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Abstract
Several semantics have been proposed to query in-
consistent ontological knowledge bases, including
the intersection of repairs and the intersection of
closed repairs as two approximate inconsistency-
tolerant semantics. In this paper, we analyze the
complexity of conjunctive query answering under
these two semantics for a wide range of Datalog±
languages. We consider both the standard setting,
where errors may only be in the database, and the
generalized setting, where also the rules of a Data-
log± knowledge base may be erroneous.

1 Introduction
Description logics (DLs) and existential rules from the con-
text of Datalog± are popular ontology languages. In real-
world ontology-based applications involving large amounts
of data (such as ontology-based data extraction and/or inte-
gration), it is very likely that the data are inconsistent with
the ontology, and thus inconsistency-tolerant semantics for
ontology-based query answering are urgently needed.

Consistent query answering, first developed for relational
databases [Arenas et al., 1999] and then generalized as the
AR semantics for several DLs [Lembo et al., 2010], is the
most widely accepted semantics for querying inconsistent on-
tologies. Query answering under the AR semantics is known
to be a hard problem, even for very simple languages [Lembo
et al., 2010]. For this reason, several other semantics have
been recently developed with the aim of approximating con-
sistent query answering [Lembo et al., 2010; Bienvenu, 2012;
Lukasiewicz et al., 2012a; Bienvenu and Rosati, 2013].

In particular, in [Lembo et al., 2010], besides the AR se-
mantics, three other inconsistency-tolerant query answering
semantics are proposed, including the approximate intersec-
tion of repairs (IAR) semantics, in which an answer is consid-
ered to be valid, if it can be inferred from the intersection of
the repairs (and the ontology). The intersection of closed re-
pairs (ICR) [Bienvenu, 2012] is another approximate seman-
tics, in which an answer is valid, if it can be inferred from the
intersection of the closure of the repairs (and the ontology).

There are several reasons for the practical relevance of the
IAR and the ICR semantics, and thus for motivating an in-
depth analysis of their computational properties. First, they

are two natural semantics that identify “surer” answers than
the AR semantics, and so they can also be seen as under-
approximations of the latter. Investigating their complexity
helps to understand whether such approximations have ac-
tually lower complexities, which is indeed the case for dif-
ferent languages and complexity measures considered in this
paper. Second, recent work on explanation in the context of
inconsistency-tolerant query answering shows that explana-
tions are much easier to define and compute for the IAR se-
mantics [Bienvenu et al., 2016]. Third, the IAR and ICR se-
mantics are amenable to preprocessing (the intersection can
be computed offline, and then standard querying algorithms
can be employed online)—indeed, this has been used to im-
plement the IAR semantics [Lembo et al., 2015], and for ICR,
it has been remarked in [Bienvenu and Bourgaux, 2016].

The complexity of query answering under AR semantics
when the ontology is described via one of the central DLs
is well-understood. Rosati [2011] studied the data and com-
bined complexity for a wide spectrum of DLs, while Bien-
venu [2012] identified cases for simple ontologies (within
the DL-Lite family) for which tractable data complexity re-
sults can be obtained. In [Lukasiewicz et al., 2012a; 2013;
2015], the data and different types of combined complexity of
the AR semantics have been studied for ontologies described
via existential rules and negative constraints.

Bienvenu et al. [2014a] analyzed the data and the com-
bined complexity of query answering under the AR and IAR
semantics for different notions of maximal repairs over the
language DL-LiteR. Recently, the AR semantics was ex-
tended to the generalized repair (GR) semantics and its com-
putational complexity analyzed [Eiter et al., 2016]. In the GR
semantics, also ontological rules may be removed, and some
database atoms and rules are assumed to be non-removable.

This paper continues this line of research and integrates
the generalized repair semantics of [Eiter et al., 2016] with
the two intersection-based approximate repair semantics. We
analyze the complexity of approximate inconsistency-tolerant
query answering for a wide range of Datalog± languages and
for several different complexity measures; in particular:

B We consider different popular inconsistency-tolerant se-
mantics, namely, the IAR and the ICR semantics, in both
their standard and their generalized repair variants.

B We consider the most popular Datalog± languages: lin-
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ear, guarded, sticky, and acyclic existential rules, along
with “weak” generalizations, as well as full (i.e., non-
existential) restrictions, and full rules in general.

B We analyze the data, fixed-program combined, bounded-
arity combined, and combined complexity.

