
A Cross-Virtual Machine Network Channel Attack
via Mirroring and TAP Impersonation

Atif Saeed, Peter Garraghan
School of Computing and Communications

Lancaster University
{a.saeed2, p.garraghan}@lancaster.ac.uk

Barnaby Craggs, Dirk van der Linden,
Awais Rashid

Department of Computer Science
University of Bristol

{barney.craggs, dirk.vanderlinden,
awais.rashid}@bristol.ac.uk

Syed Asad Hussain
Department of Computer Science,

COMSATS Inst. of Information Tech.
asadhussain@ciitlahore.edu.pk

Abstract—Data privacy and security is a leading concern for
providers and customers of cloud computing, where Virtual Ma-
chines (VMs) can co-reside within the same underlying physical
machine. Side channel attacks within multi-tenant virtualized
cloud environments are an established problem, where attackers
are able to monitor and exfiltrate data from co-resident VMs.
Virtualization services have attempted to mitigate such attacks
by preventing VM-to-VM interference on shared hardware by
providing logical resource isolation between co-located VMs via
an internal virtual network. However, such approaches are also
insecure, with attackers capable of performing network channel
attacks which bypass mitigation strategies using vectors such as
ARP Spoofing, TCP/IP steganography, and DNS poisoning.

In this paper we identify a new vulnerability within the
internal cloud virtual network, showing that through a combi-
nation of TAP impersonation and mirroring, a malicious VM
can successfully redirect and monitor network traffic of VMs
co-located within the same physical machine. We demonstrate
the feasibility of this attack in a prominent cloud platform –
OpenStack – under various security requirements and system
conditions, and propose countermeasures for mitigation.

I. INTRODUCTION

Virtualization technologies such as Xen, KVM, and VMWare
are fundamental components in cloud computing, and are used
to run multiple Virtual Machines (VMs) on a single physical
machine. Virtualization provides strong logical isolation of
resources for VMs located on the same physical machine
ensuring they cannot interfere with the operation of other
co-resident VMs [1]. Implemented by the Virtual Machine
Monitor (VMM), or hypervisor, logical isolation creates an
internal virtual network to separate, or isolate, logical networks
within a shared physical network. Logical isolation is an
important security feature of cloud computing to prevent
exploitation of co-resident VMs by a malicious VM, by
providing protection against poorly designed or ineffective
access-control policies [2]. This also prevents co-residing
VMs from exfiltrating data and interfering with each other’s
execution.

However, as co-residing VMs share their underlying VMM,
virtual network and hardware, they are susceptible to cross-VM
attacks. Studies have demonstrated co-resident vulnerabilities
such as shared file systems [3], cache side-channels [4], [5],
and compromised VMM via rootkits [6]. Moreover, a malicious
VM might potentially access other VMs through network
connections, shared memory, and other shared resources [7].

For example, a bridge configuration can be exploited to create a
virtual hub, used by all VMs, to communicate over the network.
This allows a malicious VM to sniff virtual networks using
tools such as Wireshark [8].

Despite the potential threat of cross-VM attacks through
exploitation of shared memory and disk space, there has been
no demonstration of a fine-grained cross-VM attack using the
network channel. Current network-based attacks involve exploit-
ing existing vulnerabilities in networking technologies (e.g.,
ARP spoofing, DNS poisoning), but are difficult or impossible
to utilize for cross-VM targeted attacks due to additional layers
of isolation between co-residing VM architectures designed to
mitigate such attacks (e.g., Neutron [9]).

In this paper we present a new cross-VM network channel
attack that creates data leakage to passively monitor the
network traffic of target VMs by exploiting the virtual internal
networking of open virtual switch. A malicious VM redirects
the network traffic of target VMs to a specific destination by
impersonating the Virtual Network Interface Controller (VNIC),
and enables a mirror within the bridge of the network controller
where the target VM is currently sending network traffic. The
demonstrated attack can extract decrypted information from
target VMs by using open source decryption tools such as
aircrack [10].

We demonstrate the feasibility of our attack within Open-
Stack using a laboratory testbed environment, measuring
respective network traffic. Our findings indicate that the attack
successfully exposes noticeable data leakage vulnerabilities.
Moreover, by exploiting standard assumptions of provisioning
cloud services, it is possible to hide the malicious activity of
attacking VMs as seemingly normal activity—both jeopardizing
the privacy, as well as predicting target VM activity. For
responsible disclosure, all vulnerabilities found in our research
have been reported to the OpenStack and Ravello security teams,
where we have also provided solutions for fixing identified
issues.

