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Abstract. The paper compares the pseudo real-time forecasting performance of three

Dynamic Factor Models: (i) The standard principal-component model introduced by Stock

and Watson in 2002, (ii) The model based on generalized principal components, introduced

by Forni, Hallin, Lippi and Reichlin in 2005, (iii) The model recently proposed by Forni,

Hallin, Lippi and Zaffaroni in 2015. We employ a large monthly dataset of macroeconomic

and financial time series for the U.S. economy, which includes the Great Moderation,

the Great Recession and the subsequent recovery (an update of the so-called Stock and

Watson dataset). Using a rolling window for estimation and prediction, we find that (iii)

significantly outperforms (i) and (ii) in the Great Moderation period for both Industrial

Production and Inflation, that (iii) is also the best method for Inflation over the full sample.

However, (iii) is outperformed by (ii) and (i) over the full sample for Industrial Production.
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1 Introduction

This paper compares the pseudo real-time forecasting performance of three Large-

Dimensional Dynamic Factor Models for the US monthly macroeconomic dataset

over the period February 1985 to August 2014, this including the so-called Great

Moderation and the Great Recession.

Large-Dimensional Dynamic Factor Models represent each variable in the dataset

as decomposed into a common component, driven by a small (as compared to the

number of series in the dataset) and fixed (as the number of series grows) number

of common factors and an idiosyncratic component. The latter are assumed to be

orthogonal across different variables or only weakly correlated, so that the covariance

of the variables is mostly accounted for by the common components. Typically, the

asymptotic results are obtained for n, the number of series, and T , the number of

observations for each series, both tending to infinity. Among the different versions

of the Dynamic Factor Model we selected:

(i) SW. The model introduced in Stock and Watson (2002a,b). The factors are

estimated by means of the standard Principal Components of the variables in

the dataset. The forecast of the variable of interest, call it yt, is obtained by

regressing yt+h on the factors and the variable yt, plus possibly lags of the

factors and yt.

(ii) FHLR. A variant of the previous model which has been proposed in Forni et al.

(2005). In a first step the covariances of the common and the idiosyncratic com-

ponents are estimated using a frequency-domain method introduced in Forni

et al. (2000). In the second step such covariances are employed to estimate the

factors by means of Generalized Principal Components.

(iii) FHLZ. Both models (i) and (ii) assume that the space spanned by the common

components at any time t stays finite-dimensional as n tends to infinity. In

two recent papers, Forni et al. (2015, 2017), it is assumed that a finite num-

ber of common shocks drive the common components, though the common

components themselves are allowed to span an infinite-dimensional space. The
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dynamic relationship between the variables and the factors in this model is more

general as compared to (i) and (ii). However, its estimation is rather complex

and no systematic comparison with (i) and (ii) has as yet been produced.

The literature comparing SW and FHLR has reached mixed conclusions so far.

Using the monthly U.S. macroeconomic dataset known as the Stock and Watson

dataset, Boivin and Ng (2005) found that SW generally outperforms FHLR, whereas

D’Agostino and Giannone (2012) found the two methods to perform equally well in

their sample, even if different performances are found in subsamples. In particular,

FHLR fares better during the Great Moderation, consistently with the results in the

present paper. Schumacher (2007), using German data, finds that FHLR provides

more accurate forecasts of the GDP. A similar result is obtained in den Reijer (2005)

with Dutch macroeconomic data.

In the present paper we extend the comparisons in Boivin and Ng (2005) and

D’Agostino and Giannone (2012) to an update of the Stock and Watson dataset,

and include the new FHLZ forecasting model. Our dataset starts in January 1959

and end in August 2014, thus including the Great Moderation, the Great Recession

and the subsequent recovery.

The main task of the paper is evaluating the performance of the new model

FHLZ with respect to SW, the standard in this literature, and FHLR, which shares

with FHLZ the frequency domain approach. Important variants of the Dynamic

Factor Model such as e.g. Peña and Poncela (2004), Kapetanios and Marcellino

(2009) are not considered (for wider comparisons of forecast results with Dynamic

Factor Models, see Schumacher (2007) and Eickmeier and Ziegler (2008)). Rather,

we compare FHLZ, FHLR and SW with (1) two “second-generation” factor models,

namely Doz et al. (2011), in which a maximum likelihood estimation method of the

factors is introduced, and the three-pass regression filter of Kelly and Pruitt (2015),

(2) a model based on Bayesian shrinkage, De Mol et al. (2008).

A distinctive feature of our exercise is that we use a fairly large subsample,

February 1960 to December 1984, to calibrate the models. In particular, how to

determine the number of factors in SW and FHLR, the number of lags of the factors
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or of the variable to be predicted, the Kernel in the spectral estimation for FHLR

and FHLZ, etc. The selected models are then run and compared in the remaining

sample, January 1985 to August 2014, which makes the present paper the first to

provide a thorough comparison of different factor models over the Great Moderation,

the Great Recession and the subsequent recovery.

Our main results are:

(I) In the Great Moderation period, where the assumption of stationarity of the

series in the dataset (after suitable transformations) underlying all factor mod-

els is by and large fulfilled, FHLZ significantly outperforms FHLR, SW and

AR both for Industrial Production and Inflation.

(II) In the full sample, including the Great Recession and the subsequent recovery,

FHLZ remains the best method for CPI, albeit slightly, whereas FHLR and

SW outperform FHLZ and AR for Industrial Production.

(III) We also run forecasts for all single series in the dataset over the full sample.

Consistently with (II) above, FHLZ is the best method for the nominal variables

whereas FHLR is the best for real variables.

The structure of the paper is as follows. In Section 2 the models SW, FHLR and

FHLZ are outlined and the particular features of FHLZ are discussed. In Section 3

we describe the calibration of the models. In Section 4 we present and discuss the

main results. Section 5 concludes. Some features of the forecasting models, details

of the calibration procedure and additional empirical results have been gathered in

the Appendix (not for publication).

2 Three forecasting methods

Let us start with the general form of the Large-Dimensional Dynamic Factor Model:

xit = χit + ξit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt + ξit, (2.1)
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where L is the lag operator, t ∈ Z, i ∈ N,

cif (L) = cif,0 + cif,1L+ . . .+ cif,s1L
s1 , dif (L) = 1 + dif,1L+ . . .+ dif,s2L

s2 , (2.2)

f = 1, 2, . . . , q, ut = (u1t u2t · · · uqt)′ is a q-dimensional orthonormal white noise.

