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Graphene, a single-layer network of carbon atoms, shows outstanding electrical and mechanical 

properties,1 and graphene ribbons with nanometer-scale widths,2,3 should exhibit half-metallicity,4  

quantum confinement and edge effects.5,6 Magnetic edges in graphene nanoribbons have undergone 

intense theoretical scrutiny, because their coherent manipulation would be a milestone for spintronic7 

and quantum computing devices.8 Experimental investigations are however hampered by the fact 

that most nanoribbons do not have the required atomic control of the edges, and that the proposed 

graphene terminations are chemically unstable9. Here we solve both of these problems, by using 

molecular graphene nanoribbons functionalized with stable spin-bearing radical groups. We observe 

the predicted delocalized magnetic edge states, and test present theoretical models about the spin 

dynamics and the spin-environment interactions. Comparison with a non-graphitized reference 

material allows clear identification of fingerprint behaviours. We quantify the spin-orbit coupling 

parameters, define the interaction patterns, and unravel the spin decoherence channels. Even without 

any optimization, the spin coherence time is in the µs range at room temperature, and we perform 

quantum inversion operations between edge and radical spins. This new approach to problem of 

spins in well-defined electronic nanostructures offers a long-awaited experimental testbed for the 

theory of magnetism in graphene nanoribbons. The observed coherence times open up encouraging 

perspectives for the use of magnetic nanoribbons in quantum spintronic devices. 

 

Theory predicts that graphene nanoribbons (GNRs) can have magnetic edges,6 which would display 

ferromagnetism and excellent spin filtering properties,7 in addition to interesting quantum-coherence 
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features.8 On the other hand, most GNRs do not have atomically-precise edges and bare graphene 

terminations are very sensitive to chemical modification,9 so that the properties of magnetic edge states, 

and even whether they exist at all, is still uncertain. Previous results using microscopy have largely been 

blind to the magnetic effects. We have developed the bottom-up molecular synthesis, allowing for the 

fabrication of atomically precise GNRs with various structures, which can be uniquely defined by the shape 

of molecular precursors.10,11,10 We have very recently demonstrated the synthesis of pure zigzag GNRs 

showing localized edge states in ultra-high vacuum, but the magnetic characterizations turned out to be 

highly challenging due to their instability, so that the spin properties of such well-defined zigzag GNRs 

remain largely unexplored.11,12 

We overcome these problems by injecting a spin density into the edge states of stable molecular GNRs 

synthetized via solution-based bottom-up chemical methods, using nitronyl-nitroxide radicals13 (NIT) as 

magnetic injectors. The advantages of this approach are that: the magnetic functionalities are well known,14 

instead of relying on still-undefined magnetic states and they show interesting quantum properties;15 the 

sample can be mass-produced, instead of appearing just on one device; and we can test the classical and 

quantum spin properties in depth; the systems are chemically very stable. 

The synthesis of NIT-functionalized GNRs (NIT-GNRs) starts with Diels–Alder polymerization of a 

bromo-functionalized tetraphenylcyclopentadienone-based monomer 1, yielding a bromo-substituted 

precursor polymer 2 (Fig.1a). Palladium-catalysed cross-coupling of 2 to triphenylphosphine-gold(I)-

(nitronyl nitroxide-2-ide) yields the magnetic NIT-polyphenylene, which provides a non-graphitized 

reference material (Fig.1b). Graphitization of 2 yields the bromo-substituted nanoribbons 3, which are 

magnetically functionalized to NIT-GNRs by partial bromine substitution via cross-coupling (Fig.1c). 16 

Size-exclusion chromatography of 2 yields an average molecular weight of 126 kg/mol, corresponding to 

an average nanoribbon length 𝑙 ̅ > 100 nm. FTIR, Raman and UV-Vis spectroscopies corroborate the well-

defined NIT-GNR structure, as in previous reports,16 without appreciable presence of transition-metal 

magnetic impurities (SI). 

