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Abstract 

Background: Occupational exposure to used metalworking fluid (MWF) mists is a 

risk factor in the development of allergic and irritant respiratory disease. Respiratory 

disease "outbreaks" have prompted further investigation into possible causative 

factors. These might include sensitizing agents accumulating in used MWF. However, 

there is no clear evidence that shows whether levels of biologicals and chemicals 

detected within the sump are representative of what is found in the mist.  

Method: Samples of used MWF and mist samples were obtained from UK sites. 

Analysis of biological contaminants was conducted using a combination of 16S rRNA 

PCR-DGGE, qPCR, zymography, fluorescence based assays and NanoLC-ESI-MSe. 

Metals particulates and dissolved metals were analysed using ICP-MS. 

Results: Bacteria were detected in both used MWF sump and mist samples. These 

included Ochrobactrum and Proprionibacterium at site visit one, and Methylobacterium 

at site visit two.  Other potentially pathogenic bacterium detected within the MWF sump 

sample included organisms from the Mycobacterium chelonae-Mycobacterium 

abscessus complex, and Wautersiella Falsenii. Bacterial toxins in the form of “serine-

like” proteases were detected within 76% of the MWF samples and in two of the mist 

samples. Potentially sensitizing metals such as zinc, aluminium, manganese, 

chromium and nickel were detected at different levels within both the used MWF sumps 

and the mist samples taken.  

Conclusions: This study demonstrates that it is likely contaminants and constituents 

of MWF become airborne during machining processes. However, further research is 

required to determine the quantities of such contaminants in the mist to determine 

whether they would meet the threshold to initiate the development of allergic 

respiratory diseases seen in machine operators. 
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Chapter 1 - Introduction 

This PhD thesis is the product of collaboration between the Sheffield Hallam University 

and the Health and Safety Laboratory, Buxton. It investigates workplace exposures for 

individuals who machine metal using metalworking fluid (MWF). In some cases, there 

are high incidences of workplace induced ill-health, thought to be related to the MWF 

used to lubricate the cutting machines and the overall metal cutting process. To date 

the specific cause of these illnesses have not been elucidated. This introduction 

explains the process and components involved in the PhD project and specific aspects 

of the exposure components present. It is thought that characterising the exact 

components of the MWF and mist could lead to a better understanding of the exposure 

and thus help reduce the risk. 

Metalworking fluids (MWF) are complex mixtures of neat oils, and water-based 

emulsions of oils, that are used in metal machining processes (Cyprowski et al, 2007; 

Saha and Donofrio, 2012). They are valuable resources that are used worldwide, and 

within Europe and Russia, alone 610,000 tonnes of water-mix MWF is consumed 

annually (Schwarz et al, 2015). MWF is utilised to lubricate machining tools, flush away 

metal chips and swarf and create the desired surface finish on the metal (Seidel et al, 

2017). There are several types of MWF typically used, this includes; straight oils, 

soluble oils, semi-synthetic and synthetic oils (Schwarz et al, 2015). However, recent 

formulations are generally water-based emulsions of the latter three types (Anderson et 

al, 2003; Burton et al, 2012; Gordon, 2004).  

In the past, the use of complete mineral oil based lubricants has been associated with 

adverse health outcomes. However, this was typically skin disease and scrotal cancer 

(Waldron, 1983; Mirer 2010). These effects were associated with the greater impurity of 

the oils, which often contained carcinogenic residues such as polycyclic aromatic 

hydrocarbons (PAHs) (Li et al, 2003). This is not the case for modern mineral oils 
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because refinery processes are applied to reduce their concentration, or alternative oils 

are used (Li et al, 2003). In addition, the higher concentration mineral oil lubricants 

have a high viscosity index. Therefore, they are less likely to be used at high speeds 

and aerosolise under higher temperatures like water-miscible MWF (Sarginson et al, 

1986; Li et al, 2003). In contrast, the increased use of water-miscible MWF over the 

last thirty years has been associated with many cases of respiratory allergy (Burton et 

al, 2012).  The term MWF will be used from this point and is used to refer to water-

miscible MWF unless otherwise stated.  

The choice of modern MWF is very dependent on the type of machining and cooling 

applications being used (Saha and Donofrio, 2012). MWF includes a mixture of 

components such as mineral oils (typically from 3-10% of the content), water, buffering 

constituents, surfactants, antifoaming agent and re-odorants (Cyprowski et al, 2004; 

Hendy, Beattie and Burger, 1985).  Additionally, biocides and corrosion inhibitors can 

be added to increase their shelf-life and minimise damage to machined metals 

(Gordon, 2004; Gilbert et al, 2010; Saha and Donofrio, 2012). Thus, in any given MWF 

there can be up to 60 different components present (Table 1.2) (Rabenstein et al, 

2009).  

During metal processing, it is common for the high pressured force of the MWF delivery 

and the rotary speed of the tool to cause the formation of mists/aerosols (Anderson et 

al, 2003) (Figure 1.1). The term mist will be adopted throughout the thesis. This refers 

to a fine dispersion of respirable and inhalable fluid droplets that may enter the upper 

and lower airways. Therefore, machine operators in close proximity are susceptible to 

both dermal and inhalation exposure (Wendel de Joode et al, 2005).  

Adverse health effects can be caused through both exposure routes. Dermatitis, an 

inflammation of the skin, is a common condition seen in machinists (Barber et al, 

2016). It is an irritant reaction to the constant wetting of the operator’s skin from 

splashes and spray of MWF from the machine (Figure 1.3). Factors such as alkaline 
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pH and bacterial contamination have been established as the cause of this disease 

(Barber et al, 2016). Therefore, there are established conventions that are put in place 

to reduce the risk of dermal exposure. This includes practices such as wearing nitrile 

gloves, and improving hygiene in the workplace (COSHH, MW2). 

While the causes and management of dermatitis are well established, the often 

debilitating allergic respiratory diseases are not. Therefore, this research has focussed 

on MWF mist as a risk for inhalation exposure and associated respiratory diseases. 

Since the emergence of water based emulsions of MWF, in many countries including 

the UK, there have been many reported "outbreaks" of allergic respiratory diseases in 

machinists exposed to MWF mist (Gupta and Rosenman, 2006; Cummings et al, 2008; 

Tillie-Leblond et al, 2011).  

There has been extensive research investigating hazards that can accumulate in used 

water-mix MWF. This includes: 

 different microorganisms and their toxins,  

 organic and inorganic chemicals formed as the lubricant ages,  

 volatile organic compounds (VOCs),  

 biocides and biocide residues,  

 metal in soluble and fine particulate form (Gordon, 2004)  

Most of this research has focussed on the analysis of hazardous components in the 

bulk MWF circulated in the machine and not the mist generated from the machining 

process. A systematic review published by Burton et al (2010) also reported a lack of 

information about the levels of hazardous material in the MWF mist. Yet most experts 

conclude that it is hazards in the mist that are causing the respiratory disease (Burton 

et al, 2010). In addition, guidelines by the Health and Safety Executive (HSE) focus on 

reducing exposure to MWF mist to as low a level as reasonably practicable. This is 
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largely based on the consensus that if there is ill health after exposure to MWF mist, 

the individual must have been exposed to high levels.  

Furthermore, most studies that have set out to look at hazards in MWF mist have used 

standard protocols or do not explain the rationale behind the sampling methods used. 

With the complex nature of MWF, it is possible that these methods will not be sufficient 

to gain a representative sample of what is present in the MWF mist. This is largely 

because these sampling methods were initially designed to sample dry substances 

such as dust and particulates from air.   

Consequently, the fundamental question to consider in the present research is, 

 What hazards are present in MWF mist that may cause respiratory disease? 

 How should these hazards be measured?  
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Figure 1.1 – A photograph of a typical well-used and soiled machining tool with sump tank. a.) Is a photograph of a whole machining tool 
with the MWF sump tank at the front. b.) A close-up image of the machine sump depicting heavy tramp oil contamination floating at the surface. 
This can be differentiated as the brown substance. The true colour of the MWF is a light blue. c.)Close up image of a solid mass that had 
formed under the surface of the tramp oil. The individual in the photograph is holding the biofilm that had formed in the sump tank. (The 
images were supplied by Pennine lubricants Ltd).  
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1.1 Evidence of occupationally caused respiratory disease. 

Respiratory allergy is a well-established occupational risk in machinists exposed to 

MWF (Burton et al, 2010; Burge et al, 2016). Therefore, concern has been voiced 

about the toxic effects of MWF mist when inhaled (Cyprowski et al, 2004). The 

respiratory symptoms and conditions associated with inhalation of MWF mist include 

the following (Lewis et al, 2011; Burton et al, 2012; Perkins and Angenent, 2010; 

Trafny, 2013): 

 Impaired lung function - a reduction in lung capacity at a rate that is greater than 

predicted by normal aging effects alone.  

 Respiratory tract infections -  inflammation associated with the growth and spread of 

microorganisms in the lung,  

 Chronic bronchitis - associated with persistent cough, congestion and inflammation 

in the conducting airways.  

 Occupational hypersensitivity pneumonitis (OHP) also referred to as extrinsic 

allergic alveolitis (EAA) - is characterised by flu‐like symptoms, persistent cough, 

chronic bronchitis and breathlessness caused by a reduced oxygen transfer in the 

lung. Unanticipated weight loss may occur in some individuals.  

 Occupational asthma (OA) - which is characterised by variable airflow obstruction, 

airway hyper-responsiveness and inflammation attributable to exposure to 

workplace hazards. Symptoms typically worsen at work and reduce away from work 

such as episodes of coughing, wheezing, chest tightness and shortness of breath. 
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These conditions can have a significant impact on the quality of life for an individual 

and may curtail their future in employment (Ayres et al, 2011). There have been reports 

of OA described in machine operators after exposure to a number of MWF components 

(Robertson et al, 1998; Malo, 2005; Suuronen et al, 2007). However, in most cases, 

the diagnosis of OA had been based on reports of asthma like symptoms, and only few 

have included clinical investigations (Hannu et al, 2013).  

The occurrence of OHP is particularly interesting. This is because the development of 

this condition is generally uncommon and an occupational respiratory consultant may 

see only a few patients with OHP each year. In the past this condition, particularly its 

appearance as Farmer's lung was more common in farming communities (Dales and 

Munt, 1982). However, an improvement in the harvesting and storage of grain that 

prevents mould growth has resulted in fewer cases occurring. In contrast, OHP cases 

in MWF machinists have steadily increased in the UK and other countries in the last 

few decades (Barber et al, 2016). In fact, exposure to or working with MWF is now 

considered the most commonly suspected cause of OHP. This was taken from data 

reported to the UK Survey of work-related and occupational respiratory disease 

(SWORD). From 1996 to 2016, the number of incidences of OHP has increased from 

2% to 45% (Barber et al, 2016).  

There is no agreed definition of OHP; it is loosely defined as a complex delayed 

hypersensitivity reaction with varying intensity, clinical presentation and natural history 

(Khalfey, 2015). It is a result of immunologically mediated inflammation of the lung 

parenchyma i.e., alveoli and surrounding interstitial tissues (Lacasse, Girard and 

Cromier, 2012; Quirce et al, 2016). The inflammation is the result of a non-IgE 

mediated response to complex antigens (Ag) which are not easily broken down in the 

body (i.e., they bio-persist) (Quirce et al, 2016). These Ag's are typically 1 - 5 µm in 

diameter (e.g., bacterial and fungal spores) and their continued presence in the lung 

leads to an immunological sensitisation response (Lacasse, Girard and Cormier 2012; 
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Baur, Fischer and Budnik, 2015). This response is characterised by an increase in 

circulating levels of antigen specific immunoglobulin G (IgG) that forms precipitation 

reactions when it encounters the antigen.  

Symptoms of this delayed immune hypersensitivity manifest with ‘infection-like’ fever 

symptoms. This can result in an unexpected loss of body weight and to a progressive 

irreversible lung emphysema and fibrosis (Girard, Lacasse and Cormier, 2009). The 

Ag’s recognised in the development of HP include bacteria, mould, yeast, proteins, and 

fungal spores (Quirce et al, 2016). Additionally, some chemicals such as isocyanates, 

dyes and inks can act as haptens (chemicals which react with proteins in the body 

converting them to antigens) to induce the disease progression (Cochrane et al, 2015). 

These different types of HP that have been described are often associated with 

different types of antigen (Table 1.1). However, all antigens that drive these reactions 

are common complex bio-persistent particles. Nevertheless, HP is only initiated in a 

small subset of people exposed. It is unclear why some individuals are more at risk of 

developing OHP, whilst others develop asthma, bronchitis, or fail to show any 

symptomatic response. OHP is a type of granulomatous disease where immune 

reactions in the lung cause the formulation of fibrous granules around the antigen. 

Similar to other granulomatous reactions, regular smoking reduces the risk of 

developing OHP (Dangman et al, 2004). For most other respiratory disease smoking is 

a significant factor, increasing the risk and severity to these conditions.  
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Disease/ 
Condition 

Aetiology/ 
Exposure 

Antigens/ allergens References 

Farmers Lung Mouldy hay 

Saccharopolyspora 
rectivirgula 

(Micropolyspora faeini) 
Thermoactinomyces 
vulgaris, Aspergillus 

sps.)  

Barrera et al, 
(2014) 

Bagassosis Mouldy hay 
sugar cane fibre 

Thermoactinomyces 
sacchari 

Gascon et al, 
(2012) 

Humidifier/ air-
conditioner lung 

Contaminated 
forced-air 

systems, heated 
water reservoirs 

M.fortuitum, M.gordonae, 
S.rectivirigula, T.vulgaris 

and various fungi 

Utsugi et al, 
2015; Barrera 
et al, 2014) 

Bird Breeder 
Lung 

Pigeons, 
parakeets and 

fowl 

Avian proteins (of bloom 
or faeces) 

Rouzet et al, 
(2014) 

Metalworking 
HP Used MWF Various moulds and 

bacteria, endotoxins 
Roussel et al, 

2011 

Cheese washers 
lung Cheese mould Penicillium roqueforti, 

penicillium casei 
Quirce et al, 

2016 

Mushroom 
workers lung 

Oyster 
Mushroom Pleurotus osteatus 

Mori et al, 
1998 

Mollusc shell 
hypersensitivity Shell dust 

Proteins in dust from sea 
snail shells or mother of 

pearl shells 

Orriols et al, 
1997 

Chemical 
workers lung, 
isocyanates 

alveolitis 

Manufacture of 
plastics, 

polyurethane 
foam and 

rubber 

Trimelistic anhydride, 
disocyanates 

Uranga et al, 
2013 

Table 1.1 – The various antigens that can cause different forms of 
Hypersensitivity Pneumonitis. The table was adapted from Baur et al (2015)  

 

 

 

 

 

 

 



29 

 

1.2 Factors that increase the risk for MWF associated respiratory disease:  

The formation of MWF vapour and mist is considered a very important element of the 

risk for developing respiratory disease in machinists. The mechanisms for generating 

mist are established to be due to three processes; impaction, centrifugal force and 

evaporation/condensation (Thornburg and Leith, 2000). This may result in the 

following: 

 Physical dispersion as spray droplets and mist due to the rotation of the tools and 

work pieces, particularly as the rotational speed is increased (Figure 1.2).   

 Splatter and atomisation induced by the pressurised delivery of the MWF above the 

rotating cutting head of the machine (Schwarz et al, 2015). 

 Increased temperature of the lubricant at high machining rotational cutting speeds 

resulting in the evaporation of the water phase of the MWF. 
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Figure 1.2 – A photograph of a machining tool at rotational speeds increasing 
from 2000 RPM to 5000 RPM. As demonstrated in the image, the spray nozzle 
delivery for MWF is directly pointing at the tool. The faster the speed of the tool, the 
more dispersion of MWF droplets occurs. At higher rotational speeds, the dispersion of 
the droplets has a further span. Additionally, the droplets are finer. (These images were 
provided by the Health and Safety Executive) 
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Figure 1.3 – A photograph of a compressed airline being used to blow away the 
excess MWF on the component. This is the most effective method for cleaning large 
volumes of components of excess MWF in comparison to a cloth. Therefore, it is 
common practice in a machining production line. (Image provided by the HSE, UK). 
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Figure 1.4 - A photograph of an enclosed CNC machine. The machine is operated 
by external controls, and whilst the machine is in operation, the door remains closed. 
(The image was supplied by Pennine lubricants Ltd.) 
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1.2.1. Management of the MWF 

Poor fluid management refers to not keeping certain conditions of the fluid within 

manufacturer’s requirements and allowing a build-up of contaminants.  It is essential 

that the quality of MWF be maintained as closely to the conditions recommended by 

the formulators. For example, based on the guidance from the Health and Safety 

Executive (HSE, MW5) MWF should be maintained using the following basic 

parameters that involve undertaking checks on a regular basis.  By not maintaining the 

MWF correctly, this can cause an increase of contaminants and importantly result in 

increased aerosolisation of the MWF into a mist (Wang et al, 2005). Examples of 

typical management taken from the MW5 guidance include:    

• MWF concentration: It is important that the concentration of MWF remain 

within the manufacturers guide range. During machining the MWF concentration 

can increase (above its specified concentration) due to evapourative loss of 

water. This can cause foaming, which can increase the chance of mist 

formation. Conversely, dilution of the MWF below recommended concentration 

increases the risk of microbial contamination, corrosion and can affect overall 

cutting performance.  

• MWF pH: The pH should be maintained to the supplier’s recommended range 

(generally pH 8.5 to pH 10) to minimise risks for microbial growth. When the 

MWF pH drops below the recommended operating range, corrosion is also a 

risk.  

• Tramp oil: This is any unwanted oil i.e., hydraulic oil, that has leaked from the 

machine into the MWF. Contamination of the MWF with tramp oil causes 

stagnation of the fluid. This forms a film barrier of tramp oil over the surface, 

which reduces the chance of oxygen penetrating through. This encourages 

anaerobic microbial growth, which can be indicated by discolouration of the 
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emulsion. This may also separate and foam increasing the chance of mist being 

dispersed. 

• Metal contamination: Allowing metal particle levels to increase in the MWF 

can result in poor cutting performance, reduce sump volume and promote 

microbial growth. Metal fines and swarf also increase the risk of skin abrasion 

and dermatitis.  

• Operating temperature:  If the temperature of the MWF is raised above 30 °C, 

this can create favourable conditions for microorganisms. This can also 

increase the MWF concentration through evaporation (see MWF concentration). 

• Agitation and flow: If the MWF stagnates, this encourages microbial growth. 

Therefore, consistent agitation and flow through the machining tool must be 

maintained. Encouraging microbial growth for long periods can result in 

emissions of noxious gasses and volatile compounds. 

• Biocides: In some circumstances to restrict growth of microorganisms, biocides 

are added. However, the balance of dosage is crucial. Variations in dosing 

frequency i.e., too much or too little, have health implications and can induce 

microbial resistance to the biocides so they become less effective. 

Studies have also elucidated that the presence of contamination in MWF can increase 

the concentration of mist generated. For example, Wang et al (2005) demonstrated that 

increased microbial contamination of MWF doubled the concentration of mist. 

Furthermore, the level of tramp-oil contamination was shown to be a major factor in the 

development of other contaminants (Figure 1.1) and increased generation of MWF mist 

and inhalable particles. Wang et al (2005) further demonstrated that the use of a 

machining tool at higher rotational speeds caused breakdown of bacterial cells. This 

resulted in the aerosolisation of smaller particles. Much smaller particles are able to 
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penetrate deeper within the respiratory system. Therefore, they could potentially cause 

more health issues (Xing et al, 2016).  

Methods of controlling mist exposure have become problematic over the years due to 

changing formulations and newer technology utilised in the manufacture of MWF. 

Current methods for monitoring MWF mist exposure are based on guidelines set out by 

the Health and Safety Executive (HSE), which involves quantifying the mineral oil 

present in the fluid. However, in the last 40 years the amount of mineral oil detected in 

machining mists has steadily decreased over time. Typical values of airborne mineral 

oil have decreased from an average of ~5.4 mg/m3 to below ~0.50 mg/m3. Importantly, 

literature published by Burton et al (2012) and Burge et al (2016) highlight that the 

majority of outbreaks have occurred when the mist levels have been reported to be 

below the guide levels set by the HSE.  

Furthermore, boron /boric acid (a substance commonly utilised as a corrosion inhibitor) 

was historically used as an alternative internal marker for mist exposure (MHDS95/3). 

However, its use in MWF is currently being phased-out due to evidence of boric acid 

teratogenicity (Sengupta et al, 2015). Regulations under Registration, Evaluation, 

Authorisation and restriction of Chemicals (REACH) are currently set to reduce the 

amount of permissible boron in MWF in the near future. Therefore, not only are there 

widespread outbreaks of respiratory disease due to MWF mist exposure. There are 

currently no clear and effective guidelines for the management of exposure and 

reduction of the risk to health.   
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1.3 Constituents of MWF 

Since there are no guidelines to monitor exposure, more emphasis is placed on 

determining which components or constituents are causing adverse health effects after 

exposure. The specific causative agents for OHP and OA remain elusive due to; the 

complex formulation of MWF, changes in their composition as they are used and other 

factors that affect the likelihood of exposure by inhalation (Gordon, 2004).  

It is likely that the cause of most adverse reactions to MWF is from exposure to used 

MWF as opposed to “unused” MWF. Used MWF will have undergone chemical 

deterioration, and will contain higher concentrations of biocides and biohazards due to 

uncontrolled microbial growth. It is thought that both chemical and biological 

contaminants may be causative factors in the respiratory conditions observed (Burton 

et al, 2012; Tille-leblond et al, 2011). However, little published research has specifically 

examined the individual hazardous constituents (components) of MWF mist. Therefore, 

there is a need to; consider what constituents of the MWF might be harmful. How best 

to sample MWF mist and how to analyse the biological and chemical hazards in this 

mist.  

This is increasingly difficult due to MWF being a complex mixture of a varying number 

of chemicals (Table 1.2). However, they are formulated to comply with international 

regulations on human and environmental safety (Brinksmeier et al, 2015). Due to most 

water-mix MWF being low percentage (2 – 10%) oil emulsions, the concentration of 

most constituents i.e. corrosion inhibitors and antifoaming agents generally low. 

However, there are still some chemical additives, which can cause adverse reactions in 

some users. 

Some chemical additives that can be added any time to the MWF include; re-odorants 

(colophonium), biocides such as formaldehyde releasing compounds and 

ethanolamine’s/ amino alcohols that are added to form reactive salts, but which also 

have anti-microbial properties (Piipari et al, 1998; Henriks-Eckerman, Suuronen and 
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Jolanki, 2008). Some amino alcohols such as diethanolamine and triethanolamine have 

low to moderate oral toxicity in addition to dermal sensitising properties (Henriks-

Eckerman, Suuronen and Jolanki, 2008; Piipari et al, 1998). Such amino alcohols have 

low vapour pressures and thus they are not readily volatised (Park et al, 2012). 

However, a study by Park et al, (2012) has demonstrated that under various working 

conditions and job characteristics i.e., increased temperature of the MWF, they can 

become vapourised and detected in air samples.  

In addition, previous studies have found that some amino alcohols may cause OA in 

machine operators (Henriks-Eckerman et al, 2007; Piipari et al, 1998; D’Alpaos et al, 

2013). Studies in animal models have suggested these compounds can be 

systemically carcinogenic after dermal exposure (Friesen et al, 2009; Sandin et al, 

1990). However, no current epidemiological studies have supported concerns that 

these are carcinogenic in humans (Woskie et al, 2003). Nevertheless, the International 

Agency for Research on Cancer (IARC) has recently designated diethanolamine as a 

carcinogenic chemical to humans (IARC, 2000). Due to this new categorisation, the 

use of these chemical additives in MWF has been increasingly reduced over the years. 

Furthermore, preceding research has shown that individuals with ill health such as OA 

and OHP are more likely to react to the used MWF, as opposed to clean/un-used 

MWF. This suggests that they are responding to a contaminant in the MWF (Fox et al, 

1999).  

For occupational asthma that is caused by chemical exposure, the onset of symptoms 

tends to be faster and more severe than symptoms after exposure to biological 

antigens. In recent cases, the individuals with respiratory diseases have developed 

symptoms gradually. Therefore, the amino alcohols will not be pursued in this study, 

but may be considered in future research. 
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Table 1.2 – Typical composition of the 4 types of unused MWF, table derived and 
adapted from Schwarz et al (2015). 

 

 

Component Function 
Amount (Undiluted) 

Pure oil Soluble oil 
Semi-

synthetic 
Synthetic 

Water Diluent 
Dissolved 

10-500 

mg/L 

5-40 parts/ 1 

part 

concentrate 

10-40 parts/ 

1 part 

concentrate 

10-40 parts/ 

1part 

concentrate 

Mineral oil Lubricant 60-100% 30-85% 5-30% Not added 

Emulsifiers 
Generate an 

emulsion 
Not added 5-20% 5-10% 5-10% 

Chelating agents 

Bind metal 

ions an other 

substances in 

solution 

Not added 0-1% 0-1% 0-1% 

Coupling agents Stabilise Not added 1-3% 1-3% 1-3% 

Anti-weld agents 
Prevent 

welding 
≤ ϮϬ% ≤ ϮϬ% ≤ ϭϬ% ≤ ϭϬ% 

Surfactants 
Reduce surface 

tension 
≤ ϭϬ% ≤ ϮϬ% ≤ ϮϬ% ≤ ϮϬ% 

Anti-foaming 

agents 
Prevent 

foaming 
≤ ϱϬϬmg/L ≤ ϱϬϬmg/L ≤ ϱϬϬmg/L ≤ ϱϬϬmg/L 

Alkaline reserve 
Control buffer 

pH 
Not added 2-5% 2-5% 2-5% 

Corrosion 

inhibitors 

Prevent rusting 

by forming a 

film barrier 
≤ ϭϬ% 3-10% 10-20% 10-20% 

Dyes 
Detect leaks 

(Being phased 

out) 
Not added ≤ ϱϬϬmg/L ≤ ϱϬϬmg/L ≤ ϱϬϬmg/L 

Biocides 

Eliminate 

microbes and 

control 

contamination 

levels 

Not added ≤ Ϯ% ≤ Ϯ% ≤ Ϯ% 

Extreme pressure 

additives 
Act as reaction 

lubricant films 
≤ ϰϬ% ≤ ϮϬ% ≤ ϮϬ% ≤ ϭϬ% 

Detergents 
Prevents 

deposits 

Amount 

not 

specified 

Amount not 

specified 
Amount not 

specified 
Amount not 

specified 

Odorants 
Masks odour 

from microbial 

contamination 

Amount 

not 

specified 

Amount not 

specified 
Amount not 

specified 
Amount not 

specified 
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1.4 Reactive Compounds from additive interactions 

Some additives in MWF have been shown to interact with other components or 

additives in MWF (Friesen et al, 2009). For example, ethanolamines in the presence of 

nitrosing agents can react to form N-nitroso-diethanolamine and other nitrosamines 

(Friesen et al, 2009). In addition to moderate toxicity, studies have elucidated that 

these chemicals are potentially carcinogenic, mutagenic and teratogenic to humans 

(Fadlallah et al, 1997; Friesen et al, 2009; IARC, 2000). These reactions are 

understood to take place between the nitrite ions present within alkanolamines, and 

other nitrated biocides (Ducos and Gaudin, 2003). Due to the emergence of data 

regarding the toxicity of such by-products there has been a reduction in the use of 

nitrate containing chemicals. The likelihood of exposure to such chemicals from 

modern MWF is considered small and therefore will not be pursued in this research. 

However, this cannot be excluded as a possible cause of historic allergic respiratory 

diseases.  

 

1.5 Metallic ions and metal particulates  

Metals are naturally occurring elements that can be found throughout the earth’s crust 

(Tchounwou et al, 2014). The mining, smelting and industrial processes that involve 

metals and metal compounds are understood to release these elements into the 

atmosphere (Tchounwou et al, 2014). Therefore, there has been increasing interest in 

what impact the inhalation of metals from the environment can have on individuals 

exposed. In addition, it is well established that occupational exposures to metals can 

also cause a variety of adverse health effects (Kastery et al, 2017). Thus, occupational 

exposure levels of a variety of metals and their chemical species have been 

extensively studied.  
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Examples include steel manufacture, where metals such as manganese, nickel, zinc, 

chromium and iron are released into the air. Studies have shown that inhalation of 

welding fumes can cause decreased lung function and OA (Wittczak et al, 2012). Other 

occupations include exposure to lead in battery factories and exposure during metal 

smelting.  

In addition to increased concentrations of metals in the air, it has also been established 

that once they become airborne they can persist and accumulate in the air over time 

(Mukhtar and Limbeck 2013). The different chemical and physical properties of metals 

will affect how metals become airborne (Tchounwou et al, 2012). In addition, the size, 

shape, density and solubility of the particles and the medium that they are contained in 

influence how far they can travel into the lung (Braakhuis et al, 2014).  

Once airborne, there is potential for the metals to be absorbed through the skin, 

ingested and inhaled.  After inhalation, particles can deposit onto the lining of the 

respiratory system. The smaller particles have a propensity to penetrate further down 

into the lung, depositing in the alveoli (Xing et al, 2016) (Figure 1.5). Particles that can 

penetrate deeper into the airways are more likely to travel into system circulation. In 

addition, the solubility of the metal can greatly influence their biological availability and 

absorption (Xing et al, 2016). For example, the more soluble the compound i.e. soluble 

salts, the more likely they are to dissociate and therefore travel into systemic circulation 

(Nemery, 1990). Conversely, the more insoluble the compound the more likely they are 

to remain in the airways and be cleared by mucocillary cells (Nemery, 1990).  

The further the particles penetrate into the airways, the longer it takes the body to clear 

them. Clearance of the particles can occur through a variety of routes, for example, 

phagocytosis and translocation. However, in some circumstances the particles can 

persist and are not easily removed or broken down as fast as the body can eliminate 

them (Li et al, 2015). Therefore, some metals have potential to bioaccumulate in the 

bodily tissues, and therefore potentiate the toxic effects of the metals (Li et al, 2015).  
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Figure 1.5 – A diagram of the transport of particles of various sizes through the 
respiratory tract. The diagram shows the transport of particles of different size 
through the respiratory system. The larger particles (PM10) will remain in the upper 
airways and can be filtered through the nose and throat. The PM2.5 particles will 
remain in the upper airways and potentially travel through to the bronchioles. Finally, 
the smaller particles PM1 will be able to reach the deepest parts of the lung and 
deposit within the alveoli. The annotations in blue represent the different particle sizes 
PM10 = particles ≥10 µm, PM 2.5 = Particles 2.5 µm and PM 1 = Particles less than 1 
µm. 
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During the process of drilling and shaping, larger pieces of metal (termed swarf); 

microscopic fragments (termed fines) and soluble metals may enter the MWF (Figure 

1.6). Good practice and management of the MWF requires that levels of swarf and 

fines be kept to minimum using different types of physical filters (HSE, MW2). 

However, the smaller fine fragments can be retained in circulation. If the pH of the 

MWF decreases, this can increase the likelihood of corrosion and solubilisation of 

some metals when the MWF is being re-circulated (Mosher, Peterson and Skold, 

1986). Therefore, there is potential for very fine particles and soluble metals to enter 

the mists generated. The importance of this is that, as outlined previously, some metals 

have sensitising properties causing diseases such as OA and other types of lung 

disease (e.g., hard metal lung disease) (Elserougy et al, 2012). However, few studies 

have investigated metal inhalation as part of MWF mist (Lu et al, 2012; Wu and Lui, 

2014) 
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Figure 1.6 – A photograph of the different type of metal particles generated 
through machining processes. The image shows the different types and sizes of 
metal fragments and particulates than can be carried away in the MWF during 
machining processes. The two on the left hand side are defined as swarf. They can 
vary in size, but can be sharp when handled without protective gloves. These are 
usually washed away in the MWF. The two on the right are much smaller metal pieces 
that are formed through grinding processes. They tend to form a thick “sludge” inside 
the machining tools. Much finer and less visible particles can be generated that 
circulate in the MWF until filtered out.  
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Few studies (Lu et al, 2012; Wu and Lui, 2014) have attempted to determine whether 

metal exposure is a contributing factor in the development of these allergic respiratory 

diseases seen in machinists. Some metals used within the machining processes and 

are likely to be present in the MWF, are also known to have allergenic and 

inflammatory mediated properties. These include chromium (Cr), nickel (Ni), iron (Fe), 

copper (Cu) and zinc (Zn), aluminium (Al) (Liu et al, 2012; Wu and Lui, 2014; Krewski 

et al, 2007; Smolkova et al, 2014) (Table 1.3). Furthermore, a study conducted by Lui 

et al, (2012) demonstrated that metals such as chromium and nickel could be detected 

at significantly higher levels within the urine of operators compared to office workers. 

The detection of such metals in urine indicate that it is likely employees have been 

exposed to metals. Urine analysis is a commonly used method in assessing exposure 

levels and the human health impacts of metal exposure (Wu and Lui, 2014). However, 

it cannot differentiate between exposure from inhalation and exposure via other 

absorption routes such as skin absorption or ingestion through hand to mouth contact.  

Metal exposure from MWF warrants further investigation. It would be important to 

determine how the concentration of metals in MWF mist compare to workplace 

exposure limits or whether the concentrations are sufficient to cause respiratory 

symptoms.   
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Types of occupational disease associated with machining 

Type of disease Associated Metals References 

Allergic dermatitis Stainless steel 
Nickel alloys 
Tungsten alloys 

(Torres et al, 2009) 

Asthma Aluminium 
Cobalt alloys 
Tungsten alloys 
Stainless steel i.e., 
Chromium VI compounds 

(Kongerud and Soyseth, 
2014; Walters et al, 2014) 

Hard metal lung disease Cobalt alloys 
Tungsten alloys Mizutani et al (2016) 

Berylliosis Beryllium containing alloys 
Newman et al (2014) 

Lung Cancer Beryllium alloys 
Tungsten alloys 
Nickel and chromium alloys 

(Moulin et al ,1998; 
Beveridge et al, 2010) 

Table 1.3 – Occupational diseases associated with machining metals.  
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1.6 Biological Contaminants 

It is evident that the high content of water, minerals, hydrocarbons and other organic 

substances i.e., nitrate and phosphates, helps microorganisms to grow in MWF 

(Cyprowski et al, 2007). Therefore, biocides are often added in order to limit or prevent 

further microbial growth. However, bacteria and (sometimes fungi) are commonly 

detected in used MWF due to the finite stability of biocides and conditions. These 

conditions favour growth of these organisms, especially with poor fluid management 

(Section 1.2.1). The type and quantity of microorganisms may vary considerably 

(Gilbert et al, 2010; Lodders and Kampfer, 2012).  

A number of microorganisms are more commonly reported in water-mix MWF. Some of 

which may be pathogenic to humans (Perkins and Angenent, 2010). Some groups are 

thought to express antigens causative in the pathogenesis of OHP and OA. These 

include the M.chelonae/M.abscessus complex containing M.immunogenum (MCC) 

(Tillie-Leblond et al, 2010). In addition, to a number of species, that belongs to the 

Pseudomonas genera (Bernstein et al, 1995), including P.pseudoalcaligenes, 

P.faecalis, and P.aeruginosa. Other bacteria include Comamonas testosteroni, 

Citrobacter freundii, Ochrobactrum sps, Acinetobacter sps and Bascillus sp (Perkins 

and Angenent, 2010; Schwarz et al, 2015). 

 

1.6.1. Mycobacterial contamination 

Non-tuberculous mycobacteria (NTM) are generally found in a variety of water sources 

that include fresh and potable sources (Nishiuchi et al, 2017). In addition, they can also 

be found in, distilled and un-supplemented water, hot tubs, swimming pools, soil and 

aerosols (Veillette et al, 2008; Kapoor and Yadav, 2012).   
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Multiple genotypes of mycobacteria have been identified in MWF since the introduction 

of water-mix MWF (Kapoor and Yadav, 2012; Falkinham et al, 2003). Following this, 

within the literature MWF associated mycobacteria have been implicated in the 

development of OHP. These were subsequently identified as rapidly growing 

mycobacteria (RGM) belonging to the M.chelonae-M.abscessus complex (M.chelonae 

complex / MCC) (Khan et al, 2005; Khan, Selvaraju and Yadav, 2005). The MCC 

comprised of a subset of mycobacteria that share 100% sequence similarity in the 16S 

rRNA gene (Figure 1.7). However, they showed differences in phenotypic and genetic 

characteristics (Odell et al, 2005). Recent advances in molecular techniques have now 

led to the further identification of a mycobacteria that was highly similar to the MCC but 

without speciation (Wilson et al, 2001). Therefore, re-examination of MWF that were 

previously identified as containing the MCC showed that M.immunogenum sp. was in 

fact the mycobacteria present (Khan et al, 2005). Furthermore, M.immunogenum was 

consistently identified in MWF in studies from the USA, and parts of Europe and thus 

implicated as a possible causative factor (Veilette et al, 2004; Thorne et al, 2006).  

In addition to their potentially harmful characteristics and even though they are referred 

to as “rapidly growing”, mycobacteria can take much longer to grow than typical 

bacteria (typically 5 – 14 days) (Rhodes et al, 2008). Therefore, standard bacterial 

monitoring tests such as the "dip-slide tests" do not necessarily detect the growth of all 

organisms present in the MWF because dip-slides are only allowed to incubate for 24 

hours. This would result in frequent underestimation of bacterial load in MWF, which 

would lead to less effective MWF management (HSE, MW5).  

