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Abstract: Black-box system identification is subjected to the modelling uncertainties that are propagated 
from the non-parametric model of the system in time/frequency-domain. Unlike classical H1/H2 spectral 
analysis, in the recent robust Local Polynomial Method (LPM), the modelling variances are separated to 
noise contribution and nonlinear contribution while suppressing the transient noise. On the other hand, 
without an appropriate weighting on the objective function in the system identification methods, the 
acquired model is subjected to bias. Consequently, in this paper the weighted regression problem in 
subspace frequency-domain system identification is revisited in order to have an unbiased estimate of the 
frequency response matrix of a flexible manipulator as a multi-input multi-output lightly-damped system. 
Although the unbiased parametric model representing the best linear approximation (BLA) of the system 
in this combination is a reliable framework for the control design, it is limited for a specific signal-to-
noise (SNR) ratio and standard deviation (STD) of the involved input excitations. As a result, in this 
paper, an additional step is carried out to investigate the sensitivity of the identified model w.r.t. 
SNR/STD in order to provide an uncertainty interval for robust control design. 

 Keywords: System identification, smart structure, confidence interval, vibration control, uncertainty 
quantification, subspace method, Monte-Carlo simulation. 



1. INTRODUCTION 

The motivation behind this work is active vibration control of 
the hydraulically actuated 7 DOF manipulator modelled in 
(Montazeri & Ekotuyo 2016; Montazeri et al. 2017). 
Compared to the typical robots driven by the electric motors, 
hydraulic actuator robots are more flexible due to the higher 
loop gains, wider bandwidths, and lightly-damped nonlinear 
dynamics. This flexibility depends on the parameters such as 
the weight, the dimension, the payload and speed of the 
manipulator. This results in induced vibrations both during 
and after the motion of the robot preventing the precise 
functioning of the robot. This, in turn, degrades the 
repeatability of the manipulator, particularly in high-speed 
applications. 

It is proven that the vibration of the single or multi-links 
robots can be suppressed using the active vibration control 
techniques. Although the mathematical model of the flexible 
arm can be obtained using finite element methods, a more 
viable approach to cope with uncertainties and nonlinearities 
of the system for both identification and control relies on the 
data-driven models (Ahmadizadeh et al. 2015; Montazeri et 
al. 2009).  Contrary to the classical identification methods, 
robust identification algorithms use a priori information on 
the system and its input-output data to produce a nominal 
model and its associated uncertainty. A comparative study of 
three primary robust identification approaches, i.e., 
Stochastic Embedding, Model Error Modelling, and Set 
Membership, for a lightly-damped system is studied in 
(Montazeri et al. 2006). The main disadvantage of using the 
classical spectral analysis in these works for measuring the 

frequency response function (FRF) is that the difference 
between the measurement noise and the system nonlinearity 
cannot be distinguished. The measurement noise contributes 
to the variance error of the estimated FRF while the 
unmodeled dynamics result in the estimation bias. Variance 
error is uncorrelated with the input signal (in open loop data 
collection case), but the bias error strongly depends on the 
nominal model structure and the input signal design. To 
address this problem, in this paper a multi-sine input signal in 
the multi-reference orthogonal experiment setting is designed 
and tested for multivariable identification of the frequency 
response matrix (FRM) of the system. 

To avoid the shortcomings of the classic methods for 
estimating the FRM, here a more advanced approach based 
on the so-called local polynomial method (LPM) is 
investigated (Pintelon, Barbé, et al. 2011). This technique 
enables estimation of the FRM of the system using periodic 
excitations. In the LPM framework, the contribution of the 
noise leakage is approximated by a local least square problem 
(Pintelon, Vandersteen, et al. 2011). This results in 
suppression of the noise leakage (transient) errors in the 
calculation of the sample mean/covariance matrices. The 
technical details and MATLAB implementation of the robust 
and fast versions of the LPM method can be found in 
(Pintelon et al. 2012).  

