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Abstract: In this paper, the impact of various input excitation scenarios on two different MIMO linear 
non-parametric modeling schemes is investigated in the frequency-domain. It is intended to provide 
insight into the optimal experiment design that not only provides the best linear approximation (BLA) of 
the frequency response functions (FRFs), but also delivers the means for assessing the variance of the 
estimations. Finding the mathematical representations of the variances in terms of the estimation 
coherence and noise/nonlinearity contributions are of critical importance for the frequency-domain 
system identification where the objective function needs to be weighted in the parametrization step. The 
input excitation signal design is tackled in two cases, i.e., multiple single-reference experiments based on 
the zero-mean Gaussian and the colored noise signal, the random-phase multisine, the Schroeder 
multisine, and minimized crest factor multisine; and multi-reference experiments based on the Hadamard 
matrix, and the so-called orthogonal multisine approach, which additionally examines the coupling 
between the input channels. The time-domain data from both cases are taken into the classical H1 spectral 
analysis as well as the robust local polynomial method (LPM) to extract the BLAs. The results are 
applied for data-driven modeling of a flexible beam as a model of a flexible robotic arm. 
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1. INTRODUCTION 

Contemporary applications of robot arms demand high 
precision and speed, e.g. advanced manufacturing and 
nuclear decommissioning. These applications typically 
require accurate knowledge of the dynamic model of robot 
arm (Montazeri and Ekotuyo, 2016). Experimental 
identification and parameter calibration are therefore the only 
reliable approach to obtain this information (Montazeri et al, 
2017). Input excitation design plays an important aspect of 
this procedure by optimizing a few variables such as 
operational bandwidth of the system, maximum permissible 
excitation amplitude on the actuators, and the sampling time 
limitations before the task-overrun error. Among different 
excitation inputs multisine signal is proven to have minimum 
time-factor, i.e., minimum time per frequency for reaching a 
specified signal-to-noise ratio (SNR). It is also effective in 
terms of measurement duration, accuracy, and sensitivity to 
noise/nonlinearity compared to other signal types (Schoukens 
et al. 1988). Since this work, several attempts have been 
made to improve the energy content of the signal, i.e., the 
property of having a low crest factor (CF) for the input/output 
data. Consequently, CF minimization is shown to secure a 
desirable quality in signal processing namely, a high SNR 
(Guillaume et al. 1991).  

Here we take the first step on data-driven modelling of a 
MIMO robotic system by assuming a flexible arm as a lightly 
damped flexible beam. Frequency response functions (FRFs) 
are proven to confer in-depth insight into the behaviour of the 
complex dynamical systems. Modal tests using the spectral 

analysis technique is well-studied for parametric estimation 
of the single-input single output dynamic systems (Montazeri 
et al. 2009; Montazeri et al. 2011; Ahmadizadeh et al. 2015). 
However, the estimation procedure of the FR matrix (FRM) 
for the multivariable systems is technically much more 
involved as it uses the cross-correlation techniques which 
yield the input excitations to be uncorrelated. Apart from the 
low-frequency resolution method proposed in (Zhang et al. 
2010) and not intended for lightly damped smart structures, 
one of the major issues of random excitations is that no 
differentiation between noise and nonlinearity can be 
deduced from the results. 

Contrary to H1/H2 functions in the spectral analysis, FRM 
and its covariance matrices can be calculated following 
(Pintelon, Barbé, et al. 2011). Several consecutive periods 
and several independent realizations of the multi-reference 
tests should be performed, which in turn provides the means 
for acquiring the sample means and sample (co-)variances of 
the input/output spectra. The latter is realized while 
attenuating the stochastic noise and transients.  

