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Abstract  
 
The use of big data to investigate the spread of infectious diseases or the impact of the 
built environment on human wellbeing goes beyond the realm of traditional approaches 
to epidemiology, and includes a large variety of data objects produced by research 
communities with different methods and goals. This paper addresses the conditions 
under which researchers link, search and interpret such diverse data by focusing on 
“data mash-ups” – that is the linking of data from epidemiology, biomedicine, climate 
and environmental science, which is typically achieved by holding one or more basic 
parameters, such as geolocation, as invariant. We argue that this strategy works best 
when epidemiologists interpret localisation procedures through an idiographic 
perspective that recognises their context-dependence and supports a critical evaluation 
of the epistemic value of geolocation data whenever they are used for new research 
purposes. Approaching invariants as strategic constructs can foster data linkage and re-
use, and support carefully-targeted predictions in ways that can meaningfully inform 
public health. At the same time, it explicitly signals the limitations in the scope and 
applicability of the original datasets incorporated into big data collections, and thus the 
situated nature of data linkage exercises and their predictive power. 
 
 
Keywords: epidemiology, geolocation, data linkage, data reuse, inference, data mash-
ups, localisation, prediction, public health. 
 
 



 2 

Introduction  
Modern epidemiology has been widely characterized as grounded on the development 
and application of statistical techniques to the study of the distribution and 
determinants of health states in human populations (Last 1983, 32–33; Russo 2009; 
Broadbent 2013, 1). The goals of epidemiological studies are often aligned to clinical and 
public health objectives, thus making epidemiology one of the few scientific fields with 
equal footing in basic and applied research (Morabia 2005, Bauer 2008, Broadbent 
2013). Philosophers interested in epidemiology have focused their attention on the use 
of statistical techniques, the nature of explanatory and causal claims being made, the 
epistemic significance of its applied goals, and the ways in which the field intersects with 
the social sciences, molecular biology and personalized medicine (e.g. Campaner & 
Galavotti 2012, Holmberg et al 2012, Broadbent 2015, Boniolo & Nathan 2017, Russo & 
Vineis 2017). In this paper, we turn instead to the role and use of big data within 
epidemiology, and particularly the ways in which epistemic strategies to cluster and 
analyse big data are facilitating collaboration between epidemiology and biomedicine, 
environmental science and climate science. 
 
Susanne Bauer has described epidemiological studies as “complex biopolitical 
assemblages, where samples, data and techniques from different contexts are 
temporarily brought together in particular configurations” (Bauer 2008, 418). Indeed, 
epidemiology has always been concerned with collecting and comparing datasets that 
are “big” in terms of their volume and variety, if not of their velocity (Kitchin 2014); and 
which are meant to be explored and re-used for a variety of purposes rather than solely 
as evidence for a given hypothesis, thus making epidemiology a quintessentially data-
centric field (Leonelli 2016). By encompassing factors ranging from physiology to diet 
and socio-economic status of the populations in question, epidemiology has also long 
been concerned with the relation between information about human health and 
information about the lived environment (Morabia 2005). Yet, the datasets required to 
provide such information have typically been generated in a coordinated and 
centralized fashion through longitudinal projects, such as cohort or case-control 
studies.1 By subjecting whole groups to the same set of measurements and analytic 
tools over an extended period of time, epidemiologists developed sophisticated 
methods to identify and compare populations through probabilistic thinking, which in 
turn generated specific ways of collecting and analysing environmental data that have 

                                                
1 Technically in epidemiology only cohort studies are considered to be longitudinal, however often case 
control studies are longitudinal in practice.  
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little in common with the methods used within climate and environmental science.2 
 
The emergence of big data infrastructures, analytic tools and linkage techniques thus 
constitutes a novel prospect for epidemiologists interested in the intersection between 
health and environment. At the very least, it affects the ways in which epidemiologists 
identify and assemble data of relevance to their research interests. New forms of data 
collection and dissemination linked to advances in information and communication 
technologies, such as online databases, make it possible to cross-analyse and compare 
data that: (1) come from independent sources, including both observational and 
experimental data, collected via unrelated tools and for a variety of different purposes, 
and thus resulting in disparate data objects and formats; (2) relate to highly diverse 
phenomena and samples captured at widely different locations, temporalities and levels 
of resolution (from the genetic make-up of a specific individual to the behavioural 
patterns of a large population or the recurrence of a disease across generations); and (3) 
are produced by a wide spectrum of epistemic cultures, including groups from 
molecular biology, animal studies, meteorology and weather forecasting as well as 
patient groups, social media, hospitals and general practitioners. The digital availability 
of big biomedical, environmental and climate data constitutes an extraordinary 
opportunity for epidemiology to appropriate and analyse novel data sources concerning 
a large variety of environmental and health factors, thus bringing new resources to the 
investigation of a wide range of issues, including, for instance, the spread of infectious 
diseases and the impact of the built and natural environment on human wellbeing. At 
the same time and for the same reasons, these data lack the relative cohesion and 
comparability built into individual cohort or case-control studies. Their production is 
shaped by different understandings of disease, health and the relation between 
biological and environmental knowledge, as well as diverging standards for evidential 
reasoning and data quality evaluation. It may also be motivated by diverse goals, 
ranging from the testing or validation of new therapies to the development of diagnostic 
tools and the discovery of molecular or physiological mechanisms underpinning a given 
condition (Fleming et al 2017).3 Finally, it is challenging to juxtapose and associate highly 
individualised qualitative data, such as those included in most observational studies, 
with the quantitative datasets acquired via high-throughput measurement instruments 
such as screening tools or automatic weather stations (Leonelli 2017). 