The processes χit, are called the common components, they are driven by the common

shocks ut, also called the dynamic (common) factors. We assume that the polyno-

mials dif (L) are stable so that χit is stationary and is co-stationary with χjt for all

i, j ∈ N. The processes ξit are called the idiosyncratic components. We assume that

ξit is stationary and co-stationary with ξjt for all i, j ∈ N. Moreover, ξit and ut

are orthogonal for all i ∈ N so that ξit and χjt are orthogonal for all i, j ∈ N. The

assumptions above imply that the process xit is stationary and costationary with xjt,

for all i, j ∈ N. Only the processes xit are supposed to be observable, the compo-

nents χit and ξit, the shock vector ut and its dimension q, are unobserved and must

be estimated. Moreover, though we suppose that the common components have a

VARMA structure, we place no restrictions on the rational functions in (2.1).

Assumptions on the covariances E(χitχjt) and E(ξitξjt) ensure that linear com-

binations of the idiosyncratic components, with coefficients sufficiently well spread

across the variables, tend to zero in variance, whereas those of the common compo-

nents “survive”. For details on assumptions and results see Forni et al. (2000), Stock

and Watson (2002a,b), Bai and Ng (2002).

2.1 Static method: SW

Suppose now that for a given t the common components χit, for i ∈ N, span a

finite-dimensional vector space St. Stationarity of the common and idiosyncratic

components implies that the dimension of St, call it r, is independent of t and there

exists a “stationary basis” Ft = (F1t F2t · · · Frt)′ such that (2.1) can be rewritten

in the static form

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit. (2.3)
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It is easily seen that r ≥ q, i.e. the number of the so-called static factors Fjt is

at least equal to the number of dynamic factors, see Forni et al. (2009). A simple

example is xit = ci0ut + ci1ut−1 + · · · + ciput−p + ξit, where q = 1, r = p + 1 and a

basis for St is Fjt = ut−j+1, j = 1, 2, . . . , p+ 1.

Model (2.3) has been predominant in the literature on Dynamic Factor Models,

starting with the seminal papers Stock and Watson (2002a,b), Bai and Ng (2002),

Forni et al. (2005). The factors Fjt and the loadings λij are estimated using the first

r standard principal components. The latter, denoted by F̂t = (F̂1t F̂2t · · · F̂rt)′,
are obtained from the variance-covariance matrix of the observed variables xit, i =

1, 2, . . . , n, t = 1, 2, . . . , T . Based on the estimated factors, the forecasting equation

proposed in Stock and Watson (2002a,b), referred to as SW, is the projection of

xi,t+h on the space spanned by (F̂t, F̂t−1, . . . ; xit, xi,t−1, . . .), where the presence

of the terms xi,t−k can be motivated as capturing possible autocorrelation in the

idiosyncratic component ξit:

x̂SWi,t+h|t = α̂̂α̂αih(L)F̂t + β̂ih(L)xit, (2.4)

where α̂̂α̂αih(L) is a 1 × r matrix polynomial of degree gi1,h and β̂ih(L) a scalar poly-

nomial of degree gi2,h.

Estimation of equation (2.4) requires determining three parameters: (i) the num-

ber of static factors r, (ii) the degree gi1,h for α̂̂α̂αih(L), (iii) the degree gi2,h for β̂ih(L).

This will be discussed in detail in Section 3.2.1.

2.2 Dynamic method: FHLZ

2.2.1 Infinite dimension of the space St

A motivation for studying model (2.1) without assumption (2.3), as argued in Forni

et al. (2015, 2017), is that model (2.3) rules out cases as simple as

xit =
ci

1− diL
ut + ξit = ci(ut + diut−1 + d2iut−2 + · · · ) + ξit, (2.5)
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i ∈ N, where ut is a scalar white noise. If the coefficient di takes an infinite number

of values, for i ∈ N, then St, the space spanned by the variables χit = ci(ut+diut−1 +

d2iut−2 + · · · ), i ∈ N, is infinite-dimensional. This is the case for example if the

coefficients di are drawn from, say, the uniform distribution between −0.8 and 0.8

(with probability one di takes an infinite number of values)1. Infinite dimension of

St obviously occurs in the general model (2.1) if sufficient heterogeneity is allowed

for the roots of the polynomials dif (L).

Forni et al. (2015, 2017) construct estimators for the Dynamic Factor Model

in its general form (2.1), thus without assuming that St is finite-dimensional. Such

estimators are based on the singularity of the vector χχχt. Let us recall that a stochastic

vector is singular when it is driven by a number of shocks which is smaller than its

dimension, which is the case with χχχt when n is large as compared to q. To fix

ideas, consider the vector χχχ1
t = (χ1t χ2t · · · χq+1,t)

′, whose dimension is q + 1, is

driven by the q-dimensional vector ut and is therefore (just) singular. Anderson

and Deistler (2008) prove that singular VARMA models possess a finite-degree VAR

representation for generic values of the parameters. In particular, χχχ1
t , as defined

in (2.1) and (2.2), has a representation of the form A1(L)χχχ1
t = R1ut, where R1 is

(q + 1)× q, A1(L) is a (q + 1)× (q + 1) finite-degree, stable polynomial matrix, for

all the parameters in (2.2), with the exception of a lower-dimensional subset in the

parameter space (thus generically). Assuming for simplicity that n = (q + 1)m and

partitioning χχχt into (q + 1)-dimensional blocks, we obtain:

A(L)χχχt =


A1 (L) 0 · · · 0

0 A2 (L) · · · 0
. . .

0 0 · · · Am (L)

χt = Rut =


R1

R2

...

Rm

ut. (2.6)

Thus the large-dimensional vector χχχt has a blockwise representation consisting of

“small” finite-degree (q + 1)-dimensional VAR’s. Inverting the polynomial matrix

1If di can only take a finite number r of values, then the finite-dimension assumption is fulfilled
with factors Fjt = (1− djL)−1ut, j = 1, 2, . . . , r.
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A(L) in (2.6) (obtained by inversion of the polynomial matrices on its diagonal):

χχχt = [A(L)]−1 Rut = B(L)ut = B0ut + B1ut−1 + · · · (2.7)

Lastly, using χχχt = xt − ξξξt, and setting yt = A(L)xt:

yt = Rut + A(L)ξξξt, (2.8)

which is a static factor model for yt.