2. NONPARAMETRIC MODELLING 

2.1 System Description 

A benchmark problem for active vibration control (AVC) of 
smart structures is used as the test rig for the experimental 
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analysis of this work. The plant is an aluminium beam 
(440×40×3 mm) that is clamped at one end and attached to a 
vibration exciter (B&K Type 4809) through a rubber-band on 
the other end as shown in Fig. 1. Four DuraActTM P-
876.A15 piezo-patches are optimally collocated on the beam 
(Nestorović & Trajkov 2013) and more technical details 
regarding the setup can be found in (Oveisi & Nestorović 
2016b). Two measurement channels are realized by a digital 
laser Doppler vibrometer (LDV) that is collocated with a 
CCLD accelerometer. In this setting, only three piezo-
actuators are used as the control inputs and the shaker is 
applied to realise the mismatch disturbance input (Oveisi et 
al. 2017). 

 

 Fig. 1. The test rig used for the system. 

2.2 Input Excitation Design 

The freedomb of input excitation design for MIMO systems 
is widely investigated in the literature. Schoukens et al., 
studied the nonparametric model of the system for various 
input signals in terms of the minimum time per frequency for 
reaching to a specified signal-to-noise ratio (also known as 
time factor), the sensitivity of the model w.r.t. 
noise/nonlinearity, and signal crest factor (CF), i.e., peak-
value over the signal root mean square (Schoukens et al. 
1988).  It is proven that the random-phase (uniformly 
distributed over [0 2π) range) multi-sine has features such as 
the periodicity (no leakage), optimizable CF, minimum time 
factor, user-defined signal spectra, and no spillover effect. 
This signal can be formally presented in terms of number of 
samples , sampling frequency , and spectrum amplitude 

 as / ∑ exp 2 //
/

, where , and . Here,  and exp .  
represent the unit imaginary number and the exponential 
function, respectively. Further to the possibility of 
quantifying nonlinearities, the major advantage of the multi-
sine signal is to achieve a good condition number for the 
power spectrum of the input signal in the MIMO scenarios. 

In the context of this paper, the operational frequency range 
of the system is limited to [0 800] Hz while the sampling 
frequency is selected to be 8192 Hz. Additionally, the 
number of discrete lines in the band-limited experiments is 
selected as 65536 in order to have at least nine samples in the 
3dB range of each natural frequency. This requirement is 

closely related to the degree of freedom associated with the 
estimated polynomial in robust LPM scheme explained in 
Section 2.4. A flat spectrum is assigned for the input 
excitation with the standard deviation of 0.75 in order to 
prevent actuator saturation. 

2.3 Multi-Reference Experiments  

The process of estimating the FRM needs generating a set of 
multi-sine excitation signals. Compared to multiple single-
reference excitations, the multi-reference orthogonal 
experiment has  times better frequency resolution. This 
feature comes with the price of distorted data with transient 
noise for all of the  experiments which is alleviated in the 
robust LPM (Pintelon, Vandersteen, et al. 2011).  

The multi-reference signal is generated using the Hadamard 
multi-sine approach on four input channels while satisfying 
radix-2 condition (Pintelon et al. 2012). Mathematically, the 
single-reference multi-sine is multiplied by Hadamard matrix 

1/  where ⨂ , and 
1,1; 1, 1  in MATLAB matrix notation. The multi-

reference experiments should be repeated  times, where 
each time, a set of inverters are responsible to realize the gain 
on each input channel, independently. In contrast to multiple 
single-reference scenario, the Hadamard multi-sine is 
resilient w.r.t. linear/nonlinear interference hosted by the 
actuator (Pintelon, Barbé, et al. 2011). This coupling is 
shown in the results of the next section. 

2.4 Robust Local Polynomial Method 

As a result of applying the multi-reference periodic signal 
designed in the previous section, the lightly-damped 
mechanical structure exhibits both transient and steady state 
response. Since the transient response is undesirable for FRM 
identification, it is treated as noise. This is referred to as noise 
leakage and the robust LPM technique is utilized to suppress 
its effect in the calculation of the sample mean/covariance 
matrices. For this purpose,  multi-reference modal analyses 
are performed under full random-phase multi-sine for several 
realizations. Here, each realization refers to an individual 
Hadamard multi-sine with several (P) consecutive periods; 
for which the noise variance is updated by comparing the 
different periods. The nonlinear variance is also obtained by 
comparing the response of different realizations (Pintelon, 
Barbé, et al. 2011). This means that for the test rig shown in 
Fig. 1, four realizations of the multi-reference Hadamard 
multi-sine signals are applied (in 16 individual experiments) 
and ten consecutive periods of the response are recorded. By 
setting the order of the local polynomial approximation to six 
and the degree of freedom of the (co-)variance estimates to 
eight, the robust LPM is used to estimate the FRM and the 
sample means/covariance matrices of the input/output DFT 
spectra. The results are summarized in Fig. 2. 

