
Group-specific environmental sequencing reveals high
levels of ecological heterogeneity across the
microsporidian radiation

Bryony A. P. Williams ,1* Kristina M. Hamilton,1

Meredith D. Jones2 and David Bass2,3

1Biosciences, University of Exeter,

Geoffrey Pope Building, Exeter, EX4 4QD, UK.
2The Natural History Museum, Cromwell Road, London,

Kensington, SW7 5BD, UK.
3Centre for Environment, Fisheries and Aquaculture

Science (Cefas), Barrack Road, Weymouth, Dorset,

DT4 8UB, UK.

Summary

The description of diversity is a key imperative in cur-

rent biological studies and has been revolutionised by

the molecular era that allows easy access to microbial

diversity not visible to the naked eye. Broadly targeted

SSU rRNA gene amplicon studies of diverse environ-

mental habitats continue to reveal new microbial

eukaryotic diversity. However, some eukaryotic line-

ages, particularly parasites, have divergent SSU

sequences, and are therefore undersampled or

excluded by the methodologies used for SSU studies.

One such group is the Microsporidia, which have par-

ticularly divergent SSU sequences and are rarely

detected in even large-scale amplicon studies. This is

a serious omission as microsporidia are diverse and

important parasites of humans and other animals of

socio-economic importance. Whilst estimates of other

microbial diversity are expanding, our knowledge of

true microsporidian diversity has remained largely

static. In this work, we have combined high through-

put sequencing, broad environmental sampling and

microsporidian-specific primers to broaden our under-

standing of the evolutionary diversity of the Microspor-

idia. Mapping our new sequences onto a tree of known

microsporidian diversity we uncover new diversity

across all areas of the microsporidian tree and

uncover clades dominated by novel sequences, with

no close described relatives.

Introduction

Microsporidia are a diverse phylum of eukaryotic para-

sites related to fungi, causing important socio-economic

infections (Keeling and Fast, 2002). In the range of

1300–1500 species have been described, with most

infections found in invertebrates (Vavra and Lukes,

2013). However, microsporidia also cause infections of

immunocompromised patients with the potential to

cause loss of life (Weiss, 2014). Seventeen species are

now known to cause human infection and many animal

lineages appear to provide zoonotic sources for micro-

sporidiosis (Fayer and Santin-Duran, 2014). Microspori-

dia are also important agricultural and aquacultural

parasites, being responsible for very significant yield-

limiting infections in farmed shrimp (Rajendran et al.,

2016; Thitamadee et al., 2016), and have been sug-

gested to work synergistically with pesticides to increase

honeybee vulnerability to colony collapse disorder, dem-

onstrating the potential of microsporidia to exploit chang-

ing host vulnerabilities to create new agricultural

problems (Cox-Foster et al., 2007; Stentiford et al.,

2016). They have a worldwide distribution in all major

habitats and the phylum encompasses a large amount

of undiscovered diversity (Zhu et al., 1993; Elizabeth

McClymont et al., 2005; Ardila-Garcia et al., 2013). For

example, an environmental survey of ten species of

freshwater snails revealed four new species of micro-

sporidia (Elizabeth McClymont et al., 2005), a survey of

microsporidian diversity in soil, sand and compost

revealed 22 novel microsporidian sequences (Ardila-

Garcia et al., 2013) and a survey of wild nematodes

uncovered 11 new species of microsporidia (Zhu et al.,

1993). Furthermore, multiple new lineages are being

described within the Opisthosporidia, a newly created

superphylum that encompasses the Microsporidia, the

Cryptomycota (Syn Rozellomycota) and the Aphelida

(Lara et al., 2010; Corsaro et al., 2014; Karpov et al.,

2014). Some of these newly described lineages have

clear morphological similarities to the Microsporidia and

their exact relationship to them remains to be fully

established. This suggests that although microsporidia

are recognised as a socio-economically important para-

site group, little is known about their true evolutionary
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diversity and their relative distribution across distinct

habitats.

Known microsporidian SSU diversity has been phylo-

genetically analysed to generate a broad classification of

microsporidia based on their branching in five major

clades, referred to by number (Vossbrinck and

Debrunner-Vossbrinck, 2005; Vossbrinck et al., 2014).

These clades have been associated into higher level

groups based on the habitat in which their constituent

members occur: Marinosporida (Clade 5), Terresporidia

(Clades 4 and 2) and Aquasporidia (Clades 1 and 3),

based on the assumption of a clear association between

phylogeny and host habitat (Vossbrinck et al., 2014).

