F1) to P(F5) are the projections of facets F1 to F5 of
D, respectively. Notice that the projections of the facets have disjoint interiors, because
by definition D consists of points (v1, . . . , vp−1, vp) such that vp ≤ v∗ for the point
(v1, vp−1, v

∗) ∈ DK , the K-maximal subset of D.

Definition 6 K-maximal facets Fi and F j of D are called neighbouring facets if
dim(Fi ∩ F j) = p − 2.

Figure 7 shows that the neighbouring facets of facet F2 are F3 and F5. Neither F1 nor
F4 are neighbouring facets of F2.

Proposition 5 If yi and y j are neighbouring vertices of P, then facets Fi = H∗(yi) ∩ D
and F j = H∗(y j) ∩ D are neighbouring facets of D.

Proof. Since yi and y j are neighbouring vertices ofY there is an edge [yi− y j] connecting
them. The edge [yi − y j] has dimension one and according to Theorem 3 dim([yi − y j])+
dim(Ψ−1([yi − y j])) = p − 1 we have that dim(Ψ−1([yi − y j])) = p − 2. Moreover,
Ψ−1(yi) = H∗(yi) ∩ D = Fi and Ψ−1(y j) = H∗(y j) ∩ D = F j due to our notational
convention. Hence dim(Fi ∩ F j) = p − 2 and Fi and F j are neighbouring facets. �

Definition 7 Let F be a K-maximal facet of D. If all neighbouring facets of F are
K-maximal facets, then F is called a complete facet, otherwise it is called an incomplete
facet. The set of all complete facets of D is denoted by Fc, the set of all incomplete facets
of D is denoted by Fic.

In Figure 3 there are two incomplete facets, namely, the facet attached to the origin
and the facet attached to the point (1, 0)T . The other two facets are complete. In Figure
7 the projections of the incomplete facets are P(F2), P(F3), P(F4) and P(F5). The only
complete facet is F1, hence P(F1) is surrounded by the projections of the incomplete
facets.

Theorem 7 There exists a one-to-one correspondence between incomplete facets of D
and incomplete vertices of P.

Proof. Proposition 5 states that the facets of D have the same neighbouring relations as
the vertices of P, which implies that the completeness of a facet of D remains the same
as that of its corresponding vertex of P. Therefore, Theorem 7 is true. �

19

June 1, 2018 Optimization output

Theorem 8 If y∗ is an optimal solution of (8) at an incomplete vertex, then (H∗(y∗) ∩D)
is a K-maximal incomplete facet of D.

Proof. Theorem 8 follows directly from Theorem 5 and Theorem 7. �

Theorem 8 says that a facet of D corresponding to an optimal extreme point solution
to (8) is an incomplete facet. In other words, we do not neeed to investigate complete
facets to find an optimal solution because in the primal space the vertex corresponding to
this facet has only non-dominated neighbours, i.e., this vertex is a complete vertex, which
cannot be an optimal solution of (8). On the other hand, an incomplete facet of D is the
counterpart of an incomplete vertex ofY. Hence an optimal solution to (8) can be obtained
by investigating the incomplete facets ofD. In order to obtain the set of incomplete facets
of D, let us define

WD :=
p−1⋃
i=1

{
v ∈ Rp : vi = 0, 0 5 vj 5 1, j = 1 . . . (p − 1), j , i

}
∪

{
v ∈ Rp :

p−1∑
i=1

vi = 1, 0 5 vi 5 1, i = 1 . . . (p − 1)

}
.

In Fig. 7, the highlighted triangle is the projection of WD onto the v1-v2 coordinate
plane. The incomplete facets intersect with WD because their neighbouring facets are not
all K-maximal facets. On the other hand, a complete facet “surrounded” by K-maximal
facets does not intersect withWD . Hence, it is sufficient to consider the facets that intersect
with WD . The dual algorithm proposed below is designed to solve (8) in the dual objective
space through finding facets that intersect with WD .
Theorem 7 shows that there is a one-to-one correspondence between incomplete vertices

of Y and incomplete facets of D. But through intersections with WD incomplete facets
of D are easier to characterise than incomplete facets of Y and can therefore be handled
algorithmically.

