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ABSTRACT: 19 

Widespread use of organic chemicals in household and personal care product (HPCPs) and their 20 

discharge into aquatic systems means reliable, robust techniques to monitor environmental 21 

concentrations are needed. The passive sampling approach of diffusive gradients in thin-films (DGT) 22 

is developed here and demonstrated to provide in situ quantitative and time-weighted average (TWA) 23 

measurement of these chemicals in waters. The novel technique is developed for HPCPs, including 24 

preservatives, antioxidants and disinfectants, by evaluating the performance of different binding 25 

agents. Ultrasonic extraction of binding resin gels in acetonitrile gave good and consistent recoveries 26 

for all test chemicals. Uptake by DGT with HLB (hydrophilic-lipophilic-balanced) as the binding 27 

agent was relatively independent of pH (3.5-9.5), ionic strength (0.001-0.1 M) and dissolved organic 28 

matter (0-20 mg L-1), making it suitable for applications across a wide range of environments. 29 

Deployment time and diffusion layer thickness dependence experiments confirmed DGT 30 

accumulated chemicals masses are consistent with theoretical predictions. The technique was further 31 

tested and applied in the influent and effluent of a wastewater treatment plant. Results were compared 32 

with conventional grab-sampling and 24-hour-composited samples from auto-samplers. DGT provided 33 

TWA concentrations over up to 18 days deployment, with minimal effects from biofouling or the diffusive 34 

boundary layer. The field application demonstrated advantages of the DGT technique: it gives in 35 

situ analyte pre-concentration in a simple matrix, with more quantitative measurement of the 36 

HPCP analytes. 37 

38 
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1. INTRODUCTION 39 

Household and personal care products (HPCPs) and pharmaceuticals contain a broad range of trace 40 

organic chemicals (TOrCs),1 including preservatives, antioxidants and disinfectants that are designed 41 

to enhance the quality of life.2 With worldwide consumer spending and the availability of these 42 

products increasing, the global production and usage of many of these chemicals has continued to 43 

increase. For example, >10 million tonnes of pharmaceuticals were sold in 2012 and $213 billion was 44 

spent on HPCPs in 2013 (estimated from ESRI 20123 and ChinaIRN 20124). The organic chemicals 45 

used in these products can potentially enter the environment via wastewater treatment plants 46 

(WWTPs) or direct discharge of household wastewater5 and are considered to effectively and 47 

constantly be emitted into the environment via wastewater streams.6 Possible adverse effects7 on 48 

aquatic organisms is a potential concern. Measurement and monitoring are essential to understand 49 

their fate and behaviour,8 to provide data to evaluate potential risks to ecosystems and human health. 50 

Passive sampling has seen a rise in availability and popularity for monitoring programmes,9, 10 51 

although conventional grab sampling is still considered ‘the norm’.11 It provides an in situ 52 

measurement of time-weighted average (TWA) concentrations.9, 12 There are other advantages, such 53 

as increased sensitivity,12 reducing/eliminating matrix interferences, saving time and solvent 54 

consumption.13 It can minimise sample contamination due to pre-concentration, and minimise 55 

decomposition/degradation or loss/change in post-sampling transport and storage.12 Many existing 56 

passive samplers require in situ and/or laboratory calibration,9, 14 and are dependent on the 57 

hydrodynamic conditions.15, 16 Such factors can result in considerable measurement uncertainty.9, 14 58 
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Performance reference compounds (PRCs) are therefore used to provide calibration data to assess the 59 

difference between in situ sampling rates (RS) and laboratory derived values,14, 17, 18 but this is still 60 

problematic for polar chemicals. 61 

The technique of diffusive gradients in thin-films (DGT) has provided quantitative in situ 62 

measurements of trace chemicals in aqueous systems without calibration because transport of the 63 

analyte from water to the sampler’s binding gel is controlled by molecular diffusion through the 64 

diffusive layer.19, 20 The principle of the DGT sampler, based on Fick’s first law of diffusion, has been 65 

widely reported previously.20, 21 The analyte concentration in the sampled water derived from DGT, 66 