The estimates Âj(L), R̂j and ût are obtained by the following procedure (see

Forni et al. (2017) and Appendix ?? for details):

(i) We estimate the spectral density of xt by means of a lag-window estimator

Σ̂̂Σ̂Σx (θ) =
1

2π

T−1∑
k=−T+1

e−ikθK

(
k

BT

)
Γ̂̂Γ̂Γxk,

where: Γ̂̂Γ̂Γxk is the estimated covariance between xt and xt−k, K is a Kernel function,

BT is the bandwidth parameter and 2BT + 1 is the size of the lag window.

(ii) We determine the number of dynamic factors q and obtain from Σ̂̂Σ̂Σx(θ) an estimate

of the spectral density matrix of χχχt, Σ̂̂Σ̂Σχ(θ), and of its autocovariance matrices, Γ̂̂Γ̂Γχk .

(iii) The matrices Γ̂̂Γ̂Γχk are then used to compute the matrix Â(L), and therefore

ŷt = Â(L)xt, which is an estimate of the left-hand side of (2.8),

(iv) Lastly, the estimates ût and R̂ are obtained by means of the first q standard

principal components of ŷt.

Inverting the matrix Â(L), we obtain the estimated version of (2.7):

χ̂̂χ̂χt =
[
Â(L)

]−1
R̂ût = B̂(L)ût = B̂0ût + B̂1ût−1 + · · · (2.9)

and the corresponding prediction equation for the common components at horizon h:

χ̂FHLZt+h|t = B̂hût + B̂h+1ût−1 + · · · . (2.10)
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Using ξ̂̂ξ̂ξt = xt − χ̂̂χ̂χt. Each of the variables ξ̂it can be predicted using univariate

methods and employed to predict xit:

x̂FHLZi,t+h|t = χ̂FHLZi,t+h|t + ξ̂FHLZi,t+h|t . (2.11)

Estimation of FHLZ requires determining: (i) the number of dynamic factors q,

(ii) the weights wk of the Kernel function and the lag-window size 2B + 1 for the

estimate Σ̂̂Σ̂Σx(θ), (iii) the degree of the matrix polynomials Âj(L), (iv) the dynamics

of the univariate model for ξ̂it, see Section 3.2.2 for details.

2.2.2 Infinite versus finite-dimensional factor space

No criterion or test has been developed so far about whether the data support finite

or infinite dimension for the space St spanned by the common components. The

methods based on finite and infinite dimension of the factor space are studied in the

present paper as alternative specifications for the dynamics of the common compo-

nents, and their relative merits are assessed by their performance in prediction.

As equation (2.6) holds irrespective of whether the space spanned by the variables

χit is infinite-dimensional or not, representation (2.6) is more general than (2.3).

However, for given n and T a finite-dimensional approximation might be competitive

in prediction even if the data were generated by a model with an infinite-dimensional

St. For example, in model (2.5) the coefficients di might be different but all very close

to some d. In this case, and using (2.4) with r = 1 could provide better predictions as

compared to the correctly specified model. On the other hand, with data generated

by (2.3) with a large r, the dynamic method could outperform the static method.

In Forni et al. (2017) the static and the dynamic methods have been applied

to simulated data in some Monte Carlo experiments. A summary of the results is

that: (i) when the data are generated by infinite-dimensional models like (2.5), the

estimation of impulse-response functions and predictions obtained by the dynamic

method are by far better than those obtained by the static method; (ii) when the data

are generated under the finite-dimension assumption, model (2.3), still the dynamic

method performs slightly better. In the present paper the comparison between the
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static and dynamic methods is conducted using empirical data, namely the U.S.

monthly macroeconomic dataset mentioned in the Introduction and fully described

in Section 3.

2.3 Static, frequency-domain method: FHLR

As recalled in the Introduction, the method FHLR assumes finite dimension of St but

uses generalized instead of standard principal components. The prediction equation

has the same shape as (2.4):

x̂FHLRi,t+h|t = α̂̂α̂αGih(L)F̂G
t + β̂Gih(L)xit, (2.12)

where F̂G
jt , j = 1, 2, . . . , r, denotes the j-th generalized principal components. Gener-

alized principal components are obtained by the same frequency-domain techniques

used in the estimation of FHLZ, see Forni et al. (2005) and Appendix ??.

Estimation of (2.4) requires determining: (i) the number of dynamic factors q,

the Kernel and the lag-window size for Σ̂̂Σ̂Σx(θ), like in FHLZ, (ii) the number r of

static factors, and the degree of α̂̂α̂αGih(L) and β̂Gih(L), like in SW. See Appendix ?? for

details.

We refer to SW and FHLR, which are based on representation (2.3), as static

methods, and to FHLZ, which is based on (2.6), as a dynamic method. On the

other hand, we also refer to FHLR and FHLZ as frequency-domain methods, as both

employ the spectral density matrix of the x’s, and to SW as a time-domain method.

2.4 Alternative Methods: 3PRF, DGR, DMGR

The three factor models presented above are also compared with three Alternative

Methods, two based on factors, one on Bayesian Regression.

3PRF. The Three-Pass Regression Filter, proposed in Kelly and Pruitt (2015), is

based on the idea that, given the factors spanning the factor space of the dataset, it is

possible to select those who are relevant in the prediction of a given target and discard

those which are target-irrelevant. The proposed procedure uses the covariances of
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the variables in the dataset with proxies for the relevant latent factors, the proxies

being observable variables either theoretically motivated or automatically selected.

DGR. In a standard finite-dimensional factor model, like in SW or FHLR, Doz

et al. (2011) show that the loadings and the factors can be consistently estimated by

Quasi-Maximum Likelihood. This estimation method is used here as an alternative

to SW.

DMGR. A Bayesian approach to forecasting with a large dataset is proposed in

De Mol et al. (2008). The paper studies Bayesian Regression methods under two

priors for the coefficients of the variables in the dataset, namely the Gaussian prior

and the double-exponential prior. The first prior favors a posterior mode solution in

which all variables in the panel have non-zero coefficients, while the second produces

a shrinkage of the dataset by selecting a few variables.

3 Data and Calibration of the Models

3.1 Data description, transformations, forecasts

The dataset consists of 115 U.S. macroeconomic and financial time series observed at

monthly frequency between January 1959 and August 2014. To achieve stationarity

the series are transformed into first difference of the logarithm (mainly real variables),

first difference of yearly difference of the logarithm (prices and wages), first difference

(interest rates). A few stationary series are taken in levels, see Appendix ?? for

details. No treatment for outliers is applied.