Algorithm 4 Dual algorithm for solving (8).
Input: A, b,C, µ
Output: y∗, an optimal solution to (8)

Choose some d̂ ∈ intD.
Compute an optimal solution x0 of (P1(d̂)), set y∗ := Cx0, M∗ := µT y∗.

Set S0 :=
{
v ∈ Rp : λ(v) = 0,

p−1∑
k=1
(y∗

k
− y∗p)vk − vp = −y

∗
p

}
and i := 1.

while WD ∩ VSk−1 1 D do
Choose vi ∈ WD ∩ VSi−1 such that vi < D.
Compute an optimal solution xi of (P1(v

i)), set yi := Cxi.
if M∗ < µT yi then
Set y∗ := yi and M∗ := µT yi.

end if
Set Si := Si−1 ∩

{
v ∈ R :

p−1∑
k=1
(yi

k
− yip)vi − vp = −y

i
p

}
. Update VSi .

Set i := i + 1.
end while

Example 6 Figure 8 below illustrates the dual algorithm by maximising y1 + y2 over the
non-dominated set of Example 1. By employing the dual algorithm only two of the four

20

June 1, 2018 Optimization output

K-maximal facets need to be generated.

S0

D

0 1 v1

v2

(a)

a b

d̂

S1

D

0 1 v1

v2

(b)

bc

d̂

S2

D

0 1 v1

v2

(c)

c

d̂

Figure 8. Iterations of Algorithm 4 in Example 6.

In this example,WD = {v ∈ R
2 : v1 = 0}∪{v ∈ R2 : v1 = 1}. In Figure 8 (a), a, b ∈ WD .

In Figure 8 (b), vertex a is used to generate a supporting hyperplane ofD. This hyperplane
corresponds to extreme point (0, 4)T in the primal space. A new vertex c is found. Since
c < WD , in Figure 8 (c) vertex b is employed to generate another supporting hyperplane
of D corresponding to extreme point (5, 0)T in the primal space. At this stage, there is
no infeasible vertex belonging to WD and the algorithm terminates with optimal solution
(5, 0)T .

6.2. The dual algorithm for solving (10)

In Section 6.1, we investigated the properties of (8) in the dual objective space and proposed
a dual algorithm to solve (8). The dual Algorithm 4 for (8) determines incomplete K-
maximal facets ofD. But since the underlying dualMOP (16) of (10) has a non-polyhedral
lower image D it may have no facets (see Figure 4 for example). However, since the dual
variant of Benson’s outer approximation algorithm for solving CMOPs performs an outer
approximation toD we can combine this approximation ofD with a similar procedure as
in Algorithm 4 to solve (10).
At termination all extreme points of the approximation polyhedron are εK-maximal.

The dual algorithm proposed below is designed to generate all incomplete facets of the
polyhedron approximating D in dual objective space. Moreover, in every iteration, the
dual algorithm computes a feasible solution to problem (9) by solving (P1(si)). Since it
keeps track of the best solution, at termination, y∗ is an optimal solution to (10), which is
also a feasible approximate solution to (9) without ever computing an outer approximating
polyhedron of P.

21

June 1, 2018 Optimization output

Algorithm 5 Dual algorithm for solving (10).
Input: f , g, µ, ε
Output: y∗, an optimal solution to (10) and approximate solution to (9).
1: Choose some d̂ ∈ intD.
2: Compute an optimal solution x0 of (P1(d̂)), set y∗ := f (x0), M∗ := µT y∗.

3: Set S0 :=
{
v ∈ Rp : λ(v) = 0,

p−1∑
k=1
(y∗

k
− y∗p)vk − vp = −y

∗
p

}
and i = 1.