CDGT, is expressed using Equation (1):20 67 

DAt

gM
C

)(
DGT


           (1) 68 

where M is the measured mass of target chemical accumulated in the binding gel, ∆g is the thickness 69 

of the diffusive gel layer, δ is the thickness of diffusive boundary layer (DBL), D is the diffusion 70 

coefficient of target chemical in the diffusive gel layer, t is the exposure time and A is the exposure 71 

area of the sampler. ∆g is much thicker than the typical environmental DBL thickness under most 72 

conditions, so the influence of the environmental DBL becomes negligible, making the DGT 73 

measurement fairly insensitive to hydrodynamic conditions.20, 21 Equation (1) therefore simplifies to: 74 

DAt

gM
C


DGT            (2) 75 

Theoretically, DGT can be applied to any inorganic or organic diffusing species,19 although most 76 

research so far has focused on the measurement of inorganic substances,21, 22 More recently, some 77 

studies have demonstrated applications for organic substances such as antibiotics,23-25 phenol and 78 

4-chlorophenol (4-CP),26, 27 bisphenols (BPs),28 glyphosate and aminomethyl phosphonic acid,29 and 79 
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other polar organic contaminants in WWTPs.30 Thus, the possibility of a DGT sampler for the wide 80 

family of HPCPs-preservatives, antioxidants and disinfectants is of great interest. 81 

The aim of this study was to develop and apply a new DGT technique for a wide range of organic 82 

chemicals in waters. Thirteen different chemicals were used to systematically test different gels and 83 

DGT samplers under various conditions of pH, ionic strength (IS) and dissolved organic matter 84 

(DOM). The developed DGT sampler was deployed in a WWTP, alongside conventional sampling 85 

techniques, to assess its application under challenging conditions. 86 

2. MATERIALS AND METHODS 87 

2.1 Chemicals and Reagents 88 

Compounds were selected to represent a range of HPCP ingredients. High purity chemical standards 89 

were purchased from Sigma-Aldrich (UK). They covered 7 preservatives and one of their metabolites, 90 

2 antioxidant and 3 disinfectants, as follows: methylparaben (MEP), ethylparaben (ETP), 91 

propylparaben (PRP), isopropylparaben (IPRP), butylparaben (BUP), benzylparaben (BEP), heptyl 92 

paraben (HEP) and 4-hydroxybenzoic acid (PHBA), butylated hydroxyanisole (BHA) and butylated 93 

hydroxytoluene (BHT), and ortho-phenylphenol (OPP), triclosan (TCS) and triclocarban (TCC). Six 94 

of them - MEP, PRP, IPRP, BHA, OPP and TCS - were selected as the test chemicals for the 95 

laboratory performance tests. Stable isotope-labelled internal standards (SIL-ISs) were purchased 96 

from Sigma-Aldrich (UK) and QMX Laboratories (UK). Details of the chemicals, SIL-ISs, reagents, 97 

materials and sample handling are given in the Supporting Information (SI text and Table S1). 98 
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2.2 Diffusive and Binding Gel Preparation 99 

Three resins, HLB (Waters, UK), XAD18 (Dow, USA) and Strata-XL-A (SXLA, Phenomenex, UK), 100 

were tested for their suitability as the binding gel. Information on the three resins is given in Table 101 

S2. The resins were thoroughly washed with Milli-Q (MQ) water and then immersed in methanol 102 

followed by MQ water wash before using them to make binding gels. Polyacrylamide diffusive gels 103 

(PA), agarose diffusive gels (AG, 1.5%) and binding gels were prepared according to well 104 

documented procedures.23, 31 All the gel sheets were then cut into 2.5 cm diameter disks and stored in 105 

0.01 M NaCl solution at 4 ℃ before use. 106 

2.3 Chemical Analysis and Detection Limits 107 

A Thermo Finnigan high performance liquid chromatography (HPLC) system coupled with a 108 

photodiode array detector (DAD) was employed to analyse the test chemicals in both water and DGT 109 

samples for all the laboratory experiments, where higher levels with cleaner matrices were used 110 

(details of analysis provided in SI). Wastewater and field DGT samples were analysed by liquid 111 

chromatography-tandem mass spectrometry (LC-MS/MS, Waters, UK) using published procedures32 112 

for all HPCPs (details of pre-treatment and instrumental analysis given in the SI). The instrumental 113 

detection limits (IDLs) for HPLC-DAD and LC-MS/MS were calculated based on the signal/noise 114 

ratio (S/N) >3; method detection limits (MDLs) were calculated based on IDLs, the concentration 115 

factors and the absolute recoveries for water and DGT samples.32 Both IDLs and MDLs are listed in 116 

