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The amount of information collected by personal health records, smartphone ecosystems, and
other cloud services has increased enormously in recent years. This has, for instance, led to
new ways of automated physical exercise assessment, but this also introduces the potential for
novel methods and applications in the automated evaluation of various mental factors such as
cognitive state and stress. Extracting such latent variables holds considerable promise, in
particular in group-level analysis. Furthermore, the current initiatives and research programs
collecting masses of health data from large cohorts create opportunities for developing the
methodology.

The lack of targeted research is partially hindering the development of the analysis
of obscure factors, progress of machine learning and other algorithmic solutions, and the
evolution of novel applications and technologies. As described in this introduction, various
features inherent in biosignals increase the complexity in the research. In this thesis I provide
an introduction to the emerging ubiquitous recording of physiological signals, its effects
on the industry, opportunities for organizations and management, and data analytics and
measurement techniques. The aim is to seek the future prospects of systemic scenarios and
large-scale initiatives.

The original publications reviewed in this thesis seek biosignals for features responsive
for cognitive states such as stress and, more interestingly, second-order factors derived
from inter-individual responses and activations. By introducing more complex features to
psychophysiological research, group analytics can be further developed. Second-order analyses
provide robust signal features and may lead to advanced applications in assessing well-being
and performance. The original publications consist of three research articles and a primer
review. The experiments include recordings of magnetoencephalography (MEG), heart rate
variability (HRV), and electrodermal activity (EDA), and they exemplify systemic use cases
of biosignals. The included primer review discusses general methods in psychophysiological
research in human–computer interaction (HCI).

Together with this introduction, my experimental results provide evidence that taking
psychophysiological measurements from the laboratory to ecologically valid environments is
plausible and effective. The literature suggests that consumer-grade devices and personal
internet of things will revolutionize myriad sectors, e.g., organizational management. Together
with an exponentially increasing data collection and novel applications, the industry will have
large economical impacts.
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Henkilökohtaisen terveystiedon kerääminen ja tallennus on lisääntynyt valtavasti viime vuosina.
Monet käyttävät tietoa esimerkiksi fyysisen harjoittelun tukena. Tämän lisäksi mitattua
tietoa on alettu hyödyntää esimerkiksi stressitilojen tunnistamisessa. Tällaista fysiologisten
signaalien arviointia kutsutaan psykofysiologiaksi. Jatkokehityksen avulla tällaiset piirteet
sopivat varsinkin ryhmäanalyyseihin ja suurempien joukkojen arvioimiseen. Menetelmien
kehitystä tukevat useat suuret väestötason tutkimusavaukset.

Toisaalta juuri kohdennetun tutkimuksen puute osaltaan hidastaa tallennetusta tiedosta
eristettävien piilevien piirteiden hyödyntämisen yleistymistä uusissa algoritmeissa ja sovel-
luksissa. Tässä yhteenvedossa esittelen, mitkä asiat vaikuttavat osaltaan tähän kehitykseen.
Esittelen fysiologisten signaalien mittaamisen taustoja, sekä mittausmenetelmien kehitystä.
Lisäksi pohdin kaupallisten sovellusten mahdollisuuksia ja muita tulevaisuuden näkymiä.
Johdanto-osuus toimii siten taustamateriaalina soveltavalle osiolle ja liitetyille osajulkaisuille.

Osajulkaisut tutkivat kohdennetummin biosignaalien soveltuvuutta kognitiivisen toim-
intakyvyn arvioimisessa. Jäljemmät julkaisut keskittyvät useiden yksilöiden biosignaalien
kovarianssia hyödyntäviin menetelmiin. Tällaiset menetelmät luovat pohjaa kehittyneem-
mille analyysitavoille ja signaalien yhä tehokkaammalle hyödyntämiselle hyvinvoinnin ja
toimintakyvyn arvioinnissa. Kolme ensimmäistä osajulkaisua ovat kokeellisia tutkimusar-
tikkeleita ja viimeinen on katsaus olemassa olevaan tutkimukseen. Tutkimusasetelmissa
hyödynnetyt fysiologiset menetelmät ovat magnetoenkefalografia (MEG), sykevälivaihtelu
(HRV) ja ihosähköinen vaste (EDA). Katsaus toisaalta tarkastelee psykofysiologian hyödyn-
tämistä tietokoneen käyttöliittymätutkimuksessa (HCI).