These organisms are much more versatile than commonly found bacteria as they are 

resistant to chlorine and other industrial detergents and are therefore more persistent 

(Veillette et al, 2004; Steinhauer and Goroncy-Bermes, 2007; Chandra, Yadav and 

Yadav, 2013). Hence, much stronger and costly biocides and disinfectants are required 

to clean contaminated machinery and the MWF.  
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Figure 1.7 – The 16S rRNA/ 500bp region of each mycobacterium was aligned 
using Clustal omega software (http://www.ebi.ac.uk/Tools/msa/clustalo/). The 
MCC members are outlined by a box. The image shows that all three members have 
a 100% sequence similarity within this section of the gene. The asterisk at the 
bottom of each line represents a complete match of that base pair across all 5 
species.  
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Due to the presence of mycolic acids in their cell wall, mycobacteria are hydrophobic 

and adhere to surfaces easily (Williams et al, 2009) (Figure 1.8). Therefore, they can 

readily form biofilms on the surfaces of machining tools. These biofilms have been 

found to be up to 100 times more resistant to biocide activity than freely mobile 

mycobacteria within the MWF (Veillette et al, 2004; Steinhauer and Goroncy-Bermes, 

2007; Chandra, Yadav and Yadav, 2013). Therefore, regular machine cleaning is likely 

to be insufficient in removing contamination. Fox et al, (1999) demonstrated the 

difficulty in clearing machinery of mycobacteria after contamination through regular 

monitoring of machinery over yearly intervals. After the addition of biocides 

(formaldehyde releasers), all samples showed viable mycobacterial colonies, where the 

quantities remained unchanged.  

Several studies have provided evidence to suggest that mycobacteria are the possible 

causative agents involved in the development of OHP (Khan, Selvaraju and Yadav, 

2005). Supportive evidence was obtained from both human epidemiological and animal 

exposure studies. Using a murine model, Thorne et al, (2006) demonstrated that after 

acute exposure to M.immunogenum (isolated from MWF) mice showed lung 

pathologies consistent with OHP, in comparison to the control group of no 

M.immunogenum exposure. Gordon et al (2006) who exposed mice to similar 

parameters further validated this. However, this was with heat-killed and lysed 

M.immunogenum cells. Mice exposed to both M.immunogenum contaminated MWF 

and M.immunogenum contaminated saline showed lung pathology changes consistent 

with those seen in patients suffering from OHP.  

This study was conducted with lysed and heat killed M.immunogenum. However, it is 

unclear whether mycobacteria within MWF are viable due to their resilience to biocides 

and disinfectants. It has been shown that fragments of mycobacterial cells are likely to 

become airborne during mist formation. This is thought to be from the shearing speed 

and force of the tool that is generating the mist. Research by Wang et al (2007) 
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determined that the force of the machining tool could influence the size of particles 

dispersed into the air. In addition, bacterial cells were broken apart by this force. If this 

were the case, it would be important to assess whether the fragments of cells have a 

different mechanism of interaction with the lung compared to living cells. A study by 

Elass et al, (2005) has shown that fragmented components of mycobacterial cell walls 

such as glycolipids can provoke inflammatory responses in in-vitro studies within 

human monocytes. Therefore, this would be an important avenue to investigate.  Since 

the susceptibility of the lung to change were different among differing mouse species in 

the Gordon et al (2006) study, this also highlights possible genetic influences in the 

development of OHP after M.immunogenum exposure.  

Clinical studies of patients diagnosed with OHP after MWF exposure have elucidated a 

link specifically to M.immunogenum. Tillie-Leblond et al, (2011) set out to identify the 

antigen responsible for OHP in a car engine manufacturing plant in France (name of 

company not specified). Analysis was performed with precipitin and enzyme-linked 

immunosorbent assay (ELISA) assays of employee sera samples (blood samples with 

blood cells and clotting factors removed). Patient samples were divided into OHP 

diagnosed and non-exposed. Analysis also included microbiological analysis of MWF 

samples taken from the site. Microbiological analysis revealed M.immunogenum in 

~40% of MWF samples. In addition, a positive detection of M.immunogenum antigens 

was found in patient sera. Therefore, this suggested M.immunogenum involvement.   

There is significant evidence to suggest that M.immunogenum is associated with the 

development of OHP and OA to date. However, most of this research has been 

conducted outside of the UK. It is possible that there would be a difference in the 

microbial ecology within MWF across varying locations. For instance, in the UK, an 

outbreak of OHP diagnosis in machine operators working within a single company led 

to an investigation in 2005 by the Health and Safety Laboratory (HSL), Buxton. No 

mycobacterial species was detected. The investigation was centred on a company 
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involved in the production of engine components with the aid of water-mix MWF, 

referred to as the Powertrain Ltd Investigation.  When it started, ~102 employees were 

suspected of having or were diagnosed with OHP or OA. MWF samples obtained from 

the site were negative for MCC and M.immunogenum related species. In addition to 

field based investigations, immunological analyses of patient samples were conducted. 

Serum samples taken from patients showed a negative result for any mycobacterial 

species. In effect, positive antigens were only detected for other common bacteria 

detected in MWF such as Ochrobactum sp.  

It would also be important to establish whether bacterial antigens play a role in the 

development of OHP and OA. An antigenic response for other inhabiting bacteria that 

were detected would suggest that it is likely that mycobacteria alone are not 

responsible for the reported respiratory allergy.  

Furthermore, it is important to consider a number of factors that may affect the 

interpretation of the results found in the HSL led Powertrain Ltd investigation. Firstly, 

the development of these diseases occurred over a sustained period. Therefore, the 

offending organism could have been eradicated from the sumps before the 

investigation started. Secondly, the methods used to identify mycobacteria in the 

investigation were, culture viability assays (colony forming units), in addition to cell 

morphology and substrate growth preference. With advances in scientific techniques, 

culture based methods have been shown to lead to under-reporting of bacterial 

numbers, especially mycobacteria. Therefore, it is possible that the absence of 

reported mycobacteria in the investigation was due to the methodology employed.  

Fox et al, (1999) conducted a case-control investigation of 34 reported cases of 

clinically diagnosed OHP amongst machine workers in the UK. The investigation 

involved the use of serum precipitin reactions (same technique used in previous 

Powertrain Ltd and Tillie-Leblond et al (2011)) of samples taken from symptomatic 

employees and from non-exposed controls. The results revealed a positive reaction to 
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used MWF in the symptomatic employees. Interestingly, M.chelonae cultures were 

recovered from some of the MWF samples collected. However, none of the subjects 

(exposed or non-exposed) serum samples showed positive precipitin reactions to 

M.chelonae specifically.  This shows that whilst the mycobacteria are present within 

some samples, the symptomatic employees are possibly reacting to another 

component of the used MWF. Bacillus subtilis sp. was the predominant species 

detected in the samples and this species of bacteria can produce serine proteases that 

are known to have sensitizing properties once inhaled (Adisesh et al, 2011). This will 

be discussed in section 1.6.3.  
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Figure 1.8 – A schematic diagram of the structural differences between the cell walls of Gram positive bacteria, Gram negative 
bacteria and mycobacteria. 
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1.6.2. Biofouling and Endotoxins 

Epidemiological studies have associated bacterial toxins with a variety of 

occupationally acquired illnesses from working environments i.e., agriculture, farming, 

cotton textile industry (Lenters et al, 2012). Some of the respiratory symptoms reported 

in machinists (congestion, cough, bronchitis, and fever) are consistent with the effects 

of specific bacterial toxins termed endotoxins (Liebers et al, 2008). Therefore, it is 

important to establish whether endotoxins are involved in the development of 

respiratory symptoms from exposure to MWF mist. Whilst endotoxins have been 

implicated in the development of respiratory symptoms, there is no evidence that they 

alone can explain the development of respiratory allergies. There is evidence that co-

exposure to endotoxins in adulthood can enhance sensitisation responses to common 

aero-allergens and the effects of pollutants (Reid et al, 2009).  

Endotoxins are referred to by the name of their structural monomer lipopolysaccharides 

(LPS). They are components of Gram negative (and some Gram positive) bacterial cell 

walls, that are released once a cell dies, or during their growth and division (Gorbet and 

Sefton, 2005). A single LPS unit is composed of 3 sections that include a Lipid A, a 

core oligosaccharide and a long heterpolysaccharide chain that represents the O-

antigen extension. This O-antigen is composed of a number of oligosaccharide units 

that are repeated along the chain that is strain specific (Gorbet and Sefton, 2005). The 

Lipid A section of the LPS is the most conserved region and for different endotoxins is 

the morphological determinant (Liebers et al, 2008). This hydrophobic region adopts an 

ordered hexagonal arrangement, resulting in a more rigid structure compared to the 

rest of the LPS molecule (Petsch and Anspach, 2000). Whilst a single endotoxin unit 

has a very small structure with a molar mass of approximately 10 kDa, endotoxins tend 

to aggregate into lamellar, cubic and hexagonal inverted arrangements (Petsch and 

Anspach, 2000). These are referred to as micelles and vesicles and they increase their 

stability and size up to 0.1 µm. This structure can increase the stability of endotoxins to 
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remain biologically active at the extreme temperatures and pH seen in MWF (Petsch 

and Anspach, 2000). It is in this aggregated state, that an endotoxin may provoke an 

innate immunological response (Liebers et al 2008).  

The biocides and detergents added to MWF to inhibit microbial growth may 

subsequently increase the release of endotoxins. A single bacterial cell can contain ~2 

million LPS molecules per cell. The increased mobility of endotoxins, in addition to their 

small size increases their surface area, thus making them readily inhalable (Thorne et 

al, 2006). Moreover, they can instigate biological effects at concentrations above 90 

EU/m3 in some humans; these levels are approximately equivalent to 9 endotoxins /m3 

(Value taken from the Health Council of Netherlands (DECOS).  

Epidemiological studies attempted to determine the role of endotoxins in OHP and OA. 

A murine experiment conducted by Lim et al (2005) demonstrated significant effects 

after inhalation of MWF aerosols spiked with endotoxins at 10 mg/m3 (1 000000 EU/m3 

or 106 EU/m3) for 6 hours a day, 3 days a week for 3 weeks. After 3 days, comparison 

between the controls versus the endotoxin spiked aerosols showed higher levels of 

polymorphonuclear (PMN) cells and raised protein levels from BAL fluid analysis in the 

endotoxin spike aerosol. This is consistent with the innate pro-inflammatory reactions 

that endotoxin simulates through the Toll 4 / CD14 receptors (Arroyo-Espliquero et al, 

2004). In addition, after 3 weeks there was evidence of vascular permeability. 

Consequently, this demonstrates that lung inflammation can be immediately induced by 

exposure to endotoxin in MWF. 

Nevertheless, research by DeLorme et al (2001) established that rats exposed to 

endotoxin contaminated MWF at 10.0 mg/m3 showed decreased airway conductance in 

addition to increased neutrophil (a type of granulocyte involved in destroying invading 

pathogens) levels into the lung. The results of this experiment did show a time and 

concentration dependent migration of neutrophils into the lung tissues. However, other 

results such as the BAL revealed that there were no adverse effects from of the 
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endotoxin contaminated MWF. However, there is little information regarding how 

endotoxin contaminated aerosols may change airway physiology in humans.  

Notably, the levels of endotoxin used in the previous two studies were as high as 106 

EU/m3 the Endotoxin was directly dispersed into the lungs of mice and rats. Since 

these have much smaller lung capacity and surface area in comparison to humans, the 

effects of such extreme exposure as seen in the above studies would be expected. If 

the levels reported from previous studies were correct, the levels expected in machine 

shops would be much lower in comparison. Therefore, it would be important to 

determine the effects of lower exposure levels that are consistent with the DECOS 90 

EU/m3 recommended limit.  

Although this research demonstrates a correlation between endotoxin inhalation and 

signs of disease, the endotoxin levels in the air from sites have been considerably 

lower in comparison to the very high concentrations of up to 108 EU/ml determined in 

the sumps (Burton et al, 2012).  

The principle of measuring endotoxin concentration is based on their biological activity 

(Iwanaga, 2007). Damage to the endotoxin or lack of aggregation of endotoxins could 

result in them being less biologically active. Therefore, they would not necessarily show 

a response in a quantification assay. The process of mist formation could potentially 

cause the endotoxins to disperse and thus remain inactive, or the sampling technique 

itself may be too harsh to preserve biological activity. For example, a standard Institute 

of Occupational Medicine (IOM) personal sampler will draw air through onto a filter at a 

specific flow rate (usually 2 L/min-1) over a specified time (usually a shift, 6-8 hours). It 

is theorised that drawing air through the filter, with the endotoxins trapped on the 

surface could desiccate and denature the endotoxins. Therefore, the amount of 

endotoxin detected within the air samples could be under-reported. Alternatively, a lack 

of endotoxins in the air may be due to a lack of dispersion of endotoxins into the MWF 

mist.  HSE reviewed several comparisons in a report regarding endotoxins in MWF 
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mists and revealed that there are discrepancies in the literature regarding the levels 

detected in the air and levels present in MWF. Furthermore, it also highlights that this 

could be again due to the impact of sampling or analytical methodology Senior et al, 

(2015).   

For the purpose of this research, a number of standard and newly designed aerosol 

sampling methods were compared in a series of controlled experiments in a calm air 

chamber (Figure 1.14). These include IOM personal samplers (filter), SKC liquid 

impingers (liquid) and CIP10M samplers (liquid). Each sampler selected for the study 

uses a different medium to collect viable airborne particles.   

 

1.6.3. Bacterial Proteases (Enzymes)  

Proteases are involved in many biological processes. In humans, they can be involved 

in many physiological functions, in both normal and disease related circumstances 

(Lopez-Otin and Bond, 2008). Bacteria release proteases to digest nutrients and help 

with the infection process (Cezairliyan and Ausubel, 2017). Proteases (not necessarily 

bacterial) have been recognised potent occupational allergens since the 1960's. They 

were associated with OA in various occupations such as flour bakeries, food 

processing (Stobnicka and Gorny, 2015), industrial enzyme manufacture and the 

cleaning industry (Adisesh et al, 2011). Most notably in the cleaning industry when the 

heat stable alkaline protease Carlsberg subtilisin was added to detergents to aid non-

chemical cleaning actions (Florsheim et al, 2015). Subsequently up to 50% of the 

employees developed allergic asthma (Florsheim et al, 2015).  

Despite the longstanding association between proteases and respiratory disease, the 

mechanisms responsible for initiating allergic inflammation is still at an early stage of 

investigation (Florsheim et al, 2015). Since microbial contaminants are common in 

MWF, it is possible that bacterial proteases will also be present, but there is no 
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published evidence to support this hypothesis. It would be important to establish 

whether they are present because, like endotoxins, bacterial proteases are potent 

initiators of immune responses.  

In the UK, the occupational exposure limit (OEL) for proteases is 40 ng/m3 (HSE, 

2013). In cases where ill health was seen, exposure levels were in the region of 200 

ng/m3. However, this is a small amount in comparison to the 90 mg/m3 endotoxin limit 

(Basketter et al, 2010). Therefore, in this study the potential role of bacterial proteases 

in used MWF as respiratory hazards will be investigated.  

 

1.6.3.1. Proteases, protease activated receptors and allergic respiratory 

disease  

Protease activated receptors (PAR's) are G-protein coupled receptors that are found in 

virtually all cells that line the respiratory tract (Reed and Kita, 2004). PAR's are 

activated by proteolysis of the amino acid terminus by endogenous proteases and 

bacterial proteases (D'Agostino et al, 2007). Their activation is associated with multiple 

signalling events that mediate different responses such as inflammation and repair 

(D'Agostino et al, 2007). PAR's are thought to have a major role in airway inflammation 

(Reed and Kita, 2004). In particular, the PAR-2 receptor, which is expressed at higher 

levels in the airways of asthmatics, has been shown to have major effects on lung 

function (Knight et al, 2001; D'Agostino et al, 2007). It is thought that exogenous 

proteases from allergens such as mites and moulds activate receptors by cleaving part 

of the extracellular amino terminus to reveal a new N-terminus sequence. This 

eventually leads to the receptors being permanently switched on (D'Agostino et al, 

2007). This can cause amplification of IgE production to the allergens, de-granulation 

of eosinophils and increased inflammatory processes (Reed and Kita, 2004).  



59 

 

Certain bacterial proteases have been shown to have “serine-like activity”. Therefore, 

they have the ability to act upon the PARs in the same manner (Kida et al, 2013). Thus, 

it is important to determine whether bacterial proteases are present in MWF and their 

mists, if so, do they have the potential to act upon these receptors.  
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1.7. Methodologies used in this research 

1.7.1. Application of culture independent techniques to understand the 

microbial ecology of MWF from the UK 

A large proportion of microbial studies of MWF, particularly older studies, have been 

based on the sole use of traditional culture based methods (Khan and Yadav, 2004; 

Saha et al, 2011). These involve culturing bacteria in nutrient selective media and 

different substratum. It is now understood that bacteria present within MWF adapt to 

the carbon source provided by the oil (Murat et al, 2012). Therefore, they may not grow 

in standard microbiology culture conditions. Furthermore, organisms such as 

mycobacteria can take significantly longer to culture than the bacteria types the dip-

slide tests are targeted at (Rhodes et al, 2008). Therefore, it is unlikely that 

mycobacteria can be detected using this method. This can lead to a significant under-

representation of certain genera or species depending on their ability to grow under the 

conditions used.  

In fact, studies have shown that <10% of the organisms that inhabit MWF are cultivable 

(Veillette et al, 2004). Advances in molecular techniques reduce the bias in 

identification of organisms in MWF and can lead to a better understanding of overall 

microbial community in MWF. This has been termed the microbiome. The application of 

culture-independent DNA based methods has significant advantages over the culture 

based methods. It is possible to identify organisms of interest that may have otherwise 

been missed through methods that are dependent on the ability of the bacteria to grow 

outside of the MWF in a laboratory environment. Furthermore, there may be particular 

species that are more dominant than others are which may be overshadowed in the 

selection process.  

By utilising the polymerase chain reaction (PCR), it is possible to amplify relatively 

small numbers of DNA fragments to yield a large copy number of the sequence (Galvin 
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et al, 2012). The technique allows for the selective amplification of a “target” DNA 

sequence. It involves primer mediated enzymatic amplification and is based on the 

ability of the enzyme i.e. DNA polymerase to synthesis a new strand of DNA, 

complementary to the target strand (Valones et al, 2009).  

By amplification of DNA where gene copy numbers are low, organisms that would have 

previously been missed may be identified. Nevertheless, there are drawbacks to using 

PCR; this may include selective amplification, over amplification of the target and 

amplification of non-viable DNA (Galvin et al 2012).  

Additionally, DNA based techniques provide the significant advantage of reducing the 

analysis time compared to culture techniques. For example, real-time PCR can be 

used to quantify the level of Mycobacteria in less than 2 hours, whilst culturing 

mycobacteria can take 5 - 14 days (Rhodes et al, 2011). Although, it is a very useful 

method for quantification of bacteria, it can be a much more costly method compared to 

culture techniques, due to the design and cost of very specific probes required.  

Due to the implementation of DNA based techniques on MWF, more information 

regarding the microbiome of MWF has been gained. However, a drawback to targeting 

the 16S rRNA gene for identification is that it does not provide information regarding 

the viability of the organisms detected (Galvin et al, 2012). By successfully culturing the 

bacteria present within the MWF, this provides an indication that the organisms 

growing are viable. It is possible to determine the viability of the organisms by using 

molecular techniques by extracting and sequencing ribosomal DNA within the samples. 

Studies have reported that the rRNA content of bacterial cells is proportional to 

bacterial growth (Poulsen, Ballard and Stahl, 1993). This could also be used as a semi-

quantitative method after separation using DGGE to determine the proportions of 

metabolically active populations (Bassin et al, 2011).   Although this was not applied in 

this research, or it could be utilised in further analysis of the samples obtained in future 

research.  
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1.7.1.1. Denaturing Gradient Gel Electrophoresis (DGGE):  

Like most environmental samples, used MWF contain a mixture of bacteria DNA due to 

their microbiome. The PCR will provide 16S rRNA amplicons that require separation 

using denaturing gradient gel electrophoresis (DGGE). This method was first described 

by Muyzer et al (1993). The 16S rRNA gene sequence is targeted for speciation 

because it is a highly conserved section of bacterial ribosome DNA, and it is always 

present (Maidak et al, 1997). Therefore, by targeting and amplifying highly conserved 

sections of the gene using universal primers, the presence of bacteria can be 

confirmed. The conserved sections contain variable regions specific to different genera 

and species of bacteria. This makes bacterial identification possible in mixed samples.  

The primers are designed to amplify a specific section of the 16S rRNA gene. 

Therefore, the gene amplicons from each bacterial species will be of the same size, but 

differ in sequence. Therefore, the DGGE can be utilised to separate the DNA by 

sequence. The DNA fragment mixture is subject to electrophoresis in an acrylamide gel 

containing a gradient of DNA denaturants. The DNA fragments with higher levels of G: 

C nucleotides will be more stable and remain intact at higher concentrations of 

denaturant. This is because the three hydrogen bonds between G and C are more 

stable than the two between A and T. Double-stranded DNA fragments migrate better 

in the acrylamide gel, whilst the partially denatured DNA decreases the mobility of the 

fragment causing it to remain higher in the gel. Therefore, in order to improve 

resolution a 40 bp GC rich clamp is attached to one end of the fragment during the 

initial PCR to improve resolution and thus protect the ends of the DNA. Whilst this 

method is effective at separating out mixtures of bacterial DNA there are some caveats 

to the method. First, the target DNA is generally up to 500bp in size, which can limit the 

amount of sequential information available for phylogenetic analysis if smaller 

sequences were used. In addition, there are limitations in probe design (Muyzer et al, 

1993). Furthermore, DNA fragments that contain large quantities of sequence can be 
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difficult to separate. The levels of DNA fragments reported in some environmental 

samples have been reported as high as 10,000 different species. With high levels of 

DNA fragments, the DGGE gel is likely to show good resolution of the most 

predominant sequences in the sample. Generally, a visible, resolved band would relate 

to approximately 1% of the DNA fragment population. Finally, different regions of the 

16S rRNA gene will have different levels of resolution in comparison to others. It is not 

expected that such high levels of DNA fragments will be present within the MWF 

samples due to the effect of the harsh environment of the MWF, which should inhibit 

the inhabitation of microorganisms. This should not affect the outcome of this study but 

it must be considered in future.   
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Figure 1.9 – A schematic diagram of a DGGE gel. The gene fragments were 
amplified using 16S rRNA gene primers that contained a GC clamp. During 
electrophoresis, the fragments are simultaneously denatured. The more GC bond the 
amplicon has the less more difficult it is to denature. Therefore, it will travel further 
through the gel. The more denatured fragments will remain higher in the gel and would 
be more difficult to resolve. The amplicons are separated by sequence as opposed to 
size through denaturation of the DNA sequence.  
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1.7.1.2. Quantitative real-time PCR assay for M.immunogenum 

Whilst the 16S rRNA gene is an effective tool to screen for bacteria, it is not very useful 

when applied to other species, as it is difficult to differentiate between certain sections 

of the RNA. As previously stated in Section 1.6, some mycobacteria such as those 

from the MCC have identical 16S rRNA sequences. Therefore is it difficult to state 

which specific species the mycobacteria belong to without further analysis of the DNA 

sequence. This is important in this study because M.immunogenum (from the MCC 

complex) is the most commonly suspected organism in relation to the respiratory 

diseases outlined. Therefore, it is important to determine whether any mycobacteria 

detected as part of the MCC, belongs to the M.immunogenum species.  

In order to do this, a real-time quantitative PCR assay can be employed to screen for 

and quantify any M.immunogenum present. The method selected for this study was 

outlined by Rhodes et al (2008). A specific 5’-nuclease Taqman probe was designed to 

target a specific the rpoB region (encoding the beta sub-unit of RNA polymerase) of the 

M.immunogenum sequence. The method has a number of advantages that include 

specific and rapid screening of samples. However, a caveat to this method is an 

increased cost. In addition, the genome for M.immunogenum is not yet fully 

sequenced; therefore, quantification is carried out with cell equivalents to M.chelonae, 

where its genome is available. Consequently, the quantitative results are estimates and 

not true quantitative values.  

 

1.7.2. Zymography 

Zymography is an effective method that can be used to screen, identify and 

characterise unknown proteases in sometimes complex formulations. This is an 

electrophoretic techniques based on SDS-PAGE and a co-polymerised substrate i.e., 

gelatin or casein.  The proteases are separated by size and substrate hydrolysis. 
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Unlike standard SDS-PAGE gels, the proteases are prepared for electrophoresis under 

non-reducing conditions (Vandooren et al, 2013). Therefore, the proteases can be kept 

biologically active. After electrophoresis, the proteases are separated out by size and a 

preceding renaturation step allows the proteases to cleave the co-polymerised 

substrate in the gel (Vandooren et al, 2013). This leaves a measureable band in the 

gel. The technique has a variety of advantages; it is inexpensive, non-time consuming 

and peptidases with distinct molecular masses can be detected in a single gel. Further 

information can also be gained about the class of enzyme by use of inhibitors during 

incubation.  

There is no evidence to suggest that zymography has been used to screen for any 

proteases in the MWF, specifically those of bacterial origin. Therefore, zymography 

was used in this study to determine whether bacterial proteases could be detected in 

MWF.  
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Figure 1.10 – A schematic diagram of a substrate zymography gel. The non-
denatured proteases are temporarily folded inside the SDS buffer, which allows them to 
migrate through the gel and be separated by size. The washing and renaturation step 
then reactivates the proteases. Active proteases will cleave the substrate in the gel, 
leaving bands of clearing when the substrate in the gel has been stained.  
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1.7.3. Air sampling techniques 

As previously outlined, of the few studies that have looked at hazards in MWF mist, 

there is little information provided as to the reasoning for using the techniques to 

sample the mist. Samples of air can be extracted in order to measure exposure to 

hazards that individuals or groups of people may be exposed to via inhalation (HSE, 

OCM6). This is a standard and widely utilised technique to collect contaminants from 

the air for analysis and quantification purposes (HSE, OCM6). There are varieties of 

different sampling techniques that can be utilised. However, their use is greatly 

dependent on the physiochemical properties of the analyte of interest.  

Sampling can be used to determine both individual exposures (personal sampling) and 

exposure within a certain area or space (static sampling) (HSE, OCM6). Personal 

sampling usually involves taking a representative sample around the breathing zone 

whilst carrying out normal tasks.  A static sampler tends to extract a larger volume of 

air over time and takes a sample more representative of the immediate area.  

A broad range of contaminants can be sampled from air or aerosols. Some examples 

include; particulates (Koehler and Peters, 2016), volatile organic compounds (VOCs) 

(MDHS104), pesticides (MHDS94/2), metals, isocyanates (MHDS25/4) and allergens 

(Renstrom, 2002) etc. The concentration is usually calculated and expressed as either 

parts per million/ parts per billion (ppm/ppb) or mass per volume i.e., µg/m3 or mg/m3.  

When determining the concentration of contaminants from air samples there are three 

factors that require consideration: 

• The sample rate – active samplers require a pump to draw air through. This is 

usually between 1 L/min-1 to 300 L/min-1 dependent on the sampler size.  

• Sample time – The time frame that sampling will take place. This can vary from 

a few minutes to continuous exposure monitoring (real-time).  
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• Sample volume – This is the amount of air that has been taken through the 

sampling vessel or instrument. It is calculated by multiplying the flow rate by the 

sample time (EH40, 2005). 

A number of research studies that have reported air sampling in machining workshops 

to screen for a variety of different contaminants. These include; chemicals such boron 

(MHDS95/3), or biological contaminants such as bacteria, fungi (Perkins and 

Angenent, 2010) and endotoxins (Thorne et al, 2006). However, it is now understood 

sampling biological components requires much more consideration when correlating 

results to MWF sump samples. The methods required to quantify biological 

contaminants after air sampling rely on the viability of the analytes sampled (Jenson et 

al, 1998). Therefore, it is necessary to reduce the potential for these contaminants to 

be desiccated or denatured during the sampling process (Caruana, 2011). In particular, 

filter based techniques are used as a standard technique. However, filter based 

techniques were originally designed for dust and particulate samples. Thus, they have 

been shown to reduce the integrity of biological components from the air (Caruana, 

2011). The development of “softer” extraction techniques have been shown to reduce 

the chance of air sampling affecting the overall quantification (Wang et al, 2015). 

However, the newer techniques have not yet been fully standardised (Caruana, 2011). 

Whilst these methods are revealing promising results in air sampling studies in other 

scenarios, there are still discrepancies in relation to MWF and mist generated (Burton 

et al, 2012).  
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1.7.3.1. Institute of Occupational Medicine (IOM) personal sampler 

The Institute of Occupational Medicine (IOM) personal sampler is one of the most 

commonly applied samplers to measure exposure to airborne particles within the 

workplace (Zhou and Cheng, 2009). The unit consists of a metal or plastic sample 

head that encases a cleanable filter cassette. The filter cassette holds a 25 mm filter 

that collects the airborne particles. Depending on the analyte of interest, the filter can 

be made of a variety of different materials (Wang et al, 2015). The head of the IOM is 

attached to a sampling pump via autoclavable/sterile PVC tubing. The sampling pumps 

are available from a variety of manufacturers and they can be set to a number of flow 

rates dependent on the analyte of interest. For example, lower flow rates are generally 

used for volatile compounds (Wang et al, 2015). Generally, the IOM personal sampler 

is used at a flow rate of 2 L/min-1 in order to collect particles up to 100 µm in size. This 

simulates the manner in which airborne particles air inhaled through the nose and 

mouth. The unit as a whole is small and light. Therefore, it is ideal to use in a scenarios 

where an operator is required to go about their work duties with minimal disruption. 

While the IOM sampler can be utilised to collect bio-aerosol samples for analysis, there 

is no standardised method to analyse or extract the contaminants from filters taken 

from bio-aerosol samples (Wang et al, 2015).  

 

1.7.3.2 Liquid based samplers  

1.7.3.2.1. SKC - Liquid impinger 

Liquid impinger biosamplers (Figure 1.11) are currently used as a means to collect 

bioaerosols. However, their use is currently being evaluated worldwide for full approval 

as a testing procedure. Nevertheless, air sampling using impingement methods has 

been shown to reduce the impact on the viability of organisms within the literature 

(Terzieva et al, 1996). The research carried out by Perkins and Angenent (2010) 
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employed the use of the SKC liquid impinger and successfully identified bacteria 

present within MWF samples and air samples. The bacteria that they detected in both 

MWF and air samples consisted of Wautersiella falsenii and Pseudochrobactrum 

asaccharolyticum.  

The sampler is operated with a sonic flow pump at 12.5 L/min-1. (Smaller capacity 

impingers i.e. midget impingers can be used at a flow rate of 2 L/min-1 for personal 

sampling with a sample medium volume of 10 ml).  It has three nozzles that evenly 

distribute the air into each nozzle at ~4 L/min-1 to create a maximum flow rate of 12.5 

L/min-1 (Lin et al, 1999. Verreault et al, 2008). Each nozzle has a slight slant used to 

generate a critical sonic spin (Lin et al, 1999). This is designed to reduce the impact of 

the whole cells when they make contact with the sample fluid. Thus, this increases their 

chance of survival. Therefore, this is an ideal method for sampling bioaerosols, as they 

reduce the loss of cell viability. This study will be utilising both 20 ml and 10 ml capacity 

biosamplers.  

Although liquid impingers can be used for personal sampling, it is not practical to wear 

them during a normal working shift. This is because the impingers contain a liquid that 

can easily spill out of the sampler during normal movements such as bending down. 

Therefore, this can make it difficult for a machine operator to carry out their normal 

tasks without hindrance. Therefore, for the purpose of this study the sampler’s larger 

samplers were used and placed in static positions within the machining areas.  
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Figure 1.11 – A schematic diagram of an SKC Liquid Impinger (20 ml Capacity) – 
The diagram shows the flow of air through the liquid impinger inlet, down through the 
delivery nozzles into the collection vessel. The outlet is where the tubing to the pump is 
attached. The collection vessel would usually contain a buffer or water, which would 
receive particles from the air drawn in through the nozzles.  
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1.8.3.2.2. CIP10M 

When sampling air into a liquid, analyte quantities are expected to be low due to the 

fact that the incorporation of a sample medium will add a dilution factor to the process. 

To concentrate the bioaerosols into much smaller sample media, CIP10M samplers 

can be employed. These samplers are battery operated and provide the advantage of 

no requirement for external pump attachments. They can be used to sample higher 

concentration of air i.e., 10 L/min-1 for prolonged periods into a more condensed 

sample medium.  

The sampler draws air straight into a rotating metal cup (3 ml capacity) (Figure 1.12). 

When active the sampling cup rotates at ~7000 rpm. This generates a centrifugal/ 

helicoidal spin that forces the collected particles onto the surface of the fluid instead of 

straight into it. This action reduces damage to viable organisms. The cup is removable 

from the vessel and can be sterilised to reduce chance of contamination (Gorner et al, 

2006). Recently, the samplers were found to isolate Legionella in aerosols effectively. It 

has also shown promising results with analysis of aerosols taken from inhalers 

(Puscasu et al, 2015)  

As with any liquid sampling vessel, there is always the risk of evaporative loss of the 

sample medium over time. This is thought to affect the result of sampling, because it 

could cause changes in the sampling efficiency. However, Simpson et al, (2015) 

compared the sample medium volume and efficiency of the CIP10M and found no 

difference in the efficiency using water, or other sampling media. Furthermore, the 

sample collection volume did not affect the efficiency. Therefore, the CIP10M sampler 

may potentially be a more practical and accurate method to collect MWF mist samples.  

In addition, the CIP10M sampler is also a practical method that can be used for 

personal sampling. The sampler is small and can be worn around the neck. It is simpler 

to wear as it is one complete unit, and does not need to be attached to the lapel of the 
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participant. For the purpose of this study, the CIP10M was used as a static sampler 

and placed in areas near to the machining tools in operation.  
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Figure 1.12 – Schematic Diagram of the CIP10M sampling cup that rotates inside the sampler. The cup sits inside the head of the 
sampler and rotates. The cup has the capacity to hold 3 ml of liquid. The spinning of the cup forces the liquid medium to the edges of the cup. 
The rotation causes a helicoidal spin that places the cells into the collection medium. To the right is an image of a CIP10M sampler as a whole 
unit.  
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1.7.4. Calm Air Chamber 

A calm air chamber (Figure 1.13) is a specialised piece of equipment that provides the 

best and most uniform conditions for air sampling (Vincent, Ramachandran and Kerr, 

2007). A typical chamber is an enclosed and tightly sealed box, which contains ports 

and access points (gloved hands) to allow the sampling of hazardous substances 

inside, and thus protecting the operator.  

Due to the container being tightly sealed, it removes the chances of external factors 

such as wind, affecting the collection with samplers (Vincent, Ramachandran and Kerr, 

2007). The sample of interest is introduced into the chamber at the top, where it hits a 

fan that disperses the sample down into the chamber. The samples then travel from the 

top of the chamber to the bottom where the samplers are placed (Figure 1.14). The 

height of sample introduction causes the larger non-inhalable particles to drop-out 

almost immediately, allowing only the inhalable particles to be collected. This 

experimental set up is widely utilised at the HSL for determining the performance of 

sampling apparatus (Stacey et al, 1991).  

 

 

 

 

 

 

 

 

 

 



77 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13– A schematic diagram and photograph representing the calm air chamber at the Health and Safety Laboratory. The top of 
the chamber is used to generate the MWF mist with a nebuliser. The samplers were placed at the bottom, where there is no interference from 
wind or other environmental factors. There are horizontal grates that contain honeycomb shaped holes that are in the middle of the chamber. 
These are in place to catch any large non-inhalable droplets before they reach the samplers. 
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Figure 1.14 – A photograph of the bottom of the calm air chamber where the 
CIP10M and Midget impinger (SKC) personal samplers were mounted. The 
samplers were mounted onto a turntable that rotates 180° clockwise and returns 
anticlockwise repeatedly though the sampling session to ensure that the samplers are 
evenly distributed. The black arrows represent the direction that the generated mist will 
travel through the chamber.  
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1.7.5. Measurement of Metals in sump samples and MWF mists using 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)  

For analysing metal contaminants in MWF and mist samples, inductively coupled 

plasma mass spectrometry (ICP-MS) is the ideal method to use. ICP-MS is a 

commonly utilised analytical method used to screen for elements present within a 

sample. This is usually for metals but can also include non-metals, with the exception 

of carbon, nitrogen, hydrogen or noble gases (Engelhard, 2011). ICP-MS allows 

multiple elemental analyses at very low concentrations in a range of environmental 

samples, including water, soil and biological samples (Engelhard, 2011). The detection 

limits can be less than parts per trillion (ng/L) (Landon, 2006), therefore it should prove 

accurate and effected when screening for small amounts of metals within air samples.  

 

1.7.5.1. Principles of ICP-MS 

This technique involves a combination of inductively coupled plasma (ICP), in order to 

achieve ionisation, and a quadrupole mass spectrometer (MS), which is a highly 

sensitive detector that separates and quantifies the ions generated.   

The introduction of the sample into the ICP is dependent on the physical characteristics 

of the sample. The process of ICP requires that the samples be in gaseous or aqueous 

form. In general, they are aqueous because this allows the sample to be nebulised into 

the instrument. Sample introduction is controlled by a peristaltic pump leading into the 

nebuliser and spray chamber. Inside the nebuliser, the sample is met by a steady 

stream of argon gas and the sample becomes aerosolised resulting in a fine dispersion 

of droplets. Only a small amount of the sample (1-4%) forms the aerosol the rest drops 

out or condenses onto the surface of the nebuliser.   The argon then carries the sample 

into the torch and the argon plasma. 
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Plasma generation occurs when a steady and consistent stream of argon gas collides 

with a spark from a tesla unit. The argon becomes ionised and the cations and 

electrons accelerate towards the RF coil. The cations and electrons collide with the 

argon resulting in the release of high temperatures. When the argon is kept consistent, 

the plasma will remain at a constant level of 6000 °C for the sampling duration. The 

sample aerosol enters the plasma and is atomised. 

The torch is a copper induction coil wrapped around a concentric quartz structure. 

Argon gas continuously flows through the torch, and a radio-frequency generator 

provides power to the RF coil at oscillating frequencies. The atoms will proceed to 

travel through the plasma and continually absorb energy until they become ionised by 

the release of electrons.  The newly generated ions then travel through to the interface. 