However, within each of these major groups there are

several exceptions to this association. The SSU data for

these phylogenies are largely retrieved by sampling tar-

geted hosts, which themselves have habitat preferences.

As a result, this approach may lead to an incomplete

picture of microsporidian diversity, limited by sampling

only one aspect of the parasites’ lifecycles, and by the

relatively labour-intensive method of investigating host

individuals for possible infections.

SSU amplicon studies using broadly targeted eukary-

otic primers do not amplify microsporidia, because they

are extremely genetically divergent. Additionally, many of

these studies use a size filtration method to remove

small animals, which are likely to be a major reservoir of

microsporidian diversity and many DNA extraction meth-

ods may not be harsh enough to disrupt the environ-

mentally resistant spores (Bass et al., 2007; Lefèvre

et al., 2008; Massana et al., 2015). Therefore, in this

study we collected invertebrates and microbes across

multiple environments in the United Kingdom across four

seasons. We size-fractionated these samples, extracted
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Fig. 1. Sample collection sites.
A. BioMarKs Sample sites across Europe with collection dates and sample sizes. Full details of sample collection methods are available from
the BioMarKs website (http://biomarks.eu/?q5fieldwork).
B. Samples sites within the UK and sample collection dates for which we amplified PCR bands of microsporidan size. The area shown in B is
marked as a rectangle on A. Sampling conditions, coordinates and dates are given in Supporting Information Table S1. Several replicate DNA
extractions were generated for each sample, but these were eventually pooled before final PCR amplification. Samples were amplified with the
microsporidian primer set V1F CACCAGGTTGATTCTGCCTGAC (Zhu et al., 1993) and 530R CCGCGGCKGCTGGCAC (Baker et al., 1995).
using PhusionVR High-Fidelity DNA Polymerase (New England Biolabs) at an annealing temperature of 678C for 35 cycles. Selected successful
BioMarKs amplicons were cloned using the TOPO TA cloning system and sequenced using Sanger sequencing. Several clones were
sequenced for each amplicon and vector and primers were trimmed from the clones using Sequencher (Genecodes) before analysis. Samples
were also amplified at an annealing temperature of 558C using primers containing 454 barcodes and adapters and submitted for 454
sequencing.
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DNA and applied microsporidian-specific primers with

the aim of retrieving a broad diversity of novel micro-

sporidian OTUs. We used the universal microsporidian

V1F and 530R primer set to amplify an approximately

400 bp stretch of the SSU gene. We also use the same

primer sets to screen DNA samples collected during the

course of the pan-European marine microbial eukaryotic

sampling effort [http://www.biomarks.eu/; (Logares et al.,

2014)]. This revealed novel diversity across all five

microsporidian clades. Whilst some of this diversity is

represented by unique sequences closely related to

described microsporidia, other detected lineages clus-

tered with themselves or other environmental sequences

that have no close described relatives. This demon-

strates that at least some parts of the microsporidian

phylogeny are highly undersampled. In addition, we find

that our environmental samples do not always fall into

the expected ecological classifications (Aquasporidia for

aquatic samples, Terresporidia for terrestrial samples

and Marinosporidia for marine samples). This non-

correspondence between phylogeny and sampling envi-

ronment is suggestive of more frequent transitions

between different hosts and biomes than previously

recognised.