In this paper, the optimal test design problem for a 
multivariable lightly-damped mechanical system is revisited. 
First, the input excitation design is considered in both single- 
and multi-reference scenarios to shed some light on input-
channel coupling. Additionally, the effect of various 
excitation signals is investigated in terms of the accuracy of 
the obtained FRM, the time factor, and the CF. Consequently, 
some guidelines are outlined for the user in selecting the 
appropriate experimental setting. Moreover, the classical 
spectral analysis is compared experimentally against the 



 
 

     

 

robust local polynomial method (LPM) in nonparametric 
modelling. To this end, several advantages of extracting the 
statistical properties of the obtained FRM, e.g. estimation 
variance in regards to the noise/nonlinearity, in the latter 
method are highlighted, which are crucial for the parametric 
system identification, the state estimation problem, and the 
robust control design. The procedure as shown in this paper 
amounts to a substantial reduction in the experimental time 
which may be very expensive in the scope of the light weight 
aerospace systems. The plant is shown in Fig. 1, while 
geometric dimensions, the material properties of the four 
piezo-actuator patches and the aluminium host, the technical 
details of the measurement setup, and sensor and actuator 
placement optimization are all referred to (Oveisi & 
Nestorović 2016b). The system has five inputs, including 
four collocated actuators (two on each side of the beam) and 
a shaker, as well as two outputs viz. a laser Doppler 
vibrometer (LDV) collocated with a 1D accelerometer at the 
free end of the beam. In the rest of the paper, ݆ indicates the 
unit imaginary number, ߱௞ is the frequency of the line ݇ in 
the continuous spectrum of the signal, and the hat operator 
ሺ.̂ ሻ and zero subscript (ܩ଴) symbolize the estimated and 
unknown correct values of the associated variables, 
respectively. Capital letters are used for the frequency-
domain data obtained using FFT while lower case variables 
are reserved for the sampled time-domain signals.  

 

 Fig. 1. The experimental rig for the system identification. 

2. EXPERIMENT DESIGN  

It is expected that measurement data is affected by erroneous 
stochastic noise, the extent of which depends on the 
measurement methods and the instruments involved. 
Additionally, morphing dynamic systems often have long-
lasting transient behaviour under periodic loading, which 
contributes as an additional source of imperfection in the 
results of the post-processing phase. Unlike the stochastic 
noise and transients in the response, the effect of 
nonlinearities in the system output persists even after long 
measurements for suppressing the non-steady state history 
and after averaging over multiple periods. 

2.1 Single-reference Experiments 

In the single-reference (SR) modal analysis scheme, the input 
excitation design is initiated with a random Gaussian zero-
mean signal (RGS). In order to be able to capture the higher 

order nonlinearities, the sampling time is set to 122.07 µs 
(ൎ10 times higher than the maximum operational frequency) 
following the literature in the nonlinear system identification. 
Additionally, 2ଵ଺ lines are considered in the Fourier analysis 
to guarantee sufficient number of samples in the 3dB range of 
the resonance frequencies in the framework of LPM 
(Pintelon, Vandersteen, et al. 2011). As one would expect, 
the coupling between the input channels is neglected in the 
single-reference experiments. The FRFs of the system based 
on the RGS excitations is then compared with the coloured 
noise excitation and the random-phase multisine. To this end, 
individual experiments are performed for ten periods of each 
excitation signal to quantify the contribution of the transient 
noise. The distorted periods in the input/output data are then 
discarded, followed by a spectral analysis of the remaining 
time history. In Fig. 2(a), the frequency content of the two 
random signals are compared to the periodic random-phase 
multisine excitation. Unlike the RGS, the multisine excitation 
has a slight advantage in terms of band-limited analysis since 
it has insignificant contribution over other frequencies. 
Though the coloured noise signal also satisfies the band-
limited constraint of the desired excitation, it is categorized 
as a non-periodic signal and is thus subjected to leakage 
errors. The contribution of the transients under multisine 
periodic excitation for the two measurement outputs is 
evaluated in Fig. 2(b). It can be seen that the transient 
response falls below the noise floor within two consecutive 
periods. Consequently, the response of the first period is 
discarded in the classical spectral analysis based on the ܪଵ 
function. 

 

Fig. 2. (a) Frequency content of the input excitation signals. 
(b) Contribution of transient noise over two periods. 