This is the point at which the sample is transferred from the ICP portion of the 

instrument into the mass spectrometer (MS). The sample matrix is first introduced to 

the water cooled cone that consists of a small orifice. This allows the hot plasma to 

enter the depressurising chamber. In this chamber, this results in the rapid cooling and 

thus rapid expansion of the gas. A portion of this gas then passes through a skimmer 

cone, and into a vacuum chamber, which contains the MS.  

The most common MS used in ICP is a quadrupole, which is named so because it has 

four parallel rods that hold positive and negative charges for the ions to pass through. 

The ion stream is focused into the quadrupole by a single ion lens. These are passively 

charged ions, and therefore they will repel each other. The ions are passed through a 

metallic charged cylinder, which keeps the ion beams on track to the detector. Multi-

element analysis is achieved by changing the charge on the rods to favour each 

selected m/z to allow sequential measurement of the different masses.  
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Figure 1.15 – A Schematic diagram of an ICP-MS. Adapted from O’Brien et al, 
2003. 
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1.7.5.1.1. Interferences 

Whilst ICP-MS is a sensitive and effective tool for quantifying analytes, lower resolution 

instruments can result in interferences that make interpretation of information difficult. 

There are different types of interference and these are separated into two groups, 

spectral interference and non-spectral (matrix) interference. Spectral interferences are 

caused by the presence of other elements or combinations of elements that have the 

same mass to charge (m/z) ratio, as the element of interest. It is difficult to differentiate 

between the elements; therefore, the interfering elements are recorded as the analytes, 

which increases the signal. These interferences can be further categorised as: 

 Isobaric - when two elements possess isotopes of the sample nominal mass. 

 Polyatomic – generated by a combination of elements within the solvent, 

sample matrix or plasma gas. Most are formed by combination of low 

molecular weight elements with argon gas. 

 Doubly charged ions – If an element possesses a low ionisation potential the 

element can become doubly charged. This can be differentiated by examining 

the m/z ratio. Doubly charged ions appear at half the isotopic mass.  

There are a number of ways to control interferences. Polyatomic interference can be 

controlled by minimising acid interference, use of appropriate collision gases, purifying 

the sample elements that produce polyatomics, and use of acid blanks for corrections 

of polyatomics produced by diluents.  

In order to compensate for ionisation and transmission interference, an internal 

standard can be added to correct sensitivity for interference and minimise mass-

dependent matrices. Furthermore, the use of an isotope dilution analysis can be used 

to avoid all sensitivity interferences and sample recovery issues.  

One method used to reduce interference is the incorporation of a collision/reaction cell. 

The collision cell is used to change the m/z of the interfering element or the analyte to 
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another so it can be differentiated. This can be carried out by forming a polyatomic of 

the analyte or removing an atom from a polyatomic interference. This is carried out with 

the use of certain gases i.e., hydrogen, that react with the elements.  

Matrix interferences are caused by introduction of species that interact with the analyte 

through the sample matrix and the ICP instrument. The components interfere with the 

intensity of the signal for the analyte. This can be in the form of suppression and 

enhancement of the overall signal. The sample matrix can affect the plasma 

temperature and therefore affects the atomisation, vaporisation and ionisation of the 

analyte of interest. For example, high levels of dissolved solids within the sample can 

lead to deposition in the ICP-MS. The solid material can accumulate and cause 

blockages in the nebuliser. 

 

1.7.4.1.2. Collision cell mode with kinetic energy discrimination (KED) 

In order to reduce or avoid polyatomic interferences by matrices or plasma, collision 

cell mode can be used (Yamada et al, 2015). An inert gas i.e. He, or reactive gas i.e., 

NH3 is introduced into the cell. The collision cell is usually placed between the ion lens 

and the quadrupole mass filter and is usually used with kinetic energy discrimination 

mode (KED). This is where a barrier is created between the reaction cell and the 

quadrupole mass filter (Koppenaal et al, 2004). When the polyatomic ion is passed 

through the pressurised cell with inert gas e.g. He, this generates collisions. The 

collisions result in a decreased of the potential energy to a level below the KED bias 

voltage (McCurdy and Woods, 2004). This voltage is the minimum that is required to 

enter the quadrupole mass filter. Therefore, only the analytes that meet this 

requirement will be detected. A drawback to this method is that it is not useful for 

isobaric interferences for example 58Fe and 58Ni. Such interferences are difficult to 

differentiate in a collision cell.  



84 

 

Chapter 2 – Characterisation of microorganisms in 

metalworking Fluids 

2.1. Background and Aims  

It is apparent that the water content, minerals (e.g., nitrate and phosphates), 

hydrocarbons and organic substances provide conditions for microorganisms to 

proliferate in water-mix MWF (Cyprowski et al, 2007). Microorganisms such as 

bacteria, opportunistic mycobacteria and fungi have all been detected within MWF 

(Gilbert et al, 2010; Lodders and Kampfer, 2012). In addition, some of these 

microorganisms are thought to express antigens causative in the pathogenesis of OHP 

and OA (Perkins and Angenent, 2010). A large number of studies investigating the 

cause of respiratory allergy in machinists have relied on traditional culture based 

methods for quantifying bacteria present in MWF (Khan and Yadav, 2004; Saha et al, 

2011). It is now understood that most microbes present in MWF may not grow readily 

in these standard culture conditions, and this is consistent with many microorganisms 

recovered from the general environment (Murat et al, 2012). The use of these 

traditional methods can lead to a significant under-representation of many types of 

microorganisms in MWF depending on their ability to grown under the experimental 

conditions used (Veillette et al, 2004). 

Although culture techniques allow for characterisation of the colony forming potential of 

those organisms capable of growing in nutrient agar, this may represent only a tiny 

fraction of the organisms present (Veillette et al, 2004). Advances in genetic molecular 

techniques can reduce this bias allowing for the abundance of a wider range of 

organisms to be determined, as well as characterisation of the species, present. 

Molecular techniques can lead to a better understanding of overall microbial community 

in MWF (Wand et al, 1995; Tiedje and Stein, 1999; van der Gast, 2003). Recent 

research has applied culture-independent DNA based methods to identify specific 
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organisms of interest missed through their inability to grow under laboratory conditions. 

These methods also allow for more efficient and rapid analysis of samples. 

It is common for a broad range of biocides to be used to restrict the growth of 

microorganisms in MWF with little information on the effects this will have on the 

characteristics of individual organisms. Some bacteria are capable of generating 

resistance against the biocides (Sondossi et al, 2001). Since biocides themselves have 

come under scrutiny regarding their potential to cause adverse health and 

environmental effects, a reduction in the permissible levels and classes of biocide that 

can be used in MWF has been introduced under the EU Biocidal Product Regulations 

(BPR, Regulation (EU) 528/2012). Therefore, it is important to understand the impact of 

using biocides in MWF, in terms of their efficacy and impact on microbial population of 

water based MWF (Dilger et al, 2005; Marchand et al, 2010). 

The widespread presence of bacteria in water-mix MWF suggest the need for 

monitoring methods that are faster than either culture or DNA based methods in order 

to identify when they enter into a growth phase. Soluble enzymes are released by 

bacteria to break down and release nutrients in their immediate environment and they 

are used as virulence defence mechanism (Cezairliyan and Ausubel, 2017). Microbial 

enzymes used in household cleaning products and present in some food substances 

are an established cause of occupationally acquired respiratory allergy such as baker’s 

asthma (Baur et al, 1998). Their presence in bacterially contaminated MWF may be 

relevant to the development of respiratory in machinists but may also provide a means 

to monitor microbial growth in the MWF. 

The objectives of the work described in this chapter were to: 

 Identify bacteria present in sump MWF samples using 16S rRNA - PCR-DGGE.  

 Characterise bacteria present in bulk MWF samples using 16S rRNA - PCR-DGGE. 
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 Determine whether the selected DNA extraction and PCR methods are sufficient to 

detect mycobacterial DNA. 

 To determine whether viable mycobacteria can be isolated from samples that 

showed positive for the presence MCC organisms. 

 

Analysis of bacterial enzymes/ bacterial proteases 

 To identify bacterial enzymes in used MWF using zymography 

 To determine the likely class of these enzymes using a series of inhibitor incubation 

experiments. 

 To quantify the amount of enzyme present in MWF samples using a fluorescence 

substrate enzyme based assay.  
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2.2 Materials and Methods 

Sixty-nine samples of used water-mix MWF of varying age (time in circulation), 

manufacturer and use were taken from multiple machine shops around the United 

Kingdom (UK). Samples were collected with sterile containers directly from the sumps 

(a tank used to store MWF once it is put into circulation) or inside, directly from the 

spray nozzle, depending on machine type and access. All companies and 

manufacturers involved with the machining fluids remain anonymised. Samples were 

subdivided into three groups, each group representing a different machining site. 

These samples were given descriptions based on their age, fluid type and type of 

machine etc.  

Group 1  

Samples taken from a machining plant that had respiratory complaints that led to one 

employee diagnosed with OHP. This group contained 34 samples of varied fluid age, 

including undiluted pristine fluid and water samples. These samples were analysed 

externally by an occupational hygienist at the Health and Safety Laboratory (Buxton, 

UK) for bacterial growth (as CFU/mL) and endotoxin levels using the Limulus 

amaebocyte lysate assay (LALA). The results are presented in (Figure 2.3).  

Group 2  

This group was sub-divided into three sample sets, each sample set taken from a 

different machine over weekly to monthly intervals. The sample-sets were given the 

name A, B and C. More information is outlined in Table 2.1. Briefly, Group A consisted 

of the new formulation MWF that contained no bactericides or boron additives; samples 

were taken at intervals of two weeks. Group B was an older formulation with no boron 

additives but contained one bactericide (methylene bis-morpholine) and samples were 

taken in increments of 2 weeks. Furthermore, Group C, samples of older formulation 
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that contained boron and two different biocides (oxazolidine and ethylenedioxy 

dimethanol). Samples were taken at monthly intervals.  

Group 3  

Samples taken from a site where no cases of respiratory disease had been reported in 

the previous 5 years and prior to starting the research and for the duration.  

All groups of used MWF samples were characterised for the type of bacteria and 

bacterial enzymes present in relation to MWF age and type. Detailed contextual 

hygiene data was not available to accompany the samples. On receipt of each sample, 

an aliquot was stored at -80°C to preserve any enzymes and reduce the chance of self-

cleavage and degradation of the enzymes within the samples.  
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MWF 
Typical use in 
concentration 

MWF Type Biocide Presence 

MWF A 5-10% 

 

New technology 
High oil content 

Boron-free 
Bactericide free 

 

None 

MWF B 4-10% 
Old technology 
High oil content 

Boron-free 

 

Methylene-bis 
morpholine 
bactericide. 

 

MWF C 4-6% 

 

Old technology 
Low oil content 
Boron-amide 

present. 
 

 

Oxazolidine 
bactericide, 

Ethylenedioxy 
dimethanol 
bactericide 

 

Table 2.1 – A description of the formulations of MWF used in Group 2. Group 2 is 
separated into A, B and C as outlined in the table.  
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2.2.1. Genomic DNA extraction from used MWF samples. 

Genomic DNA was extracted directly from the MWF. This was conducted with a Power 

Biofilm DNA spin kit (MO BIO Laboratories, Qiagen) with minor amendments to the 

manufacturer’s protocol as follows: 20 µl of each sample was added directly to the 

bead beating tube. The bead beating process was carried out by agitating the sample 

bead tube by vortex for 20 minutes (without the recommended adaptor). 

 

2.2.2. Characterisation of bacteria in metal working fluid bulk samples 

using 16S rRNA PCR-DGGE. 

Primers were identified from the literature to amplify the section of the 16S rRNA gene 

that can be used for bacterial identification. In mixed DNA samples, the differing 

bacterial DNA fragments were distinguished via denaturing gradient gel electrophoresis 

(DGGE). The particular 500bp fragment of the 16S rRNA gene was targeted using the 

universal primers GM5F (CGC CCG CCG CGC CCC GCG CCC GTC CCG CCC CCG 

CCC GCC TAC GGG AGG CAG CAG) with a GC clamp (shown in bold) and 907R 

(CCG TCA ATT CMT TTG AGT TT) (Muyzer, de Waal and Uitterlinden 1993, Brinkhoff 

et al. 1998). PCR was conducted in a 50 µl reaction containing 20 mM Tris-HCl 

(pH8.4), 50 mM KCl, 0.20 mM dNTPs, 1.50 mM MgCl2, 5 pmol of each primer and 1 

unit Taq DNA polymerase (ThermofisherScientific). The reaction conditions were; 

95 °C for 5 minutes, 35 cycles of 95 °C for 30 s, 55 °C for 30 s, 72  °C for 60 s, with a 

final extension of 72 °C for 10 minutes (Table 2.2). The quality of DNA was assessed 

on 1% agarose and viewed with ethidium bromide (12 ng/µl), prior to DGGE analysis, 

20 ng of DNA was loaded onto the DGGE gel.  

DGGE was performed with an 8% (wt/vol) polyacrylamide gel, denaturing range 30-

70% (where 100% denaturant corresponds to 7 M Urea 40% vol/vol formamide as 
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outlined by Muyzer et al (1993)). Electrophoresis was performed at 75V for 23 hours in 

1 x TAE buffer (10 mM Tris base, 20 mM acetic acid, 1 mM EDTA) at a constant 

temperature of 60 °C. Bands were visualised using 1 x SYBR Gold (Invitrogen) for 45 

minutes, excised and re-amplified using the same primers omitting the GC clamp, 

ready for gene sequencing (MWG Operon, Eurofins). Sequences were compared to 

those in the GenBank database using basic local alignment tool (BLAST) (Altschul et 

al, 1990) and the percentage identity was used to identify a sequence similarity of 

≥97% and ≥99% (Drancourt et al, 2000).  

It is presumed that DNA fragments that migrate to the same distance but in different 

lanes would still have the same sequence (Bradshaw, 2013). This was validated by 

sequencing multiple bands, from different lanes that had migrated to the same 

distance. Where sequences matched, it was assumed that corresponding sequences 

were the same in that position. However, this was not compared across gels. In order 

to compare the migration of DNA fragments without sequencing across gels a DGGE 

DNA ladder would be required in order to utilise software to match the migration 

distances of fragments on the gels (National Institute for Agro-Environmental Sciences 

(NIAES). 
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PCR Reagents Reaction conditions 

Reagent 
Volume 

(µl) 
Cycle 

Element 
Temperature Time #Cycles 

Template 
DNA 

1 – 5 
Initial 

Denaturation 
95 °C 5 min 1 

Primer 1 
(10.0 µM) 

1 Denaturation 95 °C 30 s 

35 
Primer 2 
(10.0 µM) 

1 Annealing 55 °C 30 s 

PCR Master 
Mix 

25 Elongation 72 °C 60 s 

ddH2O 17.5 - 21.5 Final 
Elongation 

72 °C 10 min 1 

Polymerase 0.5 Hold Cycle 4 °C Until 
Analysis  

Table 2.2 – PCR reagents and cycle parameters used for PCR-DGGE 
analysis. 
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Figure 2.1 – A conceptual image of the 16S rRNA gene targeted in this research. The gene is 1500 bps in length and contains 
both conserved and variable regions. The variable regions are the sections of DNA that may be targeted to differentiate between different 
genera and species of bacteria. GM5F and 907R are the universal primers used in this study, and were used to target the section from V3 and 
V5, which is ~550 bps in length.  
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2.2.3. Phylogenetic Analysis 

After comparisons were made on BLAST a selection of reference sequences were 

taken from GenBank (https://www.ncbi.nlm.nih.gov/genbank/submit/). These 

sequences were imported into Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) alongside a selection of sequences of their 

closest relatives and approximately 500 aligned nucleotides positions complementary 

to all sequences was bracketed and used for phylogenetic inference (Felsenstein, 

1985). All selected sequences were within 99% to 100% alignment respectively (Figure 

1.7).  

 

2.2.4. Preliminary experiments and optimisation of sample preparation for 

enzyme zymography 

There is no standard method for the analysis of MWF with enzyme zymography. A 

method for zymography of elastase enzyme was taken from Tingpej et al, (2007) and 

experiments were adapted from this protocol.  

The sample was mixed with 4x non-denaturing sample treatment buffer (0.125 M Tris-

HCl pH 6.8, 8% SDS, 40% Glycerol) in a ratio of 1:4. Samples were agitated for 30 

seconds and incubated at room temperature for 15 minutes. Samples were loaded onto 

a 10% SDS-PAGE gel co-polymerised with 1% gelatin (Sigma) and a 3% stacking gel, 

in running buffer (2.5 mM Tris, 19.5 mM Glycerine, 0.1% SDS (Sigma). The gel was 

electrophoresed in a Mini-Proteon II apparatus (Bio-Rad) at 125 V for 90 minutes. 

Molecular weight standards of Subtilisin Carlsberg (1 mg/mL) (Sigma) and a pre-

stained molecular weight ladder (New England Bio-labs) were also run with each gel. 

Gels were washed in 2.5% Triton X-100 (Sigma) twice for 20 minutes. The gels were 

then washed with repeated changes of distilled water and were incubated in developing 
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buffer (100 mM sodium phosphate pH 8, 8 mM EDTA, 0.2% Triton X-100) for 20 hours 

at 37 °C. The gels were fixed and stained in Coomassie blue R250 stain (5 g/L 

Coomassie brilliant blue R-250 (Sigma, UK), 5% methanol and 10% acetic acid) and 

destained overnight in destaining solution (10% methanol and 7.5% acetic acid). 

Destaining revealed a dark background and bands of lysis (unstained white) where 

proteolytic activity had digested the gelatin substrate. The gels were then imaged with 

a LI-COR Odyssey imaging system on the 700 infrared setting. The molecular weight 

standards were also stained during the staining steps and therefore, the molecular 

weight standards were visible for comparison after imaging. 

 

2.2.4.1. Sample preparation optimisation 

Preliminary experiments revealed that the varied oil content within the MWF samples 

could cause methodological complications during electrophoresis. The more 

concentrated the MWF sample caused distortion in the electrophoretic bands. 

Therefore, experiments were carried to determine how this would impact the analysis 

of MWF with zymography and to separate the oil from the gel effectively.  

The composition of oil in MWF varies depending on the machining requirement of the 

fluid. Therefore, on any site there may be multiple MWF types being used. The 

samples were subject to electrophoresis and incubated as outlined in section 2.2.4. 

After centrifuging the sample, the lipid components at the top of the supernatant is 

where the enzymes were found. Freezing samples to minimise proteolytic degradation 

also caused changes in the structural integrity of the MWF. The oil fraction separated 

from the fluid, allowing for the enzymes present in the aqueous fraction to be isolated 

more readily. The oil precipitated at the top of the supernatant, and became less 

adhesive to the pipette tips and containers. In some circumstances, samples that 
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contained higher levels of oil that could not be sufficiently removed showed distorted 

proteolytic bands after electrophoresis. This reduced the resolution of lytic bands. 

 

2.2.4.2. Zymogram buffers and incubation conditions 

The pH conditions have a crucial effect on enzyme activity (Gomaa, 2013). Therefore, 

it was important to establish optimal pH levels for the potential bacterial enzymes within 

the MWF. MWF are generally used at high pH levels (>pH 8.5), the bacteria within the 

MWF are likely to produce enzymes that are accustomed to a pH range of 8.5 to 10.0. 

Therefore, it was important to ensure that the pH levels utilised for the screening of 

enzymes within MWF’s were optimised. Enzymes were extracted from a selection of 

MWF samples, and electrophoresed in a zymography gel (see method section 2.2.4) 

from the incubation step, a series of developing buffers with a range of pH were utilised 

for each sample.  

 

2.2.5. Zymography and Inhibitor Experiments 

In the final method for analysis of enzymes by zymography a 500 l aliquot of each 

sample was centrifuged at 13000 rpm for 15 minutes at 4 °C and 150 µl of the sample 

was mixed with 50 µl of 4x non-denaturing sample treatment buffer (0.125 M Tris-HCl 

pH 6.8, 8% SDS, 40% Glycerol). The sample procedure was conducted as outlined in 

section 2.2.4 with amendments made to the renaturing buffer pH, this was adjusted to 

pH 9.  
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2.2.6.1. Inhibitor Experiments 

To determine the likely class of enzyme, replicate zymograms were incubated with 

specific enzyme inhibitors during the stage of incubating the gel in the enzyme 

activation buffer. These inhibitors included, 8 mM Ethylenediaminetetracetic acid 

(Sigma) (EDTA: an inhibitor of calcium dependent metalloproteases), 1 mM 

Phenylmethylsulfonyl fluoride (Sigma) (PMSF: an inhibitor of serine proteases), 1 mM 

Trans-Epoxysuccinyl-L-Leucyamido-(4-Guanidino) Butane (Sigma) (E-64: an inhibitor 

of cysteine proteases).  

 

2.2.6.3. Fluorescence assay 

To quantify proteases present in the MWF samples, a FRET based protease assay kit 

(Enzchek protease/peptidase assay kit, Invitrogen, Cat: E33758) was utilised according 

to manufacturer’s instructions with no amendments to the assay protocol. An aliquot of 

100 µl was taken from the concentrating column for zymography assays was stored for 

quantification.  
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2.3. Results  

2.3.1. Contextual information Group 1 samples 

The main workshop site was open plan. At the time of the investigation, the individuals 

responsible for collecting the MWF samples were not aware of the name or 

whereabouts of the individual diagnosed. Therefore, a broad spectrum of MWF 

samples was taken, instead of specific machinery being targeted. This was to 

determine in the respiratory ill health could be linked to any specific machinery in the 

workshop.  

All machinery had its own sump containing MWF. Most of the machinery was enclosed 

with the exception of grinding tools. Their MWF were supplied and managed on behalf 

of the company by the lubricant supplier. Management involved bacterial dip-slides of 

each sump tank on a monthly basis. If dip-slide results exceeded 10,000 CFU/mL 

biocides were added into the tank. 

 

2.3.2. Bacterial community of all MWF samples analysed by PCR-DGGE in 

this study from around the UK. 

PCR-DGGE was used to characterise the microbial community of the samples that 

were collected from various machines around the UK. Genomic DNA was extracted 

from 69 samples hence, (n=69). 16S rRNA gene fragments were amplified from the 

extracted DNA. The PCR products were resolved using DGGE and the bands of 

interest were excised and sequenced. Sequences were compared on the GenBank 

database using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).  

One hundred and six bands (selected from approximately 225 visible bands) were 

excised from DGGE gels. Bands were selected based on their resolution and quality 
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i.e., clearly defined lines and clearly separated from bands the same lane. Some bands 

that were visible by camera were not necessarily visible by eye and therefore could not 

be excised. Following successful elution, the bands were subsequently sequenced and 

compared on the GenBank database using BLAST. Successfully sequenced bands 

tended to be from the lower, better resolved section of the gel. Poor quality bands were 

unsuccessfully sequenced at the final sequencing stage. DNA quality was assessed at 

every interval i.e. prior to DGGE analysis, after elution from DGGE gel etc. using a 1% 

agarose gel electrophoresis and viewed by ethidium bromide (12 ng/µl), and further 

confirmed using a Nanodrop ND-1000 Spectrophotometer (Bio-Rad Ltd). 

The sequences were checked against criteria for identification. In order for a sequence 

to be used in the study, it was required to have a percentage similarity of more 97% for 

genus identification and more than 99% for species identification (Drancourt et al, 

2000). Therefore, any sequence that revealed sequence similarities less than 97% 

were not included. In addition, only samples with more than 200 aligned residues were 

used, samples that had less than 200 aligned residues generally did not meet the 

percentage identity criteria (less than 200 alignment residues was not sufficient to gain 

a sufficient percentage alignment for identification purposes).  

The poorly resolved bands that typically resided at the top of the gel were found to yield 

mostly sequences that did not meet these criteria. Such bands were also found to be of 

the same species as the bands lower down on the gel. There are a number of possible 

causes for multiple bands with the same sequence, that include the presence of 

multiple rRNA operons, loss of the GC clamp, degeneration of primers, and failure of 

polymerase to synthesise completely to the end of the template strand after the first 

PCR cycle, which is usually how we lose the GC clamp. A GC clamp is an addition 

sequence of GC rich DNA added to the end of the PCR amplicons. When run on a 

DGGE gel, the GC rich clamp is more difficult to break apart. Therefore, this protects 

the DNA fragments being run on the DGGE gel.   
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For further clarification of sequence quality of better resolved bands, and to assess 

whether the DNA was a mixture in the poorly resolved bands the dye termination, 

sequencing chromatograms were analysed. Confirmation of sequence mixtures led to 

these samples being excluded from further analysis. Out of all sequences, this led to 

the identification of 46% of 225 bands.  

Sequencing analysis revealed numerous bacterial species were present within the 

MWF samples (Figure 2.2). Almost all were Gram negative bacteria with the exception 

of the Mycobacterium abscessus and Propionibacterium acnes, which are Gram 

positive. Of the bacterial genera and species, present most were of environmental 

origin, with the exception of P.acnes that is typically associated with the skin condition 

acne, and is part of the natural skin flora of human adults. In addition, Wautersiella 

falsenii can commonly be isolated in clinical specimens. The most frequently identified 

were the Pseudomonads that accounted for 24% of all DNA fragments and comprised 

of two species: Pseudomonas pseudoalcaligenes (19%) and Pseudomonas putida 

(5%).  
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Figure 2.2 – Identification of different bacterial species from the result of all MWF 
samples analysed in the research project. Fragments of DNA were identified by 
comparison with the GenBank database using BLAST. The results were collated and 
given in percentage of fragments identified from 106 sequences. 
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2.3.2.1. Detection of Mycobacteria with 16S rRNA gene specific PCR. 

The 16S rRNA gene is present in all bacteria, including mycobacteria. However, 

mycobacteria have two copies of the 16S rRNA gene, with some distinct species 

sharing almost identical 16S rRNA sequences (Odell et al, 2005). M.abscessus was 

detected within 9% (10/106) of the samples that yielded an identifiable DNA sequence. 

However, the 16S rRNA PCR sequencing is not sufficient in differentiating between 

closely related mycobacterial species, such as those within the Mycobacterium 

chelonae/ M.abscessus complex (MCC) (Chapter 1, Figure 1.7). The M.abscessus was 

not detected in any of the fresh fluid or water samples. This suggests that the fluid had 

become inoculated after being put into circulation and that if mycobacteria were 

present within the water samples they were below the limit of detection of the present 

method.  

 

2.3.3. Results of bacterial culture and endotoxin activity in Group 1 

samples. 

The Group 1 samples were taken as part of an occupational hygiene investigation 

undertaken by the Health and Safety Laboratory into a case of OHP at a machine 

workshop. The sump samples collected were analysed for bacterial counts and 

endotoxin activity. Bacterial cultures were obtained by culturing the samples on nutrient 

agar to identify the viable and culturable bacteria in these samples. Endotoxin levels 

were analysed using a LALA assay.  

The sample group comprised of 34 samples, 30 samples were used MWF emulsions 

extracted from machine sumps. The remaining 4 samples consisted of 3 undiluted 

MWF samples and 1 water supply sample. The results of both sample analysis are 

summarised in Figure 2.2.  
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2.3.3.1. Bacterial quantification by culture techniques 

Bacterial counts were reported as CFU/mL. Of the used MWF emulsion samples 

(n=30) 28 contained culturable bacteria. The amount of bacteria detected in these 

samples was between 102 CFU/mL and 107 CFU/mL. The range set by current HSE 

guidance to ensure effective and safe management of MWF (HSE MW5; HSE MW6) 

recommends that growth of <104 CFU/mL is considered good control. Bacterial growth 

>106 CFU/mL is considered to show poor management of the MWF. Of the samples 

that showed a positive result for viable colonies, only 2 samples were found to be 

above this recommended level of 106 CFU/mL.  

When the results were arranged by age of the MWF there did not appear to be a direct 

correlation between the level of contamination and the age of the MWF. This is likely to 

be due to the addition of biocides as part of routine management. MWF between 1 to 2 

weeks old showed levels of bacteria between 104 CFU/mL and 105 CFU/mL.  MWF that 

was between 3 to 4 weeks old showed bacterial loads as high as 107 CFU/mL. The 

sample that was found to show such high levels was identified as sample 26, taken 

from a Grinding tool. Samples between the ages of 5 to 12 weeks were showing 

bacterial loads that were between 0 CFU/mL and 104 CFU/mL.  

Despite the lack of correlation between bacterial load and MWF age, there appeared to 

be a trend in the type of machine and the level of contamination. All grinding machines 

were found to have the highest levels of bacteria. Grinders have been shown to release 

more MWF emissions than other machine types (Simpson et al, 2003). The turners and 

millers showed bacterial loads representative of reasonable control. These tend to be 

enclosed, and CNC operated. Therefore, it is likely that there is less risk of 

contamination of the MWF during operation.  
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2.3.3.2. Endotoxin activity and bacterial load  

The endotoxin activity of each sample was reported as EU/mL. The endotoxin levels in 

all the samples ranged from below limits of detection (LOD) to 107 EU/mL. (The LOD of 

the LALA according to manufacturer’s protocol is 0.10 EU/mL). The highest amounts 

were seen in the sample that also contained the highest level of bacteria i.e., possibly 

the poorest controlled MWF. In general, most samples that contained quantifiable 

bacteria showed similar levels of endotoxin activity. A Pearson correlation test was 

carried out between endotoxin and bacterial count to determine if there was a statistical 

correlation. The results of Pearson correlation revealed r2 values between 0.66 and 

0.79 with a P value <0.0001. Therefore, this showed that there is a significant 

correlation between the levels of endotoxin and amount of bacteria. Some samples 

containing as little as 102 CFU/mL of bacteria showed levels of endotoxin activity up to 

105 EU/mL. Conversely, there are also samples that contain bacterial levels between 

102 CFU/mL and 103 CFU/mL that have no endotoxin activity. 

The same statistical analysis was carried out for MWF age, amount of bacteria and 

endotoxin. The P values for endotoxin, nutrient agar and TSA versus fluid age where 

P= 0.8146, P =0.4276 and P= 0.4583. There was no significant correlation between 

fluid age and the amount of bacteria or endotoxin present.  

 

2.3.3.3. Analysis of bacterial community by 16S rRNA PCR-DGGE Group 1.  

Genomic DNA was extracted from 28 of the 34 samples. Fourteen samples containing 

the highest amount of genomic DNA were selected for analysis using 16S rRNA PCR. 

These gene fragments were amplified, separated and sequenced as stated in section 

2.3.1. Nine bands (representing 20 bands) were excised from the DGGE gel. The 

identification process was the same as stated in section 2.3.1. The bands were well 
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resolved. However, some bands that were visible on camera were not visible with the 

naked eye under UV transillumination and thus could not be extracted. 

Three different bacterial organisms were detected in the samples. These included 

Pseudomonas pseudoalcaligenes, Wautersiella falsenii and Actinobacterium 

(flaviflexus). P.pseudoalcaligenes was detected in all samples analysed for 16S rRNA 

PCR. This environmental Gram negative and the Gram positive Actinobacterium 

organisms are commonly associated with aquatic environments, soil and metalworking 

fluid. W.falsenii is a Gram negative bacterium that can be isolated from clinical 

specimens.  
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Figure 2.3 – The results of bacterial culture and endotoxin assay of Group 1 - The MWF samples were cultured with nutrient agar to provide 

the amount in colony forming units per millilitre (CFU/mL). In addition, the amount of endotoxin was also measured endotoxin units per 

millilitre (EU/ml). Fresh MWF samples and neat MWF samples did not contain any bacteria or endotoxins. 



107 

 

2.3.4. Analysis of bacterial community in Group 2 samples 

Group 2 consisted of three sub-group samples, A, B and C that form twenty-two 

samples (Table 2.1). Each set of samples were collected from a separate machine, but 

within the same machining workshop.  Samples were taken at intervals of two weeks 

group A and B. Samples were taken at one month intervals for sample group C.  

Genomic DNA was extracted from all 22 samples (n=22) and 16S rRNA fragments 

were amplified, separated and sequenced as stated in 2.3.1. Forty-four bands 

(representing 149 bands) were excised from DGGE gels. The identification process 

was the same as outlined in section 2.3.1. All bands were well resolved at the bottom 

of the gel. There were no visible artefacts at the top of the gel. Each sample set 

showed different microbial diversity (Table 2.3, 2.4 and 2.5).  

In both sub-groups A and B, all bacteria identified were Gram negative. Group C 

contained Mycobacterium abscessus, which is Gram positive. All the bacteria were of 

environmental origin with the exception of Proprionibacterium acnes, which was 

present in both Group A, and Group B. This bacterium is commonly found in the natural 

skin flora of human adults. Pseudomonads were present in all three groups and these 

accounted for 48% of sequences analysed in all samples and comprised of four 

species: Pseudomonas putida (28%), Pseudomonas montielli (<1%), Pseudomonas 

otilolis (<1%) and Pseudomonas aeruginosa (<1%). Pseudomonads were the dominant 

sequences in both sub-groups A and Group B. Group C consisted of predominantly 

M.abscessus, which accounted for 60% of DNA fragments, the remaining 40% 

consisting of P. putida.  

Whilst the bacteria present in each sub-group appears to be different, the diversity of 

different genera and species identified appears to be similar across fluid type with sub-

groups A and B each containing three genera, and Group C of two. Considering that 

both group B and C contain biocides (table 2.1), they both contain Pseudomonas sp. 
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Interestingly, Group C is the only group to contain Mycobacterium sp. In this sample 

set, the fluid contained the two bactericidal additives. Mycobacteria are more resistant 

to biocides than other bacteria and therefore this may account for the reason why 

Group C contains the organism. Levels of other bacteria are likely to be reduced due to 

the levels of biocide, and therefore the slow growing and robust mycobacteria were 

able to continue to grow with less competition (Murat et al, 2012). However, the 

inoculation of mycobacteria into the machine may also be attributed to other factors. 
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Figure 2.4 - Representative sequencing chromatograms for DNA amplified from 
excised DGGE bands. a) Is a good quality sequence retrieved using PCR-DGGE, 
shown to be 99 % match to M.abscessus. There are single, clearly defined peaks 
present with reasonable height. b) Is a poor quality sequence amplified from a poorly 
resolved band from the upper portion of the gel. There appear to be multiple peaks at 
each point suggesting that there is a mixture of DNA. This can make it difficult to obtain 
the accurate sequence, which would be used in identification databases.  
 

 

a) 

b) 
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Sample Fluid 

A 
Sequence similar to 

Alignment 

residues 

Percentage 

Match 

1-8 Pseudomonas putida 533 99% 

1-8 Pseudomonas sp. 526 99% 
1-8 Pseudomonas sp. 125 98% 

1-8 Burkholderia sp. 528 99% 
1-8 Proprionibacterium sp. 519 100% 

1-8 
Pseudomonas putida 

(Bascillus subtillis) 
530 99% 

1-8 Pseudomonas putida. 526 99% 

4-8 Pseudomonas putida 534 99% 

1-8 Pseudomonas putida 478 99% 

5 Pseudomonas montielii 480 99% 

1-8 Pseudomonas sp. 528 99% 
3-5 Pseudomonas sp. 252 99% 

3-5 Pseudomonas otitiolis 525 99% 

4 and 5 Pseudomonas sp. 233 99% 
    

1-8 Pseudomonas putida 536 100% 

1-8 Pseudomonas sp. 540 99% 
1-8 Pseudomonas sp. 190 99% 

1-8 Burkholderia sp. 528 99% 
1-8 Propionibacterium sp. 520 99% 

 

Table 2.3 – Sequences retrieved using PCR-DGGE and identified by comparison 
with the GenBank database using BLAST. Bacteria were identified to the genus 
(≥97%) and species (≥99%) level. Bacteria with an identity score of <97% or aligned 
residues less than 200 where omitted. These are highlighted in red.  
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Figure 2.5 - An example of a PCR-DGGE showing bacterial diversity of Group A 
samples. Lanes 1 to 8 are the samples in increasing age order. Dominant bands 
were identified as corresponding to a) Pseudomonas sp, b) Pseudomonas sp, c) 
Propionibacterium, d) Burkholderia, and e) Poorly resolved PCR product at the upper 
portion of the gels.  
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Sample 
B 

Sequence similar 

to 
Alignment 

residues 
Percentage 

match 

1-8 Pseudomonas sp. 543 100% 

1-8 Proprionibacterium 

sp. 523 100% 

1-8 Pseudomonas sp. 534 99% 

6-8 Pseudomonas sp. 323 99% 

6-8 Flaviflexus 

arthrobacter 442 99% 

1-8 
Corynebacterium 

bovis strain 
67 97% 

6-8 * * * 

1-5 Pseudomonas 

aeruginosa 450 99% 

1-5 Propionibacterium 

acnes. 340 99% 

6-8 * * * 

6-8 * * * 

6-8 * * * 

 

Table 2.4 – Sequences retrieved using PCR-DGGE and identified by comparison 

with the GenBank database using BLAST. Bacteria were identified to the genus 
(≥97%) and species (≥99%) level. Bacteria with an identity score of <97% or aligned 
residues less than 250 where omitted. These are highlighted in red. Sequences of less 
than 50 residues were not compared on the database, these are identified by an 
asterisk (*). In this case, sequences identified by the asterisk where located at the top 
of the gel and were not well resolved.  
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Sample Fluid 
C Sequence similar to Alignment 

residues 
Percentage 

Match 

1-6 Pseudomonas putida 533 99% 

6 Pseudomonas putida 531 99% 

6 Pseudomonas putida 534 99% 

6 Pseudomonas putida 528 99% 

2-3 Mycobacterium 

abscessus 523 100% 

2-6 Mycobacterium 

abscessus 491 99% 

1-5 Mycobacterium 

abscessus 517 99% 

2-6 Mycobacterium 

abscessus 522 100% 

2-6 Mycobacterium 

abscessus 515 99% 

2-6 
Mycobacterium 

abscessus 
155 99% 

 

Table 2.5 – Sequences retrieved using PCR-DGGE and identified by comparison with 
the GenBank database using BLAST. Bacteria were identified to the genus (≥97%) and 
species (≥99%) level. Bacteria with an identity score of <97% or aligned residues less 
than 250 where omitted.  
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2.3.5. Analysis of bacterial community in Group 3 samples. 