Results and discussion

Multiple DNA extractions were carried out from our UK

sample sites, shown in Fig. 1, over four seasons (see

Supporting Information Table S1) and different DNA

extractions for the same site and collection date were

pooled before PCR. However, only a subset of the

screened samples (32/109) yielded PCR products with

bands that could potentially correspond to microspori-

dian sequences. These samples are listed as a part of

Fig. 1. For sequencing, organismal size fractions from

each season were pooled to make a total of 17 pools

(See Supporting Information Table S2); after sequencing
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Fig. 2. Diversity of sampled microsporidia sequences and OTUs from the sample sites. Sequences were quality filtered and sorted according
to barcode using Qiime (Caporaso et al., 2010). This resulted in 4746 sequences for BioMarKs samples and 6856 for UK samples. After filter-
ing of obvious non-target sequences (Those that had very high sequence similarity to non-microsporidian taxa and tandem repeats), sequen-
ces were submitted to Blast2go to identify 438 microsporidian derived sequences for BioMarKs sample and 243 for UK samples (Conesa
et al., 2005). These were combined into a single file with 64 sequences derived from Sanger sequencing. OTU picking for the whole data set
of 745 sequences was carried out using UCLUST in MacQiime which resulted in 58 OTUS. These were screened for chimeric sequences
using DECIPHER (Wright et al., 2012).
A. Sequences and unique OTUs classified according to whether they fall within the Aquasporidia (Clades I and III), Terresporidia (Clades II
and IV) or Marinosporidia (Clade V).
B. Diversity detected at each sample site. Each detected OTU is illustrated by a different shade. Number of sequences and number of OTUs
per site are given in brackets.
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Fig. 3. A, B. Broad Bayesian phylogeny of new OTUs. Retrieved OTUs were used to query the NCBI database using BlastN and the top hit
for each sequence was retrieved. These were added to the OTUS and a reference set of described microsporidia, aligned using MAFFT
version 7 set to E-INS-i (Katoh and Standley, 2013) and masked using Gblocks (Talavera and Castresana, 2007). Bootstrapped maximum like-
lihood (ML) analyses were performed using the RAxML BlackBox v. 8.2.8 server (Stamatakis, 2014; Stamatakis et al., 2008) on the CIPRES
Science Gateway v. 3.3 (Ma et al., 2010) Bayesian consensus trees were constructed using MrBayes v 3.2.5 (Ronquist et al., 2012) using two
MC3 runs with randomly generated starting trees for 5 million generations, each with one cold and three heated chains, and using an evolution-
ary model that included a GTR substitution matrix, a four-category auto-correlated gamma correction and the covarion model. All parameters
were estimated from the data. Trees were sampled every 1000 generations. The first 1.25 million generations were discarded as burn-in and a
consensus tree was constructed from the remaining sample. To the right hand side of each OTU is indicated the site(s) (see Fig. 1) at which
the sequence was found and in brackets either the sample number for BioMarKs samples of Pool number for UK samples (see Supporting
Information Table S2 for details of pools and samples). In columns to the right hand side of each branch are the host order (where known) and
the host habitat (where known), or the sampling environment for environmental sequences (in bold).
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and removal of non-target species sequences, 10 of

these pools yielded true positive (microsporidian)

sequences. Each of the 14 screened BioMarKs DNA

samples yielded a PCR band of appropriate size (sam-

pling sites and dates for these are shown in Fig. 1).

After sequencing and removal of non-target species

sequences 7 of the 14 samples yielded microsporidian

sequences.

A total of 438 microsporidian sequences were

obtained from the BioMarKs samples and 243 from our

UK samples, which represented 58 different OTUs.

About 17 of these were found in the UK samples and 42

were found in BioMarKs samples. One was found in

both sample sets. One sample, Barcelona 20–2000 lm,

yielded 388 sequences composed of 20 different OTUS,

whilst other sites yielded a single OTU from a single

sequence (Fig. 2B). No diversity indices were calculated

due to a different sampling effort across the sites.

Novel sequences resulting from our current study

were added to a broad selection of microsporidian

sequences including representatives from all five micro-

sporidian clades (therefore encompassing Terresporidia,

Aquasporidia and Marinosporidia). Our phylogenetic

analysis largely retrieved these previously recognised

ecological clades (Fig. 3A and B) (with two clades

corresponding to Terresporidia) and all our novel

sequences fell into these clades with no major new

clades discovered. Novel sequences were distributed

across the tree of microsporidian diversity with little

pattern according to environment type, and with new

taxa not necessarily falling into the expected clades

given their sampling sites (Fig. 3A and B). This non-

correspondence of our results with the Terresporidia,

Aquasporidia and Marinosporidia classification system is

shown clearly in Fig. 2A.

Thirty six out of our 58 novel sequences fell into clade

IV of the ‘Terresporidia’. Within that clade many of the

new sequences fell into a sub-clade that does not

include any characterised taxa and these novel lineages

are likely to represent new species and new genera. Fig-

ure 4 shows an expansion of this region of the tree,

including all available distinct related sequences from

GenBank. This detailed phylogeny showed that many of

the OTUs generated by this study are from marine DNA

samples and cluster with microsporidians previously

detected in non-marine invertebrates: the lepidopteran-

infecting genera Orthosomella and Liebermannia, and

an unidentified Coleopteran infection (Fig. 4, clade A).