For a periodic multisine signal with a high SNR, it can be 
shown that under reasonable experimental conditions, e.g., 
averaging over the periods, we have ܩ෠ሺ݆߱௞ሻ ൎ  .଴ሺ݆߱௞ሻܩ
However, for random excitations, even neglecting the effect 
of persistent structural nonlinearities, a biased estimation of 
the FRFs, given by ܩ෠ሺ݆߱௞ሻ ൌ ଴ሺ݆߱௞ሻሺ1ܩ ൅ ௒ܰሺ݇ሻ ଴ܻሺ݇ሻ⁄ െ
௎ܰሺ݇ሻ ܷ଴ሺ݇ሻ⁄ ሻ, is still expected since the measurement 

output ݕ and excitation input ݑ are polluted by stochastic 
noise ݊௬, and ݊௨, respectively. The systematic error in 
random excitation cannot be resolved unless the SNR for the 
input signal generator (|ݑ| ≫ |݊௨|) is high. Under the 
assumption that the SNR at the input is higher than that of the 
output, ܪଵ (as opposed to ܪଶ) estimation is used to calculate 
the FRFs as ܩ෠ሺ݆߱௞ሻ ൌ መܵ௒௎ሺ݇ሻ/ መܵ௎௎. The FRFs of the system 
under the three loading scenarios are plotted in Fig. 3(a). 
Note that in all figures showing the BLA throughout the rest 



 
 

     

 

of the paper, each subplot indicates the FRF from the piezo-
actuators and shaker to the measurement outputs, 
(accelerometer and LDV), represented in columns 1-4 or 1-5, 
and rows 1-2, respectively. As a measure of the FRF quality, 
the coherence of the captured output w.r.t. the input as a 
measure of the FRF quality is shown in Fig. 3(b). In Figs. 
3(a) and (b), the first period of the periodic excitation is 
discarded to suppress transient distortions, and a Hann-
window with 80 averages is used to reduce the leakage errors 
for the two non-periodic inputs. 

The observations are as follows: 1) The RGS signal has the 
worst coherence, and as a result, the obtained FRFs are 
unreliable. As pointed out in (Pintelon et al. 2012), although 
the clipped random noise with uniform distribution has a 
better performance than the RGS, it is recommended to pre-
filter (blue lines in Fig. 3) the excitation signal with/without 
sign operation (random binary excitation). 2) Despite the 
similarity between the FRFs of the MIMO system in Fig. 3(a) 
for both filtered noise and multisine (multisine: SR) signals, 
the coherence comparison in Fig. 3(b) reveals the superiority 
of the estimation quality of the multisine signal. 3) The 
coherence of all signals in the vicinity of the anti-resonance 
frequencies drops significantly below 1. In the case of 
multisine, this can be remedied by replacing the uniform 
distribution of the excitation lines with a spectrum 
configuration with populated lines around anti-resonances. 
This guarantees the injection of enough energy at those 
frequency ranges, resulting in a higher SNR. However, there 
is a trade-off between reduced resampling time of the  

(a
) 

(b
) 

 

Fig. 3. (a) Magnitude of FRFs in dB range based on three
single-reference loading and Hadamard multi-reference 
scenarios. (b) Coherence diagram of the measured FRFs. 

experiment, which may result in hardware memory shortage 
that is of particular concern in practical situations involving 
lightly-damped structures with long transient behaviour and 
consequently lengthy measurements. 4) In order to 
investigate the input coupling, or in other words, the essence 
of performing multi-reference modal analysis instead of 
multiple single-reference ones, the BLA based on the 
Hadamard multisine method is compared with single-
reference results. Fig. 3(a) indicates that the multi-reference 
excitation (the green line, multisine: H) and the calculated 
FRFs, excluding the shaker channel, have similar outcomes. 
Although no apparent coupling between the piezo-patches is 
observed, the distorted FRF associated with the shaker (and 
both outputs) is evidence of input coupling between the 
shaker and the piezo-patches. This behaviour is due to the 
flexible assembly of the shaker and the beam which are 
connected to each other via rubber-band as shown in Fig. 1. It 
should be noted that the aforementioned coupling is no longer 
observed when the shaker and beam are connected via a 
screw (Oveisi & Nestorović 2016a). It is important to note 
that the crest factor of the excitation signals is not changed in 
the multi-reference scenario unless, as is the case for the 
shaker input coupling, similar non-parametric modelling 
results are expected. 