Group 3 consisted of 13 samples taken from a single machining site (different to the 

site for sample group 2) that were subdivided into two groups (n=8 and n=5). Each 

sample was extracted from a machine that was in operation on the day of sampling. 

Genomic DNA was extracted from all 13 samples and 16S rRNA fragments amplified, 

separated and sequenced as outlined in 2.3.1.  Fifty-three bands (representing 56 

bands) were excised from DGGE gels. Bands were only selected if they were clearly 

visible and resolved on the gel. The identification process was the same as outlined in 

section 2.3.1. All extracted bands were well resolved in the middle of the gel. There 

were visible artefacts at the top of the gel.  

Fluids extracted at the first site visit were found to contain 16S rRNA genes from the 

microorganisms Ochrobactrum arthropi sp., Proprionibacterium acnes, Comamonas 

dentrificans sp. and Mycobacterium abscessus sp. M.abscessus appeared to be the 

most dominant species present and was detected in all samples, apart from the un-

used diluted MWF taken from the mixing tank. The least frequently detected species 

present was the Commamonas sp.  

Fluids extracted at the subsequent visit contained Masillia suwonesis (<1%), 

Pseudomonas pseudoalcaligenes (<1%), and. Mycobacterium abscessus (55%). As 

seen in samples from the first visit, it appears that the most frequently detected 

organism detected within the used MWF is M.abscessus.  

 

2.3.6. Gelatin zymography. 

Bands of proteolysis were seen in 76% of the samples analysed (n=60). Of the 

samples that showed bands of clearing, 43% of these demonstrated multiple resolved 

bands, suggesting multiple protease types may have been present in the samples. The 
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size of the different proteases ranged from 22 KDa to 100 KDa in size (Figure 2.6).  

This does not provide definitive information as to the class of enzyme present.  
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Figure 2.6 – An image of the results of zymography analysis of used MWF. The 
zymograms show proteolytic activity in MWF samples. The lane labelled M represents 
the protein marker. The numbers above each lane represent the sample number. a) 
Zymogram of two MWF samples before and after concentrating the proteases. b) and 
c) Zymogram of a range of MWF samples of different age. Some MWF samples 
contain higher contents of lipids. Therefore, there can be mild distortion of the bands, 
as seen in zymograms b samples 4 and 5.  
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Sample group A from section 2.3.3., were used to assess whether proteolytic activity 

changed after sampling MWF of different age. This set of samples was taken at two 

weekly intervals from when the fluid was first added into the machine circulation. The 

result of this analysis showed bands of lysis at the distance on the gel at 50 KDa, with 

varying intensity across the gel. In previous experiments, the amount of protease 

present in the sample was proportional to the intensity of the bands of clearing. 

Therefore, if it were expected that the amount of protease would increase with fluid 

age, it would be assumed that there would be an incremental increase in the intensity 

of the proteolytic bands over time. After analysing sample group A in arrangement of 

increasing fluid age, there appeared to be no increase in band intensity. Thus, there 

was no correlation between fluid age and the amount of proteolytic activity present.  

 

2.3.7. Zymography inhibition experiments 

The bands of lysis were present after incubation with EDTA; this suggests that the 

enzymes were unlikely to be metalloproteases (MMPs), as this inhibitor chelates 

calcium and inhibits MMPs (Hazra et al, 2012) In addition, all the bands of clearing 

detected thus far were inhibited by PMSF. This indicates that the enzymes detected 

are likely to be serine-like proteases. Further confirmation was noted when the bands 

were not inhibited by E-64, which is understood to inhibit other enzymes classes with 

the exception of serine proteases. Therefore, it is likely that the enzymes detected 

within the samples are likely to be serine-like proteases.  

 

2.3.8. Fluorescence assay optimisation 

It was concluded from a number of experiments using the fluorescence assay that it 

was not possible to gain accurate quantification results for the levels of bacterial 

enzymes within used-MWF samples in this manner. After repeated experiments, it 

became clear that possible additives in the fresh MWF could cause interference with 
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the assay. This is shown in Figure 2.7 through standard curve experiments by creating 

standard curves with each fluid type. This may be attributed to bactericides that are 

known to be present in fluids B and C. It is clear from the graph that fluid B and C have 

a much reduced signal compared to A which does not contain any bactericides.  

Furthermore, after completing a series of dilutions to samples in order to reduce the 

amount of MWF from the sample, it was clear that the dilution factors required would 

be too high and thus the fluorescent signal became negligible.  
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Figure 2.7 - Standard curves of protease activity in different MWF compositions 

A, B and C in comparison to a standard buffer. The figure shows the difference in 
signal when standard curves are created with different fluid types. Group B is known to 
contain one bactericide and Group C is known to contain two. Subtilisin Carlsberg was 
used as the standard protease.  
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2.4. Discussion 

The aim of this study was to determine the likely organisms present in new and used 

MWF taken from multiple sites around the UK. Traditional culture based techniques 

generally lead to an under-reporting of bacterial type and quantity (Veillette et al, 2004). 

Culture independent methods were therefore used to allow for the detection of 

organisms that would not grow on culture. This included the utilisation of molecular 

based techniques such as PCR, PCR-DGGE and qPCR.  

All the bacteria detected in the MWF samples of this study have previously been 

detected in MWF in other screening studies (Liu et al, 2010; Lodders and Kampfer, 

2012). From all samples with successful identification of 16S rRNA, gene fragments it 

is clear that the bacterial diversity is low. In this study, bacteria could be assigned to 8 

genera and 15 species. These results are in agreement with other studies aimed at 

determining the microbial community of MWF. In research conducted by van der Gast 

et al (2001) and Gilbert et al (2010), PCR-DGGE was utilised to identify bacterial 

contaminants from a variety of MWF samples. In each case, the results depicted low 

bacterial diversity between samples, with DNA fragments attributed to between 10 and 

19 genera. However, a study by Lodders and Kampfer, (2012) demonstrated that much 

higher bacterial diversity could be seen in used MWF. The authors reported bacteria 

that could be attributed to 98 genera in 17 samples in total, with 1 to 22 different 

genera seen in individual samples. This highlights the level of diversity across sampling 

location. For example, the samples utilised by Lodders and Kampfer (2012) were from 

a site in Germany, whereas samples taken for both this study, van der Gast et al 

(2011) and Gilbert et al (2010) were taken from within the UK.  

In this study, Pseudomonads appeared to be a dominant sequence accounting for 24% 

of total DNA fragments. There appeared to be no correlation with the presence of 

Pseudomonads in fluid and the type, age or location of the fluid. This is consistent with 

findings from van der Gast et al, (2003) in a study that compared the microbial 
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community of samples taken from 5 machines within the UK. In this study, the 

Pseudomonads accounted for the larger portion of DNA fragments at 35%.  

High levels of Pseudomonas species were also consistent with findings presented by 

Murat et al (2011). The study highlighted that the species P.pseudoalcaligenes was 

widely found within MWF’s taken from various machining locations. This was also 

confirmed by Gilbert et al, (2010) where the authors noted high concentrations of 

P.pseudoalcaligenes present within different MWF compositions. This suggested that 

this bacterium have the ability to and survive the harsh conditions within MWF. In this 

project, P.putida was the dominant species detected among pooled samples and was 

attributed to 19% of 16S rRNA fragments with P.pseudoalcaligenes only accounting for 

<1% of 16S rRNA fragments.  

Nevertheless, whilst the presence of Pseudomonads is not considered a risk factor with 

regards to respiratory illness as viable bacterial cells (Perkins and Angenent, 2010). 

The remnants or endotoxins of certain species of Pseudomonas sp. have been 

highlighted as a possible causative factor in the disease processes of allergic 

respiratory conditions. Therefore, whilst we have not detected a particularly harmful 

organism within the MWF samples, we have shown that organisms that can release 

such toxins may be present in the used MWF.  

Mycobacteria have been under major scrutiny in recent years as to whether they may 

be involved the development of the allergic respiratory conditions that are commonly 

seen amongst machine operators. In studies conducted outside of the UK, 

mycobacteria have been detected within used MWF (Lodders and Kampfer, 2012). 

However, to date there is only one recent study that has detected mycobacteria in 

MWF from within the UK (James et al, 2017). Therefore, it was hypothesised that other 

hazards present in MWF may be the causative agents in the development of OHP.  
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In this project, members of the Mycobacteria genus were detected in 9% of the 

samples taken from multiple locations around the UK. Species specific analysis 

revealed that the mycobacteria detected within all samples belonged to the 

Mycobacterium chelonae complex (MCC). The recent study released by James et al 

(2017) was conducted at a localised outbreak of OHP in an aircraft factory in England. 

The study was targeted at specifically screening for Mycobacterial DNA in 33 samples 

extracted from machines on site. The result of this investigation revealed large 

quantities of contamination from the mycobacterium genus from samples taken around 

the area of the outbreak. Further analysis revealed that the most dominant species 

present was Mycobacterium avium.  

M.avium is strongly associated with the pathogenesis of OHP (Moraga-Mchaley et al, 

2013; van der Zanden et al, 2012)). In particular, it is associated with exposure to 

M.avium containing aerosols. This is typically associated with hot-tubs and pool related 

respiratory conditions such as hot-tub lung (van der Zanden et al, 2012). However, in 

the research involving MWF, M.avium has only been detected in one/ two incidences 

(James et al, 2017). Whereas, the most commonly detected mycobacterial species in 

MWF are usually from the MCC group (Moore et al, 2000; Khan et al, 2003; Beckett et 

al, 2005). Furthermore, in a larger investigation conducted by the Health and Safety 

Laboratory into an outbreak of OHP at the Powertrain Ltd Company (Birmingham, UK), 

results of microbial analysis were negative for any mycobacterial species based on 

culture-based tests. Furthermore, precipitin analyses from patient sera to analyse 

allergen specific precipitating IgG demonstrated no positive response to mycobacterial 

antigens. This suggests that the patients affected were not sensitised to mycobacteria. 

The precipitin responses were only seen for other bacterial species detected in the 

MWF samples taken from the site. Whilst mycobacteria were not detected in the MWF 

taken from this site, it is important to note that the investigation only utilised culture-

based analysis. Therefore, if mycobacteria were present within the samples, they may 
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have been missed. However, in combination with the precipitin analysis and the lack of 

response to relevant antigens it remains inconclusive as to whether mycobacteria were 

involved in the Powertrain outbreak of disease.  

Whilst the study conducted by James et al (2017) reveals a strong link with M.avium in 

this isolated incidence, there are clearly unanswered questions regarding the 

relationship between the pathogenesis of OHP from MWF exposure. Multiple members 

of the mycobacterial genus may be involved, in addition to antigens from other bacterial 

species.  

2.4.1 Group 1 – Bacterial load and endotoxin activity results 

Culture analysis of samples taken from a machining site with reported cases of OHP 

and or OA revealed no trends in regards to patterns in the levels of toxins. The results 

of this analysis were used in comparison with the molecular analysis conducted 

through this project. Bacteria were detected and quantified by culture based methods in 

93% of the used MWF samples taken from site, including a water sample. Of these 

samples, the levels of viable bacteria were as high as 107 CFU/mL in two samples. 

This amount of bacteria in a MWF is considered to represent poor control of 

contamination according to the HSE guidelines on MWF management (HSE, MW5; 

HSE, MW6). If levels of bacteria are being reported to be higher than 106 CFU/mL, 

immediate actions are required. This would usually take the form of removing the 

contaminated fluid from the MWF sump and cleaning the machine system. 

There does not appear to be any direct correlation between fluid age and bacterial 

contamination. Fluid that was between 1 to 2 weeks old showed levels as high as 104 

CFU/mL to 105 CFU/mL. Furthermore, between the ages of 3 to 4 weeks the highest 

levels of contamination were seen at 107 CFU/mL. It is important to note that this 

degree of contamination so soon after initiating a new fluid into the machine may be 

due to the machine being heavily contaminated prior to addition of the new MWF. 
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Interestingly, samples that were between 5 to 12 weeks old were found to have 

bacterial loads between 0 and 104 CFU/mL demonstrating good/ reasonable control. 

This result may indicate that biocides were added to the fluid at these stages to reduce 

the bacterial load within the fluid, but the machines are not being cleaned between fluid 

changes.  

Comparison of endotoxin results versus bacterial load showed a direct correlation 

between the amount of bacteria in the sample and the amount of endotoxins. Although 

the levels of endotoxin were in similar ranges to bacterial load, it is not inferred that the 

clinical impact to health would be the same. Endotoxins can cause adverse responses 

at much smaller levels than whole bacterial cells. 

Some of the sumps tested contained less than 102 CFU/ml of bacteria, but were found 

to contain up to 105 EU/mL of endotoxin. This could be due to the machinist adding 

biocides to the circulating MWF. The result of cell death from biocidal activity would be 

the release of bacterial cell wall components (Gorbet and Sefton, 2005). When the 

MWF is not well controlled and large, numbers of bacteria are cultivated, the bacteria 

release a variety a toxins during their life span and after they have died (Gorbet and 

Sefton, 2005). At high levels, this contributes to biofouling (Senior et al, 2015), this 

makes it difficult to determine the impact of bacterial load on MWF because the 

addition of biocides is reducing the amount of bacteria. Nevertheless, this is also 

potentially increasing the release of other potentially harmful endotoxins.  

Conversely, there were samples that contained levels of bacteria between 102 CFU/mL 

and 103 CFU/mL that showed no measureable endotoxin activity. This may suggest 

that the bacteria present in those samples were mostly Gram positive organisms, which 

do not always release endotoxins when the organism is killed via the addition of 

biocides. 
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The presence of endotoxins in MWF sumps is well established within the literature 

(Simpson et al, 2003). However, we know endotoxins are present within these samples 

at high levels. A recent document released by the HSE (Senior et al, 2015) addressed 

the potential high levels of endotoxins present in MWF and the contrast in levels 

isolated from mist samples. This document highlighted discrepancies between the 

published levels detected within the MWF sumps and the very low concentrations in 

the air and surrounding these machines. Therefore, it is important to establish the 

origins of such endotoxins in order to understand the likely hazards when breathing in 

MWF mists to determine whether the organisms themselves may be potentially 

pathogenic when inhaled.  

 

2.4.2 Analysis of bacterial community using culture independent methods 

Analysis by 16S rRNA PCR-DGGE revealed a low level of bacterial diversity within the 

samples. Three bacterial species were isolated from the MWF and these included 

P.pseudoalcaligenes, Wautersiella falsenii and Actinobacterium sp. Both 

P.pseudoalcaligenes and W.falsenii are Gram negative organisms and Actinobacterium 

is a Gram positive organism. All are considered environmental bacteria with the 

exception of W.falsenii, which has also been associated with clinical samples (Kampfer 

et al, 2006). P.pseudoalcaligenes is a bacterium that is commonly associated with 

MWF. In fact, this organism is encouraged to grow in a formulation of MWF called “bio-

concept” fluids (Kuenzi et al, 2014). The manufacturer’s claim, that by encouraging the 

growth of “friendly” non-hazardous bacteria, this reduces levels of more potentially 

harmful organisms such as Pseudomonas aeruginosa. 

The fluid used on this machining site was confirmed not to be a bio-concept fluid. 

P.pseudoalcaligenes was the most frequently detected 16S rRNA sequence in these 

used MWF samples, which may support the view that it is more successful at inhabiting 
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MWF due to its ability to degrade hydrocarbons and stability in alkaline pH (Murat et al, 

2012). According to the HSE guidance (Senior et al, 2015) whilst there have been no 

reports of ill health as a result of using bio-concept MWF, concerns remain about using 

this type of fluid because: 

 The manufacturer cannot recommend the use of dip-slides to monitor microbial 

growth in the fluid as it is designed to encourage the growth of 

P.pseudoalcaligenes. Therefore, there is no way of monitoring bacterial growth of 

other organisms.  

 The growth of P.pseudoalcaligenes could lead to the increases in concentrations 

of endotoxins in the MWF. Allowing excessive proliferation of bacterial cells in the 

fluid will increase the amount of endotoxins released from cells that are dying or 

multiplying.  

Consequently, HSE are currently reviewing whether the presence of 

P.pseudoalcaligenes in MWF represents a potential risk to ill health. Whilst the fluid 

used on this site where ill health has occurred was not a bio-concept fluid, the role of 

P.pseudoalcaligenes in contributing to increased endotoxin concentrations in the MWF 

needs to be considered further. Including whether increased endotoxin concentrations 

in sumps, results in the presence of endotoxin in the air.  

A study by Mattsby-Baltzer et al (1989), set out to determine whether individuals 

exposed to high levels of P.pseudoalcaligenes endotoxins would present with serum 

antibodies for P.pseudoalcaligenes lipopolysaccharides (LPS/ endotoxins). Therefore, 

serum Immunoglobulin G (IgG) and Immunoglobulin A (IgA) was measured and 

compared in individuals exposed to MWF to those who are not exposed. The levels of 

serum IgG and IgA were found to be higher in the blood of workers who had exposure 

to MWF containing high levels of P.pseudoalcaligenes in comparison to non-exposed. 

Therefore, this demonstrated that after exposure to large amounts of 
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P.pseudoalcaligenes, the organism or its endotoxins had been taken up into the body. 

Therefore, with the evidence that workers are taking the endotoxins up into their body, 

this suggests that they are potentially inhaling endotoxins from MWF. Further 

investigation is required to determine the levels of airborne endotoxin.  

Furthermore, there are cases of HP that have been associated with the presence of 

P.pseudoalcaligenes. For example, Moniodis et al (2015) reported a case of MWF 

induced HP, outside of the normal industrial settings. A vocational teacher who used 

machining tools with MWF for long periods during the day (up to 6 hours) was 

diagnosed with HP. The authors stated that the only organism to be cultured from the 

MWF was P.pseudoalcaligenes. However, this study was a case report based on the 

HP symptoms of the patient. Therefore, there was little information regarding 

methodologies of isolating P.pseudoalcaligenes in the MWF samples taken.  

 

2.4.3 Group 2 - Pre-preserved formulations in comparison to un-preserved 

MWF may also contain biocidal products as part of their fluid composition (Schwarz et 

al, 2016). These are referred to as "preserved MWF" (Dilger et al, 2005). It is important 

to ascertain whether factors such as bactericidal addition may influence the microbial 

community in preserved and non-preserved MWF. In this project, three groups of MWF 

taken at weekly to monthly intervals and of different formulation were used. The major 

difference between each fluid compilation was the percentage oil content and the 

presence of bactericide in the fluid concentrate from which the emulsion was prepared.   

Sub-groups B and C contained bactericide, sub-group B contained one agent, and 

Group C contained a combination of two (Table 2.1). The result of screening revealed 

that the 16S rRNA fragments identified were of similar bacterial genera across the fluid 

types. However, sub-group C were found to contain Mycobacterium abscessus in 60% 
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of the samples with Pseudomonas sp. accounting for the other 40%. Sub-group C 

contained the most preservatives and yet contained class II bio-hazardous organisms. 

This is in agreement with a study by Dilger et al (2005) which showed that there is no 

discrimination between the bacterial load present in both preserved and non-preserved 

MWF. Additionally, the preserved MWF was the only fluid found to contain bacteria of a 

class II biohazard status. In addition, a study by Trafny et al (2015) revealed that there 

was no discrimination between preserved and non-preserved fluids with regard to the 

growth of microorganisms. Their presence also had no effect on biofilm populations 

that formed in and around the machine.  

Furthermore, there is also evidence to suggest that certain species of organism that 

reside in used MWF have the propensity to become resistant to bactericide additives. A 

study conducted by Selvaraju, Khan and Yadav (2011) revealed that Mycobacterium 

immunogenum (MCC complex) showed more resistance to formaldehyde releasers 

and oxoziolidine biocides. The M.immunogenum showed up to 1600 fold more 

resistance than the species Pseudomonas fluorescens within the same fluid. 

Interestingly, this study also revealed that when both species were present as co-

contaminants, the resistance of Mycobacterium sp. was significantly increased. 

Therefore, it can be inferred from the results of this study that the bacterial strains 

detected in MWF samples may have a propensity to develop resistance against 

bactericides. Therefore, this could make eradication of the more harmful organisms 

more difficult to carry out.  

Nevertheless, amine borates and their derivatives are commonly utilised as bactericidal 

agents within MWF. A study by Sherburn and Large (1999) demonstrated that certain 

bacteria have the ability to utilise amine borates as growth substrates. This study 

utilised common derivatives such as, mono-ethanolamine, di-ethanolamine and tri-

ethanolamine in a culture medium. Of the four bacteria, two (i.e. Flavobacterium sp. 
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and Bacillus sp.) were found to be capable of growing within the medium. These 

biocides are still utilised in industry to this day.  

 

2.4.4 Group 3 – Samples taken from site with no reported OHP/OA 

The application of 16S rRNA PCR DGGE and sequencing to analyse samples taken 

from a machining site with no reported cases of OHP or OA revealed low diversity of 

organisms. This result is in agreement with published literature (Gilbert et al, 2010). 

Analysis of the microbial community revealed there were a number of bacterial species 

that were previously associated with ill health and MWF exposure. In the Powertrain 

Ltd investigation, Ochrobactum arthropi was detected in fluid samples, and by precipitin 

analysis of serum samples obtained from exposed and symptomatic employees in the 

presence of Ochrobactrum antigens (Roberts et al, 2007). In addition, Ochrobactum sp. 

was directly associated with the development of OHP in another case study. In this 

incident, the organisms Ochrobactum arthropi and Pseudomonas pseudoalcaligenes 

were present in the MWF when 13 cases of OHP were reported (Project SENSOR, 

2005).  

In this project, sampling between each visit showed the microbial community to change 

with the exception of one organism, M. abscessus, which remained the most abundant 

organism on both sampling occasions. Whilst the individuals working at this particular 

site were possibly exposed to OHP or OA inducing antigens, no cases of OHP or OA 

were reported. This suggests that only particular individuals exposed to these allergens 

may succumb to respiratory allergy. Alternatively, that an infection of a potentially 

hazardous contaminant in a machining site has been made before ill health occurs. 

Nevertheless, it is important to pursue follow-up analysis of samples from this particular 

site to monitor the microbial community and determine the most effective contamination 
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management protocols. If ill health develops in the future, the results of this study could 

be used for comparison with results of analysis after ill health.  

 

2.4.5 Zymography  

After characterising likely bacteria present in these MWF samples, the study examined 

whether bacterial enzymes were also present. To date, there is limited literature that 

has demonstrated the presence of bacterial enzymes in MWF. The only study to look 

for bacterial enzymes in MWF was by Karadzic et al, (2006). The authors targeted the 

extracellular enzyme alkaline lipase from P.aeruginosa in MWF for its potential 

biotechnological applications.  

Gelatin zymography was employed for the detection of bacterial enzymes. Such 

analysis revealed enzymes present in 76% of the samples analysed (n=60). This 

included undiluted (un-used) and diluted (used) samples, in addition to water samples. 

Moreover, 43% of the bands detected were of different molecular weight suggesting 

more than one type of enzyme is present. Based on available published studies, this 

may be the first report of the detection of bacterial enzymes in unused and used MWF 

from machining sites.  

The results of the inhibition studies revealed that the enzymes in the used MWF 

samples were likely to be serine-like proteases. As it is expected that there are a 

variety of microbial enzymes, it has been suggested that some are more immunogenic 

to humans than others are (Pokrovsky et al, 2016). Only a few types of industrial 

microbial enzyme have been studied as sensitising agents causing occupational 

asthma and OHP. Thus, there is a knowledge gap about the effects of other types of 

microbial enzyme and the aetiology of allergic response to them (Matsumura, 2012; 

Basketter et al, 2012). However, some serine proteases from a variety of origins e.g., 
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cockroach, fungi and pollen have been shown to demonstrate allergenic activity 

(Matsumura, 2012; Reed et al, 2004). It is also understood that in some therapeutic 

applications microbial enzymes have their uses. However, a common side effect is that 

they can cause hypersensitivity in patients (Pokrovsky et al (2016) 

On a cellular level, a number of studies have shown serine and serine-like proteases 

from microbial origin have the ability to cause the release of pro-inflammatory cytokines 

in respiratory epithelial cells. Chaudhary and Marr (2011) highlighted that proteases 

released by Aspergillus fumigatus were potent allergens. The authors also suggested 

that A.fumigatus released proteases that result in the release of interleuken-6 (IL-6) 

and interleukin 8 (IL-8) and MCP-1. In addition, Oliveira et al (2017) demonstrated that 

the fungus Paracoccidiodes brasiliensis also induce the release of pro-inflammatory 

cytokines IL-6 and IL-8 in human epithelial cells lines (A549).  

Although these specific organisms have not been detected in MWF, it is important to 

note that the proteases of some organisms do have an impact on the PAR-2 receptors 

in the lung, especially, if they demonstrate serine/ serine-like activity. Therefore, it 

would be important to investigate the impact of individual proteases have on the PAR-2 

receptors in the lung epithelial cells and determine if this is associated with the 

development of allergic respiratory disease.  

 

2.4.6 Analysis of enzyme activity in relation to bacterial population in the 

MWF 

The results of the zymography were compared to the main types of bacteria identified 

in each MWF sample. This identified a relationship between the type of bacteria and 

the proteolytic activity detected. All the samples that had a positive detection of 16S 

rRNA contained proteolytic activity in 100% of samples.  
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This project has shown that zymography is a quick method to detect bacteria within 

used MWF samples and that the method is very sensitive. The detection of proteases 

using real time sensors may provide a means to monitor the growth of bacteria in a 

MWF supply system.  

In the Group 2 samples that were further divided into A, B and C. Sample Groups A 

and B were found to contain mostly Pseudomonas putida and Propionibacterium acnes 

sp. It is possible that the proteases detected within these samples are from either 

P.putida or P.acnes. Group C samples contained only P.putida and M.abscessus and 

no proteases were detected. This suggests that the organisms present have not 

secreted proteases or they were not detected within the experiments used. P.putida 

and M.abscessus are known to secrete extracellular proteases. For example, P.putida 

is understood to secrete a protease referred to as alkaline protease (Thibodeaux et al, 

2009). It remains unclear, as to why no proteases were detected in the MWF in these 

samples.  

Group A and B samples both contained proteolytic bands of ~35KDa size; whilst the 

Group B samples contained additional proteolytic bands that may be attributed to the 

P.aeruginosa present. As we have not specifically identified the individual proteolytic 

bands, it this is only an inference of their identity due to the evidence available.  

Of the likely proteases detected in the MWF samples, other studies have shown that 

P.acnes releases exogenous proteases (Holland et al, 2010). Lee et al, (2010) also 

showed that that some of these proteases activated ‘protease activated receptors’ 

(PAR-2) in human skin cells resulting in increased mRNA expression of the pro-

inflammatory cytokines interleukin 1 alpha (IL-1α – 8) and tissue necrosis factor alpha 

(TFN-α). This also increased the synthesis of antimicrobial peptides such as human 

beta defensin (HβD)-2 and LL-37 and matrix metalloproteases (MMPs 1,2,3,9 and 13) 

where their expression is associated with tissue re-modelling and disease processes.  
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Furthermore, biofilm formation is one of the major virulence properties of P.acnes. 

Achermann et al (2014). Studies have shown that P.acnes can form biofilms in in-vitro 

and in-vivo models (Holmberg et al, 2009). A study by Holmberg et al, (2009) showed 

that the ability of the P.acnes isolates to form a biofilm is possibly reliant on the origin 

of inoculation. For example, P.acnes isolates from wound infections were more likely to 

form biofilms that isolates taken from the skin of healthy individuals.  

 

2.4.7 Fluid contamination and circulation time 

It is understood that the longer the MWF is kept in circulation the more likely 

contamination is to occur. This would be attributed to more opportunity for 

contamination, due to variation in fluid management protocols. Therefore, in this project 

the relationship between the age of the MWF and the expression of proteases was 

considered.   

After analysing the results of the zymography experiments, it could not be inferred 

whether there was a relationship between the level of proteolytic activity and the fluid 

age. There are a number of possible explanations for this result. It is possible that the 

proteolytic enzymes released are short lived and are influenced by the effects of 

biocides used to inhibit microbial growth in the fluid. Alternatively, it is also possible that 

the release of proteases is not directly proportional to the amount of bacteria present. 

Further experiments are required to address this question. These may include, 

conducting zymography experiments on MWF that have been dosed with different 

biocides at different concentrations.  
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2.4.8 Enzyme substrate fluorescence based assays  

The enzyme substrate fluorescence based assay was incorporated to quantify the 

amount of proteases present in the MWF samples. After a series of experiments, it was 

clear that the used MWF samples were incompatible with the fluorescence assay used. 

In an effort to reduce quenching/ interference from components of the MWF, the 

samples were serially diluted to reduce the levels of MWF in the sample. However, this 

reduced the amount of detectable protease fluorescence to below the reliable lower 

detection limits of the assay. Furthermore, due to the variability of MWF compositions, 

some MWF showed a greater level of interference than others. Protease inhibitors that 

were added to the samples did not affect the fluorescent signal generated. Therefore, 

this suggested that the interference signal was non-specific.  

The use of zymography to quantify bacterial proteases in MWF samples has not been 

well established. It is important to determine the likely levels of proteases that are 

present in MWF to understand the likelihood of bacterial proteases present in MWF’s 

becoming airborne and thus their role in the development of allergic respiratory 

disease. In order to address this issue there are a number of avenues that may be 

explored. Firstly, alternative quantification methods, for example ELISAs may be 

employed. This method employed a different mechanism of action than a fluorescence 

based substrate assay and thus interferences may be less or effectively managed. 

Furthermore, it would be important to determine whether there are sample different 

preparation steps that may be used to separate proteases from the sample prior to 

analysis. For example, look for materials that may absorb the lipids from the sample 

mixture without affecting the proteases.  
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Chapter 3 – Analysis of metals in MWF 

 

3.1. Background and Aims 

As previously stated, MWF are known to carry microscopic metal fragments, soluble 

metals and swarf. The larger particulates are generally filtered out of the MWF before 

recirculation back into the system (HSE, MW2). However, some of the finer particles 

may be retained. In addition, if the pH of the MWF decreases and corrosion occurs, this 

can result in metal dissolution into the MWF (Mosher, Peterson and Skold, 1986). If 

particulates and dissolved metals are likely to be present within the MWF, it is probable 

that they may become aerosolised as part of the MWF mist generated during the 

machining processes. 

Exposure to metals in the form of fumes and dusts is well established in occupational 

settings (Kastery et al, 2017). However, few studies aim to determine whether machine 

operators who use MWF, are likely to be exposed to these metals in the mist. Studies 

were conducted in the 1970’s when early formulations of water-mix MWF were used. 

These studies were only focused on metals that were suspected of causing the 

immediate problems seen in machine workers at the time. For example, conditions 

such as dermatitis and hard metal lung disease that were suspected to be a result of 

exposure to cobalt fumes and particulates (Sjoren et al, 1980). Cobalt was the only 

metal analysed in the MWF in these circumstances. There was little interest in 

analysing other potential contaminants in the MWF i.e., aluminium and nickel.  

Indeed, metal contaminants in MWF are generally only considered after specific 

challenge tests had indicated response to a specific metal. For example, a study 

conducted by Walters et al, (2012) set out to determine the extent of an outbreak of OA 

in a machining plant that used MWF. This study was instigated after five employees 

were referred to the Chest Clinic, Birmingham. Specific inhalation challenge testing 

revealed that they were reacting to cobalt salts and chromium. The authors then set out 
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to determine the extent of this outbreak at the site by conducting an epidemiological 

study. Sixty-two workers were assessed for OA symptoms. In addition, urine analysis 

was conducted to screen for cobalt and chromium concentrations. The results of this 

analysis revealed 90% of individuals tested had urinary chromium excretion indicating 

occupational exposure. In addition, those employees that had OA symptoms had 

significantly higher chromium and cobalt concentration than asymptomatic controls. 

Furthermore, individuals that did not have OA but had rhinitis symptoms were found to 

have significantly raised chromium concentration compared to asymptomatic controls. 

In this study, no MWF were analysed for cobalt and chromium or any other possible 

metals. No air sampling was conducted to determine the concentrations of chromium or 

cobalt the workers were being exposed to via inhalation.  

Current workplace exposure limits (WELs) of metals are based on exposure to airborne 

metals in the form of dust and particulates collected on air filters (HSE, EH40). 

Therefore, it is important to determine what the typical exposures of machine operators 

through the inhalation of metal containing MWF. Furthermore, there is currently no 

accurate method available for employers to determine exposure to MWF. Until 2007, 

MWF mist exposure in the UK was calculated using the HSE MHDS95/3 method for 

the analysis of boron. Boron is added to some general MWF as a corrosion inhibitor 

and a biocidal agent and is found to be unreactive with other components within the 

MWF (Schultz et al, 2015). Therefore, it was a useful tool in extrapolating the 

concentration of MWF in the air from the concentration of boron within the sump 

sample. However, when the Powertrain investigation was first instigated, the personal 

mists exposure levels measured using the MDHS/95/3 protocol showed values that 

were within the guidelines of 1 mg/m3 as a time-weighted average (TWA) over an 8 

hour shift and yet employees had developed respiratory complications (Burton et al, 

2012).  However, it should be noted that the value of 1 mg/m3 was not formed on health 

based evidence, but more on the practicality of using the method based on feedback 
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from industry (Simpson et al, 2003).Therefore, the method does not necessarily reflect 

the quantity of hazards in the mist.  Nevertheless, the HSE retracted the MDHS95/3 as 

guidance for measuring personal MWF mist exposures soon after the investigation. 

Furthermore, the method will be rendered obsolete in the near future due to the amount 

of boron that is permissible in MWF. The use of boron in MWF will be eradicated under 

the new regulations set by the REACH scheme. This is because boron has been re-

classified as potentially teratogenic (Sengupta et al, 2015). This has left a considerable 

lack of methodology available for employers and those responsible for the safety of 

employees to manage exposure to MWF mist through monitoring.  

It is clear that machine operators inhale MWF in the form of a mist from the machining 

tool. However, if they are being exposed to the MWF they could potentially be inhaling 

the dissolved metals and particulates. After inhalation, particles can deposit onto the 

lining of the respiratory system. The smaller particles can penetrate further down into 

the lung, depositing in the alveoli (Figure 1.5). The further into the lung the particles 

penetrate, the more likely they are to enter systemic circulation (Xing et al, 2016). 

Therefore, there is also a risk of systemic effects after inhalation of metals. Additionally, 

the deeper into the respiratory system the particles travel; the longer it can take the 

body to clear them. In some circumstances, the particles cannot be broken down, and 

they persist in the body (Li et al, 2015). This is a term often referred to as 

bioaccumulation. When bioaccumulation occurs, this can potentiate the toxic effects of 

the metal (Li et al, 2015). Therefore, it is important to determine whether the metals in 

used MWF are likely to be represented in the mist.  

A variety of metal alloys can be machined at any machining site, and the use is 

dependent on the component or part that is being machined. Exposure to a number of 

different metals has been shown to result in a variety of diseases through inhalation, 

dermal absorption and accidental ingestion from not washing hands after a shift. As 
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summarised in Table 1.3, are a number of metals that are known for their hazardous 

properties that can include being carcinogens, asthmagens, irritants and teratogens. 

Evidence for these properties can be found from exposure and epidemiological studies. 

For example, hexavalent chromium, a known carcinogen and allergen, must be 

controlled (IARC, 1990). The divalent and trivalent forms of chromium are considered 

largely irritants (Wu and Liu, 2014).  Zinc oxide is a workplace pollutant for individuals 

exposed in foundries, during welding and cutting of galvanised materials, and other 

galvanising processes (Greenberg and Vearrier, 2015). Exposure to zinc-containing 

particulate matter in ambient and occupational setting has also been associated with 

the inflammatory responses in the lung. Other metals commonly found in machining 

alloys and metals that cause adverse health effects include, beryllium (Be) (Madl et al, 

2007), chromium (Cr), nickel (Ni), iron (Fe), copper (Cu), zinc (Zn), aluminium (Al) (Liu 

et al, 2012; Wu and Lui, 2014; Krewski et al; Smolkova et al, 2014) and cobalt (Co).  

For the purpose of this study, respiratory conditions are the focus due to the nature of 

exposure through the MWF mist. Respiratory conditions related to exposure to metals 

are generally seen after direct inhalation of metal fumes or dusts.  The spectrum of 

conditions include pulmonary fibrosis, pulmonary alveolitis, alveolar proteinosis, 

asthma, chronic bronchitis, chronic pneumonia, hard metal lung disease (HMLD) and 

metal fume fever (MFF) (Elserougy et al, 2012; Godderis et al, 2005).   

Metal fume fever (MFF) is a condition attributed to metal inhalation exposure and is 

mainly associated with inhalation of zinc (Greenberg and Vearrier, 2015; Kaye and 

O’Sullivan, 2002). However, cases of the condition have also been attributed to 

exposure to other metals such as aluminium, cadmium, manganese and iron. The 

condition manifests with symptoms such as fever, rigors (chills), dyspnoea (difficulty 

breathing/ laboured breathing), fatigue and nausea (Safty et al, 2008). Yet removal 
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from exposure can reduce symptoms. All of which are also attributable symptoms seen 

with MWF-mist exposure.  

Hard metal lung disease (HMLD) is a condition attributed to the inhalation of hard 

metals (not heavy metals), most notably cobalt (Mizutani et al, 2016). This disease also 

has a clinical presentation similar to those seen with MWF-mist exposure in that 

patients show improvement in symptoms when removed from the working environment 

and relapse when they return (Nemery and Abraham, 2007).  