Table S3. 117 
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2.4 Performance Testing of DGT in the Laboratory 118 

2.4.1 Adsorption by DGT holders, diffusive gels and membrane filters 119 

Materials which were used for making DGT devices were assessed for possible adsorption of test 120 

chemicals. The plastic DGT holder (piston and cap), two diffusive gels (PA and AG), five membrane 121 

filters (polyethenesulfone membrane, PES; Nuclepore track-etch membrane, PC; cyclopore track 122 

etched membrane, PC1; Nuclepore polycarbonate membrane, PC2; cellulose nitrate membrane, 123 

CNM; details given in SI) were immersed in solution containing ca. 100 μg L-1 of test chemicals and 124 

shaken for 24 h on an orbital shaker at 80 rpm (Orbital, DOS-20L, Sky Line, ELMI). The amounts of 125 

chemicals adsorbed by these materials were calculated by mass balance from concentrations in the 126 

solutions before and after exposure. 127 

2.4.2 Optimisation of binding gel extraction recoveries 128 

HLB binding gel was used to optimise the extraction procedure. HLB binding gels were added into 129 

10 mL of ca. 250 μg L-1 test chemicals and shaken for 24 h. They were then taken out and placed into 130 

15 mL vials with 5 mL ACN added each time before ultrasonic extraction for 15 or 30 min with 131 

either one or two extractions. Once the extraction procedure was optimised for HLB binding gel, the 132 

extraction recoveries were further tested at two other concentrations (ca. 100 and 500 μg L-1) with all 133 

three binding gels (HLB, XAD18 and SXLA), to confirm whether stable recoveries could be 134 

achieved with a wide range of exposure concentrations. 135 
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2.4.3 Uptake capacity of DGT and binding gel uptake kinetics 136 

DGT devices with binding gel in front of the diffusive gel were exposed to 50 mL solutions of 137 

various concentrations of test chemicals up to ca. 10 mg L-1. All the solutions (pH = 6 or 8) were 138 

shaken for 24 h at room temperature (20±2 ℃). The amounts of test chemicals adsorbed by binding 139 

gels were calculated according to the concentration differences before and after the experiment. 140 

The kinetics of HPCP uptake to the binding gels was investigated by immersing gel discs in solutions 141 

for different times. Gel discs were placed in 20 mL of ca. 200 μg L-1 HPCPs solutions (IS = 0.01 M 142 

and pH = 6.8±0.1) and shaken at 80 rpm (Orbital, DOS-20L, Sky Line, ELMI), and 0.1 mL samples 143 

were collected at different times for a period of 24 h. 144 

2.4.4 Diffusion coefficient measurements 145 

A diffusion cell containing two compartments (source and receptor) connected by a circular window 146 

(1.5 cm diameter) with a 0.8 mm diffusive gel (AG gel without filter) was used to measure the 147 

diffusion coefficients (D) of test chemicals according to a published procedure.31 Both compartments 148 

were filled with 100 mL of 0.01 M NaCl solution (pH = 6.8±0.1). The test chemicals were spiked 149 

into the source compartment (ca. 3000 μg L-1 for each chemical). The solutions in both compartments 150 

were well-stirred during the experiment. Samples (0.1 mL) from both compartments were collected 151 

and analysed by HPLC-DAD at intervals of 60 min for the first 3 h and then subsequently at 30 min 152 

intervals for the next 8-9 h. The slope (k) of the linear plot of the test chemical mass (M) diffused into 153 

the receiving compartment versus time (t) was used to calculate D, according to Equation (3): 154 



10 

ss AC

gk
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            (3) 155 

where Cs is the test chemical concentration in the source solution, As is the window area of the 156 

diffusion cell, and ∆g′ is the thickness of the diffusion gel. The experiments were conducted in a 157 

temperature-controlled room at 15, 20 and 25 ℃ (any temperature change during the experiment was 158 

<0.5 ℃). 159 

2.4.5 Time and diffusion layer thickness dependence 160 

DGT devices were deployed in stirred solutions (IS = 0.01 M, pH = 6.8±0.2 at 24±2 ℃) of ca. 50 μg 161 

L-1 test chemicals for different durations up to 5 days. After retrieval the resin gel layer was extracted 162 

using the optimised procedure in Section 2.4.2. The mass of test chemicals accumulated in binding 163 

gels was then determined. 164 

HLB-DGT devices with various thicknesses of diffusive gels (0.5 to 2.0 mm) were used to test the 165 