The rest of this paper is organized as follows: Section II
describes the background of cross-VM attacks. The attack
scenario and stages are detailed in Section III. Section IV
presents the attack scenario experiment scenario, followed
by the evaluation in Section V. Section VI proposes attack
countermeasures and Section VII provides concluding remarks.



II. BACKGROUND

Cross-VM attacks and their ability to exploit shared resources to
extract or leak the sensitive information from a target VM have
been investigated in numerous ways. An established assumption
was that co-located VMs sharing network interfaces are able
to trust each other [11]. However this was shown to be a weak
assumption when considering the sharing of physical hardware
in public clouds and possibility of co-residency attacks [12].

Zhang et al. [13] categorize co-residency attacks into three
distinct side channel classes: (1) Access-driven side channel
that exploits shared micro-architectural modules like caches,
(2) time-driven side channel, only possible when the total
execution time of cryptographic operations with a fixed key
are influenced by the key value, and (3) trace-driven to capture
a profile of cache activity.

A. Related Work

Researchers have identified a number of cross-VM attacks
as shown in Table I. Within cross-VM Address Resolution
Protocol (ARP) attacks [11], the attacking VM launches an
ARP spoofing attack by forging an identical IP address within
the target VM, and sends an ARP to the virtual router. The
virtual router updates the routing table when the spoofed ARP
is received. As a result, any traffic directed to a target VM is
sent instead to the attacking VM, which can then decide to
either perform sniffing or modification.

In bridge network configuration mode [11], the bridge acts
as a virtual hub. All VMs share the virtual hub to communicate
with the network. An attacking VM is able to sniff the virtual
network by using a sniffing tool, such as Wireshark [8]. In the
router network mode [11], a router plays a role of a virtual
switch using a dedicated virtual interface to connect to each
VM. Here, a malicious VM can undertake ARP poisoning [14],
redirecting packets towards themself, and then sniffing packets
going to and coming from other VMs.

Works such as [15], [16] demonstrate methods to leak
sensitive data through TCP/IP. Ranjith et al. [17] provides
a method for using timing channel for data leakage.

TABLE I
COMPARISON OF RELATED WORK

Attack Description Ref.
Side Channel Time-driven [13]

Access-driven [13]
Trace-driven [13]

Covert Channel TCP/IP Steganography [15]
TCP/IP header Steganogra-
phy

[16]

Timing Channel [17]
DoS Illegal use of resources [11], [18], [19]
Network Channel ARP Poisoning [11], [14]

Sniffing [11]
Spoofing [11]

vNIC

VM01

vNIC

VM02

vNIC

VM03

vif1 vif2 vif3

Bridge Interface

eth0
(physical)

eth0

Fig. 1. Virtual bridge general architecture

B. Proposed Attack Vector

To the best of our knowledge, no previous work has achieved
redirection of a co-residing target VM’s network traffic, by
exploiting the network channel through a combination of
impersonation and mirroring. Impersonation is the first step
in the attack vector that makes it possible for the attacker to
penetrate the system, and mirroring redirects a copy of the
target VM’s network traffic to a selected destination point.
We believe that a combination of these approaches makes
it possible to redirect target VM network traffic at run-time.
Even encrypted network traffic, if successfully intercepted,
may be readily decrypted [20] using third-party tools such as
aircrack [10]. The decrypted traffic of the target VM can be
used for further analysis to predict its activity, and compromise
privacy.

C. System Model

This section describes the core components of the cloud com-
puting network architecture and implementation in OpenStack.

1) General Architecture
Within the cloud computing network architecture, VMs are

connected via a virtual bridge residing in the VMM of each
physical machine (see Figure 1). The virtual bridge has a
virtual interface (vif ) connecting the Virtual Network Interface
Card (VNIC) of each VM, which is sent to the physical
machine’s Ethernet device connected to an external network
such as the internet. The virtual bridge also supports the internal
communication between VMs, allowing the cloud administrator
to assign and manage VM network resource usage and traffic
in order to adhere to specified Quality of Service (QoS). To
construct a new virtual network, a new virtual bridge has to
be instantiated within the physical server (such as bridge0),
and a unique IP address aassigned to each vif which connects
to the VM’s virtual Ethernet card.