 

The purpose of this study was to determine the best methodology to analyse used 

MWF with ICP-MS and to determine the concentrations of metals that are present 

within MWF.  

The objectives of the work described in this chapter were to: 

 Determine the appropriate sample preparation method from effectively 

preparing MWF.  

 Screen for metals in MWF using inductively coupled plasma mass spectrometry 

(ICP-MS). 

 Quantify metals of interest present in the MWF.  
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3.2. Materials and Methods 

3.2.1. Materials  

The MWF selected for this section of the study were taken from Group 2 in Chapter 2, 

Table 2.1. As the MWF could not be directly analysed, due of the oil based fraction and 

possible undissolved particulates, it was necessary to first acid digest the samples.  

 

3.2.2. Sample preparation and digestion procedure 

Preliminary studies were carried out using open and close topped test tubes, incubated 

at room temperature and spiked with known amounts of metals. The results of both 

experiments were compared to results obtained from open and closed topped test 

tubes incubated using a heating block (90 °C) to determine optimal metal recovery 

conditions.  

Spiked MWF samples were also analysed as they were received and after dilution, to 

determine the optimal amount of MWF prior to digestion. Samples were spiked with 1 

mg/L boron and 10 µg/L aluminium, chromium, manganese, lead, copper, zinc and 

tungsten (VWR ICP Standards, Lutterworth, Leicestershire) and mixed overnight. 

Furthermore, an elemental screen was conducted on used samples to determine which 

metals will be analysed within the samples.  

Results from the studies revealed that the optimised digestion procedure for analysis of 

used MWF using ICP-MS was to add one mL of concentrated nitric acid to 100 µL of 

10-fold diluted MWF, and left to digest at room temperature in an open container for 30 

minutes. Samples were then further diluted with 1% v/v nitric acid diluent (Romil) that 

contained the internal standards: gallium (70Ga), indium, (114In), rhodium (103Rh), yttrium 
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(89Y), platinum (195Pt) at an added concentration of 10 µg/L and 30 µg/L germanium 

(73Ge). 

Standards for boron, aluminium, chromium, manganese, iron, nickel, copper, zinc and 

tungsten (VWR ICP-Standards, Lutterworth, Leicestershire) were prepared at a range 

of 10 – 500 µg/L for 5 standards. 

 

3.2.3. Sample Analysis  

Metal analysis was conducted using an inductively coupled plasma mass spectrometer 

(ICP-MS) X series II (Thermo Fisher, Hemel Hempstead, UK). The instrument was 

used in normal mode and collision cell mode (CCT) with kinetic energy discrimination 

(KED) (with 3.5 ml/min 7% hydrogen in helium) using the following conditions: 

 

Instrument Conditions 

RF Power 1400 W 

Nebuliser flow rate (Miramist nebuliser) 0.75  L/min-1 

Extraction Lens -70 V 

 

Table 3.1 – Operating conditions for the ICP-MS instrument.  

 

Collision cell mode with kinetic energy discrimination was used to determine if there 

was any matrix or polyatomic interferences within the samples. Helium was utilised as 

the collision gas.  Dwell times and mode of analysis are outlined for each element in 

Table 3.3.  
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3.2.4. Quality controls  

Clinical external quality control reference materials of ClinChek level 1 and 2 (RECIPE 

Chemicals and Instruments, Munich, Germany) were utilised to determine the accuracy 

of the method. QC samples were analysed at the start, after every 10 samples and 

finally at the end of the sample set. A 100 ng/L standard was run at the same intervals 

as the blank throughout each analysis. 

3.3. Results 

3.3.1. Quality of the analytical method 

The background equivalent concentration (BEC) and the limit of detection (LOD) for 

each analyte of interest are summarised in Table 3.3. The LOD was calculated as 3 

times the standard deviation of the blank (Leese et al, 2013). Limit of quantification 

(LOQ) calculated as 10 times the maximum BEC (Leese et al, 2013).  Spiked MWF 

samples were run every 10 samples. All standard controls were deviated from the 

mean by 10%. Results of all quality calculations are outlined in Table 3.2.   

The externally certified reference material used throughout the study was ClinChek 

(RECIPE Chemicals and Instruments, Munich, Germany). The results from all 

reference samples were well within the certified range and are displayed in Table 3.2 

as the mean ± standard deviation where n = 5.  

 

3.3.2. Results of MWF analysis 

Twenty-two used MWF samples that can be assigned to 3 different sub-groups were 

analysed by ICP-MS (Chapter 2, Group 2). Samples were divided into Group A 

consisting of a new formulation of MWF containing no boron or bactericides, Group B 

an older formulation with no boron containing one bactericide. Finally Group C, the 
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oldest formulation containing both boron and two different bactericides (Table 2.1). 

Each sample set comprise of used samples that were taken from the same machining 

tool over weekly to monthly intervals (For further details of fluid composition refer to 

Table 2.1 - Chapter 2).  

The results for Group A, B and C are summarised in Tables 3.4, 3.5, 3.6. ICP-MS 

analysis revealed that the pre-selected metals were present at varying concentrations 

within the used MWF as a contaminant. The un-used MWF samples contained only 

trace levels of the analytes of interest. The samples did contain Boron at different 

quantities prior to use. However, Group C was specified to contain boron. Within each 

subset of samples there appears to be a pattern in the levels of specific analytes 

detected.  

The levels of boron were found to be between 2009 µg/l and 836 500 µg/l. In all three 

groups, metals present in higher concentration included aluminium, iron, copper and 

zinc. The highest levels of aluminium were found to be 11 290 µg/L, iron levels were as 

high as 11 620 µg/l. copper levels were seen on average of 3000 µg/l and zinc levels 

were as high as 44 430 µg/l. The concentrations of chromium, nickel, manganese and 

tungsten were similar between all fluids, and all concentrations were 100 µg/l. 

 

3.3.2.1. Time interval 

Further analysis of each fluid group over time intervals of 1 month revealed possible 

trends in the metal concentrations over time. This further enforces the theory that metal 

particles accumulate over time within the fluid even after continued recirculation.  
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3.3.2.1.2 ICP-MS results of MWF A 

As shown in Table 3.4, the concentration of aluminium and tungsten appeared to 

decrease over the time of sampling. The amount of copper steadily increased over time 

from 2614 µg/L to 3663 µg/L. The levels of copper, manganese, iron, nickel, and zinc 

significantly increase for the first 12 weeks, and then appear to decrease thereafter in 

the remaining 4 weeks. The concentration of iron and zinc are of the highest 

concentration within this fluid group at 5546 µg/L and 4944 µg/L respectively. Fluid A is 

not listed as boron containing yet analysis revealed levels up to 46 750 µg/L, which 

peaked at 8 weeks. 

 

3.3.2.1.3 ICP-MS results of MWF B 

As shown in Table 3.5, in this fluid, the concentrations of chromium, manganese, iron 

remain steady throughout sample intervals. There levels of nickel showed a slight 

increase. The level of copper, zinc and tungsten steadily increase over during the 

sampling period. The levels of zinc appear to be in a similar range to the 

concentrations in fluid A, the increase was from 3584  µg/L to 4458 µg/L.  The level of 

aluminium was relatively constant ranging between 1060 ± 7 µg/L. 

 

3.3.2.1.4 ICP-MS results of MWF C 

As shown in Table 3.6, in this fluid the level of chromium, manganese, iron, nickel and 

tungsten remained very low and did not show any consistent trend over time. The 

levels of zinc once again steadily increased over time, with a substantial increase in the 

last sample, this increased by 10-fold. The levels of boron, aluminium, and copper 
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decreased at the last sample.  The highest boron levels are present in this fluid with 

concentrations of 836 500 µg/L (0.08%) which is 20 times higher than the other MWF.  
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Table 3.2 – Results of analysis in comparison to externally certified reference material and the QC blank MWF, the certified range is 
marked in red and the QC blank MWF in blue. Results are displayed at the mean ± standard deviation of all 5 sample runs. All results were 
well within the certified ranges 

  

 
Boron 
(µg/L) 

Aluminium 
(µg/L) 

Chromium 
(µg/L) 

Manganes
e (µg/L) 

Iron (µg/L) 
Nickel 
(µg/L) 

Copper 
(µg/L) 

Zinc (µg/L) 
Tungsten 

(µg/L) 

Certified 
range 

(µg/L) CC1 
none 26.4-39.6 3.26-4.89 3.13-4.69 30.8-46.3 4.73-7.1 29.4-44.1 163-245 none 

CC1  349 ±112.0 27.7 ± 0.44 3.9 ± 0.17 3.6 ± 0.12 36.3 ± 0.45 5.8 ± 0.15 36.1 ± 0.36 209.1 ± 
34.11 0 ± 1.17 

Certified 
range 

(µg/L) CC2 
none 68.7-103 15.9-23.8 15.5-23.2 179-268 34.4-51.7 73.5-110 428-642 none 

CC2 
333.6 ± 
100.28 69.9 ± 1.20 19.1 ± 0.36 17.81 ± 

0.40 
197.46 ± 

3.79 
41.80 ± 

0.75 
89.31 ± 

1.46 
518.78 ± 

4.37 0.30 ± 1.01 

QC Blank 
MWF 

sample 

47.26 ± 
47.822 

0.05 ± 
0.058 

0.013 ± 
0.002 

0.004 ± 
0.001 

0.091 ± 
0.030 

0.017 ± 
0.020 

0.021 ± 
0.005 

1.115 ± 
0.224 

0.182 ± 
0.210 
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Table 3.3 – Results of analysis to determine the quality of the analytical method and parameters of experiments.  

 

 

Element 
Mode of 
analysis 

Dwell 
Times 

Internal 
Standards 

Standard 
Deviation 

Back-ground 
Equivalent 

Concentration 
(BEC) (µg/L) 

No. of 
samples 

<BEC 

Limit of 
Detection 

(LOD) 
(µg/L) 

No. of 
samples 

<LOD 

Percentage 
Recovery (%) 

11B Normal/CCT 
 10/30 72 Ge 0.4275 3.4414 0 1.5738 0 97.4 

27Al Normal/CCT 20/50 72 Ge/ 89Y 0.0093 0.0940 0 0.0000 0 103 

52Cr CCT 50 72 Ge 0.0006 0.0257 3 0.0011 0 104 

55Mn CCT 50 89 Y 0.0006 0.0034 0 0.0021 0 101 

56Fe CCT 30 72 Ge 0.0410 0.4946 0 0.0753 0 103 

60Ni CCT 50 89 Y 0.0180 0.0513 0 0.0673 0 100 

65Cu Normal/CCT 20/50 72 Ge /72 Ge 0.0020 0.0212 0 0.0040 0 104 

66Zn Normal/CCT 20/50 72 Ge/ 89 Y 0.0470 0.4856 0 0.1563 0 100 

182W CCT 50 115 In 0.0630 0.0976 1 0.2623 0 93 



148 

 

Results – Elemental analysis of MWF A 

Age of 
Fluid 

(Weeks) 

Boron 
(µg/l) 

Aluminium 
(µg/l) 

Chromium 
(µg/l) 

Manganese 
(µg/l) 

Iron (µg/l) 
Nickel 
(µg/l) 

Copper 
(µg/l) 

Zinc (µg/l) 
Tungsten  

(µg/l) 

2 45 910 1145 30 223 3429 119 2614 3464 76 

4 46 050 1137 38 282 4005 136 2892 3829 71 

6 45 230 1078 37 296 4024 126 2891 3844 28 

8 46 750 1107 47 362 4888 149 3166 4467 57 

10 44 130 1088 57 415 5483 184 3164 4914 37 

12 40 920 993.4 58 409 5429 187 3141 4944 22 

14 42 230 968.8 41 320 4546 146 3258 4290 35 

16 43 260 981.6 38 310 4289 134 3663 4427 36 

Table 3.4 – Results of elemental analysis of used MWF in sample Group A. New formulation of MWF containing no boron or bactericides.  
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Results – Elemental analysis of MWF B  

Age of 
Fluid 

Boron 
(µg/l) 

Aluminium 
(µg/l) 

Chromium 
(µg/l) 

Manganese 
(µg/l) 

Iron (µg/l) 
Nickel 
(µg/l) 

Copper 
(µg/l) 

Zinc (µg/l) 
Tungsten  

(µg/l) 

2 2884 10 660 133 125 1422 2878 1030 3584 1091 

4 2269 11 120 135 127 1481 2987 1074 3755 1126 

6 2347 10 760 148 126 1470 3009 1097 3895 1127 

8 2123 11 390 141 133 1517 3123 1147 4105 1177 

10 2009 10 750 136 128 1450 3008 1116 4013 1138 

12 2332 11 290 141 129 1488 3072 1162 4274 1191 

14 1888 10 190 139 125 1422 2944 1135 4216 1161 

16 2095 10 870 134 125 1470 3024 1190 4458 1241 

Table 3.5 – Results of elemental analysis of used MWF in sample Group B. Older formulation with no boron and one bactericide.  
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Results – Elemental analysis of MWF C 

Age of 
Fluid 

(Month) 

Boron 
(µg/l) 

Aluminium 
(µg/l) 

Chromium 
(µg/l) 

Manganese 
(µg/l) 

Iron (µg/l) 
Nickel 
(µg/l) 

Copper 
(µg/l) 

Zinc (µg/l) 
Tungsten  

(µg/l) 

1 812 300 4802 45 190 8085 82 3899 25 500 41 

2 711 100 3622 35 155 6705 67 3264 21 680 31 

3 836 500 4053 43 186 8349 85 4008 26 990 53 

4 479 100 5695 35 182 6032 81 4865 35 340 48 

5 536 500 6551 60 218 7037 128 6559 44 430 27 

6 16 790 780 106 470 11620 81 4573 236 700 40 

 

Table 3.6 – Results of elemental analysis of used MWF in sample Group C. Oldest formulation containing boron and two bactericides.  

 

 



151 

 

3.4. Discussion 

The aims of this study were to determine and quantify metals present in used MWF. It 

is commonly theorised and acknowledged that metal alloys used in metal machining 

processes may contain components that can cause adverse health effects. Dermal and 

inhalation exposure to metals in the form of dust, fumes and particulates is known to 

cause a variety of adverse health conditions (Tchounwou et al, 2012). Examples 

include, dermatitis, HMLD, pulmonary fibrosis etc. Despite the association between 

exposure to metals and adverse health conditions, there is a considerable lack of 

information regarding exposure to metals in MWF and their mists. Due to large 

variations in metal alloy compositions (steel and aluminium alloys), there are a number 

of metals that have the potential to be present within the MWF. Therefore, it is 

necessary to analyse used MWF to determine what metals are likely to remain. This 

would provide a better understanding of what is likely to become aerosolised as part of 

MWF mist. Furthermore, this information could be used in future air monitoring 

research to determine what metals of interest to look for in machining workshops 

(Chapter 4).  

As part of general MWF management, the metal chips and particulates that accumulate 

in the MWF are removed by filtration (HSE, MW2). The sole purpose for this process is 

to ensure that the abrasive properties of the particulates within the MWF do not affect 

the finish on the metal surface (HSE, MW2). In addition, small particulates can become 

trapped inside crevices in the machinery and cause corrosion, this would eventually 

cause the component to fail. Furthermore, it is a requirement to remove metals prior to 

disposal. Therefore, the filters used are only designed to remove particles as small as 

50 µm in diameter (HSE, MW2. Much finer particulates (<50 µm) and dissolved metals 

are not seen as problematic to the MWF function. Therefore, they are left in the fluid 

and have the potential to accumulate over the time they are recirculated through the 

system (up to 2 years).  
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The results of this project showed that used MWF contain metal contaminants 

corresponding to the metal being machined. This is in agreement with a study by 

Einarsson et al (1979) where the amount of cobalt, chromium, and nickel was analysed 

in MWF after machining a tungsten carbon alloy for a period of 84 days using atomic 

absorption spectroscopy. The results of the study demonstrated a gradual increase in 

the amount of cobalt over time, where the highest amount reached 217 µg/g (1 µg/g = 

1 µg/mL). In addition, the amount of nickel and chromium were found to reach levels of 

0.13 µg/g to 0.61 µg/g. Upon changing the machining metal to steel alloy the maximum 

amount of chromium and nickel detected was between 0.10 – 0.015 µg/g.  

The results of this project also show that some metals are present in higher 

concentrations than others. In comparison with information available in the literature, 

the opposite has been seen in other research. Suuronen et al (2005) conducted a 

similar analysis at several different machining sites and found that the levels of 

chromium, nickel and cobalt remained at a consistent level through the lifecycle of the 

MWF. The levels of these metals were found to be ≤ 0.26 µg/ml with no single element 

in higher concentration. The fact that some metals appear to accumulate in MWF and 

other do not would suggest that MWF composition could have some influence. Whilst 

this was not noted in this research, it would be important in future to determine whether 

different MWF types have a propensity to accumulate metals over time. 

Nevertheless, the results in this study also showed that fresh MWF analysed with the 

same method did show trace levels of some metals that were targeted. This could be 

explained by the composition of the MWF. If the MWF contained small levels of mineral 

oil, it is understood that metals are a natural contaminant in mineral oils that are mostly 

removed during refining (Schulz et al, 2015).  
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3.4.1. Adverse health effects and metals exposure 

The metals detected in this study at higher concentrations were aluminium, iron, 

copper and zinc. These metals have been attributed to a variety of adverse health 

conditions after inhalation exposure (Palmer et al, 2006). Such conditions have been 

noted after direct inhalation to metal fumes and dusts.  

A common physiological response after exposure to respiratory sensitisers is a 

heightened inflammatory response. A number of toxicological studies have noted 

similar effects in animal and human research models after inhalation exposure to 

different metals, in different forms. For example, Gao et al (2012) and Chang et al 

(2013) both demonstrated that direct exposure to high levels of zinc particles can have 

a role in inflammatory reactions in the lung. In addition, the latter study also reported 

the accumulation of neutrophils, eosinophils, macrophages and an increased 

production of cytokines, which are all changes seen in the lungs after exposure to 

sensitising antigens. A study by Pettibone et al (2009), established that exposure to 

both iron and copper nanoparticles (a particle between 1 and 100 nm in size) showed a 

significant inflammatory response in murine model exposures, in addition to the 

accumulation of higher macrophages and neutrophils, increased cytokine release and 

histopathological evidence. In contrast, a study by Morimoto et al (2016) recently 

demonstrated that intratracheal and inhalation exposures to zinc in mice did not cause 

any inflammation in the lung, but simply an increase in total cell neutrophils.  

Furthermore, more severe health effects have been established at much higher 

exposure levels. Kim et al (2010) demonstrated this, by exposing primary cell-cultured 

rat alveolar epithelial cell monolayers to varying zinc concentrations. The results of this 

study showed dose-dependent injury to alveolar epithelial cells, and in most cases, this 

resulted in a loss of membrane integrity. The level of exposure in this study was as 

high as 176 mg/L over 24 hours. It is important to determine whether the 
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concentrations of zinc present in the MWF would be representative of what is forming 

part of the mist in order to determine whether the amount is sufficient to cause adverse 

health effects in exposed individuals. The highest level of zinc in the fluids analysed 

here was 24 mg/L (converted from mg/L for reference), therefore how much of the 24 

mg/L zinc would become aerosolised.  

Chronic exposure studies to some metals outlined in this study such as aluminium and 

zinc have also demonstrated that some metal particles are known to accumulate in the 

respiratory tract after inhalation, a term referred to as bioaccumulation. The particles 

may eventually be removed. However, this can result in a continued onset of symptoms 

after the hazard has been removed. In addition, research conducted by Peters et al 

(2013) demonstrated that long term exposure and accumulation of metals such as 

aluminium have links to systemic diseases such as cardiovascular disease and 

Alzheimer’s disease.  

Furthermore, some metals that do accumulate within the lung over time may also 

undergo potential changes that are dependent on the surrounding conditions 

(Pettibone et al, 2009). Pettibone et al (2009) demonstrated that after completing 

exposure studies on both copper and iron nanoparticles, copper did not accumulate in 

the lung but iron was found in aggregated macrophages. Furthermore, copper was 

shown to have a greater propensity to dissolve in biological fluids than the iron. 

Demonstrating that factors such as pH environments and interactions with cellular 

components may have some effect on the state of the particles inhaled and also can 

cause time-dependent changes in the inflammatory responses observed.   

Whilst it is clear from the evidence that exposure to such metals may be attributed to 

adverse health conditions. There is conflicting evidence on the amount of metal 

required to cause ill health. In most cases of aluminium and zinc exposure, high levels 

of >500mg/m3 are required to cause the effects outlined. Becket et al (2005) elucidated 
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that both ultrafine (≤0.1 µm) and fine (≤2.5 µm) particle distributions showed no 

observable effects in healthy human adults after exposure to 500 mg/m3 for 2 hours. 

Yet, Mazzoli-Rocha et al (2010) demonstrated that just small amounts of aerosolised 

aluminium dust suspension (8 mg/m3) caused respiratory inflammation in mice. At 8 mg 

/m3, this is below the occupational exposure limit (OEL), yet an inflammatory response 

was still observed. In a workplace air sampling study conducted by Healy et al (2001), 

aluminium levels in the air were found to be in the range of 40 – 400 µg/m3. These 

levels are not exceeding the OEL, but they do show that in some cases, the levels of 

such metals in the air can be vastly different.  

Therefore, it is important to determine the likelihood that the amount of metal detected 

within the MWF reflects the amount of metal present in a MWF aerosol formed through 

machining. It is common for metals to become airborne as part of a dust or fume, 

therefore it is likely that the metals present in the fluid may become aerosolised during 

machining as part of MWF mist generated. This will be addressed in Chapter 4 in an air 

sampling case study to determine if there is any correlation between metals machined 

and metals detected in the air. Therefore, metals may have been prematurely excluded 

as a potential candidate for their role in the development of respiratory disease in 

machine operators.  
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Chapter 4  

Workplace Air Sampling: 

Investigation of hazards in mist samples 

4.1. Background and Aims 

Dispersion of MWF into aerosols/mist can release chemicals and contaminants of the 

MWF into the air, which may be potentially inhaled and thus cause harm or illness 

(Perkins and Angenent, 2010; Stear, 2005). Therefore, it is important to monitor the 

airborne impurities in the workplace to gain a better understanding of the likely health 

risks this may cause. It remains unclear as to what exact components or contaminants 

of the MWF form part of a MWF mist. Therefore, it is unclear as to what machine 

operators are being exposed. For this project, air sampling methods were used within a 

machining environment to determine the likely hazards in the air surrounding machine 

operators.  

A machining location that was involved in the production of aerospace and 

petrochemical precision machined metal parts provided access on site to perform air 

quality analysis. Individuals employed by the company had been expressing concerns 

regarding a visible mist on-site during operating (machining) hours. Machine operators 

were showing evidence of mild rhinitis, sore eyes and re-occurring cold and flu-like 

symptoms. However, to date and to the best of our knowledge, there were no 

reported/diagnosed cases of more serious conditions such as OHP and OA. All trade 

names will remain anonymous for the purpose of this study. No participation or 

individual sampling was required from any employees or machine operators. Therefore, 

no ethical approval was required, but the company and operators provided consent for 

the work to be undertaken and to answer technical questions.  
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4.1.1. Workplace exposure limits (WELs) 

Workplace exposure limits (WELs) are UK  occupational exposure limits (OELs) that 

are put in place with an aim to reduce workplace exposures and thus protect the health 

of workers (HSE, EH40/2005) The WEL is taken as the amount of the potentially 

hazardous substance in the air. This is calculated by averaging the values taken over 

time and is referred to as a time-weighted average (TWA) (HSE, EH40/2005). Under 

the Control of Substances Hazardous to Health Regulations 2002 (COSHH, 2002), any 

substances that may cause adverse health effects after exposure must be given a 

WEL. Furthermore, the absence of a substance in the air is not interpreted as being a 

safe level of exposure (COSHH, 2002). It is important to ensure that exposure to any 

potentially hazardous compound is managed to as low as reasonably practicable. The 

list of hazardous substances and their WELs will be used for comparison with the 

results of air sampling of metals, see Table 4.1 for the relevant metallic WELs. 

Objectives: 

 To evaluate SKC liquid impingers and CIP10M samplers for the collection of air 

samples. 

 To investigate the exposures of workers to components of the MWF at two different 

time points. 

 To collect samples of air using static samplers and MWF samples for comparison. 

 To investigate the types for bacteria present in the factory and corresponding air 

samples using 16S rRNA PCR-DGGE. 

 To investigate whether bacterial proteases are present in the MWF and air samples 

using zymography.  

 To investigate whether respiratory sensitising metals are present in MWF supplies 

and air samples using ICP-MS. 
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Substance Type 
Long term WEL 

(mg/m3) 

Aluminium 
metal 

Inhalable dust 10.00 

Respirable dust 4.00 

Aluminium 
oxides 

Inhalable dust 10.00 

Respirable dust 4.00 
Aluminium 

Salts 
(soluble) 

- 2.00 

Cadmium 
Cadmium compounds except oxide fumes, 
cadmium sulphide and cadmium sulphide 

pigments 
0.025 

Chromium 

Chromium (II) 0.50 

Chromium (III) 0.50 

Chromium (VI) 0.05 
Cobalt and 

cobalt 
compounds 

- 0.10 

Copper 
Fume 0.20 

Dust and mists 1.00 

Iron Oxide Fume 5.00 

Iron Salts - 1.00 
Manganese 
and organic 
compounds 

- 0.50 

Molybdenum 
Soluble compounds 5.00 

Insoluble compounds 10.00 

Subtilisin Bascillus subtilis  0.00004 

Thallium - 0.10 

Titanium 
dioxide 

Total inhalable 10.00 

Respirable 4.00 

Tungsten 
Soluble compounds 1.00 

Insoluble compounds 5.00 

Zinc chloride - 1.00 

 

Table 4.1 – Workplace exposure limits (WEL) corresponds to 8-hour time weighted 
average reference period of sampling. The WELs shown in the table were extracted 
from EH40 guidance on WELs for specific chemicals.  
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4.2. Materials and Methods 

4.2.1. Preliminary Studies in calm air chamber 

In order to assess the different samplers to be used on site visits, a series of controlled 

experiments were conducted in a calm air chamber situated at the Health and Safety 

Laboratory site in Buxton, UK. In brief, experiments were carried out by generating an 

artificial MWF mist in the chamber and collecting samples using the different sampling 

devices. The MWF used to generate a mist was spiked with a protein marker, i.e. bovine 

serum albumin (BSA), so that this could be easily determine in the samples. Therefore, 

the measured quantities collected across the different sample devices could be 

compared. In one experiment, the MWF was also spiked with endotoxins at a 

concentration of 1000 EU/ml (103 EU/ml). Endotoxins were used in these circumstances 

because of their accessibility at the time.  

 

4.2.1.1 Preparation of IOM sampling filters 

For the gravimetric analysis of respirable, thoracic and inhalable aerosols, all IOM filters 

were GF/A glass fibre as outlined by MDHS14/4 (HSE, UK). All filters and were pre-

conditioned (equilibrated) in a humidity and temperature controlled room (+/- 5% and 

temp +/- 2ºC) as outlined by the BS-ISO-15767 (HSE, UK) overnight. All handling of 

filters was carried out using plastic forceps to prevent moisture contamination of filters. 

Equilibrated filters were pre-weighed in their IOM cassette within the same conditioned 

environment on a precision balance (Mettler Toledo XP6U). All filters and cassettes were 

stored in an open container (to allow for equilibration at the humidity and temperature of 

the room) until ready for use. 
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4.2.1.2. Decontamination and preparation of samplers for the calm air chamber 

For the purpose of this project, 20 ml and 10 ml Biosamplers were utilised. All impingers 

were de-contaminated with 1M NaOH overnight, rinsed in ultrapure sterile water and 

then autoclaved at 121 ºC for 20 minutes. The sample medium selected for this 

experiment was sterile endotoxin-free water (Thermofisher, Ultrapure water). Samplers 

were filled with water prior to being fixed into the calm air chamber (Figure 1.14). For the 

purpose of this study, the CIP-10M sample cups and any other cleanable parts were 

sterilised with ethanol (Sigma, UK) prior to use. Sterile endotoxin-free water was added 

to the rotary cup and the lid was re-attached. 

Three IOM samplers, three SKC liquid impingers and three CIP10M samplers were 

utilised for each experiment carried out in the calm air chamber. Sterile, pyrogen free ¼ 

inch rubber tubing of appropriate size was used to connect the impinger samplers and 

the IOM samplers to the appropriate pumps. The CIP10M required no connection as the 

pump was part of the unit. 

 

4.2.1.3 Calm air chamber run 

A MWF mist was generated using a collision atomiser and fed into the top of the 

chamber. The initial unused MWF was at a concentration of 5%, containing 2% BSA.  

The BSA was added as a non-hazardous marker that could be detected with a simple 

protein assay (BCA). This was mixed using a compressed air fed garden-sprinkler 

system, creating a uniform concentration of the MWF into mist. The atomiser pressure 

was set at 1 bar and chamber dilution air was set to maximum.  

Samplers were placed and fixed on the rotary plate at the bottom of the calm air 

chamber (Figure 1.14). The rotary plate rotates 180º clockwise and anticlockwise to 
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ensure an even distribution of mist to the individual samplers. The sampler pumps were 

turned on before the atomiser. After 2 hours (120 minutes) of sampling the atomiser was 

stopped. The chamber was left for 10 minutes to ensure that all MWF mist generated 

settled before opening the chamber. The sample pumps were then switched off.  

This method was utilised for a number of MWF compositions and the data collected 

accordingly. The mist compositions were as follows: 

 

Experiment Mist formulation 

Run 1 
Control Fluid (clean MWF) with 2% 

BSA 

Run 2 
Same fluid as run 1 spiked with 2% 

BSA and Endotoxin (1000 EU/ml) 

Run 3  
Used MWF (Same type as previous 

runs) 

Table 4.2 – Calm air chamber experiment list. The list contains the composition of 
each MWF at each run in the calm air chamber.  
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4.2.1.4 Sample collection 

The sample medium of both the CIP10M’s and the SKC liquid impingers where extracted 

via pipette, placed in sterile containers (pyrogen free) and refrigerated at 4 ºC prior to 

analysis. The volume of water was recorded by weighing prior to and after the sampling 

session. 

The IOM filter cassettes were placed in a clean container and sealed. The cassettes 

were transferred to an open container within the humidity and temperature controlled 

environment overnight (minimum) to equilibrate prior to re-weighing. Filters and 

cassettes were weighed in triplicate and the average reading taken. 

 

4.2.1.5. Calculations 

To determine the concentration of endotoxin in each sample in EU/m3, the following 

equations were used: 

Endotoxin Concentration (EU/m3) = (Amount of endotoxin measured (EU)) / (Volume of 

air sampled) 

Air volume (m3) = sampling flow rate (m3/min) x sampling time (min) 

The same equation was used to determine the protein concentration in air, except the 

concentration was determined in µg/m3. 

 

4.2.1.6. Limulus Amaebocyte Lysate Assay (LALA) 

An endpoint chromogenic LAL test kit (88282, Thermo Scientific) was employed to 

determine the levels of endotoxin present. An aliquot of each was diluted and mixed with 
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LAL substrate supplied in the test kit and incubated at 37 °C for 10 minutes. A substrate 

solution was then added and mixed with the LAL sample and incubated for a further 6 

minutes. The reaction was stopped with stopping reagent (25% Acetic acid). The 

absorbance of the samples was then determined using a spectrophotometer set to 405-

410 nm. All samples were analysed in duplicate and repeated to n=3. 

 

4.2.1.7. Bicinchoninic acid assay (BCA)  

The BCA assay was employed in order to quantify the levels of BSA within the mist 

samples collected from within the calm air chamber. This was to determine the recovery 

of the marker. A Pierce BCA Protein Assay Kit (23225) was utilised according to 

manufacturer's instructions. Briefly, an aliquot of sample (25 µl) was added to 200 µl of 

working solution and mixed for 30 seconds. The samples were incubated for 30 minutes 

at 37 ºC. After cooling to room temperature, the absorbance was measured at 562 nm 

on a Clariostar plate reader. The unknown sample where then compared to a standard 

curve for quantification. All samples were analysed in duplicate and to n=3. 

 

4.2.2. Sampling area at machining site 

The machining area where air sampling was undertaken consisted of 15 machines such as 

lathes, grinders and cutting tools of both open and closed variety (Figure 1.4). Each 

machine had a self-contained sump; some without covers leaving them open to the air. All 

except one machine had a skimmer attached, which is a device designed to remove 

hydraulic and tramp oil contaminants from the surface of the fluid sump. In colder/wintery 

weather conditions, doors and windows to the machining area were kept closed. In warmer 

conditions, they were kept open for prolonged periods. A visible mist had frequently been 



164 

 

reported on the workshop floor during active machining times and during colder conditions 

when the doors remained closed for longer periods.  

 

4.2.3. Obtaining MWF bulk samples and positioning of air samplers.  

MWF samples and complementary air samples were collected on two separate 

occasions in July 2015 (summer ~22 °C) and December 2015 (winter ~12 °C). 

Throughout this chapter, they will be referred to as visit one (summer) and visit two 

(winter). All glass air samplers (SKC) were disinfected and sterilised by autoclaving.  

Prior to use, all of the connective tubing was autoclaved and UV decontaminated. No 

personal air sampling took place.  

Two sets of samplers (in duplicate) were placed statically in areas of high MWF 

machining activity and in an area of no machining activity. The area of no machining 

activity was located in an adjoining room. Air sampling was carried out over a time-period 

of 6 hours per sample session, for each visit. The 6 hour sampling period was a normal 

shift time for individuals who work at the site. MWF samples were taken from as many 

machining areas as possible, with emphasis on the machines that were active on the day 

of sampling. Samples were taken directly from the machining sumps. If access to the 

sump was not possible, samples were taken directly from the lubricant delivery nozzle 

inside the machine. Samples were kept refrigerated at 4 °C until aliquoted and stored at -

20 °C and -80 °C.   
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4.2.4. Air sampling on site 

Air sampling was carried out using SKC liquid impingers (Bio Sampler, AGI-30, SKC, 

Eighty-four) used in fixed (static) positions. Figure 4.1 outlines the general layout of the 

machining site and the positions of the liquid impingers. The liquid impingers were used 

in duplicate with two taped together for one sample area. These liquid impingers were 

calibrated to run at 11 L/min-1 with a rotameter prior to sampling. The sampling volume 

was also checked after sampling had ended, ensuring that the sample volume had not 

deviated from the initial volume. Both liquid impingers from one area were attached to the 

same pump (B105 DEC, Charles Austen Pump), from the same outlet tubing. Samplers 

were positioned at a height of 1.5 m from the floor and 20 ml of ultra-sterile water was 

added to each vessel (background levels of endotoxin certified as <0.0005 mU, 

Invitrogen).  

A caveat to using a water sample medium is that some of the water is likely to evaporate 

over time (Lin et al, 1999). This can cause the efficiency of the sampler to decrease and 

create problems with sample integrity (Lin et al, 1997). Therefore, preliminary studies 

were conducted at HSL at room temperature to determine the amount of water lost due 

to evaporation for a sampling period of 6 hours. This was carried out at room 

temperature as a standard; the temperature inside a machining workshop could vary. 

Therefore, the temperature was required. It was determined that 4 ml of the water 

content was lost every 30 minutes. Therefore, the samplers were topped up with 4.0 ml 

sterile water after every 30 minutes to maintain the same sample efficiency. Therefore, in 

a 6 hour shift, 20 ml was initially added and an additional 48 ml added throughout the 

sample collection duration. The water was measured in 4 ml aliquots by weight and kept 

in individual sterile containers for accuracy. The final concentration of liquid within the 

impinger was recorded by total volume and decanted into a sterile container ready for 

transportation. These were then weighed to ensure the accurate volume was recorded.  
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In site visit two, three CIP10M samplers were used in conjunction with the SKC liquid 

impingers. A CIP10M sampler was placed in each sampling area with the SKC samplers. 

One CIP10M was also placed near the enclosure door of a machining tool that was in 

operation at the time of sampling. The CIP10M samplers employ the use of a liquid 

sample medium; with a smaller volume of 3 ml added directly to the spinning cup (Figure 

1.12). Preliminary tests were also conducted to measure evapourative loss. It was 

calculated that they lose 0.50 ml of the water content every 30 minutes. It was not 

practical to top-up the CIP10M samplers during this process as the cup is fixed inside the 

unit. Therefore, the CIP10M samplers were not topped up.  A study by Simpson et al, 

(2015) has shown that the efficiency of the CIP10M did not decrease with sample 

volume. Therefore, this was not expected to impact the sample efficiency. However, to 

ensure there was a sufficient sample, the CIP10M samplers were only run for two hours. 

Therefore, a final volume of 1 ml of sample was taken. The CIP10M samplers did not 

require on-site calibration as the pump is built into the unit, and they do not require 

regular calibration like SKC samplers. All calibration checks were up to date prior to use. 

Samples taken with the CIP10M’s were stored in the same conditions as the SKC 

impingers.  
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Figure 4.1 – A floor plan of the machining site. The black dots show the position of 
samplers on site visit one. The blue dots represent the position of samplers on site visit 
two. The red dots represent the position of the CIP10M samplers on site visit two. Each 
box represents a machining tool. The numbers represent the MWF sample taken from 
each machine. The numbers circled in blue represent the samples taken on site visit two. 
Samples three and four where taken from the same machine at both site visits. The blue 
rectangle represents the shutter door. (Shutter doors were open on visit one and closed 
on visit two). Black rectangles represent exits from the machining floor.   
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4.2.5. Analysis of air samples 

All MWF and air samples were analysed for bacteria using 16S rRNA PCR-DGGE, 

zymography for protease detection and identification of metal contaminants using ICP-

MS. All methods were conducted as outlined in the methods section of Chapters 2 and 3. 

Additional methods were also employed and they are described below.  

 

4.2.6. Nano-Liquid Chromatography-Electrospray Ionisation-Mass 

spectrometry (Nano-LC-ESI-MSe).  