DGT principle. They were deployed in a well-stirred solution (IS = 0.01 M, pH = 6.8±0.2 at 24±2 ℃) 166 

of ca. 60 μg L-1 HPCPs for 20 h. After the experiment, the test chemicals in the resin gels were 167 

extracted and analysed. 168 

2.4.6 Effect of pH, IS and DOM 169 

The performance of DGT was tested at a wide range of pH (3.5-9.5), IS (0.001-0.5 M) and DOM 170 

(0-20 mg L-1). The devices were deployed in 2 L of ca. 100 μg L-1 test chemical solutions (20±2 ℃) 171 

for 20 h. The CDGT was calculated using Equation (2), and the ratio of CDGT to the directly measured 172 

concentration (Cb) of test chemicals in the bulk solution was used to evaluate the performance of 173 
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DGT. The ratio of CDGT/Cb ranged from 0.9 to 1.1 indicating the good performance of DGT. 174 

2.5 In situ Measurements in a WWTP 175 

To test the applicability of DGT in field conditions, DGT devices were deployed in situ at a WWTP 176 

in the UK. The devices were located ca. 30 cm below the water surface in influent and effluent 177 

channels for up to 4 weeks. DGT samplers were retrieved at day 4, 7, 10, 14, 18, 21 and 28 from each 178 

site (if the samplers were not lost), rinsed with MQ water and then sealed in a clean plastic bag for 179 

transport. The DBL thicknesses were estimated by deploying DGT devices with different thicknesses 180 

of diffusive gels (0.35, 0.5, 1, 1.5 and 2 mm) at the same sites for 8 days. On arrival at the laboratory, 181 

the binding gels of DGT devices were taken out and extracted. Field blanks of DGT were prepared 182 

and taken to the WWTP without deployment. All-weather refrigerated automatic samplers (SIGMA 183 

SD900) were also installed to collect the influent and effluent in the WWTP. They were set on 184 

constant flow mode (~100 mL h-1) to provide a 24-hour composite water sample (auto-sample, 2.4 L 185 

sample-1) every day for 3 weeks. Grab samples were also collected at about 10~11 am on the first and 186 

last day of the week during the DGT deployment for 2 weeks, using 1 L pre-cleaned amber bottles. 187 

The water temperature, pH and weather conditions were recorded when samples were taken (see 188 

Table S4 for details). Detailed description of the pre-treatment of wastewater and field DGT samples 189 

and LC- MS/MS analysis is given in the SI. 190 

3. RESULTS AND DISCUSSIONS 191 
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3.1 Adsorption by DGT Holders, Diffusive Gels and Membrane Filters 192 

The results of the adsorption experiments (Figure S1) demonstrate that there was no significant 193 

adsorption (ANOVA, p> 0.05) by the DGT holders for all the test chemicals. No significant 194 

adsorption by PA or AG diffusive gels was observed; AG gel also showed no significant adsorption 195 

and gave the best reproducibility when all the test compounds were considered (see Figure S1). PES 196 

filters (those typically used for POCIS and Chemcatcher33) and CNM filters, significantly adsorbed 197 

all the test chemicals (nearly 100% absorbed by PES and 50% by CNM), while moderate adsorption 198 

was observed for PC1 filters (34%), PC2 filters (12%) and very slight adsorption by PC filter (< 5% 199 

on average). Thus, AG gel (1.5%) and the PC filter were selected as the diffusive gel and filter in the 200 

subsequent experiments. 201 

3.2 Optimisation of Gel Extraction Recoveries 202 

Optimisation of the extraction procedure based on HLB binding gels demonstrated that, for most of 203 

the test chemicals, the average extraction recoveries were in the order: a single 15 min extraction < 204 

two 15 min extractions < one 30 min extraction = two 30 min extractions (Figure S2). Thus, a simple 205 

procedure of a single 30 min ultrasonic extraction by 5 mL ACN was selected since it provides good 206 

and stable recoveries across a range of exposure concentrations (Table S5 and Figure S3). 207 

3.3 Binding Capacity of DGT and Uptake Kinetics of Binding Gel 208 

The results obtained from the capacity experiments showed that the uptake of all test chemicals 209 

increased linearly up to about 2 mg L-1 solution concentration for both pH 6 and 8 (Figure S4). No 210 
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significant differences were observed between the two pHs and between the three resins. 211 