Yhdessä tämän yhteenvedon kanssa tutkimustulokset edistävät mittausmenetelmien
hyödynnettävyyttä luonnollisissa ympäristöissä, sekä psykofysiologisten signaalien käyttöä
vaihtelevissa ja kontrolloimattomissa olosuhteissa. Kirjallisuudesta löytyy viitteitä kulutta-
jalaitteiden ja esineiden internetin kasvusta ja potentiaalista mullistaa useita sektoreita, kuten
organisaatioiden ohjaus. Lähteet ennustavat myös markkinoiden kasvua. Yhdessä kaikkialle
levittyvä tiedon kerääminen ja uudet sovellukset sekä datalähtöiset analyysimenetelmät voivat
johtaa suuriin muutoksiin.
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Objectives and Scope

This work contains my efforts made in the last years in the field of psychophys-
iological data analysis and neuroscience. Most of the work has been done at
Finnish Institute of Occupational Health in collaboration with University of
Helsinki, Department of Computer Science and Cognitive Brain Research Unit.
However, during these years I have also visited Université de Montréal, Interna-
tional Laboratory for Brain, Music and Sound Research and McGill University,
Montreal Neurological Institute and Hospital to consult and improve my work.

The main motivation of the work is the emerging ubiquitous measurement
of physiological signals, such as activity and heart rate (HR). Increasing density
of consumer-grade devices provides opportunities for new business models,
increased well-being in everyday life, and new methods for organizations to
improve functionality. The bottleneck in implementing novel applications is
the scarcity of research in above mentioned signals. As introduced later, the
physiological data rarely maps directly to the psychological domain and extract-
ing meaningful features from physiological signals is problematic. However,
accumulating data combined with comprehensive research and development
on analysis techniques may help overcome these hindrances.

The original publications in this thesis do not conclude the entire research
I have been involved in during my studies. The publications discussed here
examined following concerns:

• Test-retest stability of brain responses sensitive to a cognitive task

• Utility of slow autonomous nervous system responses in assessing collab-
oration in cognitively demanding ecologically valid setting

• Efficacy of applying faster autonomous nervous system responses in
assessing the affective valence of cognitively demanding situation

• A primer review of psychophysiology in human-computer interaction

The main contributions of the work tackle questions in psychophysiology
on individual and group level. The experimental research focused on reliability
and replicability of psychophysiological measures. While the attached review
together with this introduction discuss on use cases and future potential of

xiv



the signals. First experiment presents central nervous system (CNS) based
paradigm to investigate the stability of neural activations, from which, also the
autonomic nervous system (ANS) signals derive, thus, providing foundation for
ecologically valid settings employing ANS based measures. The latter research
articles examine ANS The original publications consist of three research articles
and a primer review. As will be explained in corresponding sections, the
experiments involved recordings of magnetoencephalography (MEG), heart
rate variability (HRV), and electrodermal activity (EDA). The review discusses
general methods in psychophysiology in human-computer interaction (HCI).

The contribution of the first original publication (Publication I) is, as
mentioned, evaluating the consistency in neural activations in cognitively
demanding tasks. The suitability of these results for real world application
and less controlled environments are discussed in this thesis.

Publications II & III explore the accessible methods for recording and clas-
sifying ANS derived psychophysiological responses. In particular, we studied
educational situations and automated classification for cognitive stressors in
group analysis. Also for these results I discuss about generalizability.

The review (Publication IV) is attached to the original publications to the
extent of the parts I authored. These parts discuss about CNS, particularly,
electroencephalography (EEG) based measures suitable for applications in
HCI. The review is not introduced in separate section, rather, the analyses
and the notions are presented as a part of the backgrounds and the state of
the art methods reviewed in Chapter 2.