2 Datalog±

In this section, we briefly recall some basics on existential
rules from the context of Datalog± [Calì et al., 2012a].
General. We assume a set C of constants, a set N of la-
beled nulls, and a set V of variables. A term t is a con-
stant, null, or variable. We also assume a set of predicates,
each associated with an arity, i.e., a non-negative integer. An
atom has the form p(t1, . . . , tn), where p is an n-ary pred-
icate, and t1, . . . , tn are terms. Conjunctions of atoms are
often identified with the sets of their atoms. An instance I
is a (possibly infinite) set of atoms p(t), where t is a tuple
of constants and nulls. A database D is a finite instance
that contains only constants. A homomorphism is a substitu-
tion h : C∪N∪V→ C∪N∪V that is the identity on C and
maps N to C ∪N. A conjunctive query (CQ) q has the form
∃Yφ(X,Y), where φ(X,Y) is a conjunction of atoms with-
out nulls. The answer to q over an instance I , denoted q(I),
is the set of all tuples t over C for which there is a homomor-
phism h such that h(φ(X,Y)) ⊆ I and h(X) = t. A Boolean
CQ (BCQ) q is a CQ ∃Yφ(Y), i.e., all variables are existen-
tially quantified; q is true over I , denoted I |= q, if q(I) 6= ∅,
i.e., there is a homomorphism h with h(φ(Y)) ⊆ I .
Dependencies. A tuple-generating dependency (TGD) σ is
a first-order formula ∀X∀Yϕ(X,Y) → ∃Z p(X,Z), where
X ∪ Y ∪ Z ⊆ V, ϕ(X,Y) is a conjunction of atoms, and
p(X,Z) is an atom, all without nulls; ϕ(X,Y) is the body
of σ, denoted body(σ), while p(X,Z) is the head of σ, de-
noted head(σ). For clarity, we consider single-atom-head
TGDs; however, our results can be extended to TGDs with
a conjunction of atoms in the head. An instance I satisfies σ,
written I |= σ, if the following holds: whenever there exists
a homomorphism h such that h(ϕ(X,Y)) ⊆ I , then there
exists h′ ⊇ h|X, where h|X is the restriction of h on X, such
that h′(p(X,Z)) ∈ I . A negative constraint (NC) ν is a first-
order formula ∀Xϕ(X) → ⊥, where X ⊆ V, ϕ(X) is a
conjunction of atoms without nulls, called the body of ν, de-
noted body(ν), and ⊥ denotes the truth constant false . An
instance I satisfies ν, written I |= ν, if there is no homomor-
phism h such that h(ϕ(X)) ⊆ I . Given a set Σ of TGDs and
NCs, I satisfies Σ, written I |= Σ, if I satisfies each TGD
and NC of Σ. For brevity, we omit the universal quantifiers in
front of TGDs and NCs, and use the comma (instead of ∧) for
conjoining body atoms. Given a class of TGDs C, we denote
by C⊥ the formalism obtained by combining C with arbitrary
NCs. Finite sets of TGDs and NCs are also called programs,
and TGDs are also called existential rules.
Knowledge Bases. A knowledge base is a pair (D,Σ), where
D is a database, and Σ is a program. For programs Σ, ΣT and
ΣNC are the subsets of Σ containing the TGDs and NCs of Σ,
respectively. The set of models of KB = (D,Σ), denoted
mods(KB), is the set of instances {I | I ⊇ D∧ I |= Σ}. We

say that KB is consistent, if mods(KB) 6= ∅, otherwise KB
is inconsistent. The answer to a CQ q relative to KB is the set
of tuples ans(q,KB) =

⋂
{q(I) | I ∈ mods(KB)}. The an-

swer to a BCQ q is true, denoted KB |= q, if ans(q,KB) 6=
∅. The decision version of the CQ answering problem is as
follows: given a knowledge base KB , a CQ q, and a tuple
of constants t, decide whether t ∈ ans(q,KB). Since CQ
answering can be reduced in LOGSPACE to BCQ answer-
ing, we focus on BCQs. Following Vardi (1982), the com-
bined complexity of BCQ answering considers the database,
the set of dependencies, and the query as part of the input.
The bounded-arity combined (or ba-combined) complexity
assumes that the arity of the underlying schema is bounded
by an integer constant. The fixed-program combined (or fp-
combined) complexity considers the sets of TGDs and NCs as
fixed; the data complexity also assumes the query fixed.

The Datalog± languages that we consider to guarantee de-
cidability are among the most frequently analyzed in the liter-
ature, namely, linear (L) [Calì et al., 2012a], guarded (G) [Calì
et al., 2013], sticky (S) [Calì et al., 2012b], and acyclic TGDs
(A), along with their “weak” (proper) generalizations weakly
guarded (WG) [Calì et al., 2013], weakly sticky (WS) [Calì
et al., 2012b], and weakly acyclic TGDs (WA) [Fagin et al.,
2005], as well as their “full” (proper) restrictions linear full
(LF), guarded full (GF), sticky full (SF), and acyclic full
TGDs (AF), respectively, and full (i.e., existential-free) TGDs
(F) in general. We also recall the following further inclusions:
L⊂G, F⊂WA⊂WS, and F⊂WG. We refer to [Eiter et al.,
2016] for a more detailed overview and complexity results.
Complexity Classes. We briefly recall the complexity classes
that we encounter. The complexity class AC0 is the class of
all decision problems that can be solved by uniform families
of Boolean circuits of polynomial size and constant depth.
PSPACE (resp., P, EXP, 2EXP) is the class of all problems
that can be decided in polynomial space (resp., polynomial
time, exponential time, double exponential time) on a deter-
ministic Turing machine. NP and NEXP are the classes of all
problems that are decidable in polynomial and exponential
time on a nondeterministic Turing machine, respectively, and
co-NP and co-NEXP are their complementary classes, where
‘yes’ and ‘no’ instances are interchanged. The class ΘP