The linear parts of the curves were used to estimate the capacities of the DGT devices. Results 212 

(Table S6) ranged from 11 (MEP) to 97 (TCS) μg; no systematic difference was observed between 213 

DGT devices with different binding gels or between two different pH values for most test chemicals. 214 

Based on these capacities, the maximum HPCPs concentrations in waters that could be measured by 215 

DGT were calculated using Equation (2). Results ranged from 44 (MEP) to 670 (TCS) μg L-1 if the 216 

deployment time was 2 weeks. If the deployment time was 1 month, they would range from 21 (MEP) 217 

to 310 (TCS) μg L-1. In most situations, HPCP concentrations in waters would be <10 μg L-1. The 218 

capacities of DGT devices are therefore more than adequate for monitoring HPCPs chemicals in 219 

polluted environments. 220 

The results of binding kinetics (Figure 1 and Figure S5) showed that the uptake of test chemicals by 221 

each resin gel increased rapidly with time for the first hour (ca. 60% uptake), followed by more 222 

gradual uptake. The uptake onto XAD18 resin gel was slightly faster than that of the HLB resin gel 223 

and much faster than that of SXLA resin gel (except for MEP). The rapid initial uptake is the key 224 

aspect to enable fully quantitative performance of DGT, which requires zero concentration at the 225 

resin gel/diffusive gel interface. According to Fick’s law of diffusion, the minimum uptake amount 226 

by the resin gel for the first 5 minutes is about 10 ng. The results presented in Figure 1 show minima 227 

of 50 ng for all test chemicals and for all three types of resin gels; higher values for XAD18 and HLB 228 

gels indicate they are more suitable for use as the binding phases than SXLA. 229 
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Figure 1: Binding kinetics of PRP, BHA and OPP by HLB, XAD18 and SXLA resin gels in 20 mL solutions of ca. 231 

200 μg L-1 test chemicals (IS = 0.01 M, pH = 6.8±0.1, T = 20±2 ℃; n=3). Error bars were calculated from the 232 

standard deviation (SD) of three replicates. 233 

3.4 Diffusion Coefficient Measurement 234 

The measured D values of test chemicals at 25 ℃ (D25) were calculated using Equation (3), based on 235 

the k values obtained from the diffusion cell experiments (Figure S6). The D values at other 236 

temperatures (DT) can be estimated using Equation (4)20.  237 

298

)273(
log

109

)25(1035.8)25(37023.1
log 25

24

T

TD

T

TT
D











    (4) 238 

D values were calculated from 1 to 35 ℃ and these are listed in Table S7. Measurements at 15 and 239 

20 ℃ were also carried out to compare with the calculated values. The measured D values at both 15 and 240 

20 ℃ (Table S7) were within 10% of the calculated values, indicating the accuracy of D measurement in 241 

this study. For D value variations of +/- 10%, the effect on the weighted average calculations is between 242 

+11% and -9%. 243 

3.5 Time and Diffusion Layer Thickness Dependence 244 

The experiments of DGT time dependence and diffusion layer thickness dependence are important 245 

for confirming the validity of the DGT principle for the test chemicals. The results (Figures 2a-b 246 

and S7) showed that DGT with HLB resin gel can simultaneously accumulate test chemicals linearly 247 
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with the deployment time (R2 ranged from 0.9853 to 0.9995, p<0.001) and agreed well with the 248 

theoretical prediction. DGT devices with XAD and SXLA gels also accumulate the chemicals 249 

linearly with deployment time, but accumulating lesser amounts than theoretical prediction (Figure 250 

S7, discussion in SI). The possible reasons could be competitive binding of chemicals on XAD18 251 

and SXLA resin gels (it has been confirmed by the time dependence experiment using individual 252 

compound). These results indicate that only DGT with HLB can measure the test chemicals 253 

accurately with confidence. Therefore, DGT with HLB as binding phase was selected for the 254 

subsequent laboratory tests and field applications. 255 

According to the principles of DGT, the accumulated mass on the resin gel should be inversely 256 

proportional to the diffusion layer thickness when DGT devices were exposed to a well-stirred 257 

solution for a fixed duration. Data for PRP and OPP are shown in Figure 2c-d as examples (full data 258 

given in Figure S8) and agreed well with theoretical predictions. The results also demonstrate that 259 

the DBL effect can be ignored in a well-stirred solution. The good fits of measured mass to the 260 

predicted line confirm the use of appropriate D values in water. 261 
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Figure 2: Measured masses of PRP and OPP in HLB, XAD18 and SXLA-DGT devices deployed in well stirred 263 

solution for different time (a-b, n=3) and in HLB-DGT devices with various diffusion layer thicknesses after 20 264 

hours (c-d, n=3). The solid lines are theoretical lines predicted by Equation (2). Error bars: 1 SD. 265 