The following remarks are briefly deduced: 1) By comparing 
the noise floor for two measurement outputs, it can be seen 
that unlike the accelerometer, the contactless LDV is less 
prone to noise. 2) It can be observed that the total variance 
(measurement noise & nonlinearity) is 40 dB below the 



 
 

     

 

BLA of FRM. This indicates that under the ideal laboratory 
conditions, the variance of FRM is negligible.   

 

Fig. 2. BLA of the FRF using Hadamard multi-sine (H), 
noise variance (NV), and total variance (TV). 

3) The FRFs of the shaker are severely distorted at 
frequencies higher than 100 Hz. It can be seen that both the 
noise and nonlinearity levels are high in this case which can 
be physically justified by the nature of the connection 
between the shaker and the beam, i.e., rubber band (see Fig. 
1). The reason for using a rubber-band instead of direct 
connection (adhesive wax, screws, etc.) is to match the 
impedance of the (control) input signals realized by piezo-
patches and the (disturbance) signal generated by the 
electromagnetic shaker (Pintelon et al. 2012).  

3. PARAMETRIC STATE SPACE MODELLING 

3.1 Black-box subspace system identification 

The black-box subspace system identification is based on the 
estimation of the extended observability matrix  from the 
discrete Fourier transformation (DFT) of the continuous state 
space representation , and . If 
we measure the FRM of system at 1 discrete normalized 
frequency ⁄ ; 0, … , , then the extended 

sampled transfer matrix ( ∗ ; 1, … , 1) is 
used to calculate 2M-point inverse discrete Fourier 
transformation (IDFT) as in (McKelvey et al. 1996). For 
user-defined scalars , ∈  that satisfy  and , 
the Hankel matrix is calculated as 

1 2 ⋯

2 3 ⋯ 1

⋮ ⋮ ⋱ ⋮

1 ⋯ 1

. (1) 

where 1
2 ∑

2

22 1
0 , 0, … ,2 1. Here  

is the number of highest singular values of Σ that are gathered 

in Σ  such that in the SVD of Σ  we have 

diag Σ , Σ . Moreover, diag .  
denotes the diagonalized vector of entities following the 

MATLAB notation. Then, the estimated state matrix 
∈  and output matrix ∈   are 

correspondingly calculated as 1

†

2  and 3  with 

. † denoting the Moor-Penrose pseudoinverse and 1

1 1 , 2 1 1 , and 

3 1 . The solution for the estimates of the 

input matrix ∈  and feedthrough matrix ∈
 is determined by solving the batch least square 

problem in , arg min , ∑ ‖0
1 ‖2  where ‖. ‖  represents the Frobenius 

norm (Strang 2016).  

If the noise model on the measurement output is known 
( ), assuming that the elements of  are 
defined  (with  being the unitary vector in 
orthonormal space), the DFT of state space equation can be 
derived as , and 	Γ , 

where  is the state vector under  input and 
(McKelvey et al. 1996) 
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diag , , … , ,   

(2) 

in which  and , 1, … ,  are noise samples on 
output. Then, for a strongly consistent estimate while →
∞, we define Re	 Im	  which satisfies 
E 	Re	 diag , , … , ∗  in which  
has the same form as  while replacing  with . 
Assuming that the covariance functions ( ) are known (see 
previous section), and applying the Cholesky factorization, 
the matrix ∈  is constructed that satisfies 
E  for some ∈  (Vakilzadeh et al. 2015). Here 
E .  and Re	 .  represent the expectation operator and real 
part of a complex-valued matrix, respectively. Then, having 

, , and  in hand, similar to the noise-free output, the 
system matrices can be estimated using QR factorization of 
the modified matrix shown in (3) 

Re Im
Re Im

, (3) 

where Im	 .  is the imaginary part of the entity. Then, 
applying the SVD on 1

22 hands in  and system 
matrices as  

, , 

, argmin
,

, 
(4) 



 
 

     

 

where  is calculated by noise variance in the robust LPM 
of previous section. For implementation of (4), the non-
parametric model based on the multi-reference experiments is 
employed.  