Let Zt = (Z1t Z2t · · · Znt)′ be the raw dataset, Xt = (X1t X2t · · · Xnt)
′ the

stationary result of the transformations of Zt just defined. As usual with Large-

Dimensional Dynamic Factor Models, estimation is carried out using the normalized

version of Xt (subtracting the mean and dividing by the standard deviation), here

denoted by xt = (x1t x2t · · · xnt).
We compute forecasts of xi,t+h, h = 6, 12, 24, for the methods SW, FHLZ, FHLR

and for a univariate AR. For all four methods we use a rolling ten-year window

[t− 119, t], and the models are re-estimated for each t.
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All the forecasts considered are obtained directly for each horizon h, not iterating

one-step ahead forecasts, see equation (2.4) for SW, (2.10) for FHLZ and (2.12) for

FHLR. Regarding the univariate AR, for each h we estimate xit = γih(L)xi,t−h + vit

and use x̂i,t+h|t = γ̂ih(L)xit. The same direct univariate method is used to obtain

ξ̂FHLZi,t+h|t for the idiosyncratic component estimated with FHLZ, so that (2.11) is also

a direct forecast.

The forecast of Xi,t+h is obtained by restoring the standard deviation and the

mean. The forecast at t and horizon h for the method m, with m ranging over SW,

FHLZ, FHLR and AR, is denoted by x̂mi,t+h|t or X̂m
i,t+h|t.

The targets of the final forecasts are usually defined in the literature using our

U.S. dataset as the level of the log of the Industrial Production Index (and of the

real variables) and the change, yearly or monthly, of the log of the Consumer Price

Index (and of prices and wages), see e.g. Stock and Watson (2002b), D’Agostino

and Giannone (2012). As Industrial Production, IPt = Z1t, is transformed by the

first difference of the logarithm, the target at time t+ h, denoted by T1,t+h|t, can be

written as T1,t+h|t = log IPt+h = X1,t+1 + · · ·+X1,t+h + log IPt, so that

T̂ m
1,t+h|t = X̂m

1,t+1|t + · · ·+ X̂m
1,t+h|t + log IPt, (3.1)

and the prediction error, normalized for the horizon’s length, is

FEm
1,t,h =

1

h

(
(X̂m

1,t+1|t −X1,t+1) + · · ·+ (X̂m
1,t+h|t −X1,t+h)

)
.

For the consumer price index CPIt = X77,t, which is transformed by (1 − L)(1 −
L12) log, the target is defined as T77,t+h|t = (1 − L12) log CPIt+h. Its forecasts are

obtained in the same way as T̂ m
1,t+h|t, see (3.1). For series that do not require trans-

formation the target is the series itself.

The sample is split into a calibration pre-sample, from February 1960 (some obser-

vations at the beginning of the sample are lost due to the difference transformations)

to January 1985, and the sample proper, from February 1985 to August 2014. The

ten years from February 1975 to January 1985 are used to produce the first forecasts
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within the sample proper. Thus we start by predicting July 1985, January 1986,

January 1987 for h = 6, 12, 24 respectively. The last forecast is August 2014 for all

horizons.

For each predictive model, the forecasting performance is evaluated by its mean

square forecast error (MSFE), which is defined as follows:

MSFEm
i,h =

1

(T1 − h)− T0 + 1

T1−h∑
τ=T0

[
FEm

i,τ,h

]2
, (3.2)

where T0 and T1 denote the first and the last dates either of the pre-sample (calibra-

tion) or the sample proper. Replacing the limits of the summation in (3.2) with any

time interval within the sample we can measure local forecasting performances.

3.2 Calibration

The pre-sample period, February 1960 to January 1985, is used to calibrate the

methods SW, FHLZ, FHLR and AR, i.e. to compare the forecasting performance of

different specifications for each method. The best specification is then used in the

sample for comparison between methods.

To illustrate calibration, consider for example the SW method and let i = 1,

Industrial Production. A crucial parameter is the number r of static factors. We can

determine it in different ways. In particular:

SW1. The number r of factors in the static form (2.3) is determined at each time

t using the ten-year window [t − 119, t], according to Bai and Ng’s criterion IC2,

see Bai and Ng (2002)2. No lags are allowed for the factors or the variable to be

predicted, thus the prediction equation is (2.4) with β̂ih(L) = 0 and α̂̂α̂αih(L) of degree

zero. The model is estimated over the window [t− 119, t] and the forecasts T̂ SW1

1,t+h|t

computed. As t+ h varies from 120 + h to the end of the pre-sample, we compute a

mean square forecast error for each horizon, call it MSFESW1
1,h .

SW2. The parameter r is kept fixed as the window moves in the pre-sample. Again,

2We have run some experiments with other criteria, such as Alessi et al. (2010), Onatski (2009),
with no significant differences.
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no lags for the factors or the variable to be predicted are allowed. With r varying

between, say, 3 and 7 we obtain five specifications with corresponding MSFESW2,j
1,h ,

j = 3, . . . , 7.

Note that different specifications can differ in the value of some parameters:

different fixed values of r in SW2, or in the procedure: for example, fixed r as

opposed to r determined by the Bai and Ng’s criterion. Moreover, each of the six

specifications above can be augmented by including lags of the predicted variable

and the factors in the prediction equation, see Section 3.2.1.

To compare specifications m1 and m2 of method m at horizon h = 6, 12, 24 for

the variable i, we use the ratio

RMSFE
m1/m2

i,h =
MSFEm1

i,h

MSFEm2
i,h

. (3.3)

Because in many cases no specification prevails uniformly across different horizons,

we choose according to the average of the ratio (3.3) over the three horizons. The

calibration procedure is limited to aggregate industrial production, IPt = Z1,t, and

consumer price, CPIt = Z77,t. The chosen specifications are then used, respectively,

in the forecast of disaggregated real and nominal variables.

3.2.1 Calibration of SW

It is easily seen that detailed consideration of all the alternatives leads to a large

number of specifications:

(i) Firstly, to determine r we can choose between SW1, with different possible criteria,

or SW2, with r independent of t, to be chosen in an interval of values.

(ii) Each of the alternatives in (i) should be combined with the alternatives in the

determination of the degree of the polynomial β̂ih(L), i.e. the criterion, AIC or BIC

in particular, and the maximum lag used in the criterion.

(iii) Same as in (ii) for the lags of the factors, i.e. the vector polynomial α̂̂α̂αih(L).

Again, there are alternative criteria and maximum lags.