3.6 Effect of pH, Ionic Strength and DOM 266 

No significant pH effect on DGT uptake of test chemicals was observed (Figure S9). For the 267 

majority of test chemicals, CDGT/Cb was between 0.9 and 1.1 when pH ranged from 3.5 to 9.5 (the 268 

averages of CDGT/Cb values at all pH for individual chemicals were in the range of 0.97-1.08, Table 269 

S8). No significant difference (ANOVA, p>0.05) of the CDGT/Cb was observed, although there was a 270 

slight decline of CDGT/Cb at the highest pH (9.5). The only exception was for TCS (Table S8): the 271 

CDGT/Cb values at all pH were <0.90, but no significant difference (ANOVA, p>0.05) of the CDGT/Cb 272 
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was found between different pH values (0.85 on average). These findings demonstrate that DGT 273 

performance is generally independent of solution pH between 3.5 and 9.5 for the majority of test 274 

chemicals and DGT can be directly applied to their measurements in most of the field conditions 275 

across this range of pH values. 276 

The effect of IS on DGT performance is shown in Figure S10. No significant differences (ANOVA, 277 

p>0.05) of CDGT/Cb were observed for the majority of test chemicals when the IS concentration was 278 

0.001-0.1 M, and the values fell between 0.9-1.1 (data in Table S8), except for BHA and TCS. A 279 

significant reduction in CDGT/Cb (>10%) was observed when IS increased to 0.5 M. A possible reason 280 

for the decline was that the test chemicals were less bound to the resin gels due to competition with 281 

other major ions (e.g. Cl-). A similar phenomenon was previously observed when XAD18 was used 282 

as the resin for antibiotics,23 when uptake to the binding gel decreased with increasing IS. This result 283 

is also consistent with Togola and Budzinski’s study on POCIS uptake of pharmaceuticals34 and 284 

Zheng et al.’s study on DGT performance for BPs when IS increased to 0.5 M.28 However, the results 285 

are not consistent with Zhang et al.’s study of HLB-POCIS on endocrine disrupting chemicals (EDCs) 286 

where RS did not vary significantly with changing salinity from 0-3.5%35 and also contrasts with 287 

Dong et al.’s research on 4-CP; they demonstrated that the ratio of CDGT/Cb increased when IS 288 

concentration increased from 0.1 to 0.7 M.27 Our results indicate that the DGT device with HLB resin 289 

as binding phase is suitable for use in freshwater, but further work is needed on the effect of IS 290 

before quantitative applications in seawater. 291 

There was no significant effect of DOM on DGT measurements in this study. The ratios of CDGT/Cb 292 

for most test chemicals were within the range of 0.9-1.1, when the DOM concentrations increase 293 

http://www.hormone.org/hormones-and-health/scientific-statements/edcs
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from 0 to 20 mg L-1 (Figure S11). However, for TCS, the ratios of CDGT/Cb were always <0.9 and 294 

decreased with increasing DOM. DOM tends to bind relatively hydrophobic organic compounds 295 

(HOCs)36, 37 (log Kow for TCS is 4.66, see Table S1); this makes it difficult for the bound compound 296 

to pass through the diffusive layer38 (smaller CDGT). The other test chemicals are less hydrophobic, 297 

with log Kow values in the range 2 to 3.3 (see Table S1), so less effect of DOM is expected. This 298 

result for the majority of test chemicals is consistent with Charlestra et al’s19 study on pesticides 299 

uptake by HLB-POCIS with varying dissolved organic carbon (DOC) contents. They demonstrated 300 

no significant differences when DOC varied between <0.1 and 4.5 mg L-1. Li et al.39 demonstrated an 301 

increase in uptake of polar organic chemicals by HLB-POCIS when DOM increased from 3.3 to 4.9 302 

mg L-1. However, Dong et al27 demonstrated reduced ratios of CDGT/Cb for 4-CP at high DOC 303 

contents (9.8-36.5 mg L-1), similar to the result for TCS from this study. These results indicate that 304 