                                                
2 See Morabia (2005) for an overview of the different types of study designs used to assemble evidence 
and test hypotheses. 
3 See also Knorr-Cetina 1999, Leonelli 2012 and Longino 2013 for analyses of how diverse and sometimes 
incompatible conceptual and methodological assumptions can affect data sharing and re-use across 
different epistemic cultures. 
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This situation raises a host of philosophical questions around the epistemic warrants, 
methodological conditions, and potential implication of big data analysis in 
epidemiology. What makes it possible to link, search and interpret such data as if they 
constituted a single body of evidence? And how do processes of inference, 
extrapolation and quality assessment work, when researchers are confronted with such 
diverse data sources? Previous work in relation to the life sciences and biomedicine 
illustrated how exploring these questions involves in-depth study of data practices and 
related theoretical and methodological commitments (O’Malley and Soyer 2012, Bechtel 
2013, Plutinsky 2013 and Leonelli 2016). In this paper, we propose to bring these 
questions to bear on the case of “data mash-ups,” which cluster data coming from 
epidemiology, biomedicine, and climate and environmental science. In the words of 
their developers and users, data mash-ups are “a dynamic, explorative and ongoing 
exercise of processing, mixing and analysing different types of data together to produce 
a unified and unique output which can be potentially more useful than and accessed 
independently of the original individual datasets” (Daniel 2014). We shall focus on a 
specific strategy used to produce data mash-ups. This is to combine data extracted from 
various digital repositories by clustering the data around a basic parameter of choice, 
which takes on the role of an invariant point of reference. Geolocation data are often 
used as an invariant in this way, as it seems relatively straightforward to align data 
points collected on the same location in order to assess potential correlations. We are 
interested in uncovering the conditions under which the use of geolocation as an 
invariance strategy can fruitfully serve efforts to analyse and interpret big data 
assemblages; and the advantages and disadvantages involved in adopting this strategy.4  
 
Building on Ayelet Shavit and James Griesemer’s work on notions of locality employed in 
the making and validation of biodiversity surveys (2009), we will argue that this strategy 
is most effective when epidemiologists use an idiographic conceptualisation of 
geolocation, which recognises the extent to which locality measurements depend on the 
investigators’ instruments and perception; and the “interactive construction” of space 
by, on the one hand, the very act of data collection, and on the other hand, the way in 
which living systems themselves, which are the object of an observation and data 

                                                
4 Our discussion focuses on the spatial coordinates involved in geolocation, and thus on 
conceptualizations of space and locality. As we note in our conclusion, temporal coordinates are as 
important as spatial coordinates for geolocation, and our argument is also meant to apply to temporal 
data.  More research on the peculiarities of temporal data is required to examine the implications of this 
point. 
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collection exercise, relationally shape the environment they live in.5 This view of 
geolocation calls attention to the situated nature of the processes through which 
particular phenomena are given spatial references (which we shall refer to as 
localisation processes). As we shall argue, this in turn highlights the epistemic 
importance of being able to consult information about data provenance when assessing 
the quality and evidential value of geolocation measurements, and being able to 
disaggregate data clusters – such as mash-ups – when this is required to verify the 
reliability of specific data interpretations.  
 
The explicit adoption of an idiographic interpretation of geolocation can thus foster data 
linkage and re-use, while also signposting the limitations in the scope and applicability 
of the original datasets that are incorporated into big data collections. This approach to 
localisation can also support carefully-targeted generalizations and predictions, hence 
playing an important role in informing decision-making concerning public health. 
Indeed, we shall argue that conceptualising localisation in this way fosters critical 
consideration of the scope and targets of generalizations and predictions derived from 
the analysis of data clusters. 
 
Our discussion is grounded on the study of one specific experience in data mash-ups, 
namely the development of the Medical and Environmental Data Mash-Up 
Infrastructure - devised by UK-based epidemiologists in collaboration with climate and 
environmental scientists in order to enable extensive data linkage, thus providing a 
platform for the performance of data mash-ups.6 Our analysis will proceed as follows. In 
the first section of the paper, we introduce MEDMI and provide examples of how it has 
enabled the production and analysis of data mash-ups. In section two, we discuss the 
notion of invariance, how geolocation is used as an invariant parameter in MEDMI-
enabled data mash-ups, and with which results. Section three discusses two 
epistemological problems that the use of geolocation as an invariant point of reference 

                                                
5 Shavit and Griesemer elaborate on the distinction between idiographic and nomothetic originally 
proposed by German philosopher Wilhelm Windelband ([1894] 1980). A detailed investigation of the 
history of these concepts and their role in Windelband’s work would be instructive, but is not directly 
relevant to our arguments here, which build primarily on Shavit and Griesemer’s analysis of the research 
practices privileged by those who collect and interpret biological and environmental data. 
6 Our analysis is empirically grounded on the study of MEDMI publications and other materials available 
on their website (MEDMI website 2017); and on collaborative work carried out with MEDMI staff between 
April 2015 and January 2017, which included interviewing 24 MEDMI participants around their 
experiences in the project. The quotes used in this paper are taken from transcripts of these interviews. 
Those transcripts which participants have agreed to publicly disclose are openly accessible within the 
Exeter Data Studies data collection hosted by Zenodo (URL: 
https://zenodo.org/communities/datastudies/?page=1&size=20).  
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needs to overcome: first, geolocation is not actually invariant across the datasets in 
question; and second, geolocation data need to be re-situated in order to be intelligible 
to researchers who wish to use them. In section four, we tackle these two concerns by 
proposing to view invariants as strategic constructs. In section five we then argue that 
conceptualising locality as idiographic helps to highlight how invariance is not something 
“found” by trawling through datasets, but rather is construed through the calibration of 
locational data with background assumptions and theories around how the phenomena 
in question interact with their environment. As we illustrate in section six, this 
conceptualization helps to identify the epistemic advantages of using geolocation as 
invariant, and the reasons why researchers regard it as fruitful despite the concerns 
presented in section three. In closing, we draw a general lesson from our analysis of 
data mash-ups: using invariance strategies for big data integration across health and the 
environment works best when the invariance is contextualised and data aggregates can 
be disaggregated for ease of re-interpretation and quality control. 
 