2) OpenStack Components
OpenStack is used to create virtual machines and resources

through an Infrastructure-as-a-Service (IaaS) model. At a high
level of abstraction, it consists of three main components:



Compute

Controller Controller

Compute1 Compute2 Compute3 Computen…

Controller

Compute1 Compute2 Computen

Network1 Network2

…

Management
Network

Data Network Data NetworkManagement NetworkData NetworkNetwork

API Network

Single Node Double Node Triple Node

Internet

Fig. 2. Single, double, and triple node setups.

1) The Controller component is responsible for executing the
management software’s services, needed for the OpenStack
platform to run. It runs, among others, the identity ser-
vice, image service, compute and networking management,
networking agents, network scheduler, and message queue.

2) The Compute component is responsible for executing VMs’
instances within the system. Additionally, it is responsible
for provisioning firewall services for each physical machine,
and facilitates networking service agents connecting VMs
to the virtual network. The system may include multiple
compute components.

3) The Network component is responsible for running net-
working services such as Neutron, L3, metadata, DHCP,
and Open vSwitch. It manages all communication between
other OpenStack components, VM networking, and routing.
Networking services such as DHCP and floating IPs allow
instances to connect to public networks.

These components can be deployed in a single machine or
separate nodes (i.e., physical machines) to create single-node
and multi-node setups (see Figure 2). In a single node setup,
all components reside within the same physical machine for
provisioning all VM and networking capability. In a multi-node
setup, a single controller (i.e., a physical machine hosting the
controller component) is responsible for system management
of all compute nodes executing VMs.

3) OpenStack Networking
OpenStack provides security groups and policies that can be

applied to parameters on incoming and outgoing user traffic,
VMs, and containers. Security groups, such as firewall rules,
SSH control, and port bounding can be defined and applied
dynamically to improve protection. The flexibility of security
groups allows enterprises to quickly respond to threats. The
network architecture of OpenStack (shown in Figure 3(a)) is
implemented through four virtual networking devices:

• The Test Access Point (TAP) is an external monitoring
device between the physical Ethernet card and each VM
within the physical machine.

• The Veth Pair is a virtual network cable connecting the linux
bridge to a virtual bridge residing in a physical machine.

• The Open Virtual Switch (OVS) is the virtual bridge
responsible for managing incoming and outgoing traffic. It

functions as a Layer-2 network switch providing different
features of Access Control List and Virtual LAN (VLAN),
as well as providing subnet or private network functionality
to VMs. Each VM has an IP address visible to the virtual
switch and is connected to a OVS bridge interface. The

veth pair veth pair veth pair veth pair

int-br-eth1

Port VLAN tag 1 Port VLAN tag 2

br-int

Tenant 
flows
separated 
by
internally
assigned 
VLAN ID

vNIC
IP

VM01

vNIC
IP

VM03

vNIC
IP

VM02

vNIC
IP

TAP0 TAP1 TAP2 TAP3

veth pair veth pair veth pair veth pair

L.Bwww L.Bxxx L.Byyy L.Bzzz

Con�gured by Nova-compute

(a) Networking devices

Phy-br-eth1

int-br-eth1 br-eth1

VLAN101 VLAN102 L2 switch for
private network

Configured
by L2 agent

veth pair veth pair veth pair veth pair

int-br-eth1

Port VLAN tag 1 Port VLAN tag 1

br-int

Tenant 
flows
separated 
by
internally
assigned 
VLAN ID

Tenant flows
separated by user
defined VLAN ID

(b) Function of br-int and br-eth

Fig. 3. OpenStack networking interfaces



OVS contains two sub-components: (1) br-int, responsible
for VLAN tagging (assigning the ID network traffic of VMs)
and used by cloud providers to implement isolation between
VMs, and (2) br-ext, used to bridge the virtual bridge to the
physical network device.

• The Linux bridge (L.B) is responsible for communication
between the br-int and each VM’s TAP, recording it through
a MAC caching table that saves the address and port number
of packets between the VM and the Ethernet card. This is
used to prevent packets of unknown IPs flooding to all VMs.
A VM creates and stores data on the associated VNIC, such

as eth0. The data is then transmitted to the TAP on the compute
host. Normally, a TAP offers an access path to data passing
through a network. The TAPs are further linked to the Linux
bridges that pass the data to Veth Pair which acts as one side
of the cable. Data sent to one side of Veth Pair can be received
at the other end. The other end of the pair is on the integration
bridge: br-int. This bridge is responsible for the attachment of
all the VM’s TAPs and any other bridge on the system. The
integration bridge further connects with br-eth as shown in
Figure 3(b).