2.2 Multi-reference Experiments 

In the multi-reference analyses (for ݊௨ number of input 
channels), two scenarios are investigated based on the 
number of input signals: 1) The case where three piezo-
actuators (realizing the control inputs) along with the shaker 
(realizing the mismatch disturbance channel), are included in 
the Hadamard multisine approach, i.e., four channels to 
satisfy the radix-2 condition, i.e., ݊௨ ൌ 2௠ (Pintelon et al. 
2012). In this approach, the single-reference signal is 
multiplied by the Hadamard matrix ܶ ൌ 1/ඥ݊௨ܪଶ೘ where 
ଶ೘ܪ ൌ ଶܪ ,ଶ೘షభܪ⨂ଶܪ ൌ ሾ1,1; 1, െ1ሿ, (in MATLAB matrix 
notation). The Kronecker matrix product is represented with 
⨂. Experimentally, Hadamard multisine is realized by 
employing a set of inverters. 2) The case of an orthogonal 
multisine based on the multi-generator approach for an odd 
number of inputs (four piezo-actuators and the shaker) is 
carried out according to (Dobrowiecki et al. 2006). Unlike the 
Hadamard multisine where the number of input channels 
must satisfy radix-2 condition, the so-called orthogonal 
multisine can be used for an arbitrary number of input 
channels with the orthogonal elements of the matrix given by 

௣ܶ,௤ ൌ ݊௨
ିଵ/ଶ exp ݆ሺ݌ െ 1ሻሺݍ െ 1ሻ/݊௨ for ݌, ݍ ൌ 1,… , ݊௨. 

For this, tests are performed with the sampling frequency of 
8192 Hz, and the results are generated compatible with the 
robust LPM. Each realization encompasses ݊௨ number of 
individual experiments which are performed for ten 
consecutive periods. Relying on the minimum number of 
realizations in the robust LPM (Pintelon et al. 2012), four and 
five realizations of the multi-reference random-phase 
multisine signals are applied in 16 and 25 individual tests for 
the Hadamard and orthogonal multisine approaches, 
respectively.  Unlike the Hadamard multisine approach where 
the multi-reference excitation can be produced by a single 
generator and a set of inverters, orthogonal multisine  



 
 

     

 

 

Fig. 4. BLA of the FRF using Hadamard matrix approach (H) 
and orthogonal multisine (D) as well as noise variance (NV) 
and total variance (TV). 

experiments require ݊௨ independent generators. The standard 
deviation of the excitation signals in both cases is retained at 
0.75 to keep the actual implemented signals on the piezo-
actuators beneath 250 V in amplitude. Fig. 4 presents the 
results of the robust LPM based on the two multi-reference 
schemes. 

The following observations can be made based on the results 
shown in Fig. 4: 1) As expected unlike the accelerometer, the 
contactless LDV is less prone to noise. This can be deduced 
from the matching quality between the two multi-reference 
schemes as well as from the significant difference between 
the acceleration measurements. 2) For the same RMS value 
of the excitation signal, BLAs obtained from the Hadamard 
single-generator matrix method have higher total variance in 
comparison to the orthogonal multisine scheme. This is 
justifiable by examining the noise floor in the two cases, i.e., 
comparing NV:D and NV:H for the accelerometer, which 
indicate high achievable SNR in the orthogonal multisine 
approach. 

Consequently, the orthogonal approach is preferred for 
parameterized modeling. 3) The FRFs associated with the 
shaker input are severely distorted at frequencies higher than 
100 Hz. Unlike the classical ܪଵ function in Fig. 3(a) and its 
coherence in Fig. 3(b) which indicate unreliable modelling 
quality at these frequencies, the source of distortions in the 
robust MIMO LPM method of (Pintelon, Vandersteen, et al. 
2011) are associated with noise/nonlinear contributions. 
Physically, the nonlinear distortion is due to the nature of the 
connection between the shaker and the beam, i.e., the rubber-
band (see Fig. 1). The reason for using a rubber-band instead 
of a direct connection (adhesive wax, screws, etc.) is to match 
the impedance of the (control) input signals realized by the  
piezo-patches with the (disturbance) signal generated by the 
electromagnetic shaker (Pintelon et al. 2012). 4) In the results 
of the orthogonal multisine method, the contribution of 
nonlinear distortions can be neglected since the total variance 
is 40 dB below the BLA. However, depending on the 
application, this may become non-negligible. Before 
proceeding to the assessment of input excitation optimization 
in MIMO smart structures, two remarks should be made 
regarding the importance of the MIMO robust LPM: a) The 
total variance not only reflects the quality of the estimated 

FRFs, but also provides a tool for quantifying the modelling 
uncertainty which is crucial in robust control design. 
Additionally, it provides the means for state observer design 
techniques, e.g., Kalman filter that may be used in output 
feedback control by quantifying the process/measurement 
noise’s covariance matrices. b) The parameterization of the 
calculated BLAs based on the black/grey-box subspace 
method reduces to a weighted regression problem where the 
obtained total variance from the MIMO LPM serves as the 
frequency-dependent weighing without which the estimated 
linear model would be biased (McKelvey et al. 1996; Cavallo 
et al. 2007).  