 

1. Health/environment data mash-ups: the case of MEDMI 
 
The Medical and Environmental Data Mashup Infrastructure is a project aiming to 
facilitate research-grade mash-ups of weather, environmental, demographic and human 
health data. MEDMI was developed by a consortium of four main partners (University of 
Exeter Medical School, London School of Hygiene and Tropical Medicine, UK Met Office 
and Public Health England) over a three-year period (2013-2016), with funding from the 
Medical Research Council and the Natural and Environmental Research Council. It was 
conceived as a novel type of infrastructural resource geared towards innovative 
interdisciplinary science. MEDMI developers named the project a mash-up as it “implies 
easy and fast integration of different types and sources of data, frequently using open 
application programming interfaces and data sources, to produce enriched results that 
were not necessarily the original reason for assembling the raw source data” (Fleming et 
al. 2014:1730).7 The initial focus was the assemblage of data relevant to constructing 
time series analyses of the seasonality of specific UK pathogens and related diseases. To 
this aim, MEDMI aimed to combine data relating to:  
¡ territory (including information about the landscape, levels of urbanization and 

population density, as well as socio-economic data such as education levels and 
average income, typically organized by municipality and region of residence); 

                                                
7 The term mash-up is popular in the web development world to refer to interfaces that offer integrated 
and seamless functionality, despite sourcing data from multiple storage locations; and to this extent it has 
been often used to refer to applications involving mapping software or locational data.    
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¡ climate (including data about levels of rainfall and humidity, temperature and 
altitude, which provide insight into the weather conditions at different locations); 

¡ patients (including symptoms recorded by general practitioners, and rate of 
incidence, time and severity of diseases); and 

¡ pathogen biology (including information about the physiology, life cycle and 
nutrition of the microbes in question, which helps to estimate the conditions under 
which the pathogen is likely to thrive and be most damaging to hosts).8 

 
Gathering data of such different types and origin into a single infrastructure promises to 
open new avenues of research, with interdisciplinary investigations on the links 
between the environment and human health acquiring a bigger scale; and executing 
more ambitious research designs than was possible before.  
 
This is significant given the considerable disciplinary barriers traditionally separating 
these data types and sources from each other. Data gathered in epidemiological cohort 
studies may well include data on the environment, climate and landscape, but this 
typically happens in the context of specific projects rather than through linkage to 
existing (and much more comprehensive) sources of weather and environmental data, 
such as the MET Office. An infrastructure such as MEDMI endeavours to offer 
researchers a simple point of access to several data collections, and the tools and 
resources to be able to parse, compare, extract and analyse the data safely and reliably, 
thus enhancing the robustness and validity of the research by enabling researchers to 
triangulate between different types of findings. To realize this vision, MEDMI developers 
divided the project into three components: the sourcing of datasets; the development 
of methods and tools to perform the “mashing up” and enable new analyses of putative 
links between environment and human health; and the demonstration of methods and 
tools via pilot research pieces, which would showcase what MEDMI affords to research.9  
 
In the analysis that follows, we focus on one of the three demonstrative research pieces, 
with an interest in exemplifying and understanding the epistemic strategy of invariance 
construction through which it becomes possible to link, compare and juxtapose datasets 
that have different origins and focus. 

                                                
8 In practice, MEDMI encountered challenges in incorporating some of these data sources and particularly 
data from patients. At the moment of writing, the only medical data available are lab reports concerning 
infectious disease and death data for a limited number of authorized researchers. For a detailed 
discussion of data access and security in MEDMI, see Tempini and Leonelli (in press). 
9 A detailed empirical analysis of how the development and evolution of the infrastructure can be found in 
(Tempini, in preparation). 
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2. Localisation as an invariance strategy 
 
An invariant is typically defined by methodology textbooks as an object or a quantity 
that remains unchanged under a group of transformations.10 While the concept of 
invariant finds its origin in mathematics (with a subfield fully devoted to invariant 
theory), it has been adopted across several disciplines by widening the range of objects 
and properties that can be considered as invariant. Within experimental science, 
positing a given set of parameters as invariant can provide a stable reference point 
against which experimental variables of interest can be more easily detected and 
hypotheses tested. Similarly, finding invariant criteria for grouping data has long 
constituted a strategy for researchers interested in analysing large datasets through 
statistical methods, particularly when such datasets include observational data. 
Invariant parameters are invaluable resources for clustering and aligning highly 
disorganised and heterogeneous data collections, and it is no surprise that the toolset 
used by epidemiologists interested in mashing up medical, environmental and climate 
data prominently features techniques for identifying and controlling them.  
  
Perhaps the parameters most widely used as invariant for big data analysis are those 
relating to geolocation, by which we mean any measurement or estimate of the 
geographical location of an object – for instance, as achieved through reference to 
longitudinal/latitudinal information, postal address, Global Positioning System (GPS) 
coordinates, or other satellite measurements. Using geolocation parameters as 
invariants was a key strategy in one of the most successful uses of MEDMI to date, 
which investigated the seasonality of a set of common pathogens including the 
Campylobacter bacterium, well-known to UK public health officials as a common agent 
of food poisoning. In this study researchers compared existing data on reported cases of 
Campylobacter infection at particular locations to weather temperature data recorded 
on those locations in the days before the cases of infection were first identified. The 
outcome was a clear correlation between higher temperatures and incidence of 
pathogen activity (Djennad et al. 2017).  
 
This was not a ground-breaking result per se. The conditions under which the bacterium 
is likely to infect humans were already known to be susceptible to temperature, and the 
study therefore confirmed a highly plausible hypothesis. What was more interesting for 

                                                
10 For example Weisstein (2017) and Popov (2017).  
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researchers was the usefulness of this study as a validation of their general approach – 
in other words, as a demonstration that mashing up climatic and health datasets by 
positing geolocation as an invariant could provide reliable and independently confirmed 
knowledge on disease seasonality across a wide range of environments. Scaling up from 
this proof-of-concept, researchers went on to apply the same strategy to a much larger 
dataset, which included extensive weather and environmental data, as well as infection 
case data for over 2000 named species or serotypes of pathogens as reflected in 14 
million records of lab analyses conducted over a period of 25 years. This data mash-up, 
called LabBase2 Trawl, was organised in similar ways to the Campylobacter study, and 
yet the audacity of its scale and scope made its results much more interesting and 
insightful, not least because they could not have been obtained through more 
traditional epidemiological work. Among other things, researchers could now compare 
the seasonality of different strands of the same pathogen, relate shifts in seasonal 
behaviours to specific weather patterns, and assess the incidence across the population 
in terms of age distribution, socio-economic status and weather exposure. 
 