The unpaired electron of the nitronyl-nitroxide resides in a π-orbital extending over two N–O groups 

and a C atom, which overlaps considerably with the π-orbitals of the aromatic backbone, and is known to 

inject spin into aromatic substituents (SI).17 Modelling of NIT-GNRs using density functional theory shows 

a sizeable spin density injected into the graphene backbone, creating localized, non-dispersive states and 

magnetic dispersive edge state, while the spins of the NIT-polyphenylene remain in completely localized 

states (Fig.1b,c and SI).  

We can directly observe and manipulate the spin states using electron spin resonance18 (ESR), where 

the spin levels are split by a magnetic field and transitions are induced by microwave absorption. Static 

spectra at different frequencies (Fig.2a) are reproduced using the spin Hamiltonian: 

1) 𝐻 = 𝐻𝑍 +𝐻𝐻𝑦 + 𝐻𝐷 +𝐻𝐸𝑥,  
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where the Zeeman term 𝐻𝑍 = 𝜇𝐵𝑩𝒈𝑺𝒊 contains the effect of the magnetic field B on the i-th spin 𝑺𝒊, via the 

Landé tensor g; 𝐻𝐻𝑦 = ∑ 𝑺𝒊𝑨𝒊𝒏𝑰𝒏𝑖,𝑛  is the hyperfine interaction between the electron spin and the spin of the 

nucleus n; 𝐻𝐷 = ∑ 𝑺𝒊𝑫𝒊𝒋𝑺𝒋𝑖≠𝑗   is the dipolar coupling, with 𝐷 = 𝑔𝑖𝑔𝑗𝜇0𝜇𝐵
2(4𝜋ℏ𝑟𝑖𝑗

3)
−1
diag(−1,−1,2) , that 

contains the vacuum permeability 𝜇0, the Bohr magneton 𝜇𝐵 and the spin-spin distance r; 𝐻𝐸𝑥 = ∑ 𝐽𝑺𝒊𝑺𝒋𝑖≠𝑗  

represents the exchange coupling. The parameters that best reproduce all frequencies are: g=[2.0097(5), 

2.0060(4), 2.0026(1)]; hyperfine coupling with the 14N atoms AN=[0.0, 3(2), 34(2)] MHz, tilted by φ=9° 

in-plane relative to the g tensor; D12=D1=11.0±0.5 MHz and D13 =D23=D2=8.5±0.5 MHz for the along and 

across-edge interactions, respectively (Fig2b). Within error, the same results are obtained for the radicals 

on NIT-GNRs: g=[2.0098(5), 2.0059(5), 2.0026(1)], AN=[0.0, 5(2), 34(2)], D1=11.0±0.5 MHz, D2=8.5±0.5 

MHz. The inter and intra-edge exchange interactions are J1=–25±5 MHz, J2=12±3 MHz, in agreement with 

the sign expected from theoretical predictions19 and Goodenough-Kanamori rules.13,14 These signals are to 

be attributed to the spin density localized on the nitronyl-nitroxides. 

In addition to this signal, NIT-GNRs display the predicted edge-state as an intense feature with uniaxial 

anisotropy: g||=2.0024(3), g┴=2.0041(2). Metallic impurities would produce ESR linewidths of tens of mT, 

vs the 1-2 mT observed. Metals and spin-bearing defects in the graphene backbone would have a different 

hyperfine coupling than the NITs, would not display all the characteristics of NIT radicals and the DEER 

experiments would not be possible with randomly-placed impurities (see later).   