III. ATTACK STAGES

This section describes assumptions and stages required to
perform a cross-VM network channel attack, focusing on the
OpenStack cloud platform [21] as a case study.

The feasibility of our proposed attack assumes that an
attacker is capable of achieving control of a VM residing
on same physical machine as the target VM [4]. Achieving
this control has been demonstrated within prior research by
using a network-based method to launch a co-location attack
within a public cloud such as Amazon EC2 [4]. An attacker
is capable of launching many VM instances within the same
geographical region as the target VM, and use different methods
to determine whether a VM is co-located successfully. This
can include methods such as:
1) Execute a TCP SYN traceroute to detect the first hop of

network traffic (e.g., the Dom0 in the host Xen server)
between attacker and target VM. This results in an identical
Dom0 IP address indicating successful co-location.

2) Calculate network packet round-trip time between attacker
and target VM. A smaller value indicates that the two VMs
share the same machine.

3) Check internal IP addresses of attacker and target VM.
Numerically close internal IP addresses indicate the two
VMs are more likely to be on the same server.

Our attack setting is based on virtual network solutions
within public clouds which co-locate VMs in the physical
machines using the hypervisor. Another use case separates OSs
into multiple components with distinct privilege levels that
are isolated by virtualization [22], [23], such as Qubes [24],
an open source operating system running as multiple virtual
machines on the hypervisor.

We target systems with modern multicore processors used
in public clouds. We assume that the attacker and target are

on separate network domains, each are assigned a number of
disjoint resources such as virtual CPUs (VCPUs), VLANs,
and virtual storage. All VMs are assigned the same privilege
levels [25]. We further assume that OpenStack ensures logical
isolation between mutually untrusted co-resident VMs, and
that the attacker is unable to exploit software vulnerabilities
permitting them to take control of the entire physical machine.
The attack we propose, therefore, uses the cross-VM network
channel to redirect the network traffic of target VMs. Construct-
ing such a network channel requires multiple stages within a
cross-VM setting, as depicted in Figure 4.

Stage 1: Observe Current Network Architecture
OpenStack’s default security settings prevent spying on target

VM network traffic, particularly when attacker and target VMs
reside on separate network domains.

The ability to spy on target network traffic by exploiting
the virtual network has been successfully performed within
non-virtualized settings. However, we do not utilize this exploit
because OpenStack’s default security perimeter (Firewall as a
Service (FWaaS)) continuously monitors unusual activity, and
prevents attachment of any external devices by blocking direct
access to the system. The main objective is therefore to attempt
to directly access (or become part of) the current system.

The first step is to identify and exploit a point of entry into
the system to launch the attack. This can be performed by
creating a dummy network interface for devices which do not
have an active NIC adapter, and are not part of the running
virtual network.

A dummy interface is typically used to avoid network
communication from down state, creating a virtual ‘stub’ in the
’UP’ state where IP addresses can be assigned not bound to a
physical interface. This device serves as an alternative to the
loopback interface in a system. If the network is disconnected,
the loopback interface is the only way to communicate, in
which case the physical machine IP address should be added
as an entry in the host routing, and assigned to the dummy
interface that is delivered locally.

The dummy network interface needs to be connected to other
devices to exploit OpenStack’s security perimeter and become
part of the current OpenStack system. This is implemented
within OpenStack by executing the following command:

ip link add dummy0 type dummy

Stage 2: Network Interface Impersonation
In the event of OpenStack detecting that the real network

card is activated, the next challenge is to mislead OpenStack’s
security perimeter by converting the identity of the regular
interface into a TAP, which acts as a normal, valid device in
network system.

Impersonating the regular interface to TAP is necessary to
ensure we can connect our device to the network. The TAP
acts as an inactive device as it does not interfere in any running
network settings, and is compatible with the running network
configuration. The attacker VM now has two interfaces: (1)
a normal Ethernet card, impersonating a TAP with no valid



Stage 1

cross VM
network channel

probing
Co-resident
VMs

entering into
the current

system

Stage 2 Stage 3

pre-emp�ng
the network

traffic

Stage 4

traffic
redirec�on

Stage 5

obsfuca�on

Received
traffic

Measurement Phase Analysis Phase Execu�on Phase

Fig. 4. Main steps in network channel attack

identity, and (2) the dummy interface. Next, a connectivity
request has to be sent to the Linux bridge, which presumes
it to be a valid TAP, and adds it using a method similar to
the adding TAPs conventionally. After successfully completing
this phase, the attacker can now penetrate into the network.
This impersonation can be performed within OpenStack by:

Manually removing all types of interface identity in the
network configuration file at

/etc/network/interfaces

and then restarting networking services by executing

/etc/init.d/networking restart

that makes this change persistent within the system file. This
results in a network device without a valid identity functioning
like a TAP. The difference between TAP and regular network
device can be seen in Figure 5. enp0s3 is the regular network
device and test0 is the tap device which has no valid identity.