At its most ambitious, this kind of data mash-ups could provide evidence to model the 
impact of climate change on infectious disease incidence and seasonality. This would be 
a significant achievement for a study grounded on the deceptively simple assumption 
that highly diverse data can be correlated through the location in which they were 
originally collected. The potential of these findings to inform decisions relating to public 
health and the management of health services in the future makes it particularly 
important to ensure that the assumptions and methods underpinning the research are 
sound and reliable. 
 
 

3. Problems with the use of geolocation as invariant 
  
While the use of geolocation as invariant was crucial to the production of informative 
and novel knowledge claims in the LabTrawl2 study, this strategy for the performance of 
data mash-ups is susceptible to some major challenges. In this section, we discuss two 
concerns which have major epistemic implications in terms of the reliability and 
trustworthiness of the knowledge claims acquired through this approach: (1) 
geolocation measurements are not actually invariant, with each measurement referring 
to a specific understanding of location and thus, potentially, a different place altogether; 
and (2) despite the adjustments made to the datasets in order to create the mash-up, 
the reliability of the data for the specific investigative purposes of any one project 
cannot be taken for granted, and indeed researchers wishing to re-use data within new 
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projects need to spend time assessing whether the data are fit for purpose and 
investigating which interpretations of the data make sense in light of their provenance. 
 
Problem (1) calls into question the very validity of assuming geolocation as an invariant 
property around which evidence for the study is assembled and built. This is easily 
uncovered when considering that the datasets collected in studies like the 
Campylobacter project and LabBase2 Trawl employ very different scales and 
assumptions for geolocation measurements. Some of the climate data are ordered on 
weather grids to establish spatial coordinates, while others employ high resolution GPS 
coordinates. Environmental and population data (such as those collected by the national 
census) are sometimes geolocated with reference to a given geographical radius (say, 25 
km), and other times to administrative standards such as postcodes, constituencies or 
districts. These are quite literally different definitions of space, and they are difficult to 
correlate with each other. Each approach is also likely to have different criteria for what 
is worth measuring in the first place (as in the case of census data for instance, where 
locations are defined by homogeneous clusters of inhabitants and can cover areas of 
very different physical size), thus providing a very uneven sample when data collected 
through different criteria of exclusion are merged. 
 
Even trickier is the issue of identifying locations for human health incidents. These 
locations are crucial to virtually any study performed through MEDMI, as these studies – 
like those discussed above – aim to improve public health provision. Nevertheless, 
MEDMI is unable to use location information about patients, such as their house 
address, since these constitute identifying information and can only be shared under 
conditions of confidentiality which MEDMI cannot guarantee.11 LabTrawl2 researchers 
therefore used the address of labs that process patient samples as proxies for the 
geolocation of the patients themselves, based on the assumption that patients are most 
likely to use a lab close to where they live (in their words, these addresses signal 
“catchment areas” for individual patients). The shortcomings of this assumption are 
obvious, ranging from the possibility that patients did not in fact use the lab closest to 
their place of residence, to the problem of rural regions where catchment areas for any 
one lab are likely to be very extensive - not to mention potential time lags and people 
contracting illnesses while travelling. 
 
Furthermore, not only the spatial definition of the geolocation data, but also the ways in 
which their values are obtained are highly diverse, generating results that are not 

                                                
11 MEDMI lacks strong measures to prevent re-identification (Tempini and Leonelli in press). 
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always consistent or well documented. In the following quote, an epidemiologist 
discusses the problems involved in extracting relevant data from the weather datasets: 
 

“The Met Office holds weather parameters that vary from changes per minute to 
changes per year, or decade, so it has just a vast amount of data, and extracting 
it in exactly the right format is more difficult than it seems. Some of the datasets 
are held in the format that's relatively easy to extract, and some there's no 
published data on the time scale and resolution that we want. The way that the 
weather data is held... You have ground stations, and the ground stations record 
the weather, and so there’s gaps between the individual ground stations, and 
the different parameters measured in different ways.  So, they must do 
interpolations to estimate the area between the ground stations and then 
produce the data in the format that they want it. So some things which I would 
have thought would have been easily collectible, like sunlight, they only produce 
on a weekly, monthly basis – it’s monthly, I think – so we haven't been able to 
get daily or weekly sunshine recordings. It’s the same for a whole lot of other 
parameters. It’s trying to get the exact parameters we want, that’s more 
difficult. I think it’s to do with the ease, or lack of, being able to extract it” 
(Researcher 35) 
 

Such variability makes it hard to control for error and sampling biases; and makes it 
necessary for researchers to use calculations (in the words of researcher 35, 
“interpolations”) involving various kinds of judgements made to estimate data quality 
and reliability. The widespread awareness that geolocation data are not necessarily 
comparable is confronted and remedied through tailored operations of data evaluation 
and processing, aimed at making the data comparable and supporting their alignment. 
 
Things become even more complex when considering the full diversity of data involved 
in data mash-ups, as eloquently explained by another MEDMI participant: 

 
“So putting all that together and trying to summarise the problems, you have 
data at lots of different scales of spatial aggregation and at the same time 
sometimes lots of different scales of time resolution as well – some of the data is 
daily, like the weather data could be daily, the health data is monthly, it could be 
annual in some cases, and then the Census data, of course, is… well it’s annual, I 
suppose, by the time you put the predictions in there, but it’s really ten-yearly 
[laughs]. And if you are going to try and provide a platform which kind of 
integrates all of this data, what is your baseline? I mean, what is your baseline?” 
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(Researcher 28, our emphasis)  
 