4: while WD ∩ VSi−1 1 DεK do
5: Choose si ∈ WD ∩ VSi−1 .
6: Compute an optimal solution xi of (P1(si)) and an optimal value zi to (P1(si));

yi := f (xi); M i := µT yi.
7: if M∗ < M i then
8: y∗ := yi and M∗ := M i.
9: end if
10: if sip − zi > ε then

11: Set Si := Si−1 ∩

{
v ∈ R :

p−1∑
k=1
(yi

k
− yip)vi − vp = −y

i
p

}
. Update VSi .

12: else
13: VεK := VεK ∪ si.
14: end if
15: Set i := i + 1.
16: end while

Example 7 Figure 9 below illustrates the dual algorithm in Example 5.

S0

D

v1

v2

0

a b

(a)
d̂

S1

D

v1

v2

0

c b

(b)
d̂

S2

D

v1

v2

0

c d

(c)
d̂

Figure 9. Iterations of Algorithm 5 in Example 7.

In Figure 9 (a), an initial polyhedron S0 is constructed with two vertices a, b ∈ WD . In
the first iteration, vertex a is selected to generate a supporting hyperplane to D at (0, 0)T
as shown in Figure 9 (b). Now a new vertex c is found. In Figure 9 (c) vertex b is employed

22

June 1, 2018 Optimization output

to generate another supporting hyperplane to D at (1, 0)T resulting in vertex d. Since
c, d < WD , there is no infeasible vertex belonging to WD and the algorithm terminates
with the approximate solution y∗ = (3, 0)T with value µT y∗ = 15. This is the optimal
solution in this example.

7. Computational Results

7.1. The linear case

In this section, we use randomly generated instances to compare some of the algorithms
for solving (8). The method proposed by [7] is used to generate instances the coeffi-
cients of which are uniformly distributed between -10 and 10. All of the algorithms were
implemented in Matlab R2013b using CPLEX 12.5 as linear programming solver. The ex-
periments were run on a computer with an Intel i7 processor (3.40GHz and 16GB RAM).
We solved three instances of the same size for MOLPs with p objectives, m constraints
and n variables. Note that m = n for all instances. Table 3 below shows the average CPU
times (in seconds). We tested six algorithms, namely

• the brute force algorithm (Algorithm 1), labelled A1
• the bi-objective branch and bound algorithm of Section 4.1, labelled A2
• the conical branch and bound algorithm of Section 4.2, labelled A3
• Benson’s branch and bound algorithm (Section 4.3), labelled A4
• the primal algorithm (Algorithm 2), labelled A5
• the dual algorithm (Algorithm 4), labelled A6

Table 3. CPU times of six different algorithms in the linear case.
p m = n A1 A2 A3 A4 A5 A6

5 0.0427 0.0066 0.0128 0.0343 0.0065 0.0147
10 0.0065 0.0016 0.0035 0.0063 0.0068 0.0067

2 50 0.0072 0.0038 0.0282 0.0732 0.0038 0.0084
100 0.0239 0.0069 0.0541 0.1418 0.0197 0.0163
500 0.3226 0.1634 2.5935 12.5185 0.2464 0.2789
5 0.0678 - 0.0074 0.0209 0.0161 0.0269

10 0.0294 - 0.0052 0.0077 0.0114 0.0178
3 50 0.0847 - 0.1005 0.2327 0.0402 0.0386

100 0.1385 - 0.302 0.9642 0.0985 0.0596
500 3.4191 - 3.9931 17.0181 1.4985 0.4342
5 0.1373 - 0.0084 0.0232 0.0637 0.0414

10 0.1951 - 0.1638 0.3575 0.2061 0.0445
4 50 0.5496 - 0.2004 0.066 0.5685 0.1103

100 2.0857 - 3.6578 4.2433 0.7587 0.4348
500 35.8634 - 66.1054 141.241 21.0746 9.1878
5 5.1236 - 0.0934 0.024 0.8902 0.0618

10 2.6293 - 0.0277 0.0099 2.7356 0.1623
5 50 10.9649 - 7.1391 3.249 3.5458 0.8399