Stage 3: Network Traffic Observation
To spy on the network traffic of a target VM unobtrusively,

we can direct the network traffic to a specified destination port.
This entails determining who is responsible for redirecting the
real time network traffic, and placement so as to hide from
others. This is achieved by creating a mirror - a Linux tool
with the ability to redirect traffic from one port to another -
and placing the mirror at the internal interface of the network
bridge that all other VMs communicate through.

Existing schemes [11] are unable to provide assistance in
redirecting network traffic by using a combination of mirroring
and impersonation. This stage can be performed in OpenStack
by executing the following steps at the bridge, setting the
dummy interface as a destination port:

Fig. 5. Difference Between TAP and eth0

create Mirror name=<mirror_name>
select-src-port=@br-int && set mirror @ br-int

Stage 4: Traffic Redirection at Destination Point
If we observe the network traffic of a target VM at an open

network location, it is likely that an attacker’s activity will be
monitored by the security perimeter of OpenStack cloud, which
would subsequently block the attacking VM. It is possible to
overcome this challenge by redirecting the target VM network
traffic at a set hidden destination point. When it passes through
the network bridge which contains a mirror discussed in Stage
3, the network traffic will be redirected from the internal bridge
port towards our set destination port. This will result in not
only target VMs but also the security perimeter being unaware
of network traffic redirection. This redirection is performed
within OpenStack by the following commands:

select-src-port=@br-int && select-dst-port=@dummy0

Stage 5: Obfuscation
The last stage entails eliminating any footprints of the attack

by hiding all used devices and routes from the Linux tool that
shows the static route and interfaces. This can be performed
using network monitoring tools such as route n. After having
attached the impersonated interface to br-int, a network log
cleaner can be used, which will remove its identity and remain
invisible in the route tool.

Combining all these stages together allows us to launch a
cross-VM network attack as depicted in Fig. 6. The vulnerabil-
ity that we exploit for this attack is Cloud provider’s permission
to bridge a TAP interface with no private Ethernet at the back
end which is used to access the Internet.

IV. EXPERIMENT SETUP

Attack scenario: The scenario we use to demonstrate our
attack is for an attacker VM (VM1) to intercept and spy on
communication between two communicating target VMs (VM2
and VM3). The placement of the mirror can then be used to
perform redirection of target traffic.

We performed our attack within OpenStack using multiple
node configurations encompassing single node, double node,
and triple node. We deployed three guest VMs within a physical
machine (Intel Core Z Q9650 @ 3.0Ghz) using the KVM
hypervisor. VM1 was configured to be the attacker VM, while
VM2 and VM3 are targets. Each VM is configured with two
vCPUs different OS including Ubuntu 15.10(VM1), cirros
(VM2), Windows 10 (VM3), and configured with both floating



veth pair veth pair veth pair veth pair

int-br-eth1

Port VLAN tag 1 Port VLAN tag 2

br-int

VM01

vNIC
IP

VM03

vNIC
IP

VM02

vNIC
IP

TAP2 TAP3

veth pair veth pair veth pair

L.Bwww

TAP1

veth pair

L.Bxxx L.Byyy L.Bzzz

Phy-br-eth1

int-br-eth1 br-eth1

VLAN101 VLAN102 L2 switch for
private network

Configured
by L2 agentInternet

TAP0

vNIC Dummy
1

2

3

4

A�ack Machine

MIRRORED

Fig. 6. Attack scenario in OpenStack

and private IP for external network access and internal machine
communication, respectively. Target VMs were configured
to send between 0 - 15 Kbps to each other. All described
experiments were performed 20 times each.

Network setup: VLAN Manager was configured to ensure
VM isolation between co-resident VMs by assigning IP
addresses and VLAN tag within different ranges known to
produce physical resource separation.