4.2.6.1. Sample Preparation – In gel digestion 

Nano-LC-ESI-MSe was conducted on selected bands taken from the electrophoresis 

gels to identify the proteases present using a Synapt G2 HDMA instrument (Waters). 

The protocol followed was set out by Shevchenko et al, (2007). The bands were excised 

from the gel and sliced into ~1 x1 mm cubes. To reduce and alkylate the proteins, the 

cubes were incubated for 10 minutes in acetonitrile (99%) (Sigma, UK). The cubes 

where centrifuged and the fluid removed. The gel cubes were then incubated in 50 µl of 

10 mM dithiothreitol (DTT) (Sigma, UK) in 100 mM ammonium bicarbonate (Sigma, UK) 

for 30 minutes at 56 °C in an air thermostat. After cooling to room temperature (~22 °C) 

the acetonitrile incubation was repeated. After removal of all liquid by pipette, the cubes 

were incubated in 50 µl of 55 mM iodoacetamide (Sigma, UK) in 100 mM ammonium 

bicarbonate.  

The gel cubes were then de-stained by the addition of 100 µl of 100 mM ammonium 

bicarbonate and acetonitrile (1:1, vol/vol) and incubated for 30 minutes. The cubes were 

then washed in 500 µl acetonitrile until the gel cubes became white and smaller. The 

acetonitrile was subsequently removed and the gel cubes stored at -20 °C until trypsin 

(Promega) digestion described in 4.2.6.2.  
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4.2.6.2. Tryptic digest 

The gel cubes were covered in trypsin buffer containing 13 ng/µl-1 trypsin in 10  mM 

ammonium bicarbonate containing 10% (vol/vol) acetonitrile and kept on ice for 30 

minutes or until the cubes absorbed all of the liquid. The gel cubes were left to saturate 

in the trypsin for another 90 minutes, with the addition of another 20 µl ammonium 

bicarbonate buffer to cover the gel cubes. The tubes were then placed in an air 

thermostat at 37 °C overnight.  

4.2.6.3. Extraction of peptides 

100 µl of an extraction buffer containing 5% formic acid/acetonitrile (1:2, vol/vol) was 

added and the gel cubes were incubated for 15 minutes at 37 °C in a shaking incubator. 

The samples were then centrifuged at 13 000 rpm for 1 minute, so the supernatant could 

be removed by pipette. The supernatant was evaporated down in a vacuum centrifuge at 

13 000 rpm until there was no liquid in the tube (~3 hours). These dried extracts were 

then stored at -20 °C. The cubes were also stored at -20 °C as a contingency to ensure 

that extraction was successful.  

4.2.6.4. Preparation for analysis 

Prior to LC-MS/MS analysis 20  µl of 0.1% (vol/vol) trifluoroacetic acid was added and 

the sample mixed for 2-5 minutes in a sonication bath. This was then centrifuged for 15 

min at 10 000 rpm. An aliquot was taken for analysis and rest of the sample, was 

evaporated and stored at -20 °C.  

 

4.2.7. Analysis of metals in MWF and mist samples.  

MWF samples were analysed as set out in Chapter 3, sections 3.2.2 and 3.2.3, with 

amendments to the analyte selection. Samples were analysed by ICP-MS in normal 

mode for boron, aluminium, cobalt, copper, zinc, cadmium, antimony, thallium and lead. 
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They were also analysed by ICP-MS in CCT mode to reduce potential polyatomic and 

matrix interference for titanium, vanadium, chromium, manganese, iron, nickel, 

molybdenum and tin. The method for analysis of the mist samples did not include 

sample digestion. The mist sample was analysed by using direct nebulisation of the 

diluted liquid sample into the ICP-MS.   

 

4.2.7.1. Calculations for air sampling metals  

To determine the amount of metal present in each air sample in mg/m3 the following 

equation was used: 

C = (CA x V1) / (V2 x 1000) 

C = Airborne concentration of metal (mg/m3) 

CA = Concentration of metal from ICP-MS (µg/ml) 

V1 = Volume of liquid in which the metal is dissolved (ml) 

V2 = Volume of air sampled 

*Equation taken from HSE, MDHS 57 (Paragraph, 40).  

 

4.2.7.2. Summary and Analysis of metals in MWF and mist samples 

After considering the result of the metals analysis in the MWF and air samples, it was 

necessary to determine if there was a relationship with the concentration of metal in the 

MWF in comparison to the sump. It was established that the data was non-parametrically 

distributed and consisted of comparisons between groups of different n value. 

Consequently, an un-paired non-parametric statistical analysis was applied. Each metal 

was provided with a colour, and the concentration of each metal within the samples was 

presented in a table (Figure 4.10) In each individual sample, the concentrations of each 
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metal were sorted from highest concentration to lowest concentration. Each metal was 

then given a rank of 1 to 8 depending where they fell in the list of metal concentrations. 

The rankings taken for each metal across the samples were then used to conduct the 

Mann-Whitney test. This was used to compare the difference in ranking of each metal 

between MWF and mist sample. Any significant differences reported between samples 

were reported as p<.0.01 (1in100).  

The higher threshold for accepting a significant difference was chosen due to the 

unequal n values and the non-parametric distribution.  
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4.3. Results 

4.3.1. Results of preliminary calm air chamber work – BCA assay 

Analysis of the total protein concentration revealed no increase between the amount of 

BSA detected in the control MWF mist and endotoxin spiked MWF impinger collected 

mist samples. In the CIP10M sample results there appeared to be on average 29% more 

BSA present in the endotoxin spiked CIP10M samples in comparison to the CIP10M 

control samples. This would suggest that there was a higher amount of mist collected in 

the endotoxin spiked sample run than in the control. Therefore, it is important to note that 

the amount of mist recovered between sampling session can vary considerably. 

Therefore, the results of the BSA marker were used when interpreting the concentrations 

between sample runs.  

4.3.2. Results of preliminary calm air chamber work – LALA assay 

In both the control and spiked liquid impinger samples, there appeared to be no 

difference in the concentration of endotoxin. However, in the CIP10M samplers there is 

on average 80% more endotoxin in the spiked samples compared to the controls. After 

considering the 30% increase in protein sampled, the increase is still significant.  

Nevertheless, the fluid was spiked with 1000 EU/ml of endotoxin. After nebulisation, it 

was calculated that 10 ml of fluid was dispersed over the sampling time of 120 minutes. 

This fluid was nebulised into a container of 3000 L capacity. Therefore, it was theorised 

that the level of endotoxin sampled should be higher. 
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Control Impinger samplers Endotoxin spiked Impinger samplers 

Concentration in 
sample (EU/ml) 

Concentration in 
air (EU/m3) 

Concentration in 
sample (EU/ml) 

Concentration in 
air(EU/m3) 

0.326 1.36 0.27 1.13 

1.574 6.56 0.162 0.68 

0.116 0.48 0.228 0.95 

0.672 2.8 0.222 0.92 

Control CIP10M samplers Endotoxin spiked CIP10M samplers 

Concentration in 
liquid (EU/ml) 

Concentration in 
air (EU/m3) 

Concentration in 
liquid (EU/ml) 

Concentration in 
air(EU/m3) 

3.608 3.00 12.33 10.28 

0.725 0.60 0 0 

2.882 2.40 14.15 11.79 

2.405 2.00 13.24 11.035 

Table 4.3. Results of the LAL assay from samples control and spiked samples 
collected in both calm air chamber runs. In both experiments, the samples were 
collected with liquid impingers and CIP10M samplers. In control conditions, (fresh) 
MWF was released into the calm air chamber. In the preceding run the MWF contained 
1000 EU/mL of endotoxin and are referred to as spiked samples.  
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Control Impinger samplers Endotoxin Spike Impinger samplers 

Concentration on 
liquid (µg/ml) 

Concentration in 
air (µg/m3) 

Concentration in 
liquid (µg/ml) 

Concentration in 
air (µg/m3) 

35.6 148.3 29.8 124.17 

13.35 55.625 18.2 75.83 

26.45 110.2 30.4 126.67 

25.13 104.7 26.13 108.89 

Control CIP10M samplers Endotoxin spiked CIP10M samplers 

Concentration on 
liquid (µg/ml) 

Concentration in 
air (µg/m3) 

Concentration on 
liquid (µg/ml) 

Concentration in 
air (µg/m3) 

748 623.3 1045 870.8 

570 475 948 790 

789 657.5 970 808.3 

702.33 585.27 987.67 823.03 

Table 4.4. Results of the BCA assay from samples control and spiked samples 
collected in both calm air chamber runs. The BSA protein was added as an internal 
marker that could be easily detected to compare to the result of the LALA assay. 
Samples were collected with liquid impingers and CIP10M samplers in both control and 
MWF spiked conditions. In control conditions, (fresh) MWF was released into the calm air 
chamber. In the following run, the MWF contained 1000 EU/mL of endotoxin and were 
referred to as spiked samples. 
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4.3.3. Contextual Data from the machining site 

From the initial observations, the machining facilities appeared to be in good condition. 

There were various older “open” cutting machines in addition to larger closed CNC 

(computer numerical controlled) type machinery. Whilst there appeared to be visible fine 

mist on site on several occasions, there was minimal oil residue on the surface of 

machinery and walls indicating it was more likely to be a fume/smoke rather than a MWF 

mist. The management records of the fluids included monthly checks on pH (with pH 

indicator paper), concentration (by refractometry) and for viable microorganisms (by dip-

slide tests) were conducted by an external contractor (employed by the lubricant 

manufacturer) and recorded to be consistent with HSE guidance.  

Differences observed at each site: 

Temperature – On the first site visit in the summer, the average temperature outside on 

the day was 22 °C. On the second site visit in the winter, the average temperature 

outside on the day was 12 °C. On both occasions, there was no rain and minimal wind.  

Staffing – There was more machinery in use on the first site visit than in the second site 

visit. Therefore, on the second site visit there was less staff on-site on the day of 

sampling.  
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4.3.4. Bacterial community in the bulk MWF and air samples from site. 

MWF samples were extracted from an active machining site on two separate occasions. 

Thirteen MWF samples were taken from machines surrounding the sampling equipment. 

In addition, 11 complementary air samples were also taken. Genomic DNA (bacterial) 

was successfully detected and extracted from all samples (n=24) after 16S rRNA PCR 

amplification. The 16S rRNA gene fragment mixtures were then further resolved using 

DGGE.  

Seventy-five bands (representing 90 visible bands) were excised from the DGGE gels 

(Figures 4.4 and 4.5). Forty-two (56%) bands were successfully sequenced and obtained 

for possible identification. Each of the successfully identified bands fit the criteria of 

sequences similarity and alignment residue cut off points as previously stated in Chapter 

2 (Section 2.3.1.) Multiple bacterial genera and species were detected within the 

machining sumps (Table 4.5). Samples contained a mixture of Gram positive and Gram 

negative bacteria. M.abscessus and Propionibacterium acnes are Gram positive and the 

remaining organisms where Gram negative.  Most of the bacterial species present were 

of environmental origin with the exception of Propionibacterium acnes, which is 

commonly found on the natural skin flora of human adults. Additionally, Ochrobactrum 

are commonly found in soil and water sources, yet they are also now known to be part of 

the normal human flora of the large intestine.  Furthermore, Wautersiella falsenii is 

commonly isolated in clinical specimens. The most abundant DNA sequences belonged 

to the mycobacterial genera that accounted for 60% of all isolates. Although they were 

identified as M.abscessus sp., it is not clear which specific species of the MCC this 

belonged to. Throughout this chapter the mycobacterial DNA identified as part of the 

MCC will be referred to as M.abscessus, but it should be noted that it could be any of the 

other MCC organisms i.e., M.chelonae and M.immunogenum. The M.abscessus was 

detected in all used samples and but not in fresh fluid taken from the mixing tank.  
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4.3.4.1. Bacterial community of MWF samples from visit one (summer) 

From the first visit, there were 4 genera detected in the fluid samples and these included 

Comamonas, Mycobacteria, Propionibacterium and Ochrobactrum. Each genus 

contained a single species with the exception of Comamonas, which contained two. 

However, it remained unclear as to what specific species of mycobacteria were present 

and unclear whether multiple species were present. All MWF contained 

Propionibacterium DNA, including the fresh MWF sample. M.abscessus and 

Ochrobactrum were present in all MWF samples with the exception of the clean MWF 

sample (sample 8). Comamonas dentrificans was present in samples 1, 2, 3 and 5. 

Sample 6 was the only sample to contain Comamonas testosteroni and finally the clean 

MWF sample was the only sample to contain Musa testillis plastid (Table 4.5). 

 

4.3.4.2. Bacterial community of air samples from visit one. 

Sequencing of DNA from the air samples revealed five genera of bacteria present. These 

included Sediminibacterium, Burkholderia (Gram negative), Herbaspirillum (Gram 

negative) (a common contaminant in DNA extraction kit reagents, in this case a control 

was also added to ensure that this was not a contaminant) Propionibacterium and 

Ochrobactrum. After comparison to the microbial community detected in the MWF, there 

appeared to be two bacterial species, Propionibacterium and Ochrobactrum were 

present in both the MWF and air samples. Thus, it is likely that bacteria in a MWF can 

become aerosolised. In addition, there were bacteria present in the air samples that were 

not found to be present in the MWF samples taken, such as Herbaspirillum sp, 

Burkholderia sp and Sediminibacterium sp. However, they are not considered pathogenic 

to humans.  
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4.3.4.3. Bacterial community of MWF samples from visit two (winter) 

From the second visit there were three bacterial genera detected in the fluid samples. 

Out of the three, only M.abscessus was detected on both visits. On this occasion, 

M.abscessus was detected in all samples aside from the fresh un-used fluid collected 

from the mixing tank. Massila suwonesis was the only organism detected in the un-used 

MWF sample.  

 

4.3.4.4. Bacterial community of air samples from visit two.  

Sequencing of DNA from the air samples from site visit two revealed less bacterial 

species present than in site visit one. The results of the sampling session from site visit 

two revealed only two different genera in the air samples. These included 

Propionibacterium and Methylobacterium. Propionibacterium was also detected in the 

MWF samples. Comparison of the results of MWF and air samples collected from the 

first site visit revealed Propionibacterium in both fluid and air samples on both occasions. 

Methylobacterium is a common environmental bacterium that is not considered 

pathogenic to humans.  
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Figure 4.2 - Identification of different bacteria from MWF samples in both 

sampling sessions. The results are given in percentage of fragments isolated from 
(42) sequences.  
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Figure 4.3 – Frequency of observed bacterial 16S rRNA gene sequence using PCR-DGGE, identified in MWF and mist samples taken 

from site visit one. There was a higher frequency of 16S rRNA for P.acnes and Methylobacterium in air samples in comparison to the MWF.  
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Sample 
present 

Organism E value Alignment 
Percentage 

Identity 

1-3 Ochrobactrum sp. 3e-163 316 99% 

1-3 Ochrobactrum sp. 2e-161  313 99% 

1-3 Propionibacterium 
sp feline oral taxon 

0.0 517 99% 

1-3 Ochrobactrum 0.0 506 99% 

1-3 Ochrobactrum 0.0 359 99% 

1-3 Caenorhabditis 
elegans 

6e-109 218 100% 

1-3 Pseudochrobactrum 
sp 

1e-110 221 99% 

1-3 Mycobacterium 
abscessus 

0.0 524 100% 

1-3 Mycobacterium 
abscessus 

0.0 518 99% 

1-3 Comamonas 
Dentrificans 

0.0 536 99% 

1-3 Mycobacterium 
Chelonae 

0.0 424 100% 

1-3 Mycobacterium 
Chelonae 

0.0 526 100% 

 

Table 4.5 – Bacteria detected in MWF samples from visit one. Sequences 
obtained using PCR-DGGE and identified by comparison with the GenBank database 
using BLAST. Bacteria were identified to the genus (≥97%) and species (≥99%) level. 
Bacteria with an identity score of <97% or aligned residues less than 250 where 
omitted. These are highlighted in red.    
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Sample 
present 

Organism E value Alignment 
Percentage 

Identity 

M1 Propionibacterium sp. 
feline oral taxon 

0.0 515 99% 

M3 Sediminibacterium 0.0 480 97% 

M1-M4 Burkholderia sp. 0.0 538 100% 

M2 Propionibacterium sp 0.0 519 100% 

M4 Propionibacterium sp. 
oral taxon 

0.0 517 100% 

M2, M3, M4 Herbaspirrilum sp 0.0 536 100% 

M2, M3, M4 Herbaspirrilum sp 0.0 535 99% 

 

Table 4.6 – Bacteria detected in mist samples from visit one. Sequences obtained 
using PCR-DGGE and identified by comparison with the GenBank database using 
BLAST. Bacteria were identified to the genus (≥97%) and species (≥99%) level. 
Bacteria with an identity score of <97% or aligned residues less than 250 where 
omitted.  
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Figure 4.4 - PCR-DGGE showing bacterial diversity of the mist samples taken 

from visit one and three metal working fluids. The samples are represented by 

M1 to M4 for mist samples and F1-F3 for fluid samples. Dominant bands were 
identified as corresponding to a) Ochrobactrum sp, b) Mycobacterium chelonae, c) 
Propionibacterium sp, d) Comamonas dentrificans, e) Sediminibacterium, f) 
Burkholderia sp and g) Herbaspirillum sp. Visibility of bands was greatly improved 
when the gel was viewed under a UV transilluminator.  
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Figure 4.5 - PCR-DGGE showing bacterial diversity of the remaining MWF 

samples taken from visit two. The samples are represented by F4-F7 where F8 

is the fresh MWF. Dominant bands were identified as corresponding to a) 
Pseudomonas, b) Mycobacterium chelonae, c) Propionibacterium sp, d) 
Comamonas dentrificans, e) Musa testillis plastid, and f) Comamonas testosterone. 
Visibility of bands was greatly improved when the gel was viewed under a UV 
transilluminator. 
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Sample 
present 

Organism E value Alignment 
Percentage 

Identity 

Clean 

Propionibacterium 
sp. 

0.0 522 100% 

Musa testillis 
plastid 

0.0 521 100% 

Musa testillis 
plastid 

0.0 516 99% 

4-7 Propionibacterium 2e-113 226 99% 

4-7 Mycobacterium 
chelonae 

0.0 503 100% 

7 Mycobacterium 
abscessus 

0.0 527 100% 

4-7 Mycobacterium 
abscessus 

0.0 524 100% 

4-7 Mycobacterium 
abscessus 

0.0 526 100% 

4-7 Mycobacterium 
abscessus 

0.0 508 99% 

4-7 Mycobacterium 
abscessus 

0.0 524 100% 

4-6 Comamonas 
testosterone 

0.0 532 99% 

4-6 Comamonas 
testosterone 

0.0 536 99% 

4-6 Pseudomonas 
cichorii 

1e-84 197 96% 

4-6 Pseudomonas 
putida 

2e-09 143 97% 

6 Pseudomonas 
putida 

0.0 531 99% 

5-6 Pseudomonas sp. 0.0 414 99% 

4-6 Wautersiella 
falsenii 

0.0 535 100% 

4-7 Pseudomonas 
putida 

0.0 406 99% 

4-7 Mycobacterium 
abscessus 

4e-177 344 99% 

4-7 Mycobacterium 
abscessus 

0.0 526 100% 

5 Mycobacterium 
abscessus 

0.0 534 99% 

Table 4.7 – Bacterial detected in MWF samples from visit one. Sequences 
obtained using PCR-DGGE and identified by comparison with the GenBank database 
using BLAST. Bacteria were identified to the genus (≥97%) and species (≥99%) level. 
Bacteria with an identity score of <97% or aligned residues less than 250 where 
omitted. These are highlighted in red. 
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Sample Organism E value Alignment 
Percentage 

Identity 

M1 

Propionibacterium 
acnes strain 

0.0 486 100% 

Methylobacterium 
goesingense 

6e-161 312 99% 

M2 

Propionibacterium 
acnes strain 

0.0 487 100% 

Methylobacterium 
sp. 

0.0 505 99% 

M3 

Methylobacterium 
sp. 

0.0 511 100% 

Propionibacterium 
acnes strain 

0.0 428 99% 

M4 
 

Propionibacterium 
acnes strain 

0.0 477 100% 

Methylophilus 
methylotrophus 

3e-143 280 100% 

CIP2 
* * * * 

Propionibacterium 
acnes strain 

0.0 489 99% 

 

Table 4.8 - Bacteria detected in mist samples from visit two. Sequences 
obtained using PCR-DGGE and identified by comparison with the GenBank database 
using BLAST. Bacteria were identified to the genus (≥97%) and species (≥99%) level. 
The asterix (*) represents sequences that did not meet the criteria and could not be 
identified.  
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Sample 
MWF 

Organism Alignment Score 
Percentage 
Coverage 

1 

Mycobacterium 
abscessus 

204 98% 

Mycobacterium 
abscessus 

516 99% 

Mycobacterium 
abscessus 

519 100% 

Pseudomonas sp. 
(Pseudoalcaligenes) 

258 99% 

Mycobacterium 
abscessus 

520 100% 

2 

Mycobacterium 
abscessus 

498 99% 

Mycobacterium 
abscessus 

483 99% 

Mycobacterium 
abscessus 

495 99% 

Mycobacterium 
abscessus 

490 99% 

Mycobacterium 
abscessus 

496 99% 

Pseudomonas sp. 
(Pseudoalcaligenes) 

382 99% 

3 
 

Mycobacterium 
abscessus 

479 99% 

Mycobacterium 
abscessus 

455 99% 

Mycobacterium 
abscessus 

478 99% 

4 

Mycobacterium 
abscessus 

488 99% 

Mycobacterium 
abscessus 

456 99% 

Mycobacterium 
abscessus 

507 99% 

Mycobacterium 
abscessus 

489 99% 

Clean 
Massilia Suwonesis 513 99% 

Massilia Suwonesis 382 99% 

Table 4.9 - Bacteria detected in MWF samples from visit two. Sequences 
obtained using PCR-DGGE and identified by comparison with the GenBank database 
using BLAST. Bacteria were identified to the genus (≥97%) and species (≥99%) level. 
Bacteria with an identity score of <97% or aligned residues less than 250 where 
omitted.  
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4.3.5. Analysis of metals in MWF samples by inductively coupled plasma 

mass spectrometry. 

Analysis by ICP-MS was carried out in normal mode and CCT mode on all MWF 

samples as outlined in Chapter 3. The results of metal analysis for both MWF and 

mist samples are summarised in Figure 4.6.  The sample results were separated into 

two separate visits to the site (visit one – summer, visit two – winter). 

  

4.3.5.1. Concentration of selected metals in MWF from site visit one. 

Eight MWF samples were analysed for metal concentration from site visit one by ICP-

MS. Samples were analysed by ICP-MS in both normal and CCT modes. The results 

of normal mode analysis revealed all MWF samples contained boron. The amount of 

boron in each MWF sample ranged from 355 950 µg/L to 900 750 µg/L (0.36 g/L to 

0.9 g/L). The amount of boron was higher in the used MWF samples in comparison to 

the un-used MWF. The analytes detected in the highest concentration included zinc, 

aluminium, copper and lead. The highest levels of zinc were found to reach 22 5523 

µg/L, aluminium levels were as high as 3379 µg/L, copper levels reached 5405 µg/L 

and lead levels amounted to 2107 µg/L.  The highest level detected for cobalt was 

101 µg/L. The remaining metals cadmium, antimony and thallium were found to be 

below 20 µg/L.  

The results of CCT mode analysis revealed that the levels of iron were found to be as 

high as 18 438 µg/L. Other metals that were found to be in higher concentrations were 

manganese, nickel, tungsten and molybdenum, where manganese was seen to reach 

6403 µg/L, nickel was seen to reach 3475 µg/L, tungsten 2262 µg/L and finally 

molybdenum reaching 2043 µg/L.  
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4.3.5.2. Concentration of selected metals in MWF from site visit two.  

The results of normal mode analysis for the samples taken from visit two showed 

similar results to those seen in visit one. All the MWF contained boron at high levels 

i.e., between 541000 µg/L to 1077750 µg/L (0.5 g/L to 1.07 g/L). The analytes found 

to be most abundant were zinc, aluminium, copper, lead and cobalt. The highest 

concentrations were zinc which was detected at levels of 27543 µg/L.  For aluminium, 

levels reached 1715 µg/L, and the levels of copper reached as high as 3516 µg/L. The 

level of cobalt and lead were found to be as high as 139 µg/L and 108 µg/L, 

respectively.  

As seen with normal mode results, the levels of metals detected in CCT mode 

revealed a similar pattern to those in visit one. The metal detected in the highest 

concentrations was iron, where the highest level was seen to be 102950 µg/L. Levels 

of manganese, nickel, molybdenum and tungsten were seen to be as high as 6005 

µg/L for manganese, 5333 µg/L for nickel and 1689 µg/L for tungsten. Vanadium and 

tin were detected in much lower levels. The highest concentration detected of these 

metals was found to be less than 250 µg/L. The clean MWF sample on each visit was 

found to contain traces of all the elements that were screened for with the exception 

of thallium and tin. These traces may have been due to the presence of small 

amounts of mineral oil in the MWF that contain these elements.  
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Figure 4.6 – Metals detected in used MWF samples taken on both site visits.The 
result of ICP-MS analysis of the used MWF shows that there is a trend in the metals 
detected within the samples. The element in higher concentrations between all the 
samples appears to be Iron (demonstrated by a peak). This pattern would suggest 
that the metals being machined on these occasions are of a similar composition. 
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Figure 4.7 – The results of ICP-MS analysis for boron, aluminium and 
manganese in mist samples taken on both site visits. Samples 1 -4 highlighted in 
dark blue are from the first sample visit, samples 5-8 highlighed in light blue are from 
the second sample visit.  
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Figure 4.8 – The results of ICP-MS analysis for iron, nickel and copper in mist 
samples taken on both site visits. Samples 1 -4 highlighted in dark blue are from 
the first sample visit, samples 5-8 highlighted in light blue are from the second sample 
visit. 
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Figure 4.9 – The results of ICP-MS analysis for zinc and tungsten in mist 
samples taken on both site visits. Samples 1 -4 highlighted in dark blue are from 
the first sample visit, samples 5-8 highlighted in light blue are from the second sample 
visit. 
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4.3.5.3. Concentration of selected metals in mist samples from visit one.  

Four SKC samplers (liquid impingers) were placed in the machine shop floor. Two of 

the SKC samplers were placed in the centre of the room, where most of the 

machining tools where active (Samples 1 and 2). The other samplers were placed in 

an area of no machining activity (Samples 3 and 4). The results are summarised in 

Figures 4.6.  

 

Each mist sample was analysed by ICP-MS for boron, aluminium, chromium, 

manganese, iron, nickel, copper, and zinc. Each element was detected in the 

samples. There did not appear to be any trend in the amount of metal detected in 

the area of higher machining activity in comparison to the area of lower activity. 

Comparison between the metals detected in samples from the same area also show 

variation. For example, mist sample 3 and 4 showed results of 3.455 µg/m3 and 

0.370 µg/m3 for aluminium, which is a 10 fold difference in concentration between 

samplers. The levels of boron appeared to be similar between all samplers despite 

location. The levels detected were between 3.170 µg/m3 and 4.083 µg/m3.  

 

Sampler 3 appeared to show the highest concentrations for all analytes of interest. 

Sampler 3 was placed in the area of minimal activity. Therefore, considering this 

evidence, this suggests that there was no different in the concentration of metals in 

the air in areas of high and low activity. Of all the analytes, boron was detected in 

the highest concentrations (up to 5.5 µg/m3 for the impinger and 143.7 µg/m3 for the 

CIP10M)  
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4.3.5.4. Concentration of selected metals in mist samples from visit two.  

The sampling processes for this visit were similar to that of visit one, with the 

exception of the addition of a CIP10M sampler in each location. In addition, a 

CIP10M sampler was also placed next to the enclosure door of machine 3 (Figure 

4.6).  

 

The amount of boron present in each SKC sample appears to be higher at than the 

first visit with the exception of sampler 3. The range of boron detected between SKC 

samplers was 2.516 µg/m3 – 5.481 µg/m3. The CIP10M samplers showed higher 

boron concentrations. The CIP10M samplers were run at the same sample volume 

as the SKC samplers but into a more concentrated water medium. The amount of 

boron in the CIP10M samplers was between 76 µg/m3 and 144 µg/m3. The highest 

levels of boron were detected in CIP10M sampler 1, which was placed in an area of 

high machining activity. The lowest levels were detected the sampler placed in no 

activity. The metal concentrations taken from CIP10M samplers 1 and 3 do not 

appear to show a difference amongst the different metals. However, sampler 2 

(placed by the machining tool) showed the highest concentrations of aluminium, 

chromium, manganese, copper, and zinc.  

 

 

4.3.5.5. Comparison of air sampling results to MWF results. 

When the results of each metal concentration within each sample are colour coded 

and arranged in order of highest concentration to lowest concentration (Figure 4.10 

and 4.11). There appears to be a pattern between the levels of each metal detected 

within the mist compared to the MWF. This is most prominent in the result of boron 

in both the MWF and mist samples. The concentration of boron was consistently the 

highest concentration detected in all samples, including the mist samples.  
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After providing each result of highest to lowest concentration with a number of 1 to 8 

(1= highest concentration 8= lowest concentration). It was possible to compare the 

patterns and establish if there is a significant difference between the patterns of 

metal in the MWF in comparison to the mist. This was carried out with an un-paired 

non-parametric Mann-Whitney test. 

 

The results of this analysis are displayed in table 4.10 and 4.11. The results 

revealed that there was no significant difference between any of the metal 

concentrations within the sump in comparison to the air samples. The only exception 

was for copper, which showed a p value of 0.006. It is necessary to bear in mind that 

the difference may be obtained by chance alone, noting that the data was not 

parametrically distributed and the paired data had different n values.  

 

The bulk samples from visit one and visit two were also taken for statistical analysis 

using the Mann-Whitney test. The bulk samples were chosen because the analysis 

of metal concentration is subject to less bias due to the higher concentrations within 

each sample. Previously the comparison was centred on whether the mist samples 

correspond to the bulk MWF. The result of the non-parametric test (Table 4.11) 

revealed that there was no significant difference between the patterns of 

concentration between each visit.  
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Mist Samples - Visit One 

M1 M2 M3 M4 

3.936 3.992 4.083 3.17 

0.123 0.101 3.455 0.37 

0.119 0.058 0.157 0.098 

0.042 0.052 0.129 0.074 

0.015 0.008 0.058 0.016 

0.01 0.007 0.01 0.007 

0.006 0.006 0.009 0.007 

0 0 0.002 0 

 

 

Figure 4.10 – A comparison between the concentration of each metal in the MWF compared to mist (Visit one).  

The results of each analyte in each sample were colour coded (Key on left hand side) and were subsequently ordered from highest 
concentration to lowest concentration. This was prepared in order to provide a colorimetric representation of any patterns that could be seen in 
metal concentrations within the MWF and mist samples. It is clear that boron is present in the highest concentrations and in both MWF and mist 
samples. As boron is in such high concentration within the MWF and it has been used as a marker to detect MWF exposure. It is clear that the 
MWF is becoming aerosolised.  
 
 
 
 
 

 

 Visit One (Summer) 

Analyte 1 2 3 4 5 6 7 

Boron 719000 797250 900750 763750 877000 528500 810250 

Aluminium 18438 89100 104975 69525 23050 20840 11645 

Chromium 1692 22553 11960 19248 7494 7652 5240 

Manganese 1627 6575 6402 4765 1869 5570 3252 

Iron 1377 5406 4199 3379 1616 726 2054 

Nickel 749 3203 3475 2822 883 623.5 1193 

Copper 665 2591 1913 490 699 545 23 

Zinc  22.4 101 85.9 67 51 84 0.4 
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Mist Samples - Visit Two 

M1 M2 M3 M4 CIP1 CIP2 CIP3 

5.235 4.731 2.516 5.481 143.74 92.95 76.06 

0.06 0.062 0 0.06 2.77 13.95 5.07 

0.05 0.047 0.004 0.059 2.13 5.41 2.77 

0.035 0.036 0.008 0.046 1.31 2.3 2.15 

0.017 0.017 0.018 0.022 0.2 0.51 0.4 

0.008 0.01 0.051 0.009 0.18 0.47 0.37 

0.006 0.005 0.069 0.008 0.18 0.33 0.14 

0 0 0.091 0 0.17 0.14 0.04 

 

Figure 4.11 – A comparison between the concentration of each metal in the MWF compared to mist (Visit two).  

The results of each analyte in each sample were colour coded (Key on left hand side) and were subsequently ordered from highest 
concentration to lowest concentration. This was prepared in order to provide a colorimetric representation of any patterns that could be seen in 
metal concentrations within the MWF and mist samples. It is clear that boron is present in the highest concentrations and in both MWF and mist 
samples. As boron is in such high concentration within the MWF and it has been used as a marker to detect MWF exposure. It is clear that the 
MWF is becoming aerosolised.  

Visit Two (Winter) 

Analyte 2 3 4 5 

Boron 1039750 1077750 1017750 541000 

Aluminium 46215 83975 102950 232 

Chromium 8503 11050 6835 137 

Manganese 6005 5525 4315 88 

Iron 5333 1547 2515 18.6 

Nickel 3516 1400 2172 7 

Copper 1191 1356 1714 4 

Zinc  124 73 77 0.2 
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Metal Visit One P Value Visit Two P Value 

Boron >0.999 >0.999 

Aluminium 0.015 0.1793 

Chromium >0.999 0.0808 

Manganese 0.2753 0.0783 

Iron 0.03 0.0126 

Nickel >0.999 0.1869 

Copper 0.03 0.0063 

Zinc 0.0848 0.2487 

Table 4.10 - The results of statistical analysis to compare between the metals 
detecting in the MWF bulk samples and mist samples taken on both site visits. 
The table summarises the result of analysis showing the p values for each metal 
comparing the MWF bulk vs the mist. The level of significance was taken as p <0.01 (1 
in 100). This was adapted to account for the fact that the data was non-parametrically 
distributed and consisted of unequal pairs of data. Only one metal was significantly 
different between the MWF and the mist i.e. Cu. Therefore, it is likely that the 
concentrations of metals within the mist samples are likely to be a result of the MWF.  
 

Metal 
MWF samples taken on both site 

visit (p value). 

Boron >0.999 

Aluminium >0.999 

Chromium >0.999 

Manganese 0.2753 

Iron 0.4167 

Nickel 0.0101 

Copper 0.0631 

Zinc >0.999 

Table 4.11– The results of statistical analysis by un-paired non-parametric Mann-
Whitney test on the bulk MWF samples taken on both site visits. The table 
summarises the statistical analysis of patterns between bulk MWF samples in visit one 
and visit two. The level of significance was taken as p<0.01 (1 in 100). There appeared 
to be no significant different in any of the metals within samples taken from visit one 
and visit two. This suggests that the MWF contamination of metals did not change.  
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4.3.5.6. Comparison of sampling results to workplace exposure limits 

(WELs). 

The results of the mist analysis were compared to any available workplace exposure 

limits of metals taken from the EH40 (HSE, EH40/2005) (Data extracted and displayed 

in table 4.1). It is important to note that the exposure limits used by the EH40 were 

taken from air sampling onto filters. In this study, the samples were from a liquid 

medium. Therefore, in order to compare the levels to WELs available this was corrected 

with by calculation (Section 4.2.7.1).  

In both of the sampling sessions, none of the air samples were found to contain 

concentrations that exceeded the WELs set for each selected metal.  
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4.3.6. Results of enzyme zymography  

Proteolytic activity was detected in the MWF samples and in two mist samples taken 

during site visit one. The proteases detected in the mist samples were extracted from 

the zymogram for preparation and analysis by NanoLC-ESI-MSe. 

 

4.3.6.1. Inhibition Experiments 

Inhibition experiments with PMSF and E-64 revealed that the proteases detected within 

the mist samples were likely to be “serine-like” proteases.  

 

4.3.6.2. Nano LC-ESI-MSe analysis of proteins collected from mist. 

Three proteolytic bands were extracted from the mist samples, and analysed by Nano-

LC-ESI-MSe. The results of this analysis were put into Progenesis QI software to screen 

for likely protein matches. A small number of proteins were identified from the protein 

search (Table 4.12). Although the proteins can be present in bacterial cells, there were 

no significant proteases associated with allergic respiratory conditions detected in the 

samples.  
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Accession Peptides Score Description 

Average 

normalised 

Abundances 

P14160 3 22.12 
DNA mismatch repair 

protein HexB 
8623.53 

Q38732 1 12.82 
DAG protein, Chloroplast 

precursor 
1652.85 

Q9Y8I2 1 11.93 

Archael histone B (Archael 
histone A2) (Recombinant 

protein found in E.coli, 
yeasts and mammalian 

cells.  

6.10e+004 

Q9UXX2 1 11.70 
Triosephosphate 

isomerase (EC 5.3.1.1) 
(TIM). All living cells. 

4135.15 

Q9LTM4 1 6.07 

Cytochrome P450 71B19 – 
Arabidopsis thaliana 

(mouse ear cress) plant. 
Serine-like protease. 

2573.50 

P58630 1 5.89 
Maf-like protein YhdE – 

E.coli 
2.89e+004 

Q9Z8U7 1 5,70 
Hypothetical protein 
CPn0237/ CP0525/ 

CPjo237 
9455.47 

Q9ZJZ9 1 5.46 
Cytochrome C-553 
precursor – H.pylori 

2.493+004 

P31606 1 5.20 
Hypothetical 32.8 KDa in 

ycf23 
2747.90 

 

Table 4.12 – The results of proteins identified by NanoLC-ESI-MSe after inserting 
the data into QI Progenesis software.  
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4.4. Discussion 

It is assumed in many studies regarding MWF mist that biological contamination of 

MWF is the major contributing factor to the development of OA and OHP. However, to 

date the analysis methods typically reported in air monitoring studies of microbial 

contamination in MWF have not been able to distinguish between different microbial 

species that are considered to have potential to cause disease (Sloyer et al, 2002). 