Its shape and linewidth rule out magnetic impurities and match previous hints of delocalized spin 

states,20 providing the smoking gun for the existence of edge spin states, long predicted for graphene 

nanoribbons.4-7 Theory predicts that the honeycomb lattice of graphene introduces an axial spin-orbit effect, 

ΔSO, while the breaking of the mirror symmetry of the plane produces a Rashba-type transverse term, ΔR, 

yielding the Hamiltonian 𝐻𝑆𝑂 = ±∆𝑆𝑂𝜎𝑧𝑆𝑧 + ∆𝑅(±𝜎𝑥𝑆𝑥 − 𝜎𝑦𝑆𝑦), where ± denote the valley degrees of freedom, Si 

and σi spin and pseudospin Pauli matrices.8 ΔSO≈15 µeV and ΔR≈1 µeV are extracted by considering that 

|∆𝐸(𝑔𝑖 − 𝑔𝑒)| = 2∆𝑖, where ge is the free electron value, and perturbation theory is used to account for the 

effect of excited states at energy ∆𝐸 (available from the ab-initio calculations). This constitutes a direct 

experimental confirmation of tight-binding estimates of spin-orbit coupling in graphene, 21 ,21 and its 

suppression compared to carbon nanotubes, predicted by the lattice symmetry and the absence of 

curvature.5,22 These observations, together with the fact that the static spectra are largely insensitive to 

exchange interactions, indicate that the NIT-GNRs fall into a very interesting regime, where coherent 

manipulation of the spins is possible.  

We thus explore the quantum spin coherence using time-resolved ESR. The quantum evolution of a 

spin can be represented as a movement over the Bloch sphere, with zenithal positions pure |1/2⟩ and |−1/2⟩ 

states, and all their possible combinations mapped on the sphere (Fig.3a). The spin-relaxation-time, T1, 

represents spin-flips (vertical displacement), while the phase-memory-time, T2, describes the evolution of 
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the quantum phase information (azimuthal movement). We measure T1 via the picket-fence technique23 and 

Tm (a measure of the dephasing time) by the Hahn-echo decay. We fit the echo-signal Y with an exponential 

function 𝑌() = 𝑌0𝑒
−(

2τ

𝑇𝑚
)
x

[1 + 𝑘1sin(2ωτ + φ1) +𝑘2 sin(4ωτ + φ2)] + 𝑐 that contains modulation by the environment 

at a frequency ω (amplitudes k1 and k2 for first- and second-order effects) and a stretch parameter x (Fig.3b). 

We always find x=1, indicating that the relaxation time approximation is good, successive events are 

uncorrelated, and Tm ≈ T2 as traditionally defined.24 

The T1 values, ~10–5 s, validate theoretical predictions by analytical methods.25 The temperature-

dependence of T1
–1 (Fig.3c) shows three main regimes: a linear one below 25 K, characteristic of spin-

phonon energy transfers; a Raman region between 25 and 200 K, where relaxation happens via virtual 

states; a room-temperature region where local vibrational modes play a role, with the same characteristic 

energy (1354 cm-1) for NIT-GNR and NIT-polyphenylene, tentatively assigned to the N–O stretching mode. 

Theories of low-temperature spin-phonon relaxation in graphene5,21 quantum dots consider a deformation-

potential-mechanism, active for longitudinal-acoustic phonons, and a bond-length-change mechanism, 

active for transversal- and longitudinal-acoustic modes. These, in conjunction with the absence of Van 

Vleck cancellation,21 are predicted to generate the linear dependence indeed observed here, at low fields. 

The other hypothesized mechanism, spin-state-admixture,5 can be ruled out by the observed temperature- 

and field-dependences and the low value of the observed Rashba spin-orbit-coupling, to which it is linked 

by symmetry selection rules.5,21 

Even without any optimization, NIT-GNRs display Tm=0.5 µs at room-temperature and 1.1 µs at 85 K 

(Fig.3c and SI), 100 times longer than the 12 ns available in spintronic devices.26 The high value is likely 

linked to the efficient suppression of scattering in atomically-regular edges. NIT-GNRs show only a slight 

increase of Tm at lower temperatures, while NIT-polyphenylene shows a minimum at 170 K and a broad 

maximum at 60 K, attributable to the progressive freezing of the benzene-benzene σ-bonds in the backbone. 