VLAN Manager setup: When VLAN mode is enabled, each
VM has its own VLAN and network assigned to it. Any
physical switches placed inbetween must support 802.1q VLAN
tagging for this to function. For correct functioning of the
VLAN, the following configuration should be specified in
/etc/nova/nova.conf :

network_manager=nova.network.manager.VlanManager
vlan_start=100
dhcpbridge_flagfile=/etc/nova/nova.conf
dhcpbridge=/usr/bin/nova-dhcpbridge

Association of public IPs to VMs: A private IP address
is automatically assigned when an VM is instantiated. This
range of IPs are only accessible within our local environment’s
network. Public IP addresses are required by the VM to be
accessible to the external network. Manual attachment of a
public address consists of (1) assigning an address from the
available IP range, and (2) linking the address with a VM.
Our experiment setup must have a valid range of floating IPs
assigned to it for allocation. We do so using nova client:

nova floating-ip-create

and associating this address to a VM (such as 172.10.1.1).

nova add-floating-ip <VM-id> 172.10.1.1

This allows for communication with VMs that contain public
IP address.

Security configuration: Networking uses iptables to achieve
security group functionality, enabling the ipset option to
improve security group performance by denoting a hash table.
When a new port is created, an additional ipset option is added
to the iptables chain. If the security group that the port belongs
to contains rules shared by other groups, the group member
is added to the ipset chain. If a group member is changed
by using ipset, iptables rules are updated instead of being
reloaded. Therefore, we initiate a new VM security group by
first individually checking for new security group names.

Managing Security Groups: Security groups are configured
on the nova-compute host responsible for VM execution, en-
abling safeguarding of the host machine by limiting access and
preventing intrusion of other VMs running on the same host. We
launched a security group on port 22. The design of a security
group requires two phases, (1) defining a group by using the
command nova secgroup-create, and (2) setting rules
in the group using nova secgroup-add-rule:
• For ingress traffic, only traffic matched with security group

rules is permitted. All other traffic is dropped, if there is no
rule matched.

• For egress traffic, only traffic matched with security group
rules is permitted. All egress traffic is dropped, if there is
no rule defined.

• When a new security group is created, rules are automatically
added to allow/disallow all ingress/egress traffic.

V. EVALUATION

A. Network Traffic
As shown in Figure 7, the attacker VM1 is able to successfully
observe traffic between target VMs communicating via the
ping command. The attack is effective when it is possible
to determine sender and receiver communication between
target VMs (e.g., packet header source IP address). If VMs
communicate at the same time, the attacker is unable to
distinguish the origin of VM traffic.

We studied the subsequent network traffic generated within
each VM when an attack is performed. Figure 8(a) shows VM
network traffic prior, during, and post attack. Experiment time
between 0 - 25 minutes depicts that the attacking VM1 exhibits
random network traffic not dissimilar to that of VM2 and VM3
(point A). The attack commences at 25 minutes (point B), where
it is observable that the attacking VM1 consumes substantial
network traffic compared to target VMs, and continues to do
so for 6 minutes until attack completion (point C). The reason
for this sudden increase is due to all target VM network traffic
being redirected through the attacking VM. When observing
network traffic of VM1 in comparison to other VMs during the
entire experiment, it is possible that the cloud administrator
could detect this as anomalous behavior due to the sudden



Fig. 7. Traffic capturing at attacking VM

spike in network usage. This may lead to further investigation,
or deploying a simple countermeasure to restrict VM network
traffic that reaches a defined threshold.

However counter measure would be challenging to detect
in cloud computing.First - in many public cloud settings, VM
resource usage are seen as black boxes by the provider. As
long as resource demands do not violate resource capacity
requested by a customer, this is seen as typical behavior.
Second, even if the system is attempting to monitor atypical
resource patterns using bandwidth monitoring tools such as
prtg [26], countermeasures will likely include a time delay
for determining irregular resource patterns. Therefore, even a
few minutes of a VM being compromised may be sufficient
for an attacker to achieve their objectives. For example, in
2008 the defense solution of a system operated by the Georgia
Government during an HTTP attack [27] activated 5 minutes
after the attack had been launched. Finally, if the attacking
VM is creating cyclical network patterns prior to an attack, as
shown in Figure 8(b), it becomes incredibly difficult to detect.

Within this experiment, attacker VM1 network traffic peri-
odically oscillates between high and low bandwidth, and in
the third peak executes an attack following a similar resource
pattern seen previously (point A to B).

B. Limitations
The success of our attack is dependent on bridging the
TAP interface in the virtual network. Our case study in
our experiment describes the current OpenStack network
configuration that applies the VLAN and ML2 plug-in for
OVS. As a result, this attack only functions on cloud systems
using the neutron network. The attack does not work on legacy
networks such as nova-network due to a lack of VLAN and
the ML2 plug-in, as well as the network not supporting OVS.