100 25.9835 - 50.4573 10.6344 6.4632 2.9714
500 204.7300 - 354.8034 578.1003 89.6327 53.5104

Clearly, as the size of the instances grows, the CPU time increases rapidly. The crucial
parameter here is the number of objective functions. While with p = 2 objectives, even
problems with 500 variables and constraints can be solved in less than a second, this takes

23

June 1, 2018 Optimization output

between less than 1 minute and about 10 minutes with p = 5 objectives for the different
algorithms. We observe that for p = 2, the bi-objective branch and bound algorithm turns
out to be the fastest algorithm, but it cannot be generalised to problems with more than
two objectives. The dimension factor maybe plays a less important role when p is small.
Other factors such as the number of variables and constraints may have more influential
impact on CPU times. As p increases, the merit of the primal and the dual algorithms
is revealed. Specifically, when solving problems with 5 objectives and 500 variables and
constraints, the primal and the dual algorithms take much less time (one sixth, respectively
one tenth) than Benson’s branch and bound algorithm. The brute force algorithm (A1)
performs better than the branch and bound algorithms (A3 and A4) because A1 only
solves one LP in each iteration whereas A3 and A4 solve multiple LPs. Solving LPs is
the most time-consuming step in the algorithms. Table 3 also shows the dual algorithm
performs better than the primal algorithm in solving instances of large scale. In Figure 7.1,
we plot the log-transformed CPU times of solving the instances with 500 variables and
constraints for the five different applicable algorithms. It shows that, as expected, the time
required to achieve optimality exponentially increases with the number of objectives, even
for our primal and dual algorithm, making the speed-up obtained by our algorithms even
more important.

−1

−0.5

0

0.5

1

1.5

2

2.5

3

2 3 4 5

Lo
ga
rit
hm

of
C
PU

tim
e

Number of objectives p

Brute force

+

+

+

+

+
Conical branch and bound

×
×

×

××
Benson’s branch and bound

∗
∗

∗

∗

∗
Primal algorithm

�

�

�

�
�

Dual algorithm

�
�

�

�
�

Figure 10. Log-transformed CPU times for instances with 500 variables and constraints.

7.2. The convex case

In this section, we use randomly generated instances to compare some of the algorithms
discussed in Section 4 and the primal and the dual algorithms for (10). The method
proposed by [7] is used to generate convex polyhedra as feasible sets of the underlying
CMOP. Quadratic functions are generated as the objective functions, which are in the form
f (x) = xT Hx + aT x, where H is a positive semi-definite matrix and a is a column vector.
Matrix H = ST S, where S is a square matrix. All coefficients are uniformly distributed
between -10 and 10. All of the algorithms were implemented in Matlab R2013b using
CPLEX 12.5 as a solver. The value of ε was set to 10−4. The experiments were run on a
computer with Intel i7 processor (3.40GHz, 16GBRAM). Table 4 below shows the average
CPU times (in seconds) of solving three instances of the same size for which the underlying
CMOP has p objectives, m constraints and n variables. We tested five algorithms, namely

24

June 1, 2018 Optimization output

• the brute force algorithm, labelled A1
• the extended bi-objective branch and bound algorithm in Section 4.1, labelled A2
• the conical branch and bound algorithm of Section 4.2, labelled A3
• the primal algorithm (Algorithm 3), labelled A4
• the dual algorithm (Algorithm 5), labelled A5

Table 4. CPU times of five different algorithms in the convex case.
p m = n A1 A2 A3 A4 A5

5 2.3037 0.0397 0.2541 0.0821 0.1123
10 4.8086 0.0549 0.4510 0.0869 0.1303

2 50 16.1997 0.4027 1.0291 0.6939 0.4150
100 28.0444 1.8492 2.8614 2.2391 2.0439
5 453.2516 - 246.2019 203.5841 160.5440
10 3821.214 - 2921.345 2061.1652 1631.1805