This phylogeny also shows marine and bog-derived

OTUS from this study within a clade that is dominated

Fig. 3. Continued.
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Liebermannia patagonica DQ239917.1
Liebermannia covasacrae isolate Laprida EU709818.1

Liebermannia dichroplusae EF016249.1
OTU40, Site 11 (SS22)

OTU15, Site 11 (SS22)
Uncultured Microsporidium Comp L Van8 KC111786.1

OTU23, Site 2 (P5)
OTU57, Site 12 (S24)

OTU10, Site 12 (S25)
Uncultured Microsporidium Comp L Van3 KC111787.1

OTU22, Site 11 (S23)
Microsporidium sp. BVIC3 FJ756174.1

Microsporidium sp. BCAN1 CAN FJ755994.1
Microsporidium BCAN1 LAT FJ755995.1

Endoreticulatus sp. Zhenjiang  FJ772431.1
Endoreticulatus sp. Shengzhou JN792450.1
Endoreticulatus bombycis AY009115.1
Endoreticulatus schubergi L39109.1
Endoreticulatus sp. CHW-2004 Bulgaria AY502945.1

OTU0, Site 7 (P2)
Uncultured Microsporidia JN619406.1

Microsporidium sp. BLAT2 LAT FJ756043.1
Microsporidium sp. BLAT2 PAR  FJ756044.1
OTU50, Site 12 (S24)

Microsporidium sp. BWOH11 FJ756196.1
Anostracospora rigaudi JX915758.1
Anostracospora rigaudi JX915759.1

Microsporidium sp. BPLA1 PAR4 FJ756139.1
Microsporidium sp. BPLA1 PLA FJ756145.1
Microsporidium sp. BPLA1 VER3 FJ756148.1
Microsporidium sp. BPLA1 VIO2 FJ756151.1
OTU18, Site 9 (S20)
Microsporidium sp. BPLA1 VER1 FJ756146.1 
Microsporidium sp. BPLA1 PAR6 FJ756141.1

OTU9, Site 7 (P2) 
Cystosporogenes operophterae AJ302320.1
OTU53, Site 1, 7 (P2, P7)

Cystosporogenes legeri AY233131.2
Cystosporogenes sp. CRV-2004 AY566237.1
Microsporidium sp. BLAT5 LAT1 FJ756048.1
Microsporidium sp. BLAT5 LAT3 FJ756050.1
Microsporidium sp BLAT5 FJ756052.1
OTU28, Site 10 (SS33)

Microsporidium sp. BVIO CYA FJ756175.1
Crispospora chironomi GU130407.1
Microsporidium sp. 3 NR-2013 JX839890.1

Glugoides intestinalis AF394525.1
Euplotespora binucleata DQ675604.1

Microsporidium sp. BCAL2 FJ755991.1
OTU44, Site 10 (SS33)

OTU55, Site 10 (SS33)
Microsporidium sp. 1199 FN610845.1

OTU49, Site 11 (S21)
Microsporidium sp. FJ756193.1

Microsporidium sp. BPAR2 PAR7 FJ756092.1
Microsporidium sp. BPAR2 TUB1 FJ756098.1

Agmasoma penaei KF549987.1
Microsporidium sp. BFAS6 FJ756014.1

OTU51, Site 7 (P2) 
Microsporidium sp. BPAR5 FJ756102.1

Enterospora nucleophila KF135641.1
Uncultured Enterocytozoonidae clone pEHP KP759285.1

Enterospora canceri HE584634.1
Enterocytozoon bieneusi AF024657.1

Microsporidium sp. DP-1-19 AF394528.1
Hepatospora sp. RA08133-6 

Nucleospora salmonis AF185992.1
Obruspora papernae HG005137.1

Microsporidia sp. JP-2016 KX757849.1
Enterocytospora artemiae JX915757.1
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by amphipod-derived samples resulting from a single

study of Lake Baikal (Fig. 4, clade B). One explanation

is that this particular area (Clades A and B of Fig. 4) of

the microsporidian tree is hugely undersampled and

wherever we look in the environment, we will find new

members of this clade. Alternatively, microsporidia may

have undergone a massive diversification within the

amphipods and our marine and bog microsporidian sam-

ples may all be derived from amphipod hosts and thus

be a part of this radiation. However, as this clade also

contains lineages from identified insect hosts, perhaps

the former explanation is more likely. This clade also

contains a microsporidian retrieved from a ciliate host

which opens the possibility that our samples were

retrieved from protist hosts, such as ciliates, or that

protists represent intermediate hosts within this clade. A

targeted approach with newly generated clade-specific

primers would be needed to test these ideas and fully

explore the diversity for this clade.