(iv) Same as in (ii) with lags for both the factors and the predicted variable.
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(v) The polynomial degrees in (ii), (iii) and (iv) can be kept fixed as t moves and be

chosen within intervals of values.

An exploration of the “cartesian product” of the alternatives outlined above with

elementary methods is impossible. We limit ourselves to a recursive scheme. Firstly,

we choose the method to determine r by running SW1 and SW2, thus without lags

of the target or the factors. Then, we augment the selected specifications with lags

of the target, the factors, or both.

S1. For i = 1 (IP) and i = 77 (CPI), h = 6, 12, 24, we compute the ratios

RMSFE
m1/m2

i,h where: (1) m2 is SW2 with r equal to 5, (2) m1 is either SW1 or

SW2 with r = 1, . . . , 8. The results are reported in Table ??, Panel SW:S1. We

see that the best models are: (I) SW2 with r = 6 for IP with r = 7, 8 very close,

(II) SW2 with r = 5 for CPI, the second best being SW1. The two best models are

denoted by SW2(6) and SW2(5) respectively.

S2. We run the prediction equation (2.4) with r = 6, r = 5 for IP and CPI re-

spectively, augmented with lags for the predicted variable. The degree of β̂ih(L) is

determined by the AIC or the BIC criteria setting the maximum number of lags to

15. The results are reported in Appendix ??, Panel SW:S2 of Table ??, the bench-

mark for the RMSFE being SW2(6) for IP and SW2(5) for CPI. For both IP and

CPI the best result is obtained using the BIC criterion. On average they are worse

though not far from SW2(6) and SW2(5) respectively.

S3 and S4. The models SW2(6) and SW2(5) augmented with lags of the factors are

run. The degree of α̂̂α̂αih(L) is determined by the AIC and the BIC criteria setting

the maximum number of lags to 15. Again, the results are worse as compared to

SW2(6) and SW2(5). Lastly, SW2(6) and SW2(5) are augmented with both lags of

the factors and of the predicted variable. The results are very poor, see Appendix

??, Table ??, Panels SW:S3,S4.

In conclusion, our exploration of the space of possible SW specifications points

to SW2(6) and SW2(5) as good models for IP and CPI respectively. They are our

first choice for SW in the in-sample comparison.

Note that the same variables xit (stationary and normalized) are used to estimate

both the four models and the “original forecasts” x̂mi,t+h|t. The final forecasts T̂ m
1,t+h|t
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are obtained from x̂mi,t+h|t by restoring mean and standard deviation, and cumulating

if necessary. The same method is used in D’Agostino and Giannone (2012). An

alternative method is used in Stock and Watson (2002a). For example, the forecast

of log IPt+h is obtained by projecting log IPt+h − log IPt on the factors Ft (and lags)

and log IPt − log IPt−1 (and lags), thus without using the cumulation in equation

(3.1). Experiments with the alternative method for SW did not produce significant

differences in MSFESW
i,h , at all horizons, both in the pre-sample and the sample proper.

Lastly, let us remark that in our calibration we are not considering forecast com-

binations based on the “basic” specifications considered and compared above. For

example, we might average over the forecasts obtained by using different numbers of

factors or lags. Moreover, we might experiment with optimal combination weights

as opposed to simple averaging, see e.g. Timmermann (2006) for a review. However,

the results of some random attempts with forecasts combinations were not encour-

aging. On the other hand, calibration of SW and the other methods with basic

specifications is already fairly heavy, thus we decided to leave systematic exploration

of this possible improvement, for SW and the other methods, to future research.

3.2.2 Calibration of FHLZ, FHLR and AR

S1, ordering of the variables. FHLZ is based on equations (2.9) and (2.10), which are

obtained from inversion of the estimated version of (2.6). Now, a change in the order

of the variables xit and χit obviously causes a change in the matrices Aj(L) and Rj

in (2.6). However, under mild assumptions, see Forni et al. (2017), no change occurs

in the (infinite) moving average polynomials in (2.7). For example, the q moving

average polynomials of χ1t in (2.7), loading uft, f = 1, 2, . . . , q, do not change if the

variables χit, i = 2, . . . , q+ 1 are replaced by other variables in the first block of size

q + 1.

Things change when Aj(L) and Rj are replaced by their estimated counterparts

Âj(L) and R̂j. Because the idiosyncratic components have not yet been completely

erased and because their size is heterogeneous, each of the estimated polynomials in

(2.10) depends on the grouping of the variables xit and therefore on the ordering of
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the variables xit in the dataset.

Considering for example x1t, we have a large number of predictors, one for each

grouping of the variables xit into subvectors of dimension q + 1. Of course, choosing

the grouping corresponding to the order in which the dataset is delivered is arbi-

trary. On the other hand, as we argue in Forni et al. (2017), averaging over the

forecasts of x1t corresponding to all possible groupings we would obtain a forecast

that: (1) depends only on the variables in the dataset irrespective of their order,

(2) has an expected performance that is not worse as compared to that provided by

any single grouping.

Of course such an average is unfeasible for n large. Fortunately, as we show in

Appendix ??, averaging over Nper = 100 random permutations of the variables xit

we obtain (2) and a very good approximation to (1).

The remaining steps of the calibration of FHLZ determine the bandwidth pa-

rameter B and the degree of the (q + 1)-dimensional VAR’s. As the procedure goes

much in the same way as in the calibration of SW, the details are given in Appendix

??. The resulting specification uses the triangular Kernel, B = 30, q is determined

at each t by the Hallin-Lǐska criterion, the degree of the VAR’s is determined by the

AIC criterion with maximum lag 5.

Details on the calibration of FHLR can also be found in Appendix ??. The

selected specification uses the Triangular Kernel with B = 40, q is chosen at each

t with the Hallin-Lǐska criterion, r is fixed and equal to 6 and 5 for IP and CPI

respectively, the degree of α̂̂α̂αGih(L) is zero and β̂Gih(L) = 0.

Regarding AR, we determine the number of lags at each t, for each h, by the BIC

criterion with maximum lag 13. This is the best among several specifications both

in the pre-sample and the sample proper.

3.2.3 Calibration of 3PRF, DGR and DMGR

3PRF. We run the 3PRF in the automatic-proxies version, see Kelly and Pruitt

(2015), p. 299. Comparing the results, for IP and CPI, with different numbers of

proxies, in the pre-sample period we find values between 1 and 2, depending on
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the variable and the horizon. However, in the sample proper, the best results are

obtained with just one proxy.