2 is the
class of all problems that can be decided in polynomial time
by a deterministic Turing machine with either a logarithmic
number of calls to an NP oracle, or (equivalently) a constant
number of rounds of polynomially many parallel calls to an
NP oracle. PNEXP is the class of all problems that are decidable
in deterministic polynomial time using a NEXP oracle. The
class ΣP

2 is the class of all problems that can be decided in
nondeterministic polynomial time using an NP oracle, and ΠP

2
is the complement of ΣP

2. The above complexity classes and
their inclusion relationships (which are all currently believed
to be strict) are: AC0 ⊆ P ⊆ NP, co-NP ⊆ ΘP

2 ⊆ ΣP
2,Π

P
2 ⊆

PSPACE ⊆ EXP ⊆ NEXP, co-NEXP ⊆ PNEXP ⊆ 2EXP.

3 Approximate Inconsistency Semantics
We now recall three prominent inconsistency-tolerant seman-
tics for ontology-based query answering, namely, the ABox
repair (AR) semantics and its approximation by the intersec-



tion of repairs (IAR) and the intersection of closed repairs
(ICR) semantics [Lembo et al., 2010; Bienvenu, 2012]; all
three are based on the notion of repair, which is a maxi-
mal consistent subset of the given database. Furthermore, we
newly define generalized repair variants [Eiter et al., 2016] of
the two intersection-based approximate repair semantics.

Classically, errors leading to inconsistencies are assumed
to be only in the database. Eiter et al. [2016] introduced
the generalized inconsistency semantics allowing for errors
also in the ontology, and for parts of the database and the
ontology to be without errors. We analyze the aforemen-
tioned inconsistency-tolerant semantics also for this gener-
alized framework. More specifically, for a knowledge base
(D,Σ), the generalized semantics allows also (i) to minimally
remove TGDs from Σ, and (ii) to partition both D and Σ into
a hard and a soft part of non-removable and removable ele-
ments, respectively. The so partitioned database (resp., pro-
gram) is called flexible database (resp., program).

One application of the generalized semantics is debugging
mappings between distributed ontologies. In this context, ev-
ery ontology for itself is error-free, whereas the mappings
between the ontologies may be erroneous (e.g., as they are
automatically generated). Similarly, some (e.g., manually
checked) parts of the underlying databases may be without
errors, while other (e.g., automatically generated) parts may
contain errors. Under the generalized semantics, inconsistent
distributed ontologies are repaired by removing a minimal set
of database atoms and existential rules from the mappings.

Another important application is debugging ontologies that
have been created in part manually (or checked manually, en-
suring error-freeness) and in part enriched by automatically
learned additional parts. The manually created part is mod-
eled as the hard database and program, while the additionally
learned part is the soft database and program.

Notice that NCs are non-removable (only TGDs can be re-
moved). This is especially well-suited in the aforementioned
applications, which require to repair rules, but not negative
constraints (or equality-generating dependencies).

A flexible database is a pair (Dh, Ds) of databases, called
the hard and soft database, respectively. A flexible program
is a pair (Σh,Σs) consisting of a finite set Σh of TGDs and
NCs and a finite set Σs of TGDs, called the hard and soft
program, respectively. A flexible knowledge base is a pair
((Dh, Ds), (Σh,Σs)), where (Dh, Ds) is a flexible database,
and (Σh,Σs) is a flexible program. Note that a (standard)
knowledge base (D,Σ) is a special case of a flexible one
((Dh, Ds), (Σh,Σs)), where Dh = ∅, Ds =D, Σh = Σ, and
Σs = ∅. Below, we provide definitions for flexible knowledge
bases that generalize the ones for (standard) knowledge bases.

For knowledge bases KB ′= (D′,Σ′) and KB ′′= (D′′,
Σ′′), we write KB ′⊆KB ′′, if D′⊆D′′ and Σ′⊆Σ′′. A se-
lection of a flexible knowledge base ((Dh, Ds), (Σh,Σs)) is
a knowledge base (D′,Σ′) such that Dh ⊆ D′⊆ (Dh∪Ds)
and Σh⊆Σ′⊆ (Σh∪Σs). A repair of a flexible knowledge
base FKB is an inclusion-maximal consistent selection of
FKB . Rep(FKB) denotes the set of all repairs of FKB .
Notice that for (standard) knowledge bases, a repair is usu-
ally defined as a maximal consistent subset of the database.
However, when a flexible knowledge base models a standard

one (i.e.,Dh = ∅ and Σs = ∅), the definition above coincides
with the classical one and the difference is only notational.
Example 1. Consider the flexible database (Dh,Ds) given by

Dh = {Postdoc(p),Researcher(p), leaderOf (p′, g′)},
Ds = {Prof (p), leaderOf (p, g)},

asserting that p is a postdoc, a researcher, a professor, and the
leader of the research group g, and that p′ is the leader of g′.