Nova-networking was the only network solution prior to the
implementation of Neutron in OpenStack and only supports
FLAT network and DHCP services. Flat network or DHCP
services followed the same model. The main concept is that
all the VMs are attached to the bridge i.e. Linux bridge. The
bridge is attached to the physical host where there is a support
of a physical NIC i.e. eth0. Multiple VMs are connected to this

0

5

10

15

20
VM3
VM2
VM1

Th
ro

ug
hp

ut
 (K

bp
s)

5 10 15 20 25 30
Time (mins)

A

B C

D

(a) Normal co-residing VM network traffic

0

5

10

15

20

5 10 15 20 25 30
Time (mins)

Th
ro

ug
hp

ut
 (K

bp
s)

A B

(b) Cyclical attack pattern network traffic

Fig. 8. Comparison of network traffic flows

bridge. Such limitations are the main cause for cloud providers
to adopt advance network module i.e. neutron. Table II depicts
the different cloud providers vulnerable to this attack.

TABLE II
AN OVERVIEW OF THE VULNERABILITY OF DIFFERENT CLOUD SYSTEMS TO

THE PROPOSED APPROACH

Cloud Provider Vulnerable Reason
to attack

OpenStack Yes Allow bridging of a TAP interface
that does not have a private Ethernet
interface at backend

Ravello Systems Yes Allow bridging of a TAP interface
that does not have a private Ethernet
interfaces at backend.

Microsoft Azure No Prohibited to connect a TAP inter-
face with bridge having no Ethernet
at backend.

Google CE No Prohibited to connect a TAP inter-
face with bridge having no Ethernet
at backend.

VI. INHIBITING THE NETWORK-CHANNEL ATTACK

A. Potential Attack Mitigation Strategies
There exist several relevant works that could be used to
mitigate cross-VM attacks. Work from Zhang et al. [2] proposed



to utilize side-channels as a detector to identify illegal co-
residency based on the timing channel (accessing L2 cache
response time) while Afoulk et al. [28] attempt to avoid conflict
of interest among VMs via priority based scheduling.

Another approach would be to directly modify the open
source code of OpenStack to limit the granularity of network-
based side-channels and penetration of any external device into
the current running system. Multiple VM interfaces connect
to the OVS internal network bridge, i.e. br-int that further
connects with the physical device and external network. As
described above in Section III, the attacker places themselves in
the internal network through impersonating the TAP interface
which does not have a private Ethernet interface.

As OpenStack code is open source, we were
able to identify that the security weakness resides
within the networking (neutron) component. As a
result, we amended the implementation of neutron in
/opt/stack/neutron/agent/impl_vsctl.py
that includes a method which executes virtual switch
operations def run_vsctl(self,args) and add a new
function get_all_bridges(self,args) that collects
information of connected interfaces at the bridge. The purpose
of this function is to determine whether the connected
interface can communicate only using the TAP interface, and
if capable, block direct connection of all TAP interfaces with
an OVS bridge accessing the Internet with the same Ethernet.
Analysis of the interface reveals that each valid interface has
three attributes: - tag, interface and type. Tag describes that
the VLAN is enabled to ensure VM isolation, interface its
association with back end private Ethernet and type interface
behaviour. The security check needs to ensure all these
attributes of the TAP before connecting with the bridge.

VII. CONCLUSION AND FUTURE WORK

This research demonstrates a successful cross-VM network
attack within OpenStack by a combination of impersonating a
TAP interface and constructing a network mirror in the bridge
interface. This allows for attackers to successfully redirect and
monitor target VM network traffic within the same physical
machine unbeknownst to customers. We highlight the challenge
for cloud providers to observe and detect such an attack due
to an attacking VM not violating requested VM resource
capacity, as well as creating cyclical network patterns prior to
the attack. Future work will focus on improving the current
heuristics that prevent penetrating the external devices into the
network. Furthermore, we will investigate how to overcome the
challenges of distinguishing between normal resource patterns
and target attacks from VMs.

ACKNOWLEDGEMENTS

This work is supported by the EPSRC (EP/P031617/1).

REFERENCES

[1] A. Seshadri et al., “SecVisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity oses,” in ACM SIGOPS Symposium on

Operating Systems Principles, 2007, pp. 335–350.
[2] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone: Co-

residency detection in the cloud via side-channel analysis,” in 2011 IEEE
Symposium on Security and Privacy, May 2011, pp. 313–328.