Furthermore, there is increasing evidence to suggest that some bacteria, mycobacteria 

and fungi are likely aetiological causes particularly, of HP as a delayed hypersensitivity 

response. However, whilst some studies have demonstrated an association between 

exposure and development of disease, there is little evidence that demonstrates that 

such components do in-fact become airborne in order to be inhaled, and in what 

amounts. Therefore, the aim of this study was to assess a number of methods that 

might be used to determine the biological (bacteria) and chemical (metal) load in the air 

of a machining workshop. The study also set out to determine a link between what can 

be detected in the MWF obtained from machine sumps and what is detected within air 

samples taken in the surrounding area of the sump. This study has shown that multiple 

bacteria could be identified by the 16S rRNA PCR method. In addition, it has also 

shown that metals detected within the MWF sump samples can be detected in air 

samples using (liquid medium based) air samplers.  

 

4.4.1. Bacterial community in MWF samples and corresponding air 

samples from an active machining site.  

Sampling took place on two occasions, when all doors were kept open (visit one, 

summer) and when the doors were closed (visit two, winter). Analysis of bacterial 

communities in MWF and corresponding air samples revealed differences between air 

samples on both occasions. Mycobacteria were the only organisms detected in the 
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MWF samples at both sampling sessions. On both occasions, Mycobacteria were 

present in the used MWF samples, but not the clean sample taken straight from the 

mixing tank. Therefore, this suggests that the fluid is becoming inoculated with 

mycobacteria after initiation into the system.  

As previously stated, mycobacteria have widely been associated with the development 

of OHP. Whilst there was clear evidence that Mycobacteria are a dominant presence in 

the MWF samples, these organisms were not detected in the corresponding air 

samples. The analysis of air samples involved very sensitive methodology; therefore, 

Mycobacteria should have easily been detected if they were present. The results of this 

project provides evidence to suggest that Mycobacteria were not airborne at detectable 

levels during the 6 hour sampling sessions that took place, involving the extraction of a 

total volume of 3.96 m3 of air. Perkins and Angenent (2010) demonstrated similar 

results, where M.chelonae was detected in the sump MWF samples but not in the 

complementary aerosol samples. In their study, sampling was conducted over 6 days in 

two 3 day intervals, using the same aerosol samplers as this project at 12.5 L/min-1 for 

60 minutes at a time drawing in 0.75 m3 of air.  

In contrast, reports published by Duchaine et al (2012) and Moore et al (2000) provided 

data  to show that Mycobacteria were present in air samples by culture based methods. 

Both studies employed the use of an Anderson stage impactor, which draws the air 

sample straight onto a pre-prepared agar plate. They were set to a flow rate of 28.3 

L/min-1 and allowed to sample for 1 – 2 minutes. These sampling methods relied upon 

the successful culture of any biological contaminants in the air sampled. In the study 

carried out by Moore et al (2000), they revealed levels of mycobacteria in air samples 

as high as 9.2 x 103 CFU/m3. Theoretically, if mycobacteria where successfully cultured 

from air samples, it should be possible to isolate Mycobacterial DNA from air samples, 

with the methods employed in this project. Unless the particular sample areas from both 

studies had very high levels of Mycobacteria in the air to begin with.  
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This could highlight possible inconsistencies in the methods used to sample aerosols 

containing Mycobacteria. Although, these discrepancies may also be explained by a 

number of other factors. The sample methods that were used have been shown to be 

effective at collecting viable bacterial cells from air samples (Perkins and Angenent, 

2010). Therefore, the first factor to consider is that the Mycobacterial cells did not 

become airborne from MWF mist. The relationship between aerosolisation of 

Mycobacteria from MWF is not well established. However, we could consider the 

aerosolisation of Mycobacteria from hot tubs, which have been studied (Perkins and 

Angenent, 2010). It has been established that Mycobacterial cell walls are hydrophobic. 

Therefore, they readily attach and enrich around air bubbles formed in water (Perkins 

and Angenent, 2010). When the bubbles reach the surface, they eject the mycobacteria 

from the droplets into the air (Parker et al, 1983). This can cause a 1000 fold increase 

in the amount of viable cells per ml that become airborne from hot tubs or pools (Parker 

et al, 1983). Furthermore, it has been noted that the aerosolisation of mycobacteria 

from a suspension can be influenced by physiochemical conditions and thus can be 

manipulated. For example, the presence of salt and detergents can reduce the transfer 

from the water to the air by the ejection of droplets (Parker et al, 1983).  MWF are 

understood to contain additives such as surfactants and salts (at a variety of 

concentrations). Therefore, it is possible that the environment of some MWF could 

affect the dispersion of mycobacteria from the MWF suspension. In order to understand 

this relationship further controlled studies would be required to determine whether MWF 

composition can influence dispersion of mycobacteria, which has not been previously 

studied. 

Furthermore, as previously, stated mycobacteria have been successfully cultured 

directly from air samples. Culturing mycobacteria directly from air samples would 

suggest that these mycobacteria were viable and intact whole cells. In contrast use of a 

DNA based method does not necessarily require viable cells to provide a positive result. 
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Therefore, the second factor to consider is that the levels of mycobacterial DNA were 

too low to be detected using 16S rRNA-PCR-DGGE. This is unlikely if levels of viable 

mycobacteria were detected in the region of 103 CFU/m3. For PCR based methods only 

very small amounts of DNA are required i.e. pica mole (pM) quantities. 

 The final additional factor to consider is the sample volume and sample area. Liu et al 

(2010) isolated mycobacteria in both MWF samples and corresponding air samples. 

This study used a culture based method with the addition of DNA sequencing for 

identification purposes. The mycobacteria were detected in air samples that 

represented a volume of 300 litres of air over 3 minutes of sampling. In the work 

reported in this thesis 3300 litres of air were sampled over a 6 hour sampling period. 

Therefore if there were mycobacterial cells and/or lysed cells in the air at the machining 

site on both occasions, it would be expected that they would have been detected.  

Nevertheless, it would be important to consider the possibility that sampling position 

may be responsible for the lack of mycobacterial DNA detection in both the historic and 

the air sampling experiments reported in this thesis. In this project personal sampling 

was not utilised. The static samplers used, were positioned at locations of highest 

probability of mist exposure, because of high machining activity. Therefore, it could be 

possible that in order to gain a representative sample of the mist containing any 

potential hazards the sampler needed to be placed much closer to the machining tool in 

operation. Personal samplers are run at a much lower sampling rate of 1 – 2 L/min-1. 

Therefore, a static sampler run at 10 – 12.5 L/min-1 would be more likely to collect 

sufficient levels of DNA or cells. In the study conducted by Moore et al (2000), the filters 

of mist extractors attached to the machines were also analysed. No mycobacteria were 

detected within the mist extraction filters. Therefore, these samples are taken as a 

worst case scenario if an individual was directly exposed to large amounts of mist.  

Other microorganisms where successfully detected in both MWF and mist samples 

include Propionibacterium acnes and Ochrobactrum sp. Propionibacterium acnes was 
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historically referred to as Corynebacterium parvum (referred to here as 

Propionibacterium).  Perkins and Angenent (2010) carried out a similar study analysis 

of MWF mists in a machining plant, in both winter and summer conditions. 

Propionibacterium sp and Ochrobactrum sp were isolated in both MWF samples and 

mist samples taken in the summer. However, there were also other types of bacteria 

present in the samples such as Brevundimonas sp.  

Propionibacterium acnes sp. has been found to have aetiological links to the 

development of granulomatous lung disease such as sarcoidosis, which is caused by 

persistent non-degradable products persisting in the lung or an immune hypersensitivity 

response (Eishi, 2013). The clinical and histopathological picture of sarcoidosis and 

OHP are very similar and in the later chronic stages of OHP, it can be very difficult to 

distinguish between the two (Forst and Abraham, 1993). Until recently, sarcoidosis was 

not considered an occupationally acquired disease. However, studies have shown that 

sarcoidosis can also be a result of antigen exposure (Eishi, 2013; Mariko et al, 2012). 

Despite the unknown aetiology, environmental, autoimmunity, aberrant innate immune 

systems and genetic factors have been explored. There is strong evidence to suggest 

that genetic factors are involved in disease susceptibility and progression (Fischer et al, 

2015). Thus, in many cases individuals exposed to the same stimulus may never 

display symptoms of the disease whilst others do. 

Propionibacterium is considered to produce a number of pro-inflammatory molecules 

linked to the development of inflammatory diseases such as periodontitis, osteomyelitis 

and pulmonary infections (Fujii et al, 2009; Noble and Overman, 1987). Even in a non-

viable form i.e. heat killed, Propionibacterium may induce inflammation (Moyer et al, 

2016). To date, Propionibacterium is the only bacterium identified in patients with 

sarcoidosis lesions based on DNA screening methods such as 16S rRNA PCR 

(Yamada et al, 2002). In light of the fact that we have identified P.acnes in both MWF 

and corresponding air samples, and previous evidence to suggest P.acnes is 
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associated with allergic inflammatory disease. It could be inferred that P.acnes has a 

possible link to occupational lung disease.  

The extracellular proteases secreted by Propionibacterium are understood to initiate 

inflammatory responses in the lung (McCaskill et al, 2006). Patients with these diseases 

show a heightened response to Propionibacterium antigens (Mukherjee, 2004). 

Therefore, it is a possibility that Propionibacterium and its antigens are possible 

causative factors in the development of OHP. The commensal nature of 

Propionibacterium has potentially resulted in them being overlooked as possible 

antigens in the development of allergic respiratory disease. Nevertheless, this further 

highlights the genetic factors that are involved with the disease progression.  

Ochrobactrum was also detected within the bulk MWF samples and the complementary 

air samples. Exposure to Ochrobactrum has not directly been associated with the 

development of OHP. However, it was isolated in analysis of the previous Powertrain 

Ltd investigation conducted by the Health and Safety Laboratory (2005). In this study, 

three of the symptomatic patients’ sera contained antibodies, which reacted to 

Ochrobactrum proteins. A similar result was shown in an investigation by Dawkins et al 

(2007) where 3 out of 12 patients with OHP showed positive reactions to 

Ochrobactrum. However, 3 out of 12 ‘non-exposed’ control patient samples also 

showed a positive precipitin reaction to Ochrobactrum. Therefore, this suggests 

exposure is a reflection of the general environment not just MWF.  

This project provides further evidence about the bacteria that employees may be 

exposed to in a machining workshop environment. It remains unclear as to why certain 

bacterial species such as the Propionibacterium and Ochrobactrum were detected in 

the air samples, yet Mycobacterium, which was the most abundant species in the sump 

fluid, was not detected at all in the air samples. Furthermore, this highlights the 

importance of conducting further research into characterising MWF mists to determine 
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the real potential hazards that machine operators are being exposed to during their 

working hours.  

Finding Mycobacterium, Propionibacterium and Ochrobactrum was unexpected, as 

previous studies have reported Pseudomonas sp. to dominate the microbial flora 

present (Murat et al, 2011; Perkins and Angenent, 2010). In the second set of samples 

taken, there was a lack of Pseudomonas sp. detected within both MWF and air 

samples. Nevertheless, on the first visit, Pseudomonas pseudoalcaligenes was one of 

the three species detected within all of the samples. The presence of 

P.pseudoalcaligenes has been found to suppress the growth rate of other bacterial 

species within MWF (Mattsby-Baltzer et al, 1989). Therefore, this may be an 

explanation for the lack of diversity within the samples collected in the first visit to site 

(summer).  

After assessing the DNA from the second site visit MWF samples, the Ochrobactrum 

and Propionibacterium were not found in the bulk MWF samples. This evidence 

suggests they were derived from the MWF mist generated during processing. To 

solidify this evidence, future investigations may involve more in depth molecular 

analysis of the different species detected. By gaining more sequential information about 

the individual species present, it may be possible to compare the species detected in 

the fluid and the air more stringently.  

The time between each sampling session was approximately 6 months. During this 

time, the flora of the MWF appeared to have changed considerably, and the bacteria 

present in the air also changed. This highlights the importance of regular air and sump 

monitoring to obtain a better understanding of the microbial variation in the MWF and 

air circulating inside machining workshops. This could explain why, during previous 

investigations into ill health and disease outbreaks at machining workshops certain 

hazards may have been missed, especially if unsuitable methods were employed for 

the analysis of the MWF and their mists.  
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There were clear differences between the bacteria flora present in the MWF bulk 

samples in site visit one (summer) and those taken on site visit two, with the exception 

of the presence of M.abscessus. This was detected in all MWF samples taken on both 

visits with the exception of the fresh un-used fluid taken from the mixing tanks. Whist 

the genus of bacteria was different across visits, on both occasions there were bacteria 

considered potentially pathogenic in immune compromised individuals. 

Although there were no reported cases of more serious respiratory conditions of OHP 

or OA at the time during the site sampling visits. There were complaints of upper 

respiratory tract infections and irritant respiratory symptoms noted by some employees 

on site. Such symptoms may have been a result of potential bio-hazards in the MWF 

mist and surrounding air. This provides evidence supporting earlier studies that 

machine operators in this setting are potentially being exposed to microbial hazards. 

Investigations that are more detailed are required to demonstrate whether certain 

microorganisms are more prevalent in those workshops where respiratory allergy 

occurs and what contribution or synergy there is between biological and chemical 

hazards in MWF mist.  

 

4.4.2. Analysis of metals in MWF samples and corresponding air samples 

from an active machining site.  

Analysis of metal particulates and dissolved metals in MWF mists has been largely 

overlooked in relation to allergic respiratory conditions seen in machine operators. In 

this project we have shown that it is possible to detect known sensitizing and asthma 

causing metals in air samples taken from an active machining site.  

Determination of the concentration of each analyte present in the MWF revealed that 

the amount of boron was higher in the used MWF samples. This could be attributed to 

increased fluid concentration due to evaporation, or the further addition of boron based 
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biocides. The amount of metal detected within the used MWF revealed a similar pattern 

in that, some metals were present in higher concentrations than others. This would 

reflect the type of metal being machined at the time of sampling. It is apparent that the 

machining site was using the same metal in all of the machining tools sampled, 

because the pattern of metals detected was similar across the samples.  

Comparisons of the results of both site visit sample sessions show that there is no 

direct link between metal concentration in air, and the amount of machining activity. For 

example, in theory areas of higher activity would be expected to reveal higher 

concentrations of airborne metal. However, the results show that there was no 

correlation between the concentrations in the air from higher activity areas in 

comparison to the control (area of no activity). However, an exception was found in the 

results taken from one CIP10M sampler (Sampler 3) which was placed in close 

proximity to a machine enclosure door. The results of this sample revealed the highest 

concentration of all metals analysed. 

Boron was consistently the most abundant element detected in the air samples. This 

would be expected, as boron was present in high concentrations in the MWF sump 

samples. This provides a strong indication that the MWF is becoming airborne.  

There was a slight increase in the concentration of boron in the visit two compared to 

visit one. The highest amount of boron detected in mist samples taken from visit one 

was 4.1µg/m3 and in the second visit the highest was 5.5 µg/m3. This could be attributed 

to either, higher emissions of MWF mist containing boron, or the fact that the large 

doors were kept closed. The lack of fresh circulating air into the building could account 

for this slight increase. However, the levels of other metals that were quantified did not 

show the same pattern as boron. Additionally, boron was found in much higher levels in 

the MWF in comparison to other components, thus it was expected that boron would be 

present in the air samples.  
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The concentration of all metals varied between each sampler, including those that were 

placed in close proximity to one another (~20cm). A drawback to using a sampler that 

requires a liquid medium is that drawing air into a liquid for prolonged periods of time 

can cause evaporative loss of the sample medium (Kesavan et al, 2010). A reduction in 

the level of sample medium has been shown to reduce the efficiency of the sample unit, 

in particular with the SKC Liquid impinger units. Therefore, from preliminary studies 

conducted at the Health and Safety Laboratory, Buxton with these samplers, it was 

concluded that every 30 minutes of sampling at 11 L/min-1 the samplers would lose 

~4ml of water. Although all samplers were calibrated prior to sampling, it is also 

common for sample pumps to lose some of the sampling volume over time. This can 

reduce to levels to 10 L/min-1 during a sampling session. Although the samplers were 

calibrated prior to sampling and the volume was checked at the end, the pump volume 

could have deviated slightly during the sampling process. Therefore, it is possible that 

there can be variability in the overall sample volume.  

Different metals have different physical and chemical properties that may cause some 

to be more readily aerosolised than others. Some metals detected within the MWF 

samples were present in higher concentrations. However, when compared to the air 

samples they did not follow the same pattern. This could be attributed to the properties 

of the individual metals.  

Furthermore, whilst the results of this study showed that potentially hazardous metals 

can be detected in the air of the machining workshop. The concentrations of the 

individual metals did no exceed the WELs (Table 4.1). However, this does not 

necessarily mean that these are not sufficient airborne levels to cause ill health. Most 

research used to determine exposure limits is based on the carcinogenic and 

teratogenic effects. These properties are more severe in comparison to allergic 

respiratory effects. As previously outlined in Chapter 3, inhalation of metals such as 

ZnO has been shown to cause airway inflammation at levels much lower than threshold 
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exposure guidelines. Therefore, whilst we take into account that the levels do not 

exceed WEL for each individual metal, it is important to carry out further research in 

monitoring exposure to such metals in relation to ill health seen in machine operators.  

4.4.3. Zymography analysis of MWF and mist samples.  

Zymography analysis of the bulk MWF samples revealed similar results seen in Chapter 

2. Proteases were detected in all the MWF samples taken. From inhibition experiments, 

these were found to be serine-like proteases. Proteolytic activity was also detected 

within the air samples taken.  

After quantification experiments using substrate fluorescence assays it was clear that 

there were similar issues as outlined in Chapter 2. However, it was concluded that the 

mist samples did not contain the same high levels of possible interfering chemicals as 

the MWF. However, it was found that the quantities of proteases present within the mist 

samples was below the detection limits of the assay. To the best of the author’s 

knowledge, no other studies have successfully isolated or quantified bacterial proteases 

from MWF related mists. However, in a study carried out by the Department of 

Occupational and Environmental Medicine at the University Hospital North Norway from 

mists generated from industrial seafood environments, sampled proteases were 

detected and quantified. In industrial seafood environments it is expected that high 

levels of proteases are dispersed from fish preparation procedures (Dahlman et al, 

2013). Therefore, it has been established that there is an association between fish 

preparation environments and inflammatory lung disease (Shiryaeva et al, 2015). In 

their research, the authors noted that fluorescence based assay were not sensitive 

enough to detect and quantify proteases in bioaerosol samples. In light of the results of 

the research in this PhD project and the evidence from the study carried out by the 

University Hospital North Norway, it would be important in future to consider the used of 

other assay based techniques for protease quantification from air samples and 

aerosols.  
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During this research, Nano-LC-ESI-MSe was incorporated for the identification of the 

proteases isolated from the air samples. Using this technique it should also be possible 

to quantify the individual proteins present in the samples. Therefore, for future research 

it would be important to carry out more studies with the Nano-LC-ESI-MSe to 

characterise the proteins detected within the air samples isolated, and future air 

samples taken from machining sites.  

From the protein identification analysis by Nano-LC-ESI-MSe some proteins were 

identified. Some of these were identified to be of bacterial origin such as Archael 

histone B, HexB, Maf-like protein YdHE and cytochrome C-553. However, these 

proteins can also be found in other cells such as yeast and mammalian such as 

Triosephosphate isomerase. Furthermore, from this process a serine-like protease from 

a plant called “mouse ear cress” was also detected. Whilst this was not from bacterial 

origin, it was known to have serine-like activity and it could be speculated that the 

proteolytic band on the gel was from this organism. There is no evidence of “mouse ear 

cress” proteases causing allergic respiratory disease specifically in humans to date.  

The results of zymography and Nano-LC-ESI-MSe have not provided a definitive 

answer to what proteases were present in the air samples taken from the site. 

Therefore, it would be important to carry out further research with these techniques to 

develop a better understanding of the likelihood of proteases present within MWF 

samples becoming airborne. Furthermore, when a positive identification of the proteins 

is found, it may be possible to use Nano-LC-ESI-MSe to quantify the proteins present, 

where it has not been possible with other fluorescence based assays.  
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Chapter 5 

Cases of OHP at a Machining Plant:   

Exposure and Monitoring Hygiene Study 

5.1. Background and Aims 

Many of the studies that have investigated the cause of allergic respiratory conditions 

in machining workshops have been retrospective investigations, for example the 

Powertrain Ltd investigation. They considered the aetiological role of specific hazards 

or a combination of those hazards, but usually after the ill health occurred and 

rectifying actions were taken to prevent further cases. Few studies have examined 

causative agents, while the respiratory disease cases are ongoing. This study set out 

to detect possible causative agents for respiratory allergy at a machine workshop 

where employees had been diagnosed with OHP, and there were at the time of the 

study ongoing cases of ill health. It was hoped that this study would inform future 

actions to be taken to minimise the risk to other employees.  

Objectives: 

 To investigate the types of bacteria present in the factory and to determine 

using 16S rRNA PCR-DGGE if mycobacteria associated with the development 

of HP was present. 

 If mycobacteria were present to determine whether the strain was 

Mycobacterium immunogenum and to quantify their numbers using qPCR.  

 To investigate whether bacterial proteases were present in the MWF supplies 

using zymography. 

 To investigate whether a respiratory sensitising metals were present in the 

MWF supplies using ICP-MS. 
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5.2. Materials and Methods 

5.2.1. Sample collection and description 

Samples of MWF were taken from the site on two separate occasions. On the first 

occasion, an Occupational Hygienist from the Health and Safety Laboratory (HSL) 

collected the samples.  Twelve samples were collected in sterile tubes and kept at 4°C 

on receipt. Samples contained fluid of all ages of use, from fresh diluted MWF to the 

oldest sample of 2 years old (Table 5.1 – Samples 1-12). On the second occasion, the 

MWF supply company who manage the lubricant supplies on behalf of the company 

collected 12 samples (6 months later). Samples were taken from different machining 

tools and from both buildings. They have no correlation to the first sample set (Table 

5.1 – Samples 13 - 24). 
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Table 5.1 – Summary of samples taken from the site on both occasions with 
details fluid type and machining tool. Those that are highlighted in bold represent 
samples that were taken from the same machine on both visits to the site. 

 

 

 

Samples Machining System MWF Type Age of Fluid 

1 Water Supply Water N/A 

2 Fresh-diluted  MWF A N/A 

3 272 A 0 weeks 

4 258 A 18 months 

5 177 B 1 week 

6 201 B 18 months 

7 257 B 20 months 

8 184 B 21 months 

9 Fresh-diluted MWF B N/A 

10 Fresh-diluted MWF C N/A 

11 233 C 24 months 

12 216 C 3 months 

13 184 B * 

14 188 B * 

15 244 A * 

16 239 B * 

17 201 B * 

18 254 B * 

19 174 B * 

20 257 B * 

21 259 A * 

22 217 B * 

23 Water Supply Water N/A 

24 Canteen Water Supply Water N/A 
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5.2.2. Analysis of Samples 

All MWF samples (n=24) were analysed for bacterial contamination using 16S rRNA 

PCR-DGGE, protease identification using zymography and identification of metal 

contaminants using ICP-MS. ALL methods were carried out as outlined in the method 

sections of Chapters 2 and 3. Further methods were also used and are described 

below:  

 

5.2.3. Real-Time Quantitative PCR for the Mycobacterium immunogenum 

Real-time quantitative PCR (qPCR) was used to differentiate between 

M.immunogenum and other MCC members. This method was designed to detect and 

quantify M.immunogenum specifically. Samples were analysed as outlined by Rhodes 

et al (2011) with probes specifically designed to target M. immunogenum. The analysis 

was carried out on twenty-four (n=24) samples. Genomic DNA was extracted as 

outlined in Chapter 2. The assay was performed on an Applied Biosystems 

Thermocycler using primers designed to target a 60 bp region of the rpoB gene present 

at position 245 within M.immunogenum ATCC 700505. Each reaction was carried out 

in a total volume of 10 µl and contained 5 µl Taqman Universal master mix (with 

AmpErase UNG) (Thermofisher). A total concentration of 500 nM MIFP (5’-

TTGATGTGCAGACGGATTCC-3’) and MIRP (5’-CAACCTCGCGCCAACG-3’) and the 

fluorescently labelled Taqman probe MITP (5’-VIC-TTGAATGGTTGGTCGGCTCGCC-

TAMRA-3’) at 250 nM were added. 1.0 - 2.5 µl of sample DNA was added to each 

reaction mixture. All samples was analysed in duplicate. The cycle parameters were as 

follows 50 °C for 2 min (Uracyl glycosylase activation), 95 °C for 10 min (Amplitaq Gold 

activation),  and 45 cycles of 95 °C for 15 s and 60 °C for 1 minute (Table 5.2).  
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To quantify the M.immunogenum present, M.immunogenum ATCC 700505 was used 

as a positive control. M.immunogenum cell equivalents (CE) in a given volume of DNA 

were estimated due to typical cell clumping. As previously stated by Rhodes et al 

(2011) the size of the M.immunogenum genome has not yet been fully defined. 

Therefore, calculations were based of the M.Chelonae genome that is approximately 

4Mp with an approximate weight of 4.4 femto grams (fg), and possesses a single copy 

of the rpoB per genome). This calculation did not take into account G: C ratios. The 

concentration was calculated in cell equivalents per millilitre (CE/ml). A standard curve 

was produced from serially diluted M.immunogenum DNA and was quantified using a 

Nanodrop ND-1000 Spectrophotometer (BioRad Ltd).  

 

PCR step Temperature Time 

Uracyl glycosylase 
activation 

50 °C 2 min 

Amplitaq Gold Activation 95 °C 10 min 

45 Cycles of: 
95 °C 15 s 

60 °C 60 s 

Table 5.2 – Parameters of qPCR used in section 5.2.3  
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5.2.3.1. Quality of water analysis 

To ensure that the result obtained from M.immunogenum analysis in the water samples 

was not an artefact. The occupational hygienist took a larger volume of water on a 

return visit to the site. The 200 ml samples were taken from both the workshop water 

supply (used to dilute MWF) and the canteen. They were concentrated with a 1000 

KDa molecular weight cut off filter prior to DNA extraction and qPCR assay.  

 

5.2.4. Acid treatment and culture 

Samples that were found to contain MCC related DNA from 16S rRNA PCR DGGE 

was also cultured for mycobacteria.  To target only the mycobacteria within the 

samples, the samples were acid treated. A 1 ml aliquot of each sample was incubated 

with 200 µl of 1 M sulphuric acid. The sample was agitated for 10 minutes and then 

neutralised with 0.4 M sodium hydroxide. Samples were individually streaked onto 

Middlebrook 7H10 agar supplemented with OADC (Oleic Albumin Dextrose Catalase). 

Plates were incubated at 30 °C for 15 days or until mycobacterial colonies were seen. 

This procedure was also used on samples (unrelated to the site) that were previously 

analysed by the same methods and showed positive results. Such samples were used 

as positive controls. 

 

 

 

 

 



221 

 

5.3. Results 

5.3.1. Contextual information 

5.3.1.1. Cases of respiratory allergy 

 

There are 254 employees who work with MWF on-site. Approximately 45 people have 

exhibited signs of ill health; these include respiratory complaints, asthma exacerbation 

and dermatitis. Employees started complaining of respiratory complications in 2005. 

The complaints led to an investigation by the Health and Safety Executive (HSE) in 

2010. In the 2010 investigation, spirometry checks and questionnaires were 

administered in order to assess the severity of the ill health. After considering the 

results, no specific causative factors were identified.  In 2015, the occupational health 

providers for the company were notified of sporadic clusters of OA and OHP. This led 

to a follow up investigation that continued into 2017. Affected machinists were mostly 

based in the older workshop building. They had all been able to return to work but this 

had required careful management by their occupational health provider. Some had 

requested/consented to the use of powered respirators (RPE) as the most practical 

means to reduce their further exposure to MWF mist.  

Following the first investigation in 2010, the company introduced revised standard 

operating procedures (SOPs) in order to reduce the levels of exposure to MWF mist.   

The aim was to reduce the chance of mist exposure and increase the effectiveness of 

microbial management. To reduce the chance of mist generation the following changes 

were introduced: 

 The speed of machining tools was reduced  

 Local exhaust ventilation (LEV) systems were attached to machinery to filter 

contaminated air.  

 The use of compressed airlines (Figure 1.2) was reduced and restricted to 

inside enclosed machining tools.  
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 Time delays of 20 s were incorporated on machine doors after machining had 

stopped.  

 As a last resort, employees were offered respiratory protection equipment 

(RPE) masks to wear during their shift.  

To increase the effectiveness of microbial management operators were instructed to: 

 Refrain from recycling MWF back into the sump once filtered out, to reduce 

contamination. 

 Increase testing of “poorly controlled” machines. 

 Ensure the pH remained on within the target range. 

 Implement machine checks for tramp oils, metal particulates, LEV efficiency.  

A high proportion of the CNC machines were enclosed and the contaminated air 

usually extracted by compact mist filtration units which release the ‘cleaned’ air back 

into the factory. There are several different models of these systems that were used on 

site. These include a variety of brand and manufacturer i.e., Filtermist, Absolent, Reven 

etc.   

 

5.3.1.2. Organisation of the factory:  

The factory consists of two buildings. Varieties of metals are machined in both 

buildings including aluminium, stainless steel, titanium, magnesium, high carbon steels, 

cobalt and beryllium (occasionally the fluids are changed). The MWF used in each 

machine is dependent on its specific requirement. In general, three types of fluid were 

in frequent use. All MWF used are from the same MWF supplier. These are the same 

formulation and brand of MWF as the Group 2 MWF analysed in Chapter 3. They will 

be referred to as A, B and C sub-groups. Machining tools used were of varied size and 

type, the majority had their own sump tank as opposed to the use of a shared, larger 

systems for all machinery.  
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Observations of the machining site and facilities revealed that the workshop appeared 

to be very clean and well organised. There was little to no MWF residue on the 

surfaces of machining tools, walls and ceilings, which are common indicators of MWF 

mist emission.  

 

5.3.1.3. Management of the MWF 

The company retained records of fluid management for 10 years. Stringent monitoring 

and microbial growth dip-slide tests were used to detect bacteria. They were carried 

out at monthly intervals with priority and more frequent analysis of “problem” machines 

that showed consistent high levels of bacteria (>106 CFU/ml). When bacterial colony 

counts reached 104 CFU/ml, biocide was added to the sump. The company uses two 

biocides, the first is an oxazolidine based biocide and the second is an isothiazolone 

derivative. The oxazolidine biocide was the general biocide added. The latter was a 

broad spectrum biocide used in circumstances of “heavy” contamination. In addition, 

MWF pH was well controlled and kept to supplier recommendations (between ~pH 8.8 

– 10.0) to reduce chances of microbial growth.  

The MWF management protocols are based on guidance provided by HSE. This 

includes specific elements of Control of Hazardous Substances to Health (COSHH) 

and COSHH essential sheets that have been prepared for the machining workshops to 

minimise exposure to hazards in MWF.  

The company and name of their employees have been anonymised for the purpose of 

this study. Machinists were not required to provide any personal information and no 

biological samples were collected. Consequently, the work carried out was done on the 

basis of informed consent.  
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5.3.2. Characterisation of bacteria in case study MWF samples using 16S 

rRNA PCR DGGE 

Samples were analysed by 16S rRNA PCR-DGGE for characterisation of bacteria as 

previously outlined in Chapter 2. In brief, genomic DNA was extracted from all samples 

(n=24). The 16S rRNA gene fragments were amplified using PCR from the extracted 

DNA. The DNA fragments were resolved using DGGE and excised for sequencing. The 

sequences were compared on the GenBank database of identification.  

Sixty bands (representing 73 visible bands) were excised from the DGGE gels (Figure 

5.1.). The bands at the lower section of the gel were well resolved. Following 

successful elution, the bands were subsequently sequenced and compared in the 

GenBank database using BLAST. To recap chapter 2, the criteria for identification 

required that any sequences with a score of less than 97% genus and 99% species 

level were discarded (Drancourt et al, 2000). In addition, only samples with more than 

250 aligned residues were included.  

For DNA quality purposes and in order to determine DNA mixtures from co-migration, 

resulting chromatograms were used (Figure 5.2). From all the sequences that were 

ascertained, this led to the identification of 67% (20/30 bands in first set) and 100% of 

bands in the second set.   

Despite the appearance of multiple bands that appeared to run at slightly different 

migration distances in each sample, these bands were all attributed to one dominant 

species with little evidence of bacterial diversity within the samples (Figure 5.1). Some 

of the sump samples had been maintained up to 2 years and it might be expected that 

they would contain a variety of bacteria. Sequencing revealed that Mycobacterium 

abscessus/ Mycobacterium Chelonae (from the MCC) were the dominant organism. 

Due to this unusual result, this analysis was repeated on this set of samples, with the 

addition of a MCC positive MWF sample (Origin - Spain) and a second set of MWF 
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samples from site, to rule out artefacts. In addition, a fresh diluted sample of the MWF 

was examined but found only to contain Acetobactor indonesiensis, but no 

mycobacteria. All of the previously used MWF samples, which were found to contain 

MCC, also contained M.abscessus. The sequencing results from the second sample 

set revealed similar results, with the addition of Sphingomonas sp. present in one 

sample.   
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MWF 
Sample 

Sequence in similar to 
Aligned 
residues 

Percentage 
Match 

4-8 M. abscessus 436 99% 

4-8 M. abscessus 518 100% 

4-8 M. abscessus 525 100% 

4-8 M. abscessus 525 100% 

2 Acetobactor indonesiensis 503 99% 

4-8 M. abscessus 513 100% 

4-8 M. abscessus 298 99% 

4-8 M. abscessus 526 100% 

4-8 M. abscessus 518 99% 

4-8 M. abscessus 511 100% 

4-8 M. abscessus 523 100% 

4-8 M. abscessus 523 100% 

4-8 M. abscessus 524 100% 

4-8 M. abscessus 496 99% 

4-8 M. abscessus 525 100% 

89 Comamonas aquatica 519 100% 

2 Acetobactor siceriae 491 99% 

2 Acetobactor indonesiensis 401 99% 

2 Acetobactor siceriae 405 99% 

2 Acetobactor indonesiensis 414 100% 

2 Acetobactor indonesiensis 416 100% 

 

Table 5.3 DNA sequences retrieved using PCR-DGGE and identified by 

comparison with the GenBank database using BLAST. All bacteria / mycobacteria 
were identified to the genus (≥97%) and species (≥99%) level. Species with scores 
<97% were omitted.  
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Sample Sequence similar to Alignment 
Percentage 

Identify 

13 Mycobacterium sp. 501 100% 

14 Mycobacterium sp. 515 99% 

15 Mycobacterium sp. 518 100% 

13-22 Mycobacterium sp. 520 100% 

Water Comamonas aquatica 504 99% 

13-22 Mycobacterium sp. 487 100% 

16 Mycobacterium sp. 499 100% 

17 Mycobacterium sp. 521 100% 

18 Mycobacterium sp. 519 100% 

19 Mycobacterium sp. 496 99% 

13-22 Mycobacterium sp. 493 100% 

13-22 Mycobacterium sp. 279 100% 

13-22 Mycobacterium sp. 435 99% 

13-22 Mycobacterium sp. 494 100% 

13-22 Mycobacterium sp. 490 99% 

Water Comamonas 
dentrificans 

243 99% 

20 Mycobacterium sp. 438 99% 

21 Mycobacterium sp. 492 100% 

23 Sphingomonas sp. 473 100% 

16 Mycobacterium sp. 460 100% 

 

Table 5.4 DNA sequences retrieved using PCR-DGGE and identified by 

comparison with the GenBank database using BLAST. All bacteria and 
mycobacteria were identified to the genus (≥97%) and species (≥99%) level. Species 
with scores <97% were omitted.  
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Figure 5.1 - PCR-DGGE showing the repeated experiment of samples 2,3,4,5 and 
6 with a samples containing mycobacteria. Fresh fluid (lane 1), Site samples from 
sample set one (lanes 2-6) and MCC positive sample (lane 7). Bands shown in the 
image were identified as corresponding to a) Acetobactor indionesis, b) Commamonas 
aquatica, c) Mycobacterium abscessus and d) poorly resolved bands associated with 
Mycobacterium abscessus.  Poorly resolved bands are less clear and visible to the 
naked eye and therefore are difficult to excise. 
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Figure 5.2 - Representative sequencing chromatograms for DNA amplified from 

excised DGGE bands. a) Good quality sequence retrieved using PCR-DGGE, shown 
to be 99 % match to M.abscessus. The good quality sequence can be inferred by the 
fact that there are single, clearly defined peaks present with reasonable height. b) Poor 
quality sequence from a poorly resolved band from the upper portion of the gel. There 
appear to be multiple peaks at each point suggesting that there is a mixture of DNA. 
This can make it difficult to obtain the accurate sequence, which would be used in 
identification databases. 
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5.3.3. Optimisation of real-time PCR conditions and development of 

standard curves 

The real-time PCR-based protocol was optimised for the reference strain 

M.immunogenum using an Applied Biosystems PCR system. The standard curve for 

quantification was generated based on the reference strain M.immunogenum ATCC. A 

set of standards were created with cell numbers ranging from 103 to 105 fg/ml. The 

quantification limit was 10 cells/mL. The standard curve showed correlation coefficients 

(R2) of 0.96 – 0.99 with an efficiency between 96.00% and 97.90%.  

 

5.3.4. Results of Mycobacterium immunogenum specific qPCR. 

The application of the qPCR method to screen specifically for M.immunogenum on 

DNA extracted from the MWF showed that a positive detection of M.immunogenum 

was seen in all used MWF samples (n=18)  from both visits. A positive detection was 

determined to be a result higher than the limit of quantification (LOQ). Samples 1 – 12 

were provided with supplementary information such as fluid age. For samples 13 – 24, 

age was not specified.  