Consider also the flexible program (Σh,Σs) defined as

Σh = {Prof (X) → Researcher(X),
Postdoc(X) → Researcher(X),
Prof (X),Postdoc(X) → ⊥,
leaderOf (X,Y ) → Group(Y )},

Σs = {leaderOf (X,Y ) → Prof (X)},

expressing that professors and postdocs are researchers, pro-
fessors and postdocs form disjoint sets, and leaderOf has
Prof as domain and Group as range. It is easy to see that
mods(D,Σ) = ∅, since p violates the disjointness constraint.

The flexible knowledge base ((Dh, Ds), (Σh,Σs)) has two
repairs (D′,Σ′) and (D′′,Σ′′):

D′ = Dh ∪ {leaderOf (p, g)} , Σ′ = Σh ,
D′′ = Dh , Σ′′ = Σh ∪ Σs .

In both, the atom Prof (p) is removed; in the first one, also
the rule leaderOf (X,Y ) → Prof (X) is removed, while in
the second one, the atom leaderOf (p, g) is removed.

We now define the inconsistency-tolerant semantics con-
sidered. For a knowledge base KB = (D,Σ), the closure
Cn(KB) of KB is the set of all ground atoms, built from
constants in D and Σ, entailed by D and the TGDs of Σ. Let
FKB be a flexible knowledge base, and let q be a BCQ.
• FKB entails q under the generalized repair (GR) seman-

tics, if, for all KB ′ ∈ Rep(FKB), KB ′ |= q.
• FKB entails q under the generalized intersection of re-

pairs (GIAR) semantics, if (D∗,Σ∗) |= q, where D∗ =⋂
{D′ | (D′,Σ′) ∈ Rep(FKB)} and Σ∗ =

⋂
{Σ′ |

(D′,Σ′) ∈ Rep(FKB)}.
• FKB entails q under the generalized intersection of

closed repairs (GICR) semantics, if (DI ,Σ
∗) |= q,

where DI =
⋂
{Cn(KB ′) | KB ′ ∈ Rep(FKB)} and

Σ∗ =
⋂
{Σ′ | (D′,Σ′) ∈ Rep(FKB)}.

In the definition above, observe that if FKB is a standard
knowledge base, then Σ∗= Σ, and thus the definition above
generalizes the AR, IAR, and ICR semantics for standard
knowledge bases to the case of flexible knowledge bases.

We talk of BCQ answering under the GR, GIAR, and GICR
semantics when flexible knowledge bases can be arbitrary,
and we talk of BCQ answering under the AR, IAR, and ICR
semantics when flexible knowledge bases are restricted to
model standard knowledge bases (i.e., Dh = ∅ and Σs = ∅).

4 Complexity Results
We give a precise picture of the complexity of BCQ answer-
ing from existential rules under the IAR, ICR, GIAR, and
GICR semantics, which is summarized in Fig. 1; it ranges
from membership in AC0 to 2EXP-completeness.



Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ in AC0+ NP ΠP

2 PSPACE

S⊥, SF⊥ in AC0+ NP ΠP
2 EXP

F⊥, GF⊥ co-NP ΘP
2 ΠP

2 EXP

G⊥ co-NP+ ΘP
2 EXP 2EXP

A⊥ in AC0? NP PNEXP PNEXP

WS⊥, WA⊥ co-NP+ ΘP
2 2EXP 2EXP

WG⊥ EXP EXP EXP 2EXP

Data fp-comb. ba-comb. Comb.
L⊥, LF⊥, AF⊥ co-NP+ ΘP

2 ΠP
2 PSPACE

S⊥, SF⊥ co-NP+ ΘP
2 ΠP

2 EXP

F⊥, GF⊥ co-NP ΘP
2 ΠP

2 EXP

G⊥ co-NP+ ΘP
2 EXP 2EXP

A⊥ co-NP ΘP
2 PNEXP PNEXP

WS⊥, WA⊥ co-NP+ ΘP
2 2EXP 2EXP

WG⊥ EXP EXP EXP 2EXP

Figure 1: Complexity of IAR and GIAR (left) and of ICR and GICR (right) BCQ answering; all entries without “in” are completeness results.
+[Lukasiewicz et al., 2013] for L⊥, S⊥, G⊥, WS⊥, and WA⊥. ?[Lukasiewicz et al., 2012b].