3. INPUT EXCITATION OPTIMIZATION 

3.1. Crest Factor Minimization 

Since the spectrum of the employed signal is known a priory, 
the minimization of the CF is defined in terms of the random 
phases associated with the active line in the multisine 
excitation. Since the CF-minimized multisine is unique, the 
contribution of the nonlinearity (using several random 
realizations) is not quantifiable in the framework of the 
robust LPM. On the other hand, as an advantage of CF 
minimization, the number of required averages for a specific 
accuracy regarding the SNR at low-frequency ranges, where 
the experiment durations are lengthy, is proportional to the 
square of the CF.  

Mathematically, the CF of a time-dependent vector ݔሺݐሻ is 
defined as ܨܥ௫ሺ௧ሻ ൌ -ሻ‖ଶ which is the peakݐሺݔ‖/ሻ‖ஶݐሺݔ‖
value over the signal root mean square. Our analysis here is 
only concerned with optimizing the phases (excluding the 
zero line) of each line for a given auto-power spectrum. Since 
the objective function (ܨܥ௫ሺ௧ሻ) is nondifferentiable, an 
analytical optimization solution is unavailable. As a results, 
the Quasi-Newton (QN) algorithm, in which the Hessian 
matrix is estimated (updated) from the gradient vector, is 
implemented. Accordingly, the Hessian matrix is calculated 
by the Davidon-Fletcher-Powell (DFP) formula to mimic the 
Newton algorithm in computing the search direction (Griva et 
al. 2009). The algorithm is initialized by the Schroeder 
multisine, i.e., for line number ݅ and ݊௟ number of nonzero 
lines in the spectrum, the associated phase is initialized with 
െ݅ሺ݅ െ 1ሻ/݊௟. The optimization is carried out on a parallel 
computing Linux workstation with 28 cores @ 2.40 GHz 
(Intel Xenon E5-2680 v4) and 96 GB RAM, and is aimed at 
covering the effect of frequency-domain resolution (radix-2 
number of active lines) between 512 and 131072 lines within 
the range [0 800] Hz. The objective function of the 
optimization is defined in terms of a wide range of 
parameters, namely, achievable CF for the optimized signal, 
variations of the CF for the Schroeder multisine, the number 
of required function evaluation in QN optimization scheme, 
and the CPU time, as shown in Fig. 5. As the demanded 
resolution in the frequency-domain increases, the number of 
required function evaluations (and as a result, the CPU-time) 
also increases due to the number of involved optimization 
variables. The typical optimized CF for the multisine is 
estimated between 1.4 and 1.5, while the CF calculated for 
the Schroeder multisine (suppressed in  Fig. 5 for brevity) is 



 
 

     

 

typically between 1.65-1.7 (Pintelon et al. 2012). 
Additionally, the CF associated with the random-phase 
multisine for 10଺ realizations varied between 2.5 and 6.3, 
further emphasizing the importance of testing various 
random-phase multisine signals before deciding to use one in 
an experiment. Moreover, three subplots are added to Fig. 5 
to compare the time history of the random-phase multisine, 
the Schroeder multisine, and the CF-optimized multisine for 
2048 number of lines in the frequency range of interest. 
Although the random-phase multisine is similar to the 
stochastic noise, its amplitude spectrum is deterministic. 
Comparing the time histories of the Schroeder and 
minimized-CF multisine signals indicates the reduction in 
magnitude (despite higher injected energy per line) of for the 
optimized signals. Note that the optimization is done over 
each line in the frequency-domain as time-domain 
optimization causes more computational burden.  

 

Fig. 5. Effect of the frequency resolution of the multisine 
excitation on the CF and subsequent computational overhead. 