This brings us to problem (2). Taken literally, the above quote could be interpreted as a 
strong objection to the validity and epistemic usefulness of data mash-ups. The 
researcher is implying that in a situation such as MEDMI, where the scales of spatial 
aggregation and temporal resolution in the datasets are so diverse, there is simply no 
generalizable way of setting a baseline for data linkage. It is tempting to read this as a 
profoundly sceptical argument about the epistemic value of data-linking practices, 
which demonstrates that large data assemblages created without regard for the specific 
characteristics of each dataset are intrinsically unreliable and potentially misleading. 
This sceptical view is very important to articulate and explicitly discuss, particularly 
given the claims made by some big data analysts around the extent to which increasing 
the volume and diversity of data can offset epistemic concerns around the accuracy and 
relevance of data as evidence within causal reasoning (e.g. Mayer-Schönberger and 
Cukier 2013).12 The two problems with the use of geolocation as invariants which we 
identified in this section point to the opposite conclusion: namely, that the 
accumulation and linkage of large and diverse datasets can be confusing at best and 
treacherous at worst, pushing researchers to forgo crucial information about the 
circumstances in which data have been collected and curated, and thus underestimate 
existing discrepancies in the meaning and scales of the parameters employed. This in 
turn may result in researchers becoming insensitive to the specific aims and conditions 
of data collection, and disregarding information that may well prove crucial to an 
adequate contextualisation and interpretation of the data (a situation that would occur, 
for instance, if anybody used MEDMI to link health and weather data without 
considering their different temporal scales). 
 
 

4. Confronting the problems: Invariants as situated constructs 
 
There is however another way to interpret the concern voiced by researcher 28, which 
similarly captures epistemic worries about potential misuses of big data linkage, while at 
the same time salvaging and explaining the value of such efforts towards producing 
reliable forms of knowledge. This interpretation reads the researcher’s worry as 
concerning the conditions under which researchers decide the parameters for data 
linkage and integration. While it is true that there is no baseline for data linkage that can 
work for any situation of data re-use, it may be possible – indeed, necessary – to identify 

                                                
12 For critiques of this view, see Leonelli 2014 and Calude and Longo 2016.  
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the best baseline for data linkage within any one project by taking the specific aims, 
methods and circumstances of data analysis into account. Indeed, MEDMI researcher 28 
went on to explain that the difficulties with timelags were resolved by letting go of the 
idea of finding a generalised baseline altogether (thus avoiding, in the researcher’s own 
words, the creation of “a set of gridded data sitting there that you’ve artificially 
produced”). What was decided instead was to encourage MEDMI users to find the best 
invariant for each and every project, and to do it in ways that would help them to assess 
which data are actually relevant and adequate for their line of investigation. For 
instance, for a project investigating the relation between the number of asthma 
diagnoses and levels of humidity in the atmosphere at a given location, researchers 
settled on the time resolution of health data as the baseline around which all other data 
would be evaluated and compared – resulting in weather data being mined only for 
monthly averages rather than daily measurements. By abandoning any pretence of 
working with a perfect dataset, this strategy takes on board a lesson that clearly 
emerges from the history of science, and most prominently the historical sciences: 
imperfect and imprecise datasets can be successfully used as evidence towards 
important discoveries, as long as their limitations are clearly acknowledged and 
incorporated into the analysis (e.g. Chapman and Wylie 2016, Currie 2017). 
 
“Finding one’ baseline” thus captures the requirement that the assumptions made by 
researchers about the status of the datasets - and in particular, the classifications of 
location that they are built on - need to be checked at every step of data re-use, to 
make sure that the ways in which datasets are being (re)interpreted, compared and 
juxtaposed with one another is still consistent and supported by the available data.13 
Within this view, big data linkage has epistemic value only when researchers are willing 
and able to adapt the parameters through which the invariant point of reference is 
constructed to their situated assessment of what is plausible within the specific inquiry 
at hand. In turn, the ability to identify and establish the right baseline for any given 
project stems from the ability to check the original sources used in data mash-ups, so as 
to tailor the analysis and interpretation of the data to the assumptions made in data 
collection or subsequent processing. Assumptions thought to be irrelevant or 
unimportant at an early stage of the mash-up process, such as those concerning the 
temporal and spatial scales of datasets, may turn out to be crucial, at a later stage, to 
the re-use of data in a new context. Hence making those assumptions explicit and easy 
to track is essential for researchers interested in using the data as evidence.  

                                                
13 As pointed out by Edwards (2010) and Bokulich (2018), among others, models often play a crucial role 
in this process. 
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One MEDMI researcher gave a useful illustration of this point, while discussing the 
difficulties of formulating causal claims on the basis of highly de-contextualised data:   
 

 “You can’t necessarily look at lags or manipulate the data if it’s all linked. So, for 
example, if you have a flood, people can be killed right away or they can be harmed 
from that exposure. For example, their mental health, it doesn’t actually give 
evidence of that for months. So there’s lags from exposure to health onsets. If you 
link the data ahead of time you’ve almost set the conditions for what that lag is, 
you’ve defined that lag. If you want people to really use the data, explore the data, 
you can’t do that.” (Researcher 34) 

 
The researcher is pointing to the problems encountered when re-deploying data mash-
ups beyond the original situation in which they were developed, without re-examining 
the assumptions built into the ways such datasets are linked. The example she gives 
concerns the analysis of data to determine the impact of a flood on people’s mental 
health. An initial assessment of the impact may involve linking data on hospital 
admissions to data coming from social services and charities, who would be in charge of 
assisting individuals in the immediate aftermath of such an event. A different problem is 
trying to assess the impact of the flood in the long-term, once individuals have been 
exposed to the consequences of the flood for their livelihoods and communities. 
Investigating the impact of the flood on health certainly involves linking several 
datasets, and yet the ways in which those are linked – and the assumptions made about 
which units of space and time are most useful as an invariant – may change dramatically 
as the situation unfolds (for instance, if there is reason to believe that the mental health 
of the population in question is declining long after the event itself). The researcher 
therefore points out that it is crucial for the assumptions made when linking data to be 
re-examined regularly, in order to check whether the chosen parameters are still 
relevant and credible, and whether they are up to date vis-à-vis the influx of new data 
and changes in the knowledge landscape within which the research takes place. 
  