In detail, ICR- and GICR-BCQ answering (Fig. 1, right
side) is complete for co-NP (resp., ΘP

2) in the data (resp., fp-
combined) complexity for all languages of existential rules,
but for WG⊥, where it is EXP-complete. The combined com-
plexity of ICR- and GICR-BCQ answering is among PSPACE
(for L⊥, LF⊥, and AF⊥), EXP (for S⊥, SF⊥, F⊥, and GF⊥),
PNEXP (for A⊥), and 2EXP (for G⊥, WS⊥, WA⊥, and WG⊥),
while the ba-combined complexity is among ΠP

2 (for L⊥,
LF⊥, AF⊥, S⊥, SF⊥, F⊥, and GF⊥), EXP (for G⊥ and WG⊥),
PNEXP (for A⊥), and 2EXP (for WS⊥ and WA⊥). So, the
complexity of ICR- and GICR-BCQ answering nearly coin-
cides with the complexity of AR- and GR-BCQ answering
[Eiter et al., 2016], except for the ΘP

2 (rather than ΠP
2) en-

tries. The complexity of IAR- and GIAR-BCQ answering
(Fig. 1, left side) slightly drops to AC0 and NP in the data and
fp-combined complexity, resp., for the first-order rewritable
languages (i.e., for L⊥, LF⊥, AF⊥, S⊥, SF⊥, and A⊥).

The EXP- and 2EXP-hardness results for WG⊥ are imme-
diate by the EXP- and 2EXP-hardness of standard BCQ an-
swering in these cases. In the rest of this section, we give
proof sketches and ideas for some of the other results.

4.1 Membership Results
IAR semantics. For a knowledge base (D,Σ), where Σ =
ΣT ∪ΣNC is over a Datalog± language whose BCQ answer-
ing is in C, we can decide in NPC that (D,Σ) does not entail
a BCQ q under IAR semantics by guessing and checking that
there exist: (1) a database D?⊆D with (D?, ΣT ) 6|= q, and
(2) repairs D′α with α 6∈D′α, one for each α ∈ D \D? (wit-
nessing that the intersection of the repairs is a subset of D?).

This proves all upper bounds equal to and above co-NP in
Fig. 1, left side, excluding the ΘP

2 memberships.

Theorem 2. If BCQ answering from databases under pro-
grams over some Datalog± language L is in C in the data
(resp., fp-combined, ba-combined, and combined) complex-
ity, then IAR-BCQ answering from databases under programs
over L is in co-NPC in the data (resp., fp-combined, ba-com-
bined, and combined) complexity.

Consider the Datalog± languages whose BCQ answering
in the data complexity is in AC0, i.e., L⊥, S⊥, A⊥, LF⊥, AF⊥,
and SF⊥. To evaluate a BCQ under the IAR semantics, in the
fp-combined complexity, the NCs are fixed and correspond
to a fixed UCQ over the database. We can thus compute all
ground instances of conjunctions, and calculate all minimal
ones in polynomial time. We then remove all their atoms from
the database, producing the intersection of all repairs, which

we use to evaluate the query, which is in NP for L⊥, S⊥, and
A⊥ (and so also for LF⊥, AF⊥, and SF⊥); this is thus also the
overall upper bound in the fp-combined complexity.
Theorem 3. IAR-BCQ answering for L⊥, S⊥, and A⊥ (and
LF⊥, AF⊥, and SF⊥) is in NP in the fp-combined complexity.

Consider next the Datalog± languages whose BCQ an-
swering in the data complexity is in P. In the fp-combined
complexity, checking that a selection of a knowledge base in
WS⊥ or G⊥ (and thus also in WA⊥, F⊥, or GF⊥) is a repair is
feasible in polynomial time, because the TGDs and NCs are
fixed, and answering BCQs in the data complexity and atomic
queries in the fp-combined complexity for these languages is
in P. A P machine can compute the intersection of the re-
pairs by asking in parallel to polynomially many NP oracles
whether there exists a repair that excludes a specific ground
atom. Once the intersection is computed, an additional NP or-
acle call allows to decide whether the intersection of repairs
entails the query—we recall that BCQ answering in the fp-
combined complexity for the WS⊥ and G⊥ (and thus also for
the WA⊥, F⊥, and GF⊥) languages is in NP. Overall, BCQ
query answering under the IAR semantics is in ΘP

2, which
proves all ΘP

2 upper bounds in Fig. 1, left side.
Theorem 4. IAR-BCQ answering for WS⊥ and G⊥ (and
WA⊥, F⊥, and GF⊥) is in ΘP

2 in the fp-combined complexity.
ICR semantics. The following theorem shows that ICR-
BCQ answering for a Datalog± language L is in co-NPC in
the data, fp-combined, and ba-combined complexity, where
C is an upper bound for BCQ answering for L. It can be
shown similarly to Theorem 2: we guess and verify some
D?⊆Cn(D,ΣT ) with (D?, ΣT ) 6|= q, and, for each (of the
polynomially many) α∈Cn(D,ΣT ) \D?, some repair D′α
with α 6∈Cn(D′α,ΣT ). This proves all corresponding up-
per bounds in Fig. 1, right side, including the PNEXP = co-
NPNEXPmembership for A⊥, excluding memberships in ΘP

2.
Theorem 5. If BCQ answering from databases under pro-
grams over some Datalog± language L is in C in the data
(resp., fp- and ba-combined) complexity, then ICR-BCQ an-
swering from databases under programs over L is in co-NPC

in the data (resp., fp- and ba-combined) complexity.
ICR-BCQ answering for all the considered Datalog± lan-

guages but WG⊥ is in ΘP
2 in the fp-combined complexity.