DGR. Calibration in the pre-sample period points to a fixed number of static factors,

with r = 2 or 3 for IP, r = 4 or 5 for CPI (depending on the horizon). The best

results in the sample proper are obtained with r = 2 for IP and r = 4 for CPI.

DMGR. The model is calibrated in the pre-sample period by choosing the in-sample

residual variance corresponding to the best forecasting performance (see Table 2 in

De Mol et al. (2008)). The selected in-sample residual variance is: (i) 0.3 for IP, all

horizons, and CPI, h = 6 and h = 12, (ii) 0.4 for CPI, h=24.

4 Results

4.1 Industrial Production and Inflation

We now compare the performance of the factor models in the prediction of IP and

CPI over the sample starting in February 1985. For FHLZ and FHLR we stick to

the specifications selected in the previous section. For SW we ran in the sample

several of the specifications that were discarded in the pre-sample. None of them

outperforms SW2(5) for CPI. However, SW2(5) outperforms SW2(6) for IP, the latter

having been selected in the calibration. We report the results obtained with both

SW2(5) and SW2(6) for IP. However, when commenting on SW we always refer to

SW2(5), i.e. the specification performing better in the sample proper.

In Table 1 we report the average performance, measured by the RMSFE, of the

three factor models (and the Alternative Methods) relative to AR. We give results for

the Great Moderation, or pre-crisis period, starting with February 1985 and ending

at December 2007, the beginning of the Great Recession (from December 2007 to

June 2009), Panel A, and the full sample period, from February 1985 to September

2014, Panel B.

There are two strong reasons for splitting the sample. Firstly, IP, CPI and the

whole dataset exhibit marked instability during the Great Recession. Regarding

IP and CPI, this is clearly visible in the plot of the targets (1 − L) log(IP) and
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(1 − L)(1 − L12) log(CPI), see Figure 1, top graphs. We observe a marked change

in the mean of the first in the Great Recession. The second is stable in the mean,

though exhibiting two outliers. Regarding the whole dataset, a marked change in

its covariance structure is roughly but convincingly illustrated in the lower graph

of Figure 1, where we plot the sum of squares
∑t

τ=T0

∑115
i=1 x

2
iτ , for t running from

February 1985 to August 2014, the sample proper (recall that xiτ is the dataset after

transformation and normalization, see Section 3.1). We observe a steady growth

with a particularly sharp increase in the slope during the Great Recession.

Secondly, as a consequence of that instability, the relative forecasting performance

of the factor models and the AR changes dramatically during the Great Recession.

This is clearly illustrated in Figures 2 and 3. The solid line is the graph of the

difference between the Square Forecast Error with methods m1 and m2, FHLZ and

SW for example, relative to IP and CPI, at each horizon, normalized by its estimated

standard deviation and smoothed by a centered moving average of length M =

61, with the coefficients equal to 1/M . Giacomini and Rossi (2010) use it to test

against the null of equal local performance of two forecasting methods. The zero

horizontal line indicates equal performance, the dotted lines indicate the 5-percent

critical values, so that m1 outperforms (underperforms) m2 locally, at the 5-percent

significance level, when the solid line is below (above) the lower (upper) dashed line.

Because the moving averages are of length 61 and centered, the first and last 30

values are not computed or graphed.

In addition to testing for local equal performance, limiting the sample to the

relatively stable pre-crisis period, we use the Diebold-Mariano test (see Diebold and

Mariano (1995)) against the null of global equal performance of two predictors. Our

main results are:

IP. FHLZ outperforms the other three methods in the pre-crisis period on average

over the three horizons. It is slightly outperformed by FHLR at horizon 24,

see Panel A in Table 1. The null of equal performance with FHLZ, in the

pre-crisis period, is rejected for AR (at the 1% significance level), SW (at 5%

for horizon 6 and 12, 10% for horizon 24). It is also rejected at the 10% level
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for FHLR for horizons 6 and 12. All the p-values are reported in Table 2. The

performance of FHLZ is somewhat improving before the crisis with respect to

the three other methods at horizons 12 and 24, see Figure 2. During the crisis,

see again Figure 2, SW and FHLR behave significantly (Giacomini-Rossi test)

better than FHLZ and AR, while AR performs significantly better than FHLZ.

However, with the end of the crisis almost all the solid lines are clearly heading

back to the pre-crisis pattern. On average over the whole sample, FHLZ is

outperformed by FHLR and SW at horizons 6 and 12. All methods do better

than AR with the exception of SW at horizon 24, see Panel B in Table 1.

CPI. FHLZ outperforms the other three methods in the pre-crisis period on average

over the three horizons. It is however outperformed at horizon 24 by FHLR

and, slightly, SW, see Panel A in Table 1. The null of equal performance with

FHLZ, in the pre-crisis period, is rejected for AR (at levels 10%, 5% and 1%),

SW (at 10% for horizon 6 and 12). It is also rejected at the 10% level for

FHLR for horizon 6, see Table 2. In this case the crisis has a negative effect

on the performance of all three factor methods as compared to AR, see Figure

3. However, on average over the full sample, the best method remains FHLZ,

with the exception of horizon 24, for which it is outperformed by SW. In many

cases, though not as regularly as for IP, with the end of the crisis the solid lines

in Figure 3 go back to the pre-crisis pattern.

To understand our results let us recall that the factor models employed here are

based on the assumption of stationarity and co-stationarity (after suitable transfor-

mations) of the variables in the dataset, while the AR method only requires sta-

tionarity of the variable to be predicted. During the Great Moderation, when such

assumptions are by and large fulfilled, the relative performance of the factor models

and the AR change little, see again the pre-crisis period in Figures 2 and 3. In par-

ticular, FHLZ outperforms the other methods, consistently with the results obtained

with simulated stationary data in Forni et al. (2017). On the other hand, as soon as

the crisis breaks out, as already observed,

(I) The targets (1 − L) log(IP) and (1 − L)(1 − L12) log(CPI) exhibit unstable
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behavior, see again Figure 1, top graphs. Both the factor and the AR models

are affected.

(II) The autocovariance structure of the dataset changes abruptly, see again Figure

1, lower graph. This instability, affecting only the factor models, causes a

deterioration in the estimation of the factors and of the loadings, i.e. the

coefficients in (2.4), (2.10), (2.12).

In the case of CPI, where instability (I) is mild, all factor models loose ground

with respect to the AR model. FHLZ remains the best method in the full sample,

though by little with respect to AR. Moreover, the performance of the factor models

relative to one another does not change much.