This example highlights how the construction of an invariant point of reference through 
which datasets can be juxtaposed with one another cannot be achieved through fixed, 
stable solutions dictated solely by the formats through which location is classified. Using 
a parameter as invariant needs contingent and situated evaluation of alternative paths 
of action in relation to the research question and the theoretical scaffolding supporting 
the investigation. These are the conditions for the construction of an invariant, which 
are not inherent in datasets that have completely different origins. Infrastructures such 
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as MEDMI are developed in order to systematically help to establish and satisfy these 
conditions. 
 
 

5. Mashing up and separating out: the usefulness of an idiographic approach to 
geolocation  

 
In the previous section, we have argued that the use of geolocation as an invariant 
parameter for data linkage is plagued by serious epistemic concerns, and yet there is a 
way to justify the value of this approach – and thus explain the emergence of data 
mashups within and beyond contemporary epidemiology, and the broader trends 
towards combining and repurposing increasingly diverse data sources. This is to regard 
the identification and use of invariant parameters as an activity firmly situated within – 
and adapted to - specific contexts of inquiry. In this section, we discuss a way to 
conceptualise the notion of geolocation (which we have thus far used solely as an 
actor’s category), which usefully aligns with our view of invariants as situated 
constructs. 
  
Our starting point is a distinction between two views on locality discussed in Shavit and 
Griesemer (2009). The first is the nomothetic approach, which is construed by applying a 
priori principles to the collection and analysis of spatial measurements. It is linked to 
what Shavit and Griesemer call “exogenous” perspective on space, whereby space is 
presented as a context-independent dimension separate from the observers, the 
circumstances of measurement, and the phenomena of interest. This mode of dividing 
and recording space starts from the mathematical assumption that the units that mark 
space are quantitative distances. The nomothetic conceptualisation of locality thus 
understands change in location as homogeneous, proportional and independent from 
other variables, and is typically grounded on law-like generalisations and statistical 
approaches to sampling. Many of the ways in which information about location is 
extracted from satellite measurements are grounded in this perspective.  
 
The second conceptualisation of locality is the idiographic approach, which is construed 
in relation to the specific circumstances of inquiry. Shavit and Griesemer present the 
idiographic perspective on space as “system-interactive”, in the sense of taking into 
account what observers know about the phenomena of interest as well as the 
procedures and instruments used for measurement. Here researchers’ background 
knowledge about the kinds of space inhabited by the phenomena of interest is 
strategically employed. Space is marked through an expert, contextual judgement about 
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the relevance of a particular parameter to the environment being studied, relative to 
the phenomena of interest (e.g. water streams are a locality where otter activity is more 
likely). The idiographic conceptualisation of locality thus understands change in location 
as inhomogeneous, discontinuous and relative to other variables, and focuses on 
“particular, unique cases and circumstances” (Shavit and Griesemer, 2009:284).  
 
The distinction between exogenous and system-interactive approaches to space has 
immediate implications for the value attributed to location data, and the conditions 
under which they are re-purposed and interpreted. Conceptualising space as exogenous 
pushes researchers to assume that location measurements (such as against grids such as 
GPS or latitudinal/longitudinal coordinates) are more valuable than other contextual 
data, since these data are seen to reliably identify locality independently of other 
factors. On the contrary, a system-interactive notion of space encourages researchers to 
actively question whether and how any available location measurements can support 
the inquiry at hand. This aligns neatly with our claim that invariant parameters need to 
be identified and used in ways that are tailored to the specific circumstance of inquiry. 
The idiographic conceptualisation of locality usefully complements our characterisation 
of the use of geolocation as invariant, and enables us to explore in more detail some of 
the epistemological consequences of this position for the use of big data in 
epidemiology. 
 
Indeed, Shavit and Griesemer highlight the epistemic risks involved in adopting an 
exogenous notions of space, which include underestimating the significant variation 
characterising biologists’ understanding of the environments and organisms captured by 
biodiversity surveys. Similarly, we argue that researchers who use geolocation as an 
invariant parameter for big data analysis should conceptualise location as idiographic, so 
as to avoid the risk of underestimating the extent to which assumptions intrinsic to 
different sets of measurements affect how data are linked and interpreted. The ways in 
which different datasets are linked need to reflect the researchers’ understanding of the 
circumstances in which data were produced and the assumptions that researchers hold 
about specific spatial units (e.g. what are their relevant qualities, and how a unit can 
relate to differently drawn spatial units from different source datasets).  
 
This position is perfectly compatible with the recognition that the nomothetic approach 
is indispensable to the construction of highly standardised and immediately comparable 
systems of variables and measurements, which underpin data collection efforts such as 
the production of weather maps. What we wish to stress is that a nomothetic 
conceptualisation of geolocation is not as helpful to the linkage of highly heterogeneous 
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datasets. Far from being a nomothetic entity, locality in MEDMI data mash-ups is 
construed on the basis of data availability, causal understandings of relations among 
relevant phenomena, familiarity with the territory at hand, and specific goals of inquiry. 
Find a baseline for data linkage, as in the case of researcher 28 discussed in sections 3 
and 4, involves considering all of these elements. Another way to stress this point is to 
ask what is actually being localized in MEDMI – what is the object of the analyses and 
operations of dataset juxtaposition that researchers carry out. Arguably, what is being 
constructed as invariant parameter is the space in which a particular set of relations 
between pathogens, humans and environment unfolded at a given time. 
 
This conceptualisation helps to make better sense of MEDMI researchers’ inability to 
identify a straightforward approach to the task of comparing and relating geolocation 
data from different datasets, as exemplified above. For a causal claim derived from 
correlations in a data mash-up to be epistemically robust, its reliability needs to be 
checked against relevant metadata documenting the circumstances of their collection 
and subsequent processing. Data need to be re-contextualised as required to support 
the specific assumptions and context of their re-use, and fit the questions and 
phenomena under consideration. As Leonelli discussed in relation to research in the life 
sciences, using data as evidence for claims involves situating the history of a given 
dataset in relation to the inquiry at hand (Leonelli 2016). It follows that when data are 
evaluated within a new inquiry and in relation to a new question, researchers need to 
critically re-examine assumptions made around the evidential value of data, including 
how geolocation has been construed since the generation of the datasets in question 
and assumptions around what can work as an invariant parameter. Hence when asking 
about the causal links between microbial environments, climate and human health, it is 
not possible to directly juxtapose climate, patient and pathogen geolocation data in the 
format dictated by the repositories in which these data are stored. Researchers need to 
assess the extent to which the history of those data aligns with their own interests and 
background knowledge. 
 