This is obtained by adapting the proof of Theorem 4: a P ma-
chine computes the intersection of closed repairs by asking in
parallel to its NP oracle whether a ground atom is not in the
closure of a repair. Being the program fixed, there are only



polynomially many different ground atoms to consider. This
proves all ΘP

2 upper bounds in Fig. 1, right side.
Theorem 6. ICR-BCQ answering for all the considered
Datalog± languages but WG⊥ is in ΘP

2 in the fp-combined
complexity.

As for the combined complexity of ICR-BCQ answering,
let (D,Σ) be a knowledge base with Σ over a Datalog± lan-
guage whose BCQ reasoning is in a deterministic complexity
class C. We can decide in PSPACE·C that (D,Σ) does not
entail a BCQ q by checking, for all ground instances q′ of q,
that there is a repair D?⊆D such that (D?,ΣT ) 6|= q′. This
proves all corresponding upper bounds in Fig. 1, right side,
including the PNEXP = PSPACE · PNEXP membership for A⊥,
Theorem 7. If BCQ answering from databases under pro-
grams over some Datalog± language L is in the determinis-
tic complexity class C in the combined complexity, then ICR-
BCQ answering from databases under programs over L is in
PSPACE ·C in the combined complexity.
Generalized repair semantics. All upper bounds for
IAR (resp., ICR) BCQ answering from databases D under
Datalog± programs Σ carry over to GIAR (resp., GICR)
BCQ answering from databases (Dh, Ds) under Datalog±
programs (Σh, ∅). Based on this, also all membership re-
sults for IAR (resp., ICR) BCQ answering under existen-
tial rules carry over to GIAR (resp., GICR) BCQ answer-
ing, as long as the existential rules are closed under adding
0-ary body atoms, proving all corresponding upper bounds in
Fig. 1 but for the linear cases (for which it is not hard to de-
rive the upper bounds by genuine proofs: rules in the repair
can be polynomially guessed, like data).
Theorem 8. Let L be a Datalog± language that is closed
under adding 0-ary atoms to rule bodies. If IAR (resp., ICR)
BCQ answering from databases and programs over L is in
C in the data, combined, and ba- and fp-combined complex-
ity, then GIAR (resp., GICR) BCQ answering from flexible
databases and programs over L is also in C in the data, com-
bined, and ba- and fp-combined complexity, respectively.

4.2 Hardness Results
As BCQ answering under the IAR and ICR semantics for
Datalog± languages L coincides with BCQ answering for L
when there are no inconsistencies, we immediately obtain
hardness for all NP, PSPACE, EXP, and 2EXP entries in Fig. 1.
IAR semantics. co-NP-hardness of BCQ answering under
IAR semantics in the data complexity is shown by a reduction
from unsatisfiability of 3CNF formulas. It produces a knowl-
edge base with a fixed GF⊥ program and fixed query. This
proves all open co-NP-hardness results in Fig. 1, left side.
Theorem 9. IAR-BCQ answering for GF⊥ (and F⊥) is co-
NP-hard in the data complexity.

The following result shows that IAR-BCQ answering for
A⊥ is PNEXP-hard in the ba-combined complexity, proving all
PNEXP-hardness results in Fig. 1, left side. Intuitively, the re-
duction for the PNEXP-hardness proof in [Eiter et al., 2016] for
AR-BCQ answering for A⊥ in the ba-combined complexity
is turned into a PNEXP-hardness proof for IAR-BCQ answer-
ing in this case. There, one encodes initial tiling assignments

v1(Xi), . . . , vn(Xn) and has a ground atomic query q, which
we now also include in the database along with a fresh ground
atom nq and the NC v1(Xi) ∧ . . . ∧ vn(Xn) ∧ q ∧ nq → ⊥.
This intuitively “forces” the atom q into the database.

Theorem 10. IAR-BCQ answering for A⊥ is PNEXP-hard in
the ba-combined complexity.

The next result shows that BCQ answering under the IAR
semantics for GF⊥ (and thus also for F⊥, G⊥, WA⊥, and
WS⊥) in the fp-combined complexity is ΘP

2-hard. A sketch
of the technically quite involved proof is given below.

Theorem 11. IAR-BCQ answering for GF⊥ (and F⊥, G⊥,
WA⊥, and WS⊥) is ΘP

2-hard in the fp-combined complexity.

Proof (sketch). We show a reduction from the ΘP
2-complete

problem COMP-SAT: for two sets A and B of 3CNF formu-
las, decide whetherA contains more satisfiable formulas than
B [Lukasiewicz and Malizia, 2016; 2017]. COMP-SAT is
ΘP

2-hard even if its instances (A,B) are restricted to be such
that |A| = |B|, all formulas in A and B are defined over
the same variables and have the same number of clauses, and
A = {φ1, . . . , φt} and B = {ψ1, . . . , ψt} are such that φu+1

(resp., ψu+1) being satisfiable implies φu (resp., ψu) being
satisfiable, for any u (intuitively, all satisfiable formulas have
the lowest indices in sets A and B). From this, it follows
that (A,B) is a ‘yes’-instance of COMP-SAT iff there is an
index u such that φu ∈ A is satisfiable, and ψu ∈ B is not.