DGT can quantitatively measure the majority of the chemicals tested across typical environmental 305 

DOM values. 306 

3.7 Effect of DBL 307 

DGT devices with various thicknesses of diffusive gel layer were deployed at the same time in 308 

influent and effluent to determine the in situ DBL thickness (δ). The following Equation (5)20 309 

(derived from Equation (1)) was used: 310 

AtDCAtDC

g

M DGTDGT

1 



          (5) 311 

The reciprocal of accumulated masses of HPCPs (1/M) were then plotted against the thickness of the 312 

diffusive layer (∆g) (see Figure S12). The results show the DBL thickness (calculation in SI) was in 313 
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the range of 0.20 to 0.29 mm (mean 0.25 mm) for the influent and 0.05 to 0.09 mm (mean 0.07 mm) 314 

for the effluent. The DBL thickness in the influent was very similar to a previous study conducted at 315 

the same location of the same WWTP.24 The smaller DBL thickness in the effluent was consistent 316 

with more turbulent flow. To reduce the errors on the TWA concentrations, 0.25 and 0.07 mm were 317 

used as the DBL thicknesses when calculating the CDGT in the influent and effluent, respectively. 318 

With other passive samplers for organics (i.e. POCIS and Chemcatcher), the effect of DBL would be 319 

much greater, capable of producing several-fold errors on measured concentrations.14 320 

3.8 Field Trial Application at the WWTP 321 

3.8.1 HPCPs in the grab and auto-sampler samples 322 

The results obtained by the conventional samplers are presented in Figure S13. The concentrations of 323 

the individual compounds are in the range of 10s->10,000 ng L-1 in the influent and 1-100s ng L-1 in 324 

the effluent. They are in agreement with other published studies.40-42 As expected, the grab samples 325 

show higher variability than the auto-samples. Consistent with other studies,24, 42, 43 the 326 

concentrations in the effluent are typically 1-2 orders of magnitude lower than the influent, indicating 327 

removal during the water treatment process.  328 

3.8.2 Uptake of HPCPs by the DGT devices 329 

Of the analysed HPCPs, all except BEP and HEP were detected in DGT devices deployed in the 330 

influent. Figure 3 gives some examples of uptake over time in DGT devices for typical HPCPs; the 331 

full data set is given in Figure S13. Most compounds accumulated in the DGT binding gel linearly 332 

for about 18 days and plateaued or declined after that, with the exception of MEP, PHBA and BHT. 333 
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Figure 3: Uptake of typical HPCPs by HLB-DGT (n=3) in the influent (INF) and effluent (EFF) of a UK WWTP 335 

(The dotted blue line is the linear regression line through those points with continuous uptake). This Figure shows 336 

that deployment times of 7-14 days would be ideal for deriving TWA values. Error bars: 1 SD. 337 

This is consistent with studies where DGT and POCIS were used to sample for antibiotics and drugs 338 

in WWTPs.24, 44 There would appear to be three possible reasons for a reduction in sampling rate or 339 

decline in mass retained on the resin gel. One possibility is biofouling, where growth on the sampler 340 

surface inhibits uptake or enhances degradation of the compound in the biofilm. The second is 341 

degradation of HPCPs in the resins. The third is possible uptake and retention of 342 

co-existing/competing substances. Differences in compound properties will influence their 343 

susceptibility to degradation. Biofouling is not significant for the DGT samplers in either the influent 344 

or effluent in this study, as can be seen in Figure S14 which shows DGT samplers retrieved after 14 345 

days. Considering the detection limits and the fouling effects, 1 to 2 weeks deployment time is 346 

recommended for practical application. 347 
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3.8.3 Comparison of concentrations derived by DGT and active sampling 348 

The DGT concentrations of HPCPs were calculated for 7 days sampling period and they were 349 

compared with concentrations obtained by auto and grab sampling methods (Figure 4). For most 350 