In the past, microsporidia have been broadly classified

into clades according to their SSU phylogeny and the

ecological niche that the majority of species within those

clades inhabit (Vossbrinck and Debrunner-Vossbrinck,

2005; Vossbrinck et al., 2014). However whilst it is likely

that some microsporidia have a single host, it is also

likely that many have a broad host range and that others

cycle through unidentified intermediate hosts (Solter,

2014). Nonhost-targeted environmental screening has

the potential to uncover microsporidia in intermediate

hosts and environments where they have not previously

been documented. This seems to be the case for our

results, which have disrupted the pattern of taxa group-

ing according to environment that they or their hosts are

found in.

The majority of our OTUs were detected in a single

environment type, but a few were found across multiple

environments (Supporting Information Table S2). These

are OTU20 found in leaf litter, estuarine, soil and freshwa-

ter environments, OTU35 found in leaf litter and estuarine

environments and OTU53 found in pond and bog

environments. OTU20 is found nested with other sequen-

ces retrieved from environmental samples. OTU35 is

clustered with Gurleya species that infect Daphnia

species. OTU53 branches as sister to Cytosporogenes

orthopterae, a moth infecting microsporidian. The finding

of certain OTUs in several samples from different environ-

ment types is also suggestive of multiple hosts for some

microsporidian lineages. However in the absence of data

to identify hosts, we cannot rule out the possibility that

they are found in the same host type inhabiting a broad

range of environments, perhaps, for example, ciliates,

nematodes or gammarids that could tolerate a range of

salinities. An alternative possibility is that some sample

sites could have been contaminated by material from

other environments, for example marine and estuarine

sites could have been contaminated by run-off from fresh-

water and terrestrial environments. We find that marine-

derived OTUs make up a large proportion of some of our

clades, for example, the Terresporidia. Whilst this reflects

the fact that many of the samples that we used were

derived from marine environments (18/30), it also makes

it less likely that these large numbers of new taxa would

be accounted for by contamination from other habitats.

In both our comprehensive phylogeny and sub-

phylogeny (Figs. 3A, B and 4) we interestingly find a

novel sequence, OTU0 found in UK bog samples, as sis-

ter lineage of an unidentified microsporidian isolated

from the urine of a human patient in Thailand (Figs. 3A

and 4). This highlights the close evolutionary relationship

between clinical and environmental samples in the

Microsporidia, and the possible risk of emergence of

human infections from environmental sources. One

microsporidian clade known from past studies to contain

both environmental and clinical species, is the Enterocy-

tozoonidae, which contains the highly prevalent human

pathogen Enterocytozoon bieneusi and a number of

marine organism-infecting relatives. In the current study,

we recovered no novel sequences that fell into this clade

(Fig. 3A). Similarly, we found no new diversity within the

genus Encephalitozoon, home to several mammalian-

infecting pathogens including humans.

The lack of new diversity in these areas of the tree

could suggest that these clades contain less undetected

environmental diversity, comprise microsporidia which are

very host specific, or that we did not sample the habitats

harbouring those lineages. It may also be the case that

our broadly targeted primers are biased toward certain

clades of microsporidia whilst excluding others. This may

be particularly the case for those lineages that are at the

base of the known microsporidian diversity and represent

Fig. 4. Expanded Bayesian phylogeny of clade IV of the Terresporidia including our retrieved OTUs. The new OTUS from clade IV were used
to query NCBI by BlastN again and a new alignment created using these taxa and the top 2 blast hits for each taxon. Sequences that were
near identical strains of the same described species were reduced to retain a single sequence. Phylogenies were generated using the methods
listed in Fig. 3. To the right hand side of each OTU is indicated the site(s) (see Fig. 1) at which the sequence was found and in brackets either
the sample number for BioMarKs samples of Pool number for UK samples (see Supporting Information Table S2 for details of pools and sam-
ples). In columns to the right hand side of each species are the host order (where known) and the host habitat (where known), or the sampling
environment for environmental sequences (in bold).
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potential transitional lineages between the newly charac-

terised taxa such as Mitosporidium, Paramicrosporidium,

Nucleophaga, Amphiamblys and the main microsporidian

diversification. Our single primer approach provides a hint

of the environmental diversity waiting to be uncovered in

the microsporidia, but a more comprehensive survey of

microsporidian diversity will need a larger scale screen

with multiple primer sets each targeted at a specific

microsporidian clade.
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