From an instance (A,B) of COMP-SAT, we build the
knowledge base KBCS1 ((A,B)) = (DCS1 ,ΣCS1 ) as fol-
lows. Let us assume that all formulas in sets A and B are de-
fined over variablesX = {x1, . . . , xn} and clauses C = {c1,
. . . , cm}, with `j,k denoting the kth literal of the jth clause,
and vj,k denoting the variable of literal `j,k.

Let us see the encoding of formulas ψu(X) ∈ B. For
each variable xi ∈ X , there are facts Val(u, xi, t) and
Val(u, xi, f ) in DCS1 , where u, xi, t , and f are constants re-
ferring to the formula number u, variable xi, and the Boolean
values true and false , respectively. Constant u in the atoms
above and below is required so that atoms referring to differ-
ent formulas ψu ∈ B do not interfere. For each clause cj :

• there is a fact SuccCl(u, j − 1, j) in DCS1 , where j − 1
and j are numeric constants, and intuitively stating that
the jth clause is the successor of the (j−1)th clause; and

• there is a fact encoding cj ; e.g., for a clause (xp ∨
xq ∨ ¬xr), there is the fact Cl(u, j, xp, p, xq, p, xr,n)
in DCS1 , where p and n are constants telling whether a
literal appears positively or negatively, respectively.

Three extra facts are in DCS1 : SatChain(u, 0), MaxCl(u,
m), and Unsat(u), where m is a numeric constant for the
number of the formula’s clauses. Rules of KBCS1 are:

Val(U,X, t),Val(U,X, f )→ ⊥
Sat(U),Unsat(U)→ ⊥
Cl(U, J,X, p, _, _, _, _),Val(U,X, t)→ SatCl(U, J)

Cl(U, J,X,n, _, _, _, _),Val(U,X, f )→ SatCl(U, J)

Cl(U, J, _, _, Y, p, _, _),Val(U, Y, t)→ SatCl(U, J)

Cl(U, J, _, _, Y,n, _, _),Val(U, Y, f )→ SatCl(U, J)



Cl(U, J, _, _, _, _, Z, p),Val(U,Z, t)→ SatCl(U, J)

Cl(U, J, _, _, _, _, Z,n),Val(U,Z, f )→ SatCl(U, J)

SatChain(U, I),SuccCl(U, I, J),

SatCl(U, J)→ SatChain(U, J)

MaxCl(U,M),SatChain(U,M)→ Sat(U).

Let us now see how to encode (the satisfiability) of formulas
φu(X) ∈ A via facts in the database and a specific query.
For each clause cj of φu(X), in the database DCS1 , there
are facts encoding cj along with all the possible assignments
satisfying cj . For example, for a clause (xp∨xq∨¬xr), there
are 7 facts, each of them for a possible way of satisfying cj :

Cl j(u, xp, f , xq, f ,¬xr, t) Cl j(u, xp, t , xq, f ,¬xr, t)

Cl j(u, xp, f , xq, t ,¬xr, f ) Cl j(u, xp, t , xq, t ,¬xr, f )

Cl j(u, xp, f , xq, t ,¬xr, t) Cl j(u, xp, t , xq, t ,¬xr, t)

Cl j(u, xp, t , xq, f ,¬xr, f ),

where u, xp, xq , ¬xr, t , and f are constants referring to for-
mula number u, literals xp, xq , and ¬xr, and the Boolean val-
ues true and false , respectively. Predicates encoding clauses
of A’s formulas are distinct from those of B’s formulas.

Furthermore, in DCS1 , there are specific facts to enforce
consistent assignments when recognizing satisfiable formulas
in A. In particular, for each variable xi, there are 8 facts:

Cons(xi, f , xi, f ) Cons(xi, t ,¬xi, f ) Cons(¬xi, f ,¬xi, f )

Cons(xi, t , xi, t) Cons(¬xi, f , xi, t) Cons(¬xi, t ,¬xi, t)

Cons(xi, f ,¬xi, t) Cons(¬xi, t , xi, f ).

We define the query by showing its parts. A part enforces that
assignments selected to satisfy formulas in A are consistent:

Consistency ≡
∧

∀(`j,k,`j′,k′ )
s.t. vj,k=vj′,k′

Cons(Lj,k, Tj,k, Lj′,k′ , Tj′,k′).

Another query’s part identifies satisfiable formulas in A:

Clauses ≡
m∧

j=1

Cl j(U,Lj,1, Tj,1, Lj,2, Tj,2, Lj,3, Tj,3).

The query is qCS1 = (∃U,L1,1, T1,1, . . . , Lm,3, Tm,3)
(Clauses ∧ Consistency ∧ Unsat(U)). The TGDs do not
depend on (A,B). KBCS1 (φ) is guarded and full.