[3] The MITRE Corporation, “CVE-2008-0923,” [Accesesd: Jan-18].
[Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2008-0923

[4] T. Ristenpart et al., “Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in 16th ACM Conference on
Computer and Communications Security. ACM, 2009, pp. 199–212.

[5] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-speed
covert channel attacks in the cloud,” in USENIX Security Symposium,
2012, pp. 159–173.

[6] S. T. King et al., SubVirt: Implementing malware with virtual machines.
IEEE, 2006, vol. 2006, pp. 314–327.

[7] S. R. Kumari and V. Kathiresan, “Virtual environment security-
considerations & practices,” Networking and Communication Engineering,
vol. 3, no. 2, pp. 87–92, 2011.

[8] WireShark, [Accessed: Jan-18]. [Online]. Available: https://www.
wireshark.org/

[9] OpenStack, “OpenStack Networking (”Neutron”),” [Accessed: Jan-18].
[Online]. Available: https://wiki.openstack.org/wiki/Neutron

[10] Aircrack-NG, “Aircrack-NG,” [Accessed: Jan-18]. [Online]. Available:
https://www.aircrack-ng.org/

[11] H. Wu, Y. Ding, C. Winer, and L. Yao, “Network security for virtual
machine in cloud computing,” in International Conference on Computer
Sciences and Convergence Information Technology, Nov 2010, pp. 18–21.

[12] A. Bates et al., “On detecting co-resident cloud instances using network
flow watermarking techniques,” International Journal of Information
Security, vol. 13, no. 2, pp. 171–189, 2014.

[13] Y. Zhang et al., “Cross-vm side channels and their use to extract private
keys,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA: ACM,
2012, pp. 305–316.

[14] L. H. C. et al., “Analysis on cloud-based security vulnerability assess-
ment,” in IEEE 7th International Conference on E-Business Engineering,
Nov 2010, pp. 490–494.

[15] J. Rutkowska, “Subverting VistaTM kernel for fun and profit,” Black
Hat Briefings, 2006.

[16] S. Murdoch and S. Lewis, “Embedding covert channels into TCP/IP,” in
Information Hiding, vol. 3727. Springer, 2005, pp. 247–261.

[17] P. Ranjith, C. Priya, and K. Shalini, “On covert channels between virtual
machines,” Journal in Computer Virology, vol. 8, no. 3, pp. 85–97, 2012.

[18] S. Hashemi and M. M. Ardakani, “Taxonomy of the security aspects of
cloud computing systems-a survey,” networks, vol. 2, p. 1, 2012.

[19] V. Nirmala, R. K. Sivanandhan, and R. S. Lakshmi, “Data confidentiality
and integrity verification using user authenticator scheme in cloud,” in
2013 International Conference on Green High Performance Computing
(ICGHPC), March 2013, pp. 1–5.

[20] S. A. Hussain et al., “Multilevel classification of security concerns in
cloud computing,” Applied Computing and Informatics, vol. 13, no. 1,
pp. 57–65, 2017.

[21] OpenStack, [Accessed: Jan-18]. [Online]. Available: http://www.
openstack.org

[22] P. England and J. Manferdelli, “Virtual machines for enterprise desktop
security,” Information Security Technical Report, vol. 11, no. 4, pp. 193
– 202, 2006.

[23] M. Piotrowski and A. D. Joseph, “Virtics: A system for privilege
separation of legacy desktop applications,” UC Berkeley, Tech. Rep.
UCB/EECS-2010-70, 2010.

[24] QubesOS, “Qubesos,” [Accessed: Jan-18]. [Online]. Available: http:
//qubes-os.org

[25] A. Marshall et al., “Security best practices for developing windows azure
applications,” Microsoft Corp., Tech. Rep., 2010.

[26] PRTG, “Bandwidth Monitoring Tool.” [Online]. Available: https://https:
//www.paessler.com/bandwidth monitoring/

[27] A. Kozlowski, “Comparative analysis of cyberattacks on estonia, georgia
and kyrgyzstan,” European Scientific Journal, ESJ, vol. 10, no. 7, 2014.

[28] Z. Afoulki, A. Bousquet, and J. Rouzaud-Cornabas, “A security-aware
scheduler for virtual machines on IaaS clouds,” University of Orléans,
Tech. Rep. RR-2011-08, 2011.