To understand the implications of this insight for the epistemic role of data mash-ups, 
let us consider again the definition of data mash-ups provided at the start of this paper: 
“a unified and unique output which can be potentially more useful than and accessed 
independently of the original individual datasets.” This formulation could be 
misconstrued as implying that the original datasets absorbed into a data mash-up (and 
their histories) no longer matter. In other words, it could be read to endorse an 
exogenous view of space as sufficient to ground inference from data mash-ups. By 
contrast, we argue that the credibility and reliability of data mash-up as research tools 
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hinges on adopting a system-interactive view of space, and thus an idiographic approach 
to geolocation data. In our view, the most important term in the above definition of  
mash-ups is “potentially”, which indicates that the epistemic value of any data 
aggregate will always depend on researchers’ ability to evaluate whether the spatial and 
temporal assumptions made within each datasets are compatible with each other and 
with the goals and commitments of the study at hand (Aaltonen and Tempini 2014). The 
histories of original datasets continue to matter throughout their journeys, regardless of 
how they are assembled and visualised in clustering exercises such as data mash-ups. 
 
 

6. The epistemic advantages of idiographic approaches to invariants 
 
The idiographic approach to geolocation highlights the necessarily limited scope and 
applicability of the studies centred on the reuse of big data collections, and the diversity 
of theoretical and methodological commitments potentially underlying location 
measurements. Given these limitations and the considerable epistemic concerns raised 
in section 3, it is tempting to argue that the construction of data mash-ups based on 
assuming geolocation data as invariant is epistemically indefensible, insofar as it creates 
potentially unreliable correlations that do not account for the biases and assumptions 
that shape the collection of the geolocation data. This is not however the lesson that we 
draw from our analysis. On the contrary, we claim that researchers can use the 
challenges involved in aligning and interpreting different types of geolocation data to 
their advantage, by explicitly considering whether and how the choice to use a given 
parameter as invariant can support their research goals and interpretation of the data.  
Working with idiographic concepts of locality can be enormously helpful in this respect, 
because it forces researchers to reflect on assumptions made within the data and the 
extent to which those assumptions fit existing understandings of the phenomena under 
study. A nomothetic conceptualisation of locality continues to be extremely valuable at 
the stage of data collection, where it helps to acquire consistent and usable datasets. At 
the stage of data linkage and analysis, by contrast, the idiographic view is preferable 
since it helps researchers to critically evaluate the principles underpinning data 
collection, and choosing methods in ways that are tailored to their changing goals and 
easily amenable to further scrutiny. The same argument holds for other variables 
typically used as invariants in data mash-ups. The most obvious example is time,  which 
could be similarly conceptualised as exogenous or system-interactive, resulting in 
comparable issues when attempting to link and mine diverse temporal datasets. 
 
A project like MEDMI constitutes an excellent instance of how big data research 



 19 

practices, standards and infrastructures can be designed to exploit the idiographic 
nature of geolocation and other properties taken as invariant, rather than trying to hide 
it away in an effort to support an exogenous view. This involves investing effort in 
documenting practices of data manipulation and processing, and the ways in which 
decisions taken during these phases of research relate to the goals and circumstances of 
the study at hand, as well as the assumptions and background knowledge characterising 
the field and research community in question.14 Such efforts enhance researchers’ 
ability to explore correlations and datasets that were not brought together before, thus 
enrolling additional evidence towards the identification of causal links between 
environmental, biological and medical factors. Most importantly, this can happen in new 
combinations of scale, enabling studies of wider scope and range than before, and 
better resolution. In the words of a MEDMI researcher:  

 
“The fact that you've got cases where you've got a mixture of geography and 
time means that when you apply something like temperature to that, you've got 
three different parameters, and you can look much more closely at how those 
parameters interact. The seasonal distribution of cases, for example, has an 
element which is probably related to the weather parameters, but you can 
separate it out geographically, because the temperature differs across the 
country. So if you apply it in that way, you can learn more than if you just used 
the averaged data. So I think we've demonstrated that local data linkage has a 
strong potential for answering some of the questions which weren't very easily 
answered by using just averaged data. It's providing a greater resolution, and 
ability to tease out the weather parameters from the seasonal and the 
geographic.” (Researcher 35) 

 
Additionally, the opportunity to consider health and environment as part of the same 
studies can affect how researchers define key concepts such as wellbeing, illness and 
exposure, model and prevent health concerns, and intervene on emerging threats. This 
may involve fostering an integrated approach to the ontology of disease as involving not 
only mechanisms “internal” to pathogen/host interactions, but also the wider 
environment in which pathogen and host develop. It may also transform the ways in 
which researchers understand pathogen behaviour and ecology, including the diversity 
of its interactions with other organisms. Arguably, new forms of data linkage are 
instigating a move away from the idea of obligate pathogen, which are modelled as 

                                                
14 Metadata that are stripped away from the original dataset for a particular purpose may prove essential 
when the goals and methods of inquiry change (Leonelli 2016). 
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causes of disease no matter the circumstances, and towards a more dynamic 
understanding of health and disease as functions of the relation between organisms and 
their microbiome – a view which reflects the latest insights on pathogenicity coming 
from the life sciences (Casadevall & Pirofski 2014).15 This may in turn lead to new 
insights concerning the relevant sources of variability and triggers for virulence among 
microorganisms, and the conditions for and modalities of public health interventions. 
 