It is possible to show that there is an index u, for which
φu ∈ A is satisfiable and ψu ∈ B is unsatisfiable, iff KBCS1

entails qCS1 under the AR, ICR, and IAR semantics.

ICR semantics. ICR-BCQ answering in the data complexity
is co-NP by a reduction unsatisfiability of 3CNF formulas.
The reduction produces a knowledge base with a fixed LF⊥,
AF⊥, and SF⊥ program and a fixed query. This proves all
open co-NP-hardness results in Fig. 1, right side.
Theorem 12. ICR-BCQ answering for LF⊥, AF⊥, and SF⊥
(and GF⊥, F⊥, and A⊥) is co-NP-hard in the data complexity.

BCQ answering under the ICR semantics is ΘP
2-hard in the

fp-combined complexity for all remaining entries in Fig. 1,
right side, except for WG⊥. The proof adapts the reduction
used in Theorem 11 with the reduction of Theorem 12.
Theorem 13. ICR-BCQ answering in the fp-combined com-
plexity is ΘP

2-hard for all the considered Datalog± languages.

BCQ answering under the ICR semantics for AF⊥ (and so
also for F⊥) is ΠP

2-hard in the ba-combined complexity.
Theorem 14. ICR-BCQ answering is ΠP

2-hard in the ba-
combined complexity for AF⊥ (and F⊥).

Proof (sketch). The hardness result is proven via a reduc-
tion from the ΠP

2-complete problem NQBF 2,∀ [Greco et al.,
2011; Schaefer, 2001]: decide the validity of a formula Φ =
(∀X)(∃Y )φ(X,Y ), where X = {x1, . . . , xn}, Y = {y1,
. . . , yr}, and φ(X,Y ) = ci(1) ∧ ci(1) ∧ · · · ∧ ci(n) ∧ ci(n) ∧
c1 ∧ · · · ∧ cm is a 3CNF formula, where each xk ∈ X
occurs only in the two clauses ci(k) = (xk ∨ ¬yk) and
ci(k) = (¬xk ∨ yk)—intuitively, each variable xk enforces
the truth value of the variable yk.

The key ideas of the reduction are as follows. Repairs en-
code the assignments over X . The satisfiability of φ(X,Y )
is checked through a TGD in which, via tailored facts in the
knowledge base, we impose that the assignments over Y are
consistent and they match the assignments over X . The pred-
icate in the TGD’s head can be derived iff φ(X,Y ) can be sat-
isfied given the assignment overX encoded in the repair. The
TGD’s head can be derived in all repairs iff Φ is valid.

The following shows that ICR-BCQ answering for A⊥ is
PNEXP-hard in the ba-combined complexity, proving all PNEXP-
hardness results in Fig. 1, right side. This follows from the
fact that ICR-BCQ answering coincides with AR-BCQ an-
swering for ground BCQs, and that the PNEXP-hardness proof
in [Eiter et al., 2016] for AR-BCQ answering for A⊥ in the
ba-combined complexity only uses a ground atomic query.
Theorem 15. ICR-BCQ answering for A⊥ is PNEXP-hard in
the ba-combined complexity.

The following shows all ΠP
2-hardness results in Fig. 1, right

side. It is proved by adapting the proof of Theorem 14, where
the TGD is encoded as two negative constraints. The ΠP

2-
hardness results in Fig. 1, left side, are proved similarly.
Theorem 16. ICR-BCQ answering for L⊥, LF⊥, AF⊥, S⊥,
SF⊥, F⊥, and GF⊥ is ΠP

2-hard in the ba-combined complexity.
Generalized repair semantics. The next result shows that all
hardness results for IAR- and ICR-BCQ answering under the
different classes of existential rules carry over to GIAR- and
GICR-BCQ answering, proving all lower bounds in Fig. 1.
Theorem 17. If IAR (resp., ICR) BCQ answering from data-
bases and programs over a Datalog± language L is C-hard
in the data, combined, and ba- and fp-combined complex-
ity, then GIAR (resp., GICR) BCQ answering from flexible
databases and programs over L is also C-hard in the data,
combined, and ba- and fp-combined complexity, respectively.

5 Summary and Outlook
We have given a precise picture of the complexity of BCQ
answering under different approximate inconsistency-tolerant
semantics (namely, the intersection of repairs (IAR) and the
intersection of closed repairs (ICR) semantics) for the most
popular Datalog± languages and complexity measures. In ad-
dition to the standard setting, where only database atoms
can be removed, we have also considered the more general



setting, where also rules may be removed (called generalized
IAR (GIAR) and generalized ICR (GICR) semantics).

Future research lines include considering other classes of
existential rules and to define other semantics for inconsis-
tency-tolerant ontological query answering. In particular,
it would be interesting to explore whether there are data-
tractable and/or even first-order rewritable other such seman-
tics. Furthermore, a more fine-grained way to analyze the
complexity of query answering would be a non-uniform ap-
proach, looking at the complexity of a single ontology or a
single ontology-mediated query (see, e.g., [Bienvenu et al.,
2014b; Koutris and Suciu, 2014; Hernich et al., 2017]).
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