3.2. Multi-Reference Non-parametric Modelling with CF-
minimized Multisine Excitation  

The multi-reference (CF-minimized) signal, is applied to the 
system in Fig. 1 through the input channels. Then, the 
obtained time-histories are analysed with the robust LPM. 
Then the modal analyses of the optimized signal with 65536 
line number and Nyquist frequency band of 2048 Hz is done 
for eight consecutive periods of the Hadamard and 
orthogonal multisine. Illustration of the results in Fig. 6, 
shows that the frequencies of the resonance states are the 
same for both the CF-optimized and the random-phase 
multisine cases in the multi-reference experiments (Fig. 4). 
However, the FRFs in the anti-resonances and transition 
frequencies between the resonances are significantly 
different. Noting that the noise floor is independent of the 
optimization (compare Figs. 6 and 4 for NV), it is essential to 
assess the introduced mismatch due to the CF minimization. 
To this end, a perturbation analysis of the clamped-free beam 
geometry in Fig. 1 is carried out in the operational frequency 
range using ABAQUS finite element (FE) software. It is 
observed that imperfect boundary conditions and the attached 
sensor configurations lead to the excitation of the torsional 
and in-plane mode shapes. Due to the higher energy content 
injected through the active lines of the multisine signal, the 
first and second in-plane and torsional modes are 
significantly excited. This distorts the FRFs associated with 
transverse vibrations. Hence, the frequencies the second in- 
plane mode that is irrelevant to the transverse vibration. The 

 

Fig. 6. BLA based on optimized CF (CFO) using Hadamard 
multisine (H) and orthogonal multisine (D), the noise 
variance (NV) compared to random-phase multisine (black 
line). 

transverse vibration modes associated with the frequencies 1, 
2, 4, 6, and 9 in the BLAs of Fig. 6 are also plotted on top of 
the figure. Unless the user tends to identify these modes 
(torsional/in-plane) and the actuators can control them, the 
optimization approach may cause an incorrect interpretation 
of the system. Additionally, this method provides no insight 
from the BLA regarding nonlinear variance. 

It should be noted that if the geometrical nonlinearities due to 
the large vibration amplitudes are relevant to the vibrations, 
CF minimization is not recommended since the total variance 
of the estimated BLAs is expected to increase significantly. 
This prediction is a direct result of invoking the higher-order 
strain terms in system dynamics (Oveisi & Nestorović 2017). 
This can be justified by 5nalysing the time-frequency content 
of the two cases i.e., random-phase multisine and CF-
minimized multisine. To this end, the time-frequency analysis 
based on the continuous Morlet wavelet transformation (Noël 
& Kerschen 2017) is performed on the input/output data in 
the two cases, and the normalized results are shown in Fig. 7. 
In this figure, the top row is reserved for random-phase 
multisine while the bottom row is dedicated to the minimized 
CF. The first and second columns represent input and output, 
correspondingly. Unlike the random-phase multisine, the 
spectrum of the input in the case of minimized CF follows a 
specific line of harmonics which resembles the sweep-sine 
excitation. Consequently, the time-frequency analysis over 
the measurement output of the minimized CF case reveals 
that the energy of the input signal is injected at a specific 
frequency range at each time increment. However, the output 
of the system under random-phase multisine input indicates 
the random distribution of energy at all frequencies at each 
time sample. Despite the inability of the method to detect 
nonlinearities, CF minimization should be applied with care 
and is not recommended without proper insight on the 
system, especially in combination with black-box 
identification. 

6. CONCLUSIONS 

Several input excitation signals are tested experimentally and 
the results in combination with Hଵ function and robust LPM 



 
 

     

 

in single-/multi-reference schemes are used to extract the 
FRM of the system. Moreover, quantified measures of the 
imperfections due to stochastic noise, transient distortion, and 
nonlinear structural behaviour are calculated. In addition to 
the technical conclusions in each case, several guidelines are 
provided for the Vibration Engineer regarding the selection 
of the optimal experiment configurations depending on the 
accuracy of involved measurement devices and the potential 
insight that one may have regarding the nonlinearity/noise 
level. The results of the paper enable not only the use of the 
estimated covariance matrices in both single-step, e.g., 
subspace method and iterative, e.g., predictive error method 
of parametric identification methods, but also facilitate 
lumped uncertainty quantification and state observer design. 

 

Fig. 7. Time-frequency analysis of the input/output data 
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