Furthermore, there are significant methodological and organisational advantages to be 
gained from the considerate use of invariance strategies for data linkage. One is the 
development of new ways to combine and manage expertise across different fields and 
research traditions, and thus new forms of interdisciplinarity explicitly targeted to the 
resolution of societal challenges or conceptual problems.  Another is the development 
of models, tools and algorithms of wider applicability, which could benefit research 
groups beyond those engaged in any one data mash-up. A case in point is the continuing 
insistence by MEDMI researchers to research the epistemic implications of the 
imprecision inherent in the geolocation data used for the LabTrawl2 study. There are 
ongoing efforts to test how the use of lab catchment areas as a spatial proxy for the 
location of patients affects the conclusions of the study, for instance by comparing the 
correlations obtained when using lab postcodes with those generated when the 
postcodes of the patients were available (Djennad et al 2018). This is an attempt to 
understand whether there were systematic discrepancies, thus improving the accuracy 
of the predictions derived from data analysis and clarifying the circumstances under 
which those predictions are more likely to be reliable. 
 
This example points to one final feature of the idiographic approach to invariants that 
we wish to highlight, which is the potential it carries to improve the predictive power of 
models produced from big data analyses. Developing such models is a coveted goal for 
epidemiological studies, because these tools can be invaluable in informing decision-
making relating to public health. It goes without saying, for example, that developing a 
model able to accurately and reliably predict the locations and timings of outbreaks of 
respiratory diseases in the UK would be an enormous scientific and social achievement, 
with direct impact on how hospitals and GPs are resourced throughout the year. Prima 
facie, it could be argued that the drive to develop general models favours the adoption 
of the nomothetic approach to invariants such as geolocation, since this highly general, 
non-local approach is well-suited to developing predictive models with a wide scope of 

                                                
15 We thank an anonymous reviewer who pushed us on this point, which deserves much more careful 
scrutiny than what is possible within the scope of this paper. 
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applicability. And yet, there is no guarantee that such models would be accurate and 
reliable in their predictions, regardless of their field of application. This is precisely the 
problem that adopting an explicitly idiographic approach to invariants can solve. From 
that perspective, the applicability of a predictive model is not assumed a priori, but 
rather is actively questioned and investigated as part of the research programme. As in 
the above case of LabTrawl2, researchers who recognise the situated nature of data 
linkage have an incentive to continue to interrogate the ways in which data are 
integrated within the model, thus obtaining more knowledge about the circumstances 
under which the model can be trusted. 
 
 
Conclusion: On the use of invariance strategies for big data analysis 
 
We have argued that an idiographic conceptualisation of invariants used in big data 
linkage recognises the importance of data provenance, facilitates the contextual 
evaluation of data and helps to assess the reliability of specific interpretations. The 
adoption of an idiographic interpretation of geolocation can thus foster effective data 
re-use, while also signalling the limitations in the scope and applicability of the original 
studies incorporated into big data collections, and thus the situated nature of data 
clustering exercises such as the mash-ups. 
 
In our analysis we have touched only briefly on a key potential objection to our 
argument, which is that it may seem to dismiss the epistemic value of nomothetic 
approaches to localisation. This is an important concern given the crucial role played by 
standards, conventions and norms in designing data collection and ordering procedures 
and facilitating the comparison of data collected across different locations. A good 
example of this are weather grids, which are based on a priori decisions around the 
expected resolution, format and computability of the resulting data. Indeed, it is 
sometimes argued that big data linkage and analysis can only happen when a priori 
principles for data collection, formatting and dissemination are agreed and acted upon. 
We do not disagree on the significance of nomothetic approaches to localisation, 
particularly given what Griesemer and Shavit describe as the “inherent ambiguity of 
locality” (2009) and the importance of finding ways to managing it. There is no doubt 
that nomothetic approaches are significant to localisation procedures and have 
numerous advantages when attempting to construe comparable datasets and 
longitudinal studies. What we wish to highlight are the problems involved in relying on a 
nomothetic view whenever linking geolocation data from many different sources, each 
of which is likely to be using different norms around what constitutes geolocation and 
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how it is measured. In those cases, a nomothetic approach does not help researchers to 
critically evaluate the implications of mashing up the data and the reliability of the 
inferences being drawn on that evidential basis. 
 
The case of geolocation is comparable to those of other parameters routinely used as 
invariant within data mash-ups, such as seasonality, temporal coordinates, random 
noise and similarity in patient responses to pathogens. The data used to capture these 
variables are as variable and unstable as geolocation data; and their linkage can involve 
even more complex interpolations. At the same time, embracing the situated nature of 
data collection and re-use can help researchers to conduct mash-up studies in ways that 
harness the scale and scope offered by big data analysis, while retaining the sensitivity 
to the epistemic relevance of specific contexts and samples that has long been 
characteristic of epidemiology. This does not involve giving up on predictive models of 
wide-ranging applicability. What it does involve, instead, is abandoning the idea that 
such models can be judged to be valid and trustworthy regardless of their context of 
application.  As we argued, the history and context of the data may affect whether or 
not they constitute credible evidence – and thus affect the reliability of the predictive 
inferences extracted from data mash-ups. Acknowledging this situation helps to foster a 
welcome critical attitude among researchers towards the scope of any given prediction. 
Where and when to trust a predictive model becomes a matter for empirical scrutiny, 
which may well include a second look at the original data used to inform inferential 
reasoning. Successful predictive models can provide a platform for public health 
decision-making, but not by virtue of relying on a universal, nomothetic conception of 
geolocation or other invariants: rather, their success should be related to their capacity 
to fit a wide variety of situations – a capacity whose limits need to be probed and 
assessed in order to improve the reliability of the model. 
 
We conclude that using basic parameters such as those relating to geolocation as 
invariance strategies can be effective for data integration across diverse sources and 
areas of expertise. It affects how epidemiologists understand and model the ontology of 
disease, the nature of pathogenicity and the dynamic relations between micro-
organisms, hosts and the environment.  It also influences the conceptual directions, 
methods and tools adopted within the field, and the ways in which epidemiology 
intersects with skills, results and insights coming from other research areas. Whether 
the strategy is methodologically and epistemically reliable depends on the care with 
which the researchers involved in developing and analysing data mash-ups keep track of 
- and continue to probe - the limitations and constraints to data analysis and the 
provenance, history and processing of the data being linked together.  
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