Chapter 1 provides a general introduction and situates the thesis to the field
of health technology. Next, Chapter 2 presents the history and the current state
of the art in applicable physiology and presents the analysis methods for the
signals introduced. Chapter 3 provides objectives and methods of the original
experimental publications. Also the main outcomes of the experimental studies
are described and discussed here. The general discussion with perspectives
of the future follows in Chapter 4 and the concluding points are provided in
Chapter 5.

xv





Thesis





Introduction

1 Introduction

The internet of things (IoT) and emerging ubiquitous personal data collection
will revolutionize healthcare and health technology sector. IoT is a concept
of advanced connectivity of devices, systems, and services beyond machine-
to-machine scenarios [49]. Ubiquitous data collection and personal data are
related concepts of accumulating records of information by various devices
and systems [60, 91]. In healthcare and health technology sector the records
consist mainly of data collected by national health programs and multinational
corporations, stored in electronic health records (EHR) [101] and personal
health records (PHR), respectively. The legislation and ethical concerns of
such databases have been under critical discussion for the last decade [75].
However, accelerating research and development of applications and services
enabled by the accumulating information remains at its infancy [51].

Nonetheless, healthcare and health technology sector are major industries
benefiting from the IoT development [51, 110]. Integration of developing IoT
environment and novel analysis methods provides opportunities and capabilities
to form synergistic integrations for everyday environment and physiological
recordings to improve well-being and prosperity. Research on generalizable
analysis methods may enable the implementation of automated assessment of
cognitive state, stress, and other well-being related topics.

Data-driven approaches to optimize physical well-being dates back to
ancient Greece [43]. Sport sciences is a field with highest number of applications
for personal data [54]. In addition to measuring the performance in during
the practice modern athletes apply also many other methods from metabolite
monitoring to video training. Many modern training programs are facilitated by
technology. Cardiorespiratory fitness that has been an established measurement
in sports from mid 20th century [106] provides a tech intensive example of the
current trends. Current methods involve abundance of wearables, the same
devices available to general public [66]. Many companies are interested in the
development of new sensor technologies, measurement devices, and entirely
new ways of measuring physiology. Scientific scrutiny has also been applied to
performance of consumer level devices and their reliability and advantages in
training [111].
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While the quantitative tracking of performance has been established among
amateur athletes and training enthusiasts it has also got footing beyond sports.
So called quantified self movement undertake quantitative tracking of various
parameters for a better life [100]. Here technical gadgets provide methods to
maximize the available data for managing and governing habits and behavior.
These practices have also been adapted in tracking cognition, its components
and other psychological features, such as stress, vigilance, and learning.

As this endeavor of devoted pioneers evolved into a recognized movement
with myriad business opportunities, various health technology companies have
improved their products to better serve the needs of also the research and
development. This progress includes such disciplines as data fusion, integrative
tracking, and open-source solutions. These solutions are supported since the
business models often rely on mass data. While individuals gather information
to improve their daily lives, companies and other entities get to collect huge
amounts of health and activity related data. New layer of industry and
research now tackles questions of how to extract meaningful information from
tremendous sensor data streams.

Although there are lots of noise sources in every day tracking of physiological
and activity based signals, gathering data from a crowd provides opportunities
to analyze various latent and unforeseen features, such as collaboration or group
performance [35, 21]. This has brought quantified self approach to different roles
in life, e.g., to workplaces or traffic. Even with very noisy signals, group based
analytics and second-order features may, for instance, improve management
in workplaces or help in decisions in society. Group-level analyses provide
alternative methods to assess teamwork and other collaborative situations [82].
This also alleviates the concerns of privacy: while the group level parameters
may provide useful insights, data from an individual user would still be too
low in information to disclose single cases.

Ultimately enough gathered data could provide a normative set to help
assess all consecutive use cases and lead to novel applications. This could
contribute to better functioning organizations and communities. Many of
the startups in the field of human resources apply data-driven approaches
for promoting performance and satisfaction at work. By analyzing group
level features new and efficient management tools are been developed. These

4



Review of psychophysiology

together with increased available data could lead to more agile management
and improved well-being. [12, 105].

2 Review of psychophysiology

This chapter provides introduction to health technology, analysis methods,
and measurement tools for psychophysiology and human cognition. I briefly
describe the basis for the philosophy and biology behind the measures and
then provide introduction to the state of the art methods. The chapter has
references to Publication IV.