3 50 17982.2314 - 14669.2419 10621.4219 7243.1480
100 31987.2540 - 24613.2754 18213.4621 13717.6684

Obviously, the CPU time increases rapidly as the size of the instances grows. The largest
size of instances we tested is 3 objectives and 100 variables and constraints due to the
substantial amount of time required to solve the instances to the chosen accuracy.We notice
that the number of objective functions is a crucial factor. All of the instances with p = 2
objectives can be solved within 30 seconds. The most efficient algorithm is the extended
bi-objective branch and bound algorithm (A2) proposed by [21], which solves the largest
instances with 100 variables and constraints within 2 seconds. Unfortunately it is specific
to the bi-objective case. The difference in time between A3, A4 and A5 is not significant.
We notice that adding one more dimension to the objective space (i.e., adding one more
objective function) leads to substantial increase in computational effort. For instances with
3 objectives, the required CPU time increases substantially so that even instances with 5
variables and constraints take a few minutes to solve. Furthermore, the largest instances
with 100 variables and constraints, take a few hours. The dual algorithm solves the largest
instances in half of the time used by the conical branch and bound algorithm (A3). We also
notice that the dual algorithm is faster than the primal one in most of the cases. Throughout
the test, the slowest algorithm is the brute force algorithm (A1). This is due to the fact
that this algorithm enumerates a large number of vertices which are redundant. This also
proves the advantage of the techniques employed in our new algorithms. Additionally, in
the implementation of the algorithms, we notice that time required to solve instances is
sensitive to the approximation accuracy (reflected by ε as stated in the algorithms). In this
test the level of accuracy is 10−4. It is expected that a lower level of accuracy results in
faster solution time.

8. Conclusion

Optimisation over the efficient set is a problem of concern when decision makers have
to select a preferred point among an infinite number of efficient solutions in multiple
criteria decision making. We have addressed the case that this selection is based on the
optimisation of a linear function over the non-dominated set of a linear multi-objective
optimisation problem. We have exploited primal and dual variants of Benson’s algorithm,
which compute all non-dominated extreme points and facets of multi-objective linear
programmes, as the basis of algorithms to solve this problem. In addition,we have described
structural properties of the problem of optimising a linear function over the non-dominated

25

June 1, 2018 Optimization output

set to reduce the need for complete enumeration of all non-dominated extreme points. We
have compared our algorithms to several algorithms from the literature, and the complete
enumeration approach, and obtained speed-ups of up to 10 times on instances with up to
5 objectives and 500 variables and constraints.
We also extended the primal and the dual algorithms to optimise a linear function over

the non-dominated set of a convex multi-objective optimisation problem. We employed
the techniques of the linear primal and dual methods to facilitate the non-linear ones.
Comparing with other algorithms from the literature, our primal and dual algorithms are
the fastest. In the future we plan to address more challenging versions of this problem,
e.g. when the function to be optimised is nonlinear and when the underlying MOP is
nonconvex, where we are particularly interested in the discrete case.

Acknowledgments and Data Statement

We express our gratitude to two anonymous referees, whose careful reading and comments
helped us improve the paper. This research was supported by grant FA8655-13-1-3053 of
the US Airforce Office for Scientific Research. More information on the data can be found
at doi https://dx.doi.org/10.17635/lancaster/researchdata/224.

References

[1] Benson, H. (1995). A geometrical analysis of the efficient outcome set in multiple objective
convex programs with linear criterion functions. Journal of Global Optimization, 6(3):231–251.

[2] Benson, H. (1998). An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal of
Global Optimization, 13:1–24.

[3] Benson, H. (2011). An outcome space algorithm for optimization over the weakly efficient
set of a multiple objective nonlinear programming problem. Journal of Global Optimization,
52(3):553–574.

[4] Benson, H. and Lee, D. (1996). Outcome-based algorithm for optimizing over the efficient set
of a bicriteria linear programming problem. Journal of Optimization Theory and Applications,
88(1):77–105.