3.2 Parametric Model of AVC Benchmark 

The  singular values in SVD operation is swept between 10 
and 22. The process of selecting the correct  in (1) is a 
nontrivial task and despite the rule of thumb ( 5 ), it is 
recommended to evaluate all candidates in the range of 

1 10 . The best value of  varies for a specific 
system order . Additionally, the stability of the identified 
system is investigated in the stability diagram of Fig. 3. 

 

Fig. 3. Stability diagram for black-box subspace system 
identification: Δ represents stable poles, and x represents 
unstable poles. 

Fig. 3 represents the location and stability of the identified 
poles for various model order  accompanied with two 
important parameters: a) The best  in (1) and (2). b) The 
associated objective function in (4) for the selected variables 

 and . For each system order ,  is varied between 1 
and 10  and the identification process is repeated. The result 
of two cases ( 10 and 18) are shown in two subplots 
in Fig. 3. This illustration is to emphasize the importance of 
the nontrivial process of selecting . Accordingly, for each 
system order , the minimum value of the objective function 
for swept values of  is presented in blue font colour and the 
associated objective values in green font colour. For the 
cantilever smart beam in Fig. 1, the system order 18 has 
the minimum value of the objective function with completely 
stable poles. It should be note that for the results in Fig. 3, no 
stability constraints are added since no additional information 
about the structural damping of the system is assumed. On 
the other hand, if after some structural analysis, the modal 
damping of the system is calculated, for the price of biased 
estimation, the constraint identification instead of (4) can be 
performed in the similar lines as (Miller & de Callafon 2013). 
The identified model based on the subspace method is 
compared against the non-parametric FRFs in Fig. 4.  

In this figure, a third dotted line is also shown that represents 
the results of predictive error method (PEM) which is 
initialized with the identified model from the subspace 
method (Ljung 1999). In order to shed light on the effect of 
this model refinement, the pole of the state matrix of the 

identified models in the discrete domain is presented in Fig. 
5. 

 

Fig. 4. Parameterizing the FRFs of the system based on 
black-box subspace and PE methods. 

Both the subspace method, which is a single-step 
identification approach, and its refinement through PEM, 
which is based on an iterative optimization technique, have 
done a great job in fitting the non-parametric frequency-
domain data. For output-feedback control design purposes, 
the rank of controllability and observability matrices are 
crucial and the identified models have the observability rank 
of six in both cases and controllability rank of ten and eight 
for subspace, and PEM, respectively. 

 

Fig. 5. Locations of the poles of the identified models. 

4. UNCERTAINTY QUANTIFICATION 

In the previous section, the parametric system identification 
is performed on a set of noisy data. Logically, one should 
describe the uncertainty bounds of the estimated model in 
terms of the so-called confidence intervals. Consequently, the 
variability of several identification parameters may come into 
mind including a) matched uncertainty over the matrices (and 
their elements) in the states space representation. b) The 
variance of model poles/zeros from the nominal values. c) 
The frequency-dependent uncertainty bounds (lumped) over 
the FRFs of the identified model. While both (a) and (c) can 
be used in the robust control design and under some 
reasonable conditions may be converted to one another, (b) 
has a visual advantage in terms of the stability margin and 
minimum-phase behaviour of the system. In this paper, both 
(b) and (c) are tackled based on the uncertainty ellipsoids 
given a probability level. Since an approximation (sampled) 
of the covariance of the system in terms of the noise plus 
nonlinearity is extracted from Hadamard multi-sine 
experiments in combination with the robust LPM, a series of 



 
 

     

 

exhaustive Monte-Carlo simulations are performed in order 
to approximate these bounds.  

A useful method in extracting the confidence intervals of a 
SISO transfer function model is reported in (Vuerinckx et al. 
2001). Two main features of this technique compared to the 
classical 95 % confidence bound which are also reported in 
(Pintelon et al. 2007) are 1) the less conservative estimation 
of the confidence interval for low signal-to-noise ratio (SNR). 
2) More accurate bound estimates for high SNR where the 
uncertainty region associated with each pole/zero of the 
model may join the uncertainty bounds of others. 
Developments in the recent years regarding the 
computational power of the workstations resolves the 
problem associated with the exhaustive simulations for 
MIMO systems with large model dimensions.   