2.1 Neural basis of the human mind

First I will briefly discuss the neural basis of cognition, affection, and conation.
I will present the current ideas and how they are derived from historical
viewpoints. Presenting some neuroscience serves as foundation for latter
psychophysiology presented (see Section 2.3).

Cognition, affection, and conation are intertwined conceptions. Neverthe-
less, the purported division in the three has fascinated philosophers throughout
history. Probably, because data arising from a single-unit or lesion studies
usually allows the researcher to derive conclusions only concerning the specific
phenomenon targeted. However, I argue that the distinction between the
rational and emotional components or processes of mind is insufficient. If we
are to understand how complex behaviors are related to neural processes an
understanding of the interactions of these two is indispensable.

For instance, a brain structure known as the amygdala plays a crucial role
in emotional processing. The role was recognized already in 19th century but it
was not until 1937 when James Papez suggested the mechanisms how amygdala
contributes to the processing of emotions [84]. Since his seminal article the
suggested emotional network has varied greatly [85]. Also detailed study
on amygdala itself has revealed spectrum of cognitive-emotional functions
that this limbic structure contributes to [52]. Strong evidence suggests a
central role in both salience and valence, i.e., the relevance and attraction
processing, respectively. These are important attributes in, e.g., priming for
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learning. Especially attention and associative learning have strong correlations
to amygdala activations. [46]

Vice versa, neocortical regions have historically been related to cognitive
functions. For instance, the prefrontal cortex (PFC) has been related to cogni-
tive control and direction of attention [15]. Several more recent studies have,
however, shown that the PFC strongly contributes to emotional processing
[58] as well. It has also been demonstrated that the cognitive and affective
functions related to PFC activations are strongly interconnected [85].

Scientific scrutiny has advanced from anatomical structures to the functional
networks in the brain. Hence, the exact anatomical locations of abstract
concepts such as the extended emotions, or even the primary emotions are no
longer in the focus of neuroscience. Modern models describing abstract mental
concepts include all, cognitive, affective, and conative processes [98, 99]. Also
a controversial research line states the interconnections between the tripartite
classification are crucial. They suggest that cognition and affection are merely
different stages of the same processes [26].

Altogether, in studying such concepts as stress, motivation, mood, etc.,
it is clear that several structures and networks contribute to the activation
patterns that finally can be measured and interpreted as a psychophysiological
index (see section 2.3). The indices are further converted to meaningful factors
in models describing the phenomena of interest. A famous example of such
model is the valence/arousal emotional circumplex (Figure 1), in which the
neural underpinnings of measurable physiological changes can be interpreted
as salience and valence of a stimulus.

To conclude, despite the seemingly hierarchical structure between, e.g.,
low-level need and motivational decision-making, all the neural processing
contributes to the dynamic relationship between the mind and the body. Only
by understanding humans as a whole, real impacts in automatic evaluation of
cognitively and emotionally demanding situations can be achieved.

2.2 Electrophysiology

Electrophysiology is the branch of physiology that deals with the electrical
properties of biological systems, from the study of microscopic scale electro-
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Figure 1: The simple emotional circumplex model, with orthogonal bipo-
lar dimensions of arousal (from alert to lethargic) and valence (pleasant to
unpleasant). [93]

chemical phenomena in, e.g., cell membranes to measuring electromagnetic
fields generated by whole organs, e.g., the heart or the brain.

The study of electrophysiology traces back to 18th century to experiments
conducted by Luigi Galvani on "animal electricity" [87]. However the electrical
properties of a single neuronal cell were unraveled only in 20th century. Patch-
Clamp technique developed in 1978, by Erwin Neher and Bert Sakmann [79],
who received the Nobel Prize in Physiology in 1991, can measure intracellular
differences in electrical potentials.

In extracellular methods the techniques range from single unit recordings
to local field potential (LFP) measures. Single unit recordings usually detect
the activity of one neuron. In the LFP recordings, a signal is recorded using
an extracellular microelectrode, placed sufficiently far from individual neurons
to prevent any particular cell from dominating the electrophysiological signal.
Thus, the recorded signal is a sum of a neuronal population of interest.