Although Tm for the localized radicals in NIT-polyphenylene might be slightly longer, the NIT-GNRs allow 

validating theories of spin relaxation in graphene, possess an edge-state that is connected to transport and 

is promising for quantum operations. 

We now proceed to determine the sources of decoherence in NIT-GNRs. The modulation of the Hahn-

echo amplitude (Fig.3b) at ω/2π=3.6 MHz, a frequency typical of 13C spin-nuclei interactions, suggests 

that hyperfine decoherence channels are important. Electron-electron-double-resonance-detected-nuclear-

magnetic-resonance, EDNMR, allows de-convoluting the different nuclear contributions17,23 (Fig.4a). 14N 

coupling is dominant, confirming the analysis of CW spectra, but 13C, 1H single-quantum-transitions, 14N, 

13C double-quantum-transitions and nitrogen-carbon mixed-transitions also play an important role. The 

coupling strength to the 13C of the graphene backbone ~10MHz, is considerably smaller than theoretical 

estimates for confined graphene dots,5,27 where anisotropic, Fermi-contact and nucleus-orbital interactions 
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contribute to a total 13C hyperfine interaction of ~70 MHz. These couplings suggests that nuclei could be 

used as computational resources.28 

We eventually consider the coupling between localized spins and the edge state. Information about 

electron-electron interactions is obtained by four-pulse double-electron-electron-resonance (DEER, 

Fig.4b),29 where the system is initialised and probed at the gx resonance of the radicals, and perturbed at the 

resonance condition of the edge-state. The resulting spectrum displays an intriguing slow oscillation that is 

overlaid with fast ones (Fig.4c). The fast period corresponds to the D1 and D2 interactions, which are too 

strong for accurate resolution using DEER, and are better appreciated via the CW spectra. Slow oscillations 

correspond to interactions between localized and edge-state spin yielding a radical-edge spin interaction of 

3 MHz (Fig.4d); these oscillations are absent in NIT-polyphenylene, in agreement with the lack of edge-

states. The extracted edge-radical spin-inversion time, ~330 ns, is considerably shorter than Tm, enabling 

coherent inversion operations using graphene edge-states and localized spins. This, in conjunction with 

recent results on the transport on molecular nanoribbons, opens fascinating possibilities: quantum 

operations can in principle be performed via single-electron transport, 30  and the spin states detected 

electrically,31 so that our radical-substituted NIT-GNRs seem ideal candidates for quantum nanoelectronic 

devices. The interaction of multiple radical spins with a coherent, delocalized edge-state, could allow a 

single flowing electron to transmit entanglement along the spin ensemble.8,32 Furthermore, such molecular 

nanoribbons are a useful testbed for fundamental theories of graphene, and our measurements of spin-orbit, 

hyperfine and edge-spin coupling already disclose a physics that would otherwise be accessible only by 

overcoming present challenges in quantum-Hall-effect studies at sub-mK temperatures.21,22 Detailed access 

to the spin dynamics, together with an atomically-defined structure, opens the path to the quantitative 

analysis of spin-phonon interactions in graphene dots. The study of different molecular spin-injectors and 

of different aromatic backbones,10 e.g. to modulate the spin coupling, opens up a new area of chemistry 

that mixes molecular magnetism and graphene. Environmental effects, such as GNR-GNR or GNR-

substrate interactions are an interesting future area of research and calculations show, encouragingly, no 

detrimental effect on the spin density by deposition on h-BN (SI). With respect to applications, since a 

dominant decoherence channel is 14N hyperfine coupling, there is ample room to increase T2, e.g. by, 

dynamic nuclear spin polarization33, isotopic substitution34 or chemical engineering35. Full investigations 

of magnetic doping effects and of incomplete edge functionalization with radicals is currently underway, 

and will introduce graphene nanoribbons as a powerful tool to investigate finite-size-effects in quantum 