Considering the results for the non-parametric modelling in 
Fig. 2, where the total variances are 40 dB below the 
BLAs, and considering the matching quality in Fig. 4, for the 
application of structural control in Fig. 1, the identified model 
may be assumed as very accurate. However, in real 
applications of active vibration control, e.g., robotics in harsh 
environment (Montazeri et al. 2016), the noise contributions 
can be significantly higher. Therefore, to investigate the 
sensitivity of the model, the estimated covariance of the FRM 
estimates can be used to perturb the non-parametric model 
with realistic random noise with the normal distribution. For 
this purpose, three levels of perturbation with the magnitudes 
of 22 dB (case 1), 18 dB (case 2), and 8 dB (case 3) below 
the BLA are investigated. Considering the system dimension, 
500 Monte Carlo simulation is performed. This requires 
significantly large system memory and processing power. In 
each sample, the subspace system identification is carried out 
on a perturbed BLA with the same 19, 18. In Fig. 6, 
the variation of the poles and zeros of the system for two 
inputs (piezo-actuator 1 and shaker) and one measurement 
output (acceleration) is shown for the sake of conciseness. In 
this figure, the first, second, and third rows indicate cases 1, 
2, and 3, respectively while the nominal values are in black 
colour and the results from Monte Carlo simulations are 
shown in gray colour. 

Before analyzing the results, it should be pointed out that the 
poles/zeros with large stability margin are not shown in the 
range of the real axis (x-axis) since their variation are 
negligible. From Fig. 6, it can be seen that for high SNR, i.e., 
case 1, the uncertainties regions on each pole and zero can be 
distinguished. However, for low SNR (case 3), the regions 
show interference and an explicit variance estimation of the 
system poles/zeros are not possible. Unlike the SISO case 
(not reported here due to the lack of space), the variation of 
the identified model is not necessarily close to the nominal 
values (see the uncertainty regions associated with shaker 
zeros). This issue is closely related to Tustin transformation 
that is involved in the identification and indicates the 
sensitivity of the algorithm w.r.t. distortions of poles/zeros 
close to the imaginary axis in discrete frequency-domain. As 
reported in (Vuerinckx et al. 2001), the 95 % confidence 
interval, although may be used as an approximation, 
represents an inaccurate estimation of the uncertainty bounds. 
Having the variance of BLA in Fig. 2 in mind, it is naturally 

observed that the poles and zeros are significantly scattered 
for the shaker input.   

 

Fig. 6. Variations of poles (*) and zeros (°) of the system and 
95 % confidence ellipses for 500 simulations. 

In order to generate a frequency weighting function, for 
robust control design, which may encompass the modelling 
uncertainties for various SNR, the parametric FRM is 
investigated next. The variation of the perturbed model (red 
lines) are shown around the nominal model (black line) in 
Fig. 7. The parametrization of the weighting function for , 
min-max LQG, and -synthesis can be done in a similar lines 
as (Montazeri et al. 2011; Oveisi & Nestorović 2016a). It is 
clear from Fig. 7, that due to the introduced perturbations, the 
identification algorithm is unable to capture the FRM of the 
system regarding the first natural frequency. This explains the 
bias of the results in Fig. 6 where some of the poles/zeros are 
not distributed around the nominal values.   

5. CONCLUSIONS 

In this paper, we have revisited the MIMO black-box system 
identification based on the non-parametric results from multi-
reference modal analysis. Two key parameters that are 
highlighted here are the systematic extraction of the 
frequency-dependent weighting that is required in single-step 
regression problem, and the sensitivity of the parametrization 
algorithm w.r.t. number of block rows of the Hankel matrix 
that guarantees the full-rank condition of the extended 
observability matrix. Refinement of the classical ellipsoids 
that estimate the confidence intervals based on the level set 
method and the application of the results in this paper for 
robust control design of MRI device in (Oveisi & Nestorović 
2016a) are two ongoing research topics. 



 
 

     

 

 

Fig. 7. Variation of FRM for different SNR 
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