Instead of using such microscopic techniques the physiological measure-
ments applicable outside laboratory environments record electric fields observed
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due to such phenomena as the volume conduction (see Section 2.2.1). These
techniques are less invasive and suitable for everyday use in healthy individuals.
The techniques include but are not limited to:

• Magneto- / Electroencephalography (M/EEG) - for recording synchronous
activations of cortical neuron populations

• Magneto- / Electrocardiography (M/ECG) - for recording the electrical
activity of a functioning heart

• Electrodermal activity (EDA) - changes in electrical conductivity of skin
due to sweating

• Electromyography (EMG) - for recording the electric fields of muscle cells
causing the muscle contraction

• Electrooculography (EOG) - for recording the eye movements based on
static electrical potential caused by retina

In my research I have been working with the three first items in the list.
The following sections describe the physiological basis of these three signal
types and present classical measuring schemes. The schemes presented are the
basis for novel applications built over ubiquitous measuring.

2.2.1 Electroencephalography and Magnetoencephalography

In a functioning brain, the neural populations in cortices firing in synchrony
generate electric and magnetic fields that are measurable from a distance.
The firings are generated from flows of ions, as cascade of action potentials
by connected neurons cause excitatory postsynaptic potentials (EPSPs) to
depolarize the apical dendritic tree. This electrical potential difference travels
through the soma all the way to basal dendrites. The currents contributing to
electrical and magnetic fields measurable outside the scalp are combinations
of these intracellular currents, i.e., primary currents, and the extracellular
return currents, i.e., secondary currents, that conserve the electric charges in
the system. When tens of thousands in parallel oriented pyramidal cells on
the cerebral cortex activate synchronously, fields strong enough to be detected
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with MEG and EEG are generated. Despite the obvious similarities EEG and
MEG are rather complementary than redundant techniques [5]. However, the
recorded signals are caused by the same volume conduction and intracellular
currents, thus, in case of exploring the consistency of neural activation patterns
in meaningful events the techniques detect fields from the whole brain and
thus essentially provide the same information.

The simulations have suggested and invasive studies have confirmed that
macrocellular current density of the cortices is around 100 nA

mm2 [48]. This
constitutes that the empirical observations of the natural brain activity EEG
and the MEG measurements are at least 5 mm × 5 mm areas of synchronous
pyramidal cell depolarizations, and usually the generators of detectable activity
are much larger. Overall EEG and MEG measurements are characterized by
poor signal to noise ratio. However under specific circumstances signals can
be analysed without noise cancellation techniques.

While the EEG analysis benefits from technological developments, the
basic principle remains unchanged from the time when Hans Berger measured
the first traces of the electrical activity of the brain in the 1920s [11]. The
EEG consists of measurements of a set of electric potential differences between
scalp electrodes and a reference electrode. The set of locations for electrodes
placed on the skull is called a montage. In the MEG the electrodes are replaced
with an array of SQUIDs (Superconducting QUantum Interference Device).
SQUID was first developed by James Zimmerman’s team in the 1960s, who
also conducted the first human magnetocardiography (MCG) experiment at
Massachusetts Institute of Technology. First MEG was recorded few years later
by David Cohen [23] in the same institute. A typical EEG system uses 32 or
64 electrode montages while also some systems with even 256 electrodes have
been developed. Current MEG systems use arrays of circa 300 magnetometers.

Modern systems use individual magnetic resonance imaging (MRI) data
for source localization. The neural underpinnings of the EEG and the MEG
data are resolved with quasi-static approximations of the Maxwell equations
on electric fields [73]. Permittivity describes how particular medium resists
electrical and magnetic fields. The electrical properties vary substantially
depending on the medium, while the magnetic properties are more homogeneous
in the human tissues. Thus, in the EEG the situation is more complex. Due to
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permittivity differences, distortion in the recorded electric fields are unavoidable.
This implies that the recorded volume currents deviate significantly from
idealized models. Large body of studies tackles the localization problems and
computationally intensive methods have been developed [6]. Due to smaller
variation in magnetic permittivity, in the MEG rather simple forward models
can be built to localize the neural generator for the observed activation patterns
of the sensors, however this is an oversimplification, and also for the MEG use
of more sophisticated models is recommended [6].

The EEG and the MEG signals carry information from neural oscillations
that have been categorized based on their spectral attributes. Historically four
major frequency bands have been defined although higher and lower frequencies
have been accepted since