[5] Benson, H. P. (1984). Optimization over the efficient set. Journal of Mathematical Analysis
and Applications, 98(2):562–580.

[6] Benson, H. P. (1991). An all-linear programming relaxation algorithm for optimizing over the
efficient set. Journal of Global Optimization, 1(1):83–104.

[7] Charnes, A., Raike, W. M., Stutz, J. D., and Walters, A. S. (1974). On generation of test
problems for linear programming codes. Communications of the ACM, 17(10):583–586.

[8] Dauer, J. (1993). On degeneracy and collapsing in the construction of the set of objective values
in a multiple objective linear program. Annals of Operations Research, 46-47(2):279–292.

[9] Dauer, J. P. (1987). Analysis of the objective space in multiple objective linear programming.
Journal of Mathematical Analysis and Applications, 126(2):579–593.

[10] Ehrgott, M. (2005). Multicriteria Optimization (2. ed.). Springer, Berlin.
[11] Ehrgott, M., Güler, Ç., Hamacher, H. W., and Shao, L. (2009). Mathematical optimization in

intensity modulated radiation therapy. Annals of Operations Research, 175(1):309–365.
[12] Ehrgott, M., Löhne, A., and Shao, L. (2011). A dual variant of benson,s uter approxima-

tion algorithm for multiple objective linear programming. Journal of Global Optimization,
52(4):757–778.

[13] Ehrgott, M., Naujoks, B., Stewart, T. J., and Wallenius, J. (2010). Multiple Criteria Decision
Making for Sustainable Energy and Transportation Systems, volume 634 of Lecture Notes in
Economics and Mathematical Systems. Springer, Berlin.

[14] Ehrgott, M. and Wiecek, M. (2005). Mutiobjective programming. In Multiple Criteria

26

June 1, 2018 Optimization output

Decision Analysis: State of the Art Surveys, volume 78 of International Series in Operations
Research and Management Science, pages 667–708. Springer New York.

[15] Fruhwirth, M. and Mekelburg, K. (1994). On the efficient point set of tricriteria linear
programs. European Journal of Operational Research, 72:192–199.

[16] Fülöp, J. (1993). On the equivalency between a linear bilevel programming problem and
linear optimization over the efficient set. Technical report, Hungarian Academy of Sciences.

[17] Fülöp, J. and Muu, L. D. (2000). Branch-and-bound variant of an outcome-based algorithm
for optimizing over the efficient set of a bicriteria linear programming problem. Journal of
Optimization Theory and Applications, 105(1):37–54.

[18] Hamel, A., Löhne, A., and Rudloff, B. (2014). Benson type algorithms for linear vector
optimization and applications. Journal of Global Optimization, 59(4):811–836.

[19] Heyde, F. and Löhne, A. (2008). Geometric duality in multiple objective linear programming.
SIAM Journal on Optimization, 19(2):836–845.

[20] Horst, R. and Tuy, H. (1993). Global Optimization: Deterministic Approaches. Springer,
Berlin.

[21] Kim, N. T. B. and Thang, T. N. (2013). Optimization over the efficient set of a bicriteria
convex programming problem. Pacific Journal of Optimization, 9:103–115.

[22] Löhne, A., Rudloff, B., and Ulus, F. (2014). Primal and dual approximation algorithms for
convex vector optimization problems. Journal of Global Optimization, 60(4):713–736.

[23] Markowitz, H. (1952). Portfolio selection*. The Journal of Finance, 7(1):77–91.
[24] Thoai, N. V. (2000). Conical algorithm in global optimization for optimizing over efficient

sets. Journal of Global Optimization, 18(4):321–336.
[25] Yamamoto, Y. (2002). Optimization over the efficient set: overview. Journal of Global

Optimization, 22(1-4):285–317.
[26] Yu, P.-L. (1985). Multiple-Criteria Decision Making (Concepts, Techniques, and Extensions),

volume 30 of Mathematical Concepts and Methods in Science and Engineering. Springer US.

27