The results of qPCR analysis are outlined in Figures 5.3 and 5.4. The presence of 

M.immunogenum was more notable in the older MWF samples (such as 6, 7 and 8) 

that had been in use for 18-21 months. The estimated number of mycobacteria cell 

equivalents in the positive samples ranged between 1.2 x 101 CE/mL-1 to 1.0 x 106 

CE/mL-1. A large portion (75%) of the samples showed less than 103 CE/mL of 

M.immunogenum. The remaining samples showed levels of greater than 104 CE/mL-1, 

only one sample contained levels as high as 106 CE/mL-1.  

In comparison to the 16S rRNA PCR-DGGE results, 2 samples that showed positive 

detection for M.abscessus from the MCC where negative for M.immunogenum. 
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Therefore, it is suspected that the samples contained either M.abscessus or 

M.chelonae.  

After comparison with the result of the 16S rRNA PCR, it is evident that the 

mycobacterium is highly likely to be M.immunogenum. However, it cannot be inferred 

whether M.chelonae / M.abscessus is also present because the qPCR probes are only 

specific to M.immunogenum (Rhodes et al, 2008).  

Over the two visits, machines were sampled on both occasions with 6 months between 

each visit. Samples were identified as 6 and 17, 7 and 8 and 13 were paired with their 

respective machine. From the first result of 1.9 x 103 CE/mL-1 in samples 6, this figure 

had risen to 1.0 x 106 CE/mL-1. When the first result of sample 7 was taken the amount 

of M.immunogenum increased from 5.1 x 103 to 2.5 x 104 CE/mL-1. Sample 8 showed 

levels of 2.5 x 104 CE/mL-1, and this decreased to 8.6 x 102 CE/mL-1.  

The result of the first assay of the water samples revealed high levels of 

M.immunogenum. To ensure this was not an artefact, the process of DNA extraction 

and the qPCR assay was repeated for the water supply samples. The result of this 

assay revealed no M.immunogenum within the water samples. To ensure that the 

source of M.immunogenum contamination did not originate from the water supply, a 

larger volume of water was sampled from the site later. The result of DNA extraction 

and qPCR confirmed that the water samples from the site did not contain 

M.immunogenum.   

 

5.3.5. Results of culture after acid treatment. 

After culturing samples onto Middlebrook agar supplemented with OADC, no colonies 

of mycobacteria were detected in the MWF samples. Control MWF samples that were 

known to contain M.immunogenum (confirmed by qPCR and culture) showed viable 
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mycobacterial colonies. Therefore, we can be confident that the culture process was 

sufficient and there were no viable mycobacterial colonies in the samples.  
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Figure 5.3 – The results of quantitative PCR using primers specific to M.immunogenum in samples 1-12. Sample one is the water 
sample taken from the workshop water supply used to dilute the MWF concentrate. The concentration was calculated in cell equivalents 
(CE/ml) to M.chelonae. The experiment was carried out n=4, and the error bars represent the standard deviation from the mean (+/- 44) 
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Figure 5.4 – The results of quantitative PCR using primers specific to M.immunogenum in samples 13-24. Sample one is the water 
sample taken from the workshop water supply used to dilute the MWF concentrate. The concentration was calculated in cell equivalents to 
M.chelonae. The experiment was carried out n=4, and the error bars represent the standard deviation from the mean (+/-44). 
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Figure 5.5 – A comparison between the percentage of sample that were found to be 
positive for Mycobacterium from the MCC by 16S rRNA PCR in comparison to the 
percentage of samples that tested positive for specifically M.immunogenum.  
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5.3.6. Results of analysis of metals by ICP-MS 

The metal concentrations in all MWF are summarised in Figures 5.6, 5.7 and 5.8. 

These data show varied concentrations of metals in different samples. As seen in 

previous chapters, particularly Chapter 4, the levels of boron were high within the 

samples. As previously stated, this can be attributed to the fact the MWF contain boron 

additives. The concentration of boron ranged from 4132 µg/L to the highest levels of 1 

977000 µg/L (1.98 g/L). Within this range 63% exceeded 38 890 µg/L of boron.  

Aluminium, iron, copper and zinc were found to be present at higher concentrations 

than other metals. The levels of aluminium were found to range between 24 µg/L to 

7651 µg/L, with 67% exceeding 500 µg/L of aluminium. The concentration of iron was 

found to range between 6.86 µg/L and 11 820 µg/L, with 67% exceeding 2000 µg/L. 

The highest amount of copper detected was 12 880 µg/L with 46% of samples 

exceeding 1000 µg/L. Finally, the concentration of zinc was found to reach levels of 12 

520 µg/L with 58% of the samples exceeding 1000 µg/L.  

From the samples that were taken from the same machine on both occasions. The 

results showed that there was no clear pattern as to whether they had accumulated 

more metal. This is with the exception of sample pair 8 and 13. The amount of each 

analyte appears to be higher when taken on the second visit (sample 13). (Figures 5.6, 

5.7, 5.8)  

The levels of certain metals were very high in comparison to samples analysed in 

Chapter 3. The samples were fresher than those used in this study.
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Figure 5.6 – Results of metal analysis of MWF by ICP-MS in both sample sets. 
The graphs show the ICP-MS results for all samples taken from site (n=24). a) boron, 
b) aluminium and c) chromium.  
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Figure 5.7 – Results of metal analysis of MWF by ICP-MS in both sample sets. 
The graphs show the ICP-MS results for all samples taken from site (n=24). a) 
manganese, b) iron and c) nickel. 
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Figure 5.8 - Results of metal analysis of MWF by ICP-MS in both sample sets. The 
graphs show the ICP-MS results for all samples taken from site (n=24). a) copper, b) 
zinc and c) tungsten. The graphs show the ICP-MS results for copper, zinc and 
tungsten. The asterix identifies samples where the concentration was too high for the 
scale used on the graph.  
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5.4. Discussion 

Few studies have investigated the causative agents while respiratory disease cases 

are ongoing. The aim of the research in this chapter was to determine the likely 

hazards in used MWF taken from a machining site with cases of OHP and OA. The 

methods optimised in previous experiments during this research were employed to 

determine the microbial ecology of the fluids using molecular based techniques such as 

PCR-DGGE and qPCR. Furthermore, zymography and ICP-MS were used to look for 

contaminants such as bacterial proteases, and determine the concentration of metals 

(metal fine particulates and soluble metals). It was hoped that the results obtained from 

this research could be used to inform future actions to take that could minimise the risk 

to health from exposure to MWF mists.  

Out of 254 employees who worked on-site, 45 had shown signs of ill health that might 

have arisen because of exposure to MWF. These included respiratory complaints, 

asthma exacerbation and dermatitis. During the course of 2005 to 2010, ill health had 

been reported to the occupational health provider, which led to further investigation. 

From the investigations that took place, no specific causative factors were identified. 

However, it was identified that affected machinists were mostly based in the older 

workshop building. They had all been able to return to work but this had required 

careful management by their occupational health provider. Some had 

requested/consented to the use of powdered respirators (RPE) as the most practical 

means to reduce their further exposure to MWF mist.   

 

5.4.1. The application of molecular techniques 

It is now well understood that traditional culture-based methods to detect 

microorganisms in MWF’s can lead to under-reporting of the type and quantity of 
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bacteria (including viable and non-viable organisms). This can be attributed to 

physiological factors. When the bacteria are isolated from the MWF they have adapted 

to grow, and then are placed in a standardised growth media with different 

physiological conditions (gas concentrations, temperature and pH) (Murat et al, 2012). 

The conditions may lead to fragile organisms dying, or forced into a non-culturable 

state. In this state, they survive but do not replicate (Rhodes et al, 2008). After culturing 

acid-treated MWF samples, it was clear that there was no growth of viable colonies. 

However, the lack of colonies did not necessarily mean that there was a lack of 

organisms in the samples.  

The application of 16SrRNA-PCR-DGGE analysis on samples that previously showed 

no colonies for Mycobacteria showed that M.abscessus from the M.chelonae-

M.abscessus complex (MCC) was present. The bacterial species Acetobactor 

indonesiensis, which is an environmental bacterium, was detected only in fresh MWF 

taken directly from the mixing tank. This was not detected in any of the used fluids, 

which suggests it was unable to exploit the sump environment, or was more sensitive 

to biocides added to the tank supply. In addition, some of the MWF stocks used on site 

are known to contain biocide additives before they are released into circulation.  

The identification of mycobacteria in MWF using non-culture based techniques such as 

PCR, further highlights that culture based techniques alone are an insufficient method 

of analysis of microorganisms in MWF and as a method to monitor the microbial quality 

of MWF. The mycobacteria were solely identified by molecular techniques. Murat et al 

(2012) also showed similar results where M.immunogenum was not detected by culture 

based methods within MWF samples. After DNA analysis, M.immunogenum was 

detected in 30% of the samples.  
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5.4.2. Screening for M.immunogenum 

Members of the MCC are genetically identical within the 16S rRNA region is targeted in 

this study (Odell et al, 2005). Therefore, it is not possible to ascertain which specific 

species within the complex they belong to, solely with the primers GM5 and 907R. It 

would have been possible to use universal primers that target another conserved area 

of the 16S rRNA gene. However, this was not carried out because this would not 

provide important quantitative data that can be retrieved with qPCR.  

Of all members of the MCC, M.immunogenum is of particular interest because both live 

and attenuated cells of M.immunogenum have been associated with the development 

of allergic respiratory disease such as OA and OHP (Tillie Leblond et al, 2010). It is 

apparent that the immunogenic properties of M.immunogenum are minimally affected 

by the cultivability or viability of the organism (Gordon et al, 2006; Veillette et al, 2008) 

A study by Johansson et al (2017) showed evidence of immunological responses to 

M.immunogenum cell suspensions and lysate suspensions (protein containing) after 

short term acute exposure in mice. Short term exposure resulted in the release of 

inflammatory cytokines TNFα, IL-6, Ilβ and the anti-inflammatory cytokine IL-10. The 

results of bronchoalveolar lavage (BAL) and histology revealed infiltrations of 

neutrophils and mild infiltration in lymphocytes (<5% of cells). Such results suggest that 

an immunogenic response has taken place, which is similar to results seen in human 

patients with OHP. Furthermore, there was no significant difference between the levels 

of most inflammatory cytokines and the neutrophil infiltration. However, the detection of 

interleukin 10 (IL-10) was only seen in lysed cell suspension exposed mice. In addition, 

the levels of lymphocyte infiltration were higher in the whole cell suspension than in the 

lysate suspension exposure. This suggests that there may be multiple immunogenic 

responses involved after exposure. Nevertheless, the authors of the study also 

compared the immunogenic properties between MCC species and sub-types. 

Interestingly, the M.immunogenum sub-types were found to have the most 
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immunogenicity and resulted in the more severe lesions than M.abscessus and 

M.chelonae. Therefore, it was important to determine whether the mycobacterial DNA 

detected was from M.immunogenum using specific molecular techniques such as 

quantitative PCR.  

The results of the qPCR used to specifically target the M.immunogenum DNA has 

provided evidence to suggest that it is likely that the mycobacterial DNA identified by 

16S rRNA PCR belongs to M.immunogenum. M.immunogenum was detected in all 

MWF samples (n=18) from both site visits with the exception of fresh fluid. Samples 1 – 

12 were provided with supplementary information such as fluid age. For the remaining 

samples, fluid age was not specified. The levels of estimated cell equivalents detected 

within the MWF samples varied, with the highest amount as high as 1.0 x 106 CE/mL-1. 

A study carried out by Veillette et al (2008) showed similar results with levels as high 

as 3.68 x 106 CE/mL-1. In this research, these levels of 106 CE/mL-1 were only seen in 

one sample. The majority of samples (75%) showed less than 103 CE/mL-1 of 

M.immunogenum. The remaining samples showed levels greater than 104 CE/mL-1. 

The quantification method employed by Veillette et al (2008) involved a different 

protocol for generating a standard curve for quantification. In their study, the standard 

curve was created using a plasma vector to generate a standard curve. In addition, 

quantification was performed with an estimate of the M.immunogenum genome size. 

Whereas, this investigation used M.immunogenum DNA to generate a standard curve, 

and quantification was based on the known genome of M.Chelonae. There is 

confidence in both strategies. However, due to the difference in calculations it is 

expected that there could be a difference in the results.  

The detection of mycobacteria as the most abundant DNA in a selection of used MWF 

is an unusual result in comparison to other research that has assessed the microbiome 

of MWF (Perkins and Angenent, 2010). However, it has been previously reported. In an 

incident in an Ohio automobile brake manufacturing facility in 2001, where employees 
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complained of respiratory symptoms and were later diagnosed with OHP, led to an 

investigation at the site. Microbial analysis revealed M.immunogenum to be the 

abundant microorganism, with few other viable bacteria. This result is similar to those 

found in this study. However, the Ohio study did not report the methods used for 

analysis. It appears that culture techniques were used to detect M.immunogenum.  

Therefore, the lack of other viable organisms could be attributed to their fastidious 

nature.  

The genus of bacteria that are commonly found to be a dominant organism is usually 

Pseudomonas. Although mycobacteria were the only identified species in this research, 

it cannot be concluded that no other genera or species is present. This is because use 

of DGGE to study the microbiome of environmental samples can result in likely errors. 

It is understood that a visible band on a DGGE gel represents the most abundant 

species in a given sample (Muyzer et al, 1993). Therefore, other bacteria may be 

present, but their abundance is much lower in comparison to the mycobacteria. Their 

higher abundance would also be potentiated by the presence of a second 16S rRNA 

gene. 

 

5.4.3. Controlling microbial growth with biocides and additives 

The use of biocides is of importance when considering the microbial diversity in used 

MWF. M.immunogenum has been found to show resistance against biocidal activity 

(Sveljaru et al, 2005). This can be attributed to a number of factors. Firstly, hydrophobic 

cells are capable of adhering to the surfaces of machinery they come into contact with 

and thus they can form a biofilm. The formation of a biofilm, microorganisms can be a 

100 times more resistant than freely mobile cells. Secondly, the stringent restriction of 

bacterial growth within the MWF may be sufficient to keep the growth of organisms to a 

minimum. However, this could reduce competition for resources for mycobacteria to 
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thrive. A study by Sveljaru et al (2005) demonstrated that M.immunogenum species 

were more resistant to certain biocides in comparison to the Pseudomonas spp. The 

biocides analysed in the study included formaldehyde releasing, isothiazolones and 

phenolic biocides. This was further explained in a later study in which Sveljaru et al 

(2011) demonstrated that mycobacteria were up to 1600 fold more resistant to the 

same biocides than Pseudomonas spp.  

The biocides used by the machining workshop studied here were included in the 

biocides assessed in the two studies carried out by Sveljaru et al (2005, 2011). As 

previously outlined, the first biocide oxoziolidine was the main biocide of use in the 

plant. The isothiazolone containing biocide was used with machines that had “heavy 

bacterial contamination”. The studies set out by Sveljaru et al (2005, 2007) have shown 

that the first biocide is not as effective against mycobacteria as isothiazolone. By using 

the oxoziolidine at first instance, this could have potentially reduced levels of bacteria, 

but allowed the more resistant mycobacteria to remain and grow in the fluid. It has also 

been shown that isothiazolones can be inactivated by thiols and mycobacteria are 

known to release mycothiols (Moore et al, 2000). Therefore, it is possible that the 

release of thiols could deactivate that biocide which could help to explain why 

mycobacteria were present in samples that had been dosed with isothiazolone to 

control contamination. In addition, the authors also showed that M.immunogenum cells 

were more likely to survive the addition of biocides if they were in a MWF medium in 

comparison to a saline medium. Conclusions drawn from their studies suggest that the 

MWF matrix could be acting as a protective medium for mycobacteria once they inhabit 

the MWF. This would be an interesting avenue to explore in future work.  
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5.4.4. Mycobacteria in water samples 

As shown in the results of the M.immunogenum targeted qPCR and 16S rRNA PCR-

DGGE, there was no mycobacteria in the fresh diluted MWF or water samples. This 

suggests that the contamination is a result of inoculation after the MWF entered 

circulation. However, it is still possible that the source of contamination was a result of 

the dilution process.  

After the emergence of pulmonary disease related to inhalation of water vapour from 

hot tubs, humidifiers and pools, it was established that the cause of disease was a 

result of mycobacteria (Utsugi et al, 2015; Moraga-Mchaley et al, 2013; van der 

Zanden et al, 2012). A number of mycobacterial species were isolated from the water 

sources in these investigations. This included M.fortuitum, M.avium and MCC 

members. The association was very strong, in that in some cases the mycobacteria 

cultured from the pool was associated to mycobacteria cultured from patients sputum 

via DNA analysis. Following this, extensive studies into the microbiome of water 

supplies have revealed the presence of mycobacteria (Vaerewijck et al, 2005). This 

revealed NTM present in a variety of water sources such as distilled and potable water, 

hot-tubs and pools (Glazer et al, 2007). Their presence is attributed to their 

opportunistic nature and resistance to water treatment processes such as chlorination 

and autoclaving (Carson et al, 1978). However, the amount of mycobacteria detected 

in water supplies is typically very small.  

To increase confidence in the negative result for mycobacterial DNA from both 16S 

rRNA PCR and qPCR, it was arranged for an occupational hygienist to return to site 

and retrieve water samples from all water outlets on site (the workshop supply and 

canteen supply). Water samples were taken in larger volumes so that they could be 

concentrated prior to DNA extraction. This was to ensure that if there were small 

amounts of mycobacterial DNA present, there would be a higher possibility of detecting 
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it. The result of this analysis revealed no mycobacterial DNA after pre-concentration of 

a larger volume of water.  

Furthermore, whilst the evidence suggests that mycobacteria were not present in the 

water supply on this occasion. It is not possible to say whether the water supply did 

initially contaminate the MWF after dilution. The water may have been contaminated at 

any point. Therefore, the contamination of mycobacteria in the water supply could have 

cleared before sampling took place. Information received by the company stated that 

the water supplies are generally cleaned every 12 months. Therefore, this may have 

resulted in removal of the source of contamination.  

Of all the samples that were found to contain MCC organisms with the 16S rRNA 

based method. When compared with the specific qPCR analysis for M.immunogenum, 

two samples did not show a positive result. Therefore, this suggests that there any be 

other Mycobacteria from the MCC cohabitating the samples. This could be either 

M.abscessus or M.chelonae.  

 

5.4.5. Extracellular proteases 

Substrate zymography analysis of all samples taken from this site on both occasions 

revealed no proteolytic activity and thus no bacterial proteases where detected in the 

fluid. Studies have shown that mycobacteria do release extracellular proteases. For 

example, Gupta et al (2009) detected and identified 33 different immunoreaction 

proteins from M.immunogenum cultures. Out of 33, 4 were identified as secretory. One 

of these i.e., antigen 85A had demonstrated immunogenicity (Gupta et al, 2009). It is 

possible that the stringent control of biocides within the MWF in this case has hindered 

the protease activity. Alternatively, the zymography method was optimised for the 

screening of serine/serine-like proteases and metallo-proteases. Therefore, there are a 
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variety of protocols that could be used to screen for proteases that are less likely to be 

present within the samples. For example, changes to the co-polymerised substrates 

and buffer media. Therefore, although proteases were not detected in the samples, it 

cannot be inferred that they were none present. Thus, further research would be 

required to confirm this finding.  

5.4.6. Analysis of metals  

In Chapter 3, it was shown that a number of metals are detectable at various 

concentrations in used MWF. It was established that some of these metals had links to 

adverse health effects after exposure that included allergic respiratory conditions. 

Therefore, it was important to determine what metals may be present when there was 

an incident of disease outbreaks occurring. 

The result of the metal analysis on the samples taken for this case study showed that 

there were significant levels of metal present within the fluid samples. The age of the 

fluid impacted on the levels of metal present. Therefore, the oldest MWF samples 

appeared to have higher concentrations in comparison to newer samples. In addition, it 

appeared that the analytes present in different samples were attributed to differing 

metal alloys, as there were slight variations in the elements detected in the samples.  

As shown in Chapter 3, it is probable that the type of metals in the MWF, are a direct 

result of what specific metals was being machined. The main metals that the company 

machined were stainless steel and aluminium. The components of stainless steel and 

aluminium alloys include chromium, manganese, iron, nickel, copper, zinc and 

tungsten. Therefore, the detection of these metals by ICP-MS shows that concentration 

of metal present in used MWF samples can be reflected in the composition of the metal 

being machined.  
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Furthermore, the metals detected in MWF taken from this site have been shown to 

have sensitising properties. The association between such metals and adverse health 

effects have been discussed in Chapters 4 and 5. There were higher levels of 

aluminium, iron copper and zinc. 
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Chapter 6 

General Discussion and Future Directions 

MWFs and their mists are complex mixtures that contain both biological and chemical 

hazards. The aim of this study was to utilise molecular and analytical techniques to 

determine the likely contaminants in used MWF and MWF mist. This was achieved 

using different air sampling methods and a variety of techniques such as PCR-DGGE, 

quantitative PCR, ICP-MS, Zymography and Nano-LC-ESI-MSe. MWF samples were 

taken from a variety of sites around the UK in site sampling studies, and a site based 

air sampling study was conducted for comparison. The purpose of this project was to 

analyse hazards in bulk MWF and determine if they are likely to become airborne in 

machine generated mist. This was with the purpose of determining the likely hazards 

that machine operators may be exposed when using MWF for machining processes. 

Some published studies have carried out investigations to determine the causative 

factors of allergic respiratory conditions seen in machine operators (Khan et al, 2005; 

Trafny et al, 2013). However, the exact causative agent(s) responsible for respiratory 

allergy in machine operators remain elusive.  

After considering the possible causes of the allergic respiratory disease in machine 

operators, the main caveat was that it is assumed that hazards are detected in the bulk 

MWF samples, that these same hazards were present in the MWF mist (Burton et al, 

2012). Some of these studies examined whether the mist contained hazardous 

constituents. However, discrepancies were seen between the quantities of hazards 

found in the bulk MWF and those in personal air samples collected close to the 

machines and used to assess the MWF mist (Burton et al, 2012).  

In order to determine whether the levels of biological and chemical hazards in MWF 

mists are related to the same constituents in the bulk MWF samples, it was necessary 

to apply methods to map them. The application of molecular screening techniques as 
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well as chemical sequence characterisation methods such as ICP-MS were considered 

relevant to this task since they can be applied to small sample volumes and to help 

identify a range of organisms and chemicals. By mapping the range of hazards in the 

used bulk MWF, it was hoped to examine MWF mist samples and to establish if a 

specific set of hazards from the bulk MWF were present. 

Molecular analysis using PCR-DGGE on a collection of bulk MWF samples revealed 

the presence of bacteria that have all previously been detected in MWF in other studies 

(Liu et al, 2010; Lodders and Kampfer, 2012). In these samples, Pseudomonads 

sequences appeared to be dominant accounting for 24% of total DNA fragments 

analysed. There did not appear to be any relationship between the presence of 

bacteria and the type, age or location of the MWF.  

In addition to mapping the presence of more common bacteria, it would also be 

beneficial to identify types of potentially hazardous bacteria associated with the 

development of OHP and that might appear in mists sampled. One published study 

concluded that certain types of mycobacteria (e.g., M.abscessus / M.chelonae and 

M.immunogenum) are implicated in the development of OA and OHP (Khan et al, 

2005).This is on the basis that there is established evidence that they are causative 

agents in similar conditions (e.g., Pigeon fancier’s lung and hot tub lung). However, 

evidence for the consistent presence of mycobacteria in MWF bulk and mist samples 

was lacking. Many studies that reported mycobacteria in MWF, in workshops where 

cases of OHP were also detected have nearly all been located outside the UK. Only 

one recent study reported the presence of mycobacteria in MWF’s in a machine 

workshop in the UK, and this study isolated M.avium, which is not the common 

mycobacterial species, detected in MWF (James et al, 2017).  

In this project, mycobacteria from the MCC were detected in 9% of 106 DNA fragments 

detected in samples taken from multiple machine workshops around the UK. In 

addition, mycobacteria were detected in two sites where more detailed site sampling 
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was carried out. The first site had no reported cases of allergic respiratory disease, and 

the second had multiple cases of OHP and ill health that was ongoing.  At the second 

site there were several cases of OHP diagnosed over the last ten years, Mycobacteria 

immunogenum was the most abundant bacteria present in the bulk MWF supply, 

indeed few other types of bacteria were detected. An interesting aspect of this site was 

that they applied proactive management of their MWF supplies to maintain their quality. 

This included proactive monitoring of bacterial growth using dip slide tests and the 

application of tank biocides when there is evidence of small increases in the growth of 

bacteria.  

In addition to identifying the types of hazardous bacteria associated with OHP, which 

may also appear in sampled mist. It is also important to consider the toxins that such 

bacteria may leave behind in the MWF and could subsequently form part of the mist. 

Enzymes that are released by bacteria have been widely overlooked within the 

literature on allergic respiratory disease seen in machine operators. Until now there 

was no evidence in the literature that zymography had been used to screen for any 

proteases in MWF, specifically those of bacterial origin.  

After utilising zymography in this project, it was revealed that proteases were present in 

76% of samples analysed (n=60).  This included undiluted (un-used) and diluted (used) 

samples, in addition to water samples. Moreover, 43% of the bands detected were of 

different molecular weight suggesting more than one type of enzymes present. Based 

on available published studies, this may be the first report of the detection of bacterial 

enzymes in unused and used MWF from machining sites. The results of the inhibition 

studies revealed that the enzymes in the MWF samples were likely to be “serine-like” 

proteases. The class of enzyme is important in these circumstances because, serine 

proteases are known to activate PAR receptors in the lung and induce inflammations. 

As it is expected that there are a variety of microbial enzymes, it has been suggested 

that some are more immunogenic to humans than others (Pokrovsky et al, 2016). 
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After considering the biological components of MWF mist, it is also important to 

consider other non-biological hazards such as metals. The relationship between metal 

containing MWF mists and the development of respiratory conditions has been largely 

overlooked in the literature. Few studies have set out to determine the presence of 

metals from the machining process in air samples taken from machining sites. Analysis 

of MWF bulk samples revealed that there were varieties of metals that contaminate the 

MWF from the machining process. Some of these metals are potential sensitisers such 

as aluminium, nickel, chromium and cobalt. These metals were found at varying 

concentrations in used MWF. In addition, the older MWF tended to contain higher 

concentrations of metals.  

After mapping these hazards in the bulk MWF, the next crucial step was to determine 

whether these hazards are likely to form part of the MWF mist, as it is mist that 

machine operators are being exposed to. In order to do this, a number of air sampling 

techniques where considered. It was important to select air sampling techniques that 

allowed collecting a representative sample from the mist. In the few studies that have 

attempted to determine what actually forms part of the MWF mist, there is little or no 

information provided of the decisions to use certain sampling techniques. It was 

necessary to use techniques that allowed for the representative collection of both 

biological contaminants i.e. bacteria, and metals. This was challenging, as most studies 

that involve air sampling generally focus on the detection of either biological or 

chemical hazards. Therefore, the sampling techniques in this study were selected on 

the basis that all necessary hazards could be targeted collectively. Due to the fact that 

most common causes of allergic respiratory disease are likely to involve biological 

components, it was important to use sampling methods that would increase the chance 

of collecting viable organisms. As DNA based methods were used ensure that the 

toxins of bacteria could be measured, as for analysis by zymography, proteases are 

required to be in their natural state.  
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With this in mind, two liquid based techniques were selected: the SKC liquid impinger 

and the CIP10M sampler. These samplers were used to collect complementary air 

samples to MWF samples from a machining site on two occasions. The first site visit 

(visit one) was in the summer, when the doors and windows where kept open, and the 

second (visit two) was in the winter, where conversely all windows and doors where 

kept closed. Molecular analysis of air sampled taken on the first site visit had shown 

that there were bacteria present in the air, that were also present within the MWF 

analysed. These included Ochrobactrum and Proprionibacterium. Both organisms have 

been detected in MWF samples and corresponding air samples in other studies 

(Perkins and Angenent, 2010). However, in the second site visit, which was carried out 

6 months later in the winter, the molecular analysis of air samples revealed only 

Methylobacterium present in the air samples. Whilst none of the bacteria detected in air 

samples are considered particularly pathogenic, they have been isolated in 

investigations into ill health related to MWF.  

After successfully detecting bacteria in both MWF and air samples, it was then 

important to determine whether enzymes released by bacteria could be forming part of 

the MWF mist. Analysis by enzyme zymography revealed proteases present in two of 

the air samples taken from site (samples 2 and 4). The inhibition profile of these 

proteases revealed that they were the same “serine-like” proteases detected within the 

bulk MWF samples. In order to identify the proteases, NanoLC-ESI-MSe was used to 

perform proteomic identification of the bands taken from the zymogram gels. There 

were a number of proteins identified from the bands. Some of the proteins were 

identified to be of potential bacterial origin such as Archael histone B, HexB, Maf-like 

protein YdHE and cytochrome C-553. However, some of these proteins can also be 

found in other cells such as yeast and mammalian cells i.e., Triosephosphate 

isomerase. Furthermore, a “serine-like” protease from a plant called “mouse ear cress” 

was detected. Whilst this was not from bacterial origin, it was known to have “serine-
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like activity” and it could be speculated that the proteolytic band on the gel was from 

this organism. There has been no evidence of “mouse ear cress” proteases causing 

allergic respiratory disease specifically in humans to date.  

The use of zymography and Nano-LC-ESI-MSe did not provide definitive identification 

to what specific; proteases were present within the air samples taken from site. It would 

be important to continue this avenue of investigation. Without an identification of the 

origins of the proteases within the air, it would be difficult to compare them to the 

proteases within the mist and thus establish if they have a possible relationship to ill 

health seen in machine operators. Therefore, it would be important to perform future 

investigations and optimisations using these methods to gain a better understanding of 

the origins of the proteases. Assessment of more air samples would be useful to 

provide a better picture of the different types of proteases that may be detected within 

machining environments. Thus, it could be determined if they have a possible 

relationship with the development of allergic respiratory conditions. Furthermore, it may 

be possible to explore the quantitative uses of Nano-LC-ESI-MSe to quantify and 

proteins detected in both MWF and mist samples. As outlined in this research, 

quantification of proteases present in both MWF and MWF mist samples has not been 

successful, using substrate fluorescence based assays. 

Nevertheless, with the application of analytical techniques to mist samples, the results 

of this study have shown that potentially sensitising metals would be detected within air 

samples. Although metals were detected in MWF and the air samples, none of these 

individual metal concentrations exceeded the recommended WELs. However, this does 

not necessarily mean that these levels are too low to cause adverse health effects.  

One important question that this project sought to answer was; whether there was 

evidence that the air in machine workshops contains sufficient MWF hazards to cause 

respiratory disease. 
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After considering the hazards detected in both MWF and mist samples as part of this 

project, it is evident that there is some relationship between the MWF and the 

surrounding environment. For example, bacteria have been detected in the air that was 

otherwise detected in MWF; boron was consistently detected after ICP-MS analysis in 

both MWF and air samples, which suggests it is highly likely to have come from MWF 

aerosolisation. However, if we consider the question: Is there evidence that the air in 

machine workshops contains sufficient MWF hazards to cause respiratory disease? 

This cannot be confirmed or denied by the results of this project. However, there are 

some important findings to consider. 

Mycobacteria, which have been strongly associated with allergic respiratory disease, 

have been detected in used MWF bulk samples in this project. They were detected in 

two site sampling studies. One with no reports of ill health and the other with a number 

of employees inflicted with OA and OHP. However, although mycobacterium was 

detected in the MWF, it was not detected in the air samples. This is an important 

finding, as it contributes to the debate of what actually forms part of the MWF mist. It is 

unclear as to why some organisms detected in the MWF could be detected in the air 

but have not been observed. Due to the historical association of allergic respiratory 

disease and mycobacteria exposure, it is important to determine whether mycobacteria 

do become airborne as part of the MWF mist.  

While the relationship of mycobacteria and its potential aerosolisation as part of MWF 

mist, is not well established, comparison with the aerosolisation of mycobacteria from 

hot tubs, which has been elucidated, is appropriate. It has been shown that 

mycobacterial cell walls are hydrophobic (Williams et al, 2009). Therefore, they can 

attach and enrich around air bubbles formed in water. When the bubble reaches the 

surface, they eject the mycobacteria from the droplets into the air (Parker et al, 1983). 

This can cause a 1000 fold increase in the amount of viable cells per mL that become 

airborne from hot tubs or pools (Parker et al, 1983). It has also been shown, that the 



257 

 

aerosolisation of mycobacteria in suspensions can be influenced by physiochemical 

conditions, which can manipulate the concentrations released. For example, the 

presence of salt and detergents can reduce the transfer from the water to the air by the 

ejection of droplets (Parker et al, 1983).  MWFs are understood to contain additives 

such as surfactants and salts (at a variety of concentrations); therefore, it is possible 

that the environment of some MWFs will affect the dispersion of mycobacteria from the 

MWF suspension.  

Considering the evidence taken from the literature regarding how mycobacteria 

become aerosolised in other instances, and the results of this project. A question to 

consider is whether there are possible, methodological shortcomings when sampling 

MWF mist for mycobacteria. There are reported incidents where mycobacteria have 

been detected in air samples in machining workshops (Duchaine et al, 2012; Moore et 

al, 2000). In these incidents, different air sampling techniques where used. The most 

common sampling technique was the use of an Anderson stage impactor. This method 

relies on the impaction of air particles directly onto an agar plate. If these studies 

successfully detected viable mycobacteria via culture techniques, one could argue that 

there is no reason why molecular techniques could not detect any mycobacterial DNA.  

In order to understand this relationship, it would be important to conduct further 

controlled studies. This would be to determine if the composition of the MWF influences 

the dispersion of mycobacteria in the air. Alternatively, whether the techniques used to 

sample MWF mists are not effective for mycobacteria.  

This could be carried out with the use of the calm air chamber at the Health and Safety 

Laboratory. In safe and controlled experiments, various mycobacterium containing 

fluids at varying concentration could be aerosolised into the chamber. A number of 

different samplers could be utilised and the result across each sampler compared. By 

performing controlled experiments in this manner the following questions could be 

answered 
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1. Do mycobacteria become aerosolised as part of a MWF mist? 

2. Does the composition of MWF affect the aerosolisation of mycobacteria? 

3. What sampler is most effective at gaining a representative samples of airborne 

mycobacteria dispersed from a suspension? 

By answering these questions, it would be possible to move forward with this research. 

In the site based study in Chapter 5, M.immunogenum was detected in all the used 

MWF samples. The company involved have ongoing cases of respiratory diseases 

such as OA and HP. Therefore, in future research it would be important to perform site 

based air sampling at this site. This could provide useful information about what is 

becoming airborne from the MWF. By establishing the answer to these questions, it 

would provide a better chance of isolating the organisms within the air, and provide 

stronger evidence as to what the machine operators are being exposed to.  

Nevertheless, whilst there is some evidence to suggest that components of MWF mist 

are detectable in air samples, it is unclear whether this could be affected by the 

proximity of the sampler to the main source of mist exposure (enclosure door, 

compressed airlines). One suggestion would be to determine whether sampling 

position could affect the outcome of mist sampling. By placing the samplers closer to 

the machine enclosure doors, it possibly increases the likelihood of generating a more 

representative sample of the mist generated. In this project, the sampler that was 

placed closest to the machine enclosure door had the highest levels of all metals that 

were screened, including boron, which is a clear indication of MWF mist generation.  

In this project, personal sampling was not utilised. Static samplers were positioned at 

locations of highest probability of mist exposure, due to high machining activity. 

Therefore, it could be possible that in order to gain a representative sample of the mist 

containing any potential hazards the sampler needed to be placed much closer to the 

machining tool in operation. Personal samplers are run at a much lower sampling rate 
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of 1 – 2 L/min-1. Therefore, a static sampler run at 10 – 12.5 L/min-1 would be more 

likely to collect sufficient levels of DNA or cells. Yet again in the study conducted by 

Moore et al (2000), they also analysed the filters of mist extractors attached to the 

machines. Analysis revealed no mycobacteria present within the mist extraction filters. 

Therefore, these samples are taken in a “worst case” event if an individual was directly 

exposed to large amounts of mist and this may provide a better representation of the 

types of exposure that occur within a workshop.  

Personal samplers may also be used in the proposed calm air chamber study because, 

by placing the samplers inside the chamber where the MWF mist is dispersed, this is 

taking a sample at the “worst case” scenario as mentioned previously. Therefore, the 

results obtained from these samplers could be compared to the static sampling 

techniques. 

In the circumstances, where these questions remain unanswered, further research is 

needed to target specific components of the mist. It would be reasonable to consider 

that the overall air environment in the machining workshop could be considered as a 

target. The rationale for this is that after screening for bacteria within machining 

workshops, there were also bacteria detected that were not present within the MWF 

mist, these included Sediminibacterium, Herbaspirrilum, Burkholderia and 

Methylobacterium. These bacteria are not known to be particularly pathogenic. 

Nevertheless, this highlights that there are other components in the air of the 

machining workshops that may have been overlooked. Therefore, to address this, it 

may also be relevant to perform site based analysis as an environmentally targeted 

study. This could be carried out with a range of static samplers strategically placed 

around the machining floor. By focusing on sampling as much air as possible in the 

machining environment by using higher flow rate samples. A more representative 

sample would be obtained of the air within the machining environment, and a higher 
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flow rate would increase the chances of detecting components where the levels may 

have been too small to detect when personal sampling is deployed. 

 

6.1 Concluding remarks 

This study has demonstrated that it is likely that contaminants and constituents of MWF 

become airborne during the machining processes. However, it remains unclear as to 

whether the components of the MWF mist that do become airborne are sufficient to 

cause the adverse effects seen in machine operators. This lack of evidence may be 

attributed to the sampling techniques used to collect MWF mists. Therefore, further 

research is required to study the different sampling techniques available to sample 

MWF mists and to determine whether they would meet the threshold to initiate the 

development of allergic respiratory disease seen in machine operators.  
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