In the case of IP, where the instability (I) is much more important. The AR

model, which is only based on the target, is strongly affected and its performance

looses ground with respect to FHLR and SW. On the other hand, FHLZ, which is

more dependent on the stationarity assumptions than the other factor models, looses

ground with respect to all other methods.

The results for 3PRF, DGR and DMGR, see Sections 2.4 and 3.2.3, are reported

in Table 1, last three columns.

IP. In the pre-crisis period 3PRF and DGR are very close on average to FHLR and

therefore outperform SW but are outperformed by FHLZ. DMGR is outper-

formed by AR. In the crisis period all the Alternative Methods perform poorly,

so that none of them outperforms on average AR in the full sample.

CPI. In the pre-crisis period 3PRF performs on average like FHLZ, this being the

result of a very good performance at horizon 24. DMGR and DGR perform like

SW. In the full-sample period DMGR performs extremely well at horizon 24

and, in spite of the bad performance at horizon 6, slightly outperforms FHLZ

on average.3

3Our result with DMGR on CPI, a good performance during the crisis as opposed to the great-
moderation period, is consistent with Table 2, p. 323 in De Mol et al. (2008), where the performance
is very good for the period 1971-1984 but poor for 1985-2002.
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Summing up, FHLZ is confirmed as the best method in the pre-crisis period both

for IP and CPI, FHLR as the best for IP in the full sample, while DMGR has the

best performance for CPI in the full sample.

4.2 Forecasting the whole dataset

We now extend the pseudo real-time comparison of our four methods to the whole

dataset. For some of the variables the AR method outperforms the factor models.

Precisely, we find that for 23 variables the AR outperforms by at least 10 percent all

the factor models for at least one prediction horizon. This subset of variables, which

includes housing, category 4 in Table ??, Appendix ??, is excluded.4

For real variables we use the specifications adopted for IP (we only ran SW2(5)),

while for the nominal variables those adopted for CPI. For every group of variables,

in Table 3 we report the mean RMSE within the group. The best performance is

given in bold. We see that FHLZ and FHLR generally perform better than SW, the

latter being the most accurate only for employment 6 and 12 steps ahead. All in all,

FHLR is more accurate for the real variables, i.e. IP, Employment, Unemployment

Rate, Inventories, while FHLZ is more accurate for nominal variables, i.e. Prices,

Wages, Interest Rates, Money and Stock Prices. For Exchange Rates and Wages

at horizon 12 the AR is still the most accurate model. Considering median values

rather than means we obtain similar results.

In Table 4 the distribution of the RMSE of the models is calculated excluding

the same variables as before. Only FHLZ improves at every horizon upon AR for

more than the half of the series. FHLR does so only 24-step ahead, is less accurate

than AR 6-step ahead by 4.1 percent and 2.1 percent 12-step ahead. Furthermore,

FHLZ is roughly as accurate as AR even at his 75-th percentile. SW is outperformed

by frequency domain models at most percentiles and horizons. Its performance

deteriorates as the predictive horizon increases while the contrary holds for FHLR

and FHLZ. Among the frequency domain methods FHLZ performs better at the

4This result holds for our monthly dataset. In other works, with quarterly datasets, dynamic
factor models are successfully applied to housing market data, see Luciani (2015), Stock and Watson
(2008) and Moench and Ng (2011).
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95-th percentile and FHLR is more accurate at the 5-th percentile.

5 Conclusions

The paper has compared the forecasting performance of FHLZ, FHLR, SW and AR

for a U.S. dataset including the Great Moderation, the Great Recession and the

subsequent recovery.

We find that during the Great Moderation, when the dataset is relatively stable,

FHLZ significantly prevails for both IP and CPI.

Over the full sample, the performance of FHLZ remains the best for CPI, though

all factor models loose ground with respect to the simple AR model. FHLR and SW,

in this order, become the best models for IP, thus exhibiting more robustness than

FHLZ in a situation where both the target variable and the whole dataset undergo

instability.

Forecasting each single series in the U.S. dataset for the full sample confirms the

above results, with FHLZ being the best method for the nominal variables, FHLR

for the real variables.

A robustness check of the results obtained with the U.S. data has been conducted

on a European dataset consisting of 176 macroeconomic and financial time series for

the Euro Area, observed at monthly frequency between January 1985 and August

2016, see Appendix ?? for details. The performance of the three factor models,

relative to one another, is confirmed in the pre-crisis period. In the full sample

FHLR is the best method, albeit slightly, for both IP (as with the U.S. dataset) and

CPI. However, with respect to the U.S. dataset, an important difference is the bad

performance of all the factor models relative to AR for CPI in the pre-crisis period.

See the results in Appendix ??.

Based on the data, U.S. and European, and the models employed in the present

paper: (a) In stable periods FHLZ can be strongly recommended for IP and CPI;

(b) when the data include unstable subperiods, such as the Great Recession, FHLR

can be recommended for IP, FHLZ and FHLR for CPI.

Instability is of course a major issue in forecasting. Its impact on factor estimation
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and factor-based forecasts has been studied and discussed in Stock and Watson

(2002a), D’Agostino et al. (2007), Banerjee et al. (2008), Stock and Watson (2009),

D’Agostino et al. (2013), Clements (2015). The present paper however is the first to

consider the effect of the Great Recession and the subsequent recovery in a pseudo

real-time forecasting exercise using factor models.5

5More recent research has focused on (i) detecting different forms of instability in factor models,
see e.g. Breitung and Eickmeier (2011), Han and Inoue (2014), Yamamoto and Tanaka (2015),
Chen et al. (2014), Barigozzi et al. (2016), (ii) consistent factor estimation under breaks, Bates
et al. (2013), Ma and Su (2016), Cheng et al. (2016), Massacci (2016), (iii) modeling time varying
factor models Del Negro and Otrok (2008), Mikkelsen et al. (2015). However, in our knowledge, no
attempt has been made so far to use these models in a pseudo real-time forecasting exercise.
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Table 1: Mean Square Forecast Error Relative to AR for U.S. data

PANEL A: Pre Crisis (1985 : 1 - 2007 : 11)