HPCPs the concentrations detected by DGT are similar to those obtained by auto-sampling. The 351 

concentrations obtained for different deployment times (presented in Figure S15) also agreed well 352 

with the average concentrations of auto-samples. The grab sample results are not always consistent 353 

with DGT and auto-sample results. It is well known that grab samples lack representativeness and 354 

they may miss any episodic events during the sampling period, such as peak, point source, rain or 355 

discharge events (or only record these events inversely).45 The differences could also have resulted 356 

from the ionisability of compounds and the fractions being measured. DGT accumulates the 357 

dissolved fraction (nm range due to the diffusive gel pore size) of chemicals in situ at the natural pH 358 

(6.8-7.4, Table S4) of the wastewater, whilst the active samples contain some particulate fraction 359 

through filters (0.7 μm) and more neutral fractions (pH adjusted to 2.5 for better recoveries of 360 

solid-phase extraction). Similar results were found in previous studies when HLB-POCIS was used 361 

for sampling pharmaceuticals in seawater34 and for sampling endocrine disrupting chemicals (EDCs) 362 

in river and wastewater,35 and when DGT was used for sampling antibiotics24 and 4-CP in 363 

wastewater.27 364 
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Figure 4: TWA concentrations measured by DGT samplers during 7 days deployment and average concentrations of 366 

the same compounds by auto samplers and grab samples in both influent (INF) and effluent (EFF). Error bars: 1 SD. 367 

3.8.4 Analytical advantage of DGT measurements 368 

There are significant advantages of the DGT sampler for trace organic analysis. DGT lowers the detection 369 

limit by pre-concentrating compounds in situ. Larger molecules, humic, fulvic and colloidal material do 370 

not pass through the nano-pore size of the diffusive gel layer, while the resin gel selectively retains 371 

targeted chemicals; these factors both reduce matrix interference. Hence, DGT extracts are cleaner than 372 

those from active samples. The samples from active sampling have high background interference signals 373 

on LC-MS/MS, as WWTP influents are highly complex matrices that normally require extensive 374 

sample clean-up. This is apparent from the total ion chromatograms obtained in selected ion 375 

monitoring (SIM) scan mode (see Figure S16 A and B). More non-target peaks were detected in 376 

extracts from grab and auto-sampler samplers than the DGT extract. When a target ion was selected, 377 

more interference peaks appear in the auto-sample extract than in the DGT extract. Figure S16 C 378 

and D gives an example for m/z 151, the target ion of MEP; three significant interference peaks were 379 

detected in the active sample extract.  380 
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Summaries of the IDLs and the MDLs of the studied chemicals for LC-DAD and LC-MS/MS are 381 

presented in Table S3 for both water and DGT samples. For a 7-day deployment in the field at 25 ℃, 382 

the MDLs for DGT were typically in the low ng L-1 range, low enough for environmental analysis. 383 

Of course, if necessary, the MDLs for DGT can be further improved by combining the extracts from 384 

duplicate DGT devices and reducing solvent extract volume prior to LCMS analysis. 385 

3.9 Recommendations and perspectives 386 

A novel DGT sampler has been successfully developed for in situ measurement of HPCPs, based on 387 

systematic tests and comparative evaluation of different binding resins. DGT with HLB resin is 388 

recommended for its robustness in environmental conditions, with little effect from biofouling or 389 

water flow rates. Good agreement between DGT measurements and auto-sampling concentrations 390 

indicates that DGT can provide reliable in situ TWA concentrations of HPCPs and it can be used for 391 

studying the fate and behaviour of HPCPs in the aquatic environment. The thickness of the DBL is 392 

~0.2 mm in typical field conditions with flowing (or moving) water, as shown in previous studies. 393 

Therefore, the recommended minimum diffusive layer thickness for DGT device (diffusive gel plus filter 394 

membrane) should be ~1 mm. Some potential applications of DGT are recommended according to the 395 

virtues demonstrated in this study. DGT could be used for assessing chemical removal efficiency in 396 

WWTPs and for screening of illegal discharge of industrial compounds in rivers and lakes. 397 

Auto-samplers may be too costly for multiple sites, while grab-sampling may miss the 398 

peak/discharge events. DGT can also be applied for target or non-target screening of emerging 399 
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contaminants and their metabolites in aquatic environments, due to its high sensitivity and low matrix 400 

interferences for analysis. 401 

SUPPORTING INFORMATION 402 

Information including chemical standards, reagents, experiment control, analytical method, 403 

supplementary tables and figures, and some additional discussion is given in the Supporting 404 

Information. This material is available free of charge via the Internet at http://pubs.acs.org. 405 
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