Heisenberg spin-chains.19 
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Figure 1. Functionalized graphene nanoribbons: a) Synthetic route used to create both the non-

graphitized NIT-polyphenylene and NIT-GNRs (nitronyl-nitroxide spin-bearing radicals highlighted in 

blue). b) NIT-polyphenylene schematic structure (top), and calculated local density of states for spin up 

and down (bottom). The spin-resolved energy level diagram (plotted against the wavevector k times the 

repeating unit length l) shows no band structure and a localized density on the NIT groups (green arrow). 

c) Structurally well-defined NIT-GNRs, showing the graphene nanoribbon backbone functionalized with 

radicals (top). The resulting spin-resolved band structure (right), shows localized states and spin injection 

inside delocalized edge states. Densities calculated for different energy ranges are depicted (azure and 

orange shaded areas and arrows), with blue and red referring to local densities of spin up and down states, 

for a given energy interval. 
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Figure 2. Static spectra and magnetic interaction pathways. a) ESR spectra for NIT-polyphenylene 

(green) and NIT-GNRs (red), at three frequencies. Spectra are plotted against the magnetic field from the 

edge state resonance, ΔB. Black lines are simulations to the spectra. DEER pump and probe windows for 

Fig.4 are β1 and β2, respectively. b) Spin interaction pathways for the localized spin density of the radical 

groups, showing the J1 and J2 exchange interactions (blue) and the dipolar interactions D1 and D2 (orange). 

c) Orientation of the 14N hyperfine interaction channel (green), with the lengths of the axes proportional to 

the principal tensor elements (ay is smaller than the axis width). The orientation of the local g tensor frame 

of the radical (blue) and that of the graphene edge state (orange) are also depicted. 
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Figure 3. Spin-lattice and coherence times. a) Pulse sequence used to extract the spin relaxation times, 

and effect the Bloch-sphere in the rotating-wave frame. Using a picket-fence series of π-pulses (blue boxes) 

the spin polarization (red arrow) is abolished and let recover after a time T1. The spins are then rotated to 

the xy-plane with a π/2-pulse (violet box) and let free to precess around the z-axis at an undetermined rate, 

for a time τ. A π-rotation around the y-axis in the middle of the free precession causes an echo signal when 

the spins regroup (red bell). b) X-band Hahn-echo signal vs delay time τ for NIT-GNRs and NIT-

polyphenylene, at 85 K. Red and green lines are fits to the data, yielding Tm. c) 𝑇1
−1 (full dots, left axis) and 

Tm (open dots, right axis) vs temperature for NIT-GNRs (red) and NIT-polyphenylene (green), at 9.4 GHz. 

Lines are simulations for 𝑇1
−1  (see text), the dashed lines separate the different regimes of spin-lattice 

relaxation. 
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Figure 4. Hyperfine coupling and multi-spin operability in nanoribbons. a) Double electron-electron 

detected nuclear magnetic resonance (EDNMR) of the NIT-GNRs, with the pulse sequence used on the left 

and the resulting spectrum and assignment on the right, as obtained at Q-band at 85 K, showing the single-

quantum (SQ), double-quantum (DQ) and combination-frequency (CF) transitions of the different nuclei 

coupled to the electron. The high-turning-angle (HTA) pulse is set at ν2, i.e. the edge-state-resonance β2 

(Fig.2a), while ν1 is swept. b) Sequence used to determine the spin-spin interactions and perform edge-local 

spin quantum inversion operations via double electron-electron resonance (DEER), with ν1 set at the 

localized spin resonance and ν2 at the edge state (β1 and β2 in Fig.2a). c) Background-corrected time-domain 

DEER spectrum for NIT-polyphenylene (green) and NIT-GNRs (red). The black line singles out the low-

frequency interactions. d) Fast Fourier transform (FFT) of the DEER signal of NIT-GNRs, showing the 

interaction energy spectrum characteristic of two-spin operations. The black line singles out the 

contribution from edges interacting with localized spins, pictorially depicted in the drawing.  
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