IP

FHLZ FHLR SW2(5) SW2(6) 3PRF1 DMGR DGR2

h = 6 0.85 0.97 1.05 1.06 0.95 0.97 0.95

h = 12 0.90 0.99 1.10 1.19 0.99 1.05 0.97

h = 24 0.97 0.96 1.14 1.32 1.02 1.31 1.04

mean 0.90 0.98 1.10 1.19 0.99 1.11 0.99

CPI

FHLZ FHLR SW2(5) 3PRF1 DMGR DGR4

h = 6 0.92 1.02 1.04 0.96 1.01 1.01

h = 12 0.84 0.94 1.02 0.89 0.92 0.99

h = 24 0.86 0.82 0.85 0.78 0.96 0.88

mean 0.87 0.93 0.97 0.88 0.96 0.96

PANEL B: Full Sample (1985 : 1 - 2014 : 8)

IP

FHLZ FHLR SW2(5) SW2(6) 3PRF1 DMGR DGR2

h = 6 0.95 0.87 0.86 0.90 1.09 0.97 1.14

h = 12 0.94 0.88 0.86 0.98 0.99 1.09 1.11

h = 24 0.97 0.93 1.06 1.17 0.97 1.09 1.03

mean 0.95 0.89 0.93 1.02 1.02 1.05 1.09

CPI

FHLZ FHLR SW2(5) 3PRF1 DMGR DGR4

h = 6 0.95 1.09 1.14 0.99 1.04 1.19

h = 12 0.98 1.15 1.06 1.00 0.98 1.17

h = 24 1.04 1.01 0.95 1.02 0.90 1.10

mean 0.99 1.08 1.05 1.00 0.97 1.15

Notes. Mean Square Forecast Error (MSFE), relative to AR, for IP and CPI, in the Pre-Crisis

and the Full-Sample periods. For IP we display both the results of SW2(6), the method selected

in the calibration sample, and SW2(5). The methods compared are the three factor models and

the three Alternative Methods. The best result for each horizon, over all methods, in bold.
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Table 2: Diebold-Mariano test for the pre-crisis period: p-values

IP
FHLZ vs SW2 (5) FHLR vs SW2 (5) FHLZ vs FHLR FHLZ vs AR FHLR vs AR SW2 (5) vs AR SW2 (6) vs AR

h=6 0.05 0.03 0.10 0.00 0.44 0.68 0.72
h=12 0.05 0.03 0.11 0.00 0.48 0.78 0.94
h=24 0.07 0.04 0.56 0.09 0.25 0.91 0.98

CPI
FHLZ vs SW FHLR vs SW FHLZ vs FHLR FHLZ vs AR FHLR vs AR SW vs AR

h=6 0.07 0.22 0.08 0.09 0.53 0.58
h=12 0.07 0.02 0.15 0.02 0.31 0.53
h=24 0.52 0.32 0.60 0.01 0.17 0.26

Notes. Due to instability, the Diebold-Mariano p-values are not computed for the full

sample.
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Table 3: Mean MSFE, relative to AR, by category

FHLZ

h = 6 h = 12 h = 24

IP∗ 0.95 0.92 0.98

Employment 1.13 1.07 0.98

Unemployment Rate 0.87 0.91 0.94

Inventories 1.00 0.93 0.98

Prices 0.98 1.01 0.99

Wages 0.98 0.99 0.99

Interest Rates 0.99 0.98 0.95

Money 0.87 0.86 0.75

Exchange Rates 1.01 1.01 1.01

Stock Prices 0.97 0.97 0.94

FHLR

h = 6 h = 12 h = 24

IP∗ 0.93 0.90 0.97

Employment 0.98 0.95 0.91

Unemployment Rate 0.67 0.72 0.85

Inventories 0.95 0.89 0.97

Prices 1.11 1.15 1.03

Wages 1.08 1.05 0.97

Interest Rates 1.12 1.14 1.07

Money 0.90 0.93 0.79

Exchange Rates 1.07 1.07 1.01

Stock Prices 1.02 1.09 1.01

SW

h = 6 h = 12 h = 24

IP∗ 0.95 0.91 1.11

Employment 0.94 0.94 1.00

Unemployment Rate 0.68 0.74 0.97

Inventories 1.04 0.97 1.24

Prices 1.22 1.16 1.07

Wages 1.15 1.12 1.12

Interest Rates 1.32 1.52 1.55

Money 0.98 0.94 0.88

Exchange Rates 1.18 1.15 1.14

Stock Prices 1.25 1.34 1.30

Notes. MSFE, relative to AR, in the full sample, averaged over the variables belonging to each

category (23 variables are excluded, see Section 4.2). The three factor models are compared. For

SW the specification is SW2(5). The best result for each horizon, over the three methods, in bold.

IP* denotes the series belonging to Category 2, see Table ?? in Appendix ??.
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Table 4: Distribution MSFE relative to AR

FHLZ

Percentile: 0.05 0.25 0.50 0.75 0.95

h = 6 0.82 0.92 0.99 1.02 1.22

h = 12 0.84 0.92 0.98 1.01 1.14

h = 24 0.82 0.94 0.98 1.01 1.07

FHLR

Percentile: 0.05 0.25 0.50 0.75 0.95

h = 6 0.64 0.93 1.04 1.12 1.18

h = 12 0.67 0.91 1.02 1.14 1.26

h = 24 0.77 0.90 0.98 1.06 1.21

SW

Percentile: 0.05 0.25 0.50 0.75 0.95

h = 6 0.65 0.95 1.12 1.23 1.38

h = 12 0.67 0.91 1.07 1.19 1.61

h = 24 0.73 0.96 1.07 1.29 1.63

Notes. Distribution of MSFE, relative to AR, in the full sample, over 92 variables belonging to

the dataset (like in Table 3, 23 variables are excluded, see Section 4.2).
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Figure 1: Instability of IP, CPI and the whole dataset in the Great Recession
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Notes. In the top graphs the variables x1t = (1 − L) log IPt and x77,t = (1 − L)(1 −
L12) log CPIt (recession periods in grey). Both show a marked departure from the station-
arity assumption during the Great Recession. Rough evidence of the instability of the whole
dataset is given in the lower graph, showing the cumulated sum of

∑
i x

2
iτ , i = 1, . . . , 115,

τ = 1, . . . , t.
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Figure 2: Fluctuation test (IP)
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Notes. Fluctuation test statistic: Solid. 5 % critical value: Dotted. If the solid is below the
dotted (zero) line the first method is significantly better (better) than the second, and vice versa.
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Figure 3: Fluctuation test (CPI)
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Notes. Fluctuation test statistic: Solid. 5 % critical value: Dotted. If the solid is below the
dotted (zero) line the first method is significantly better (better) than the second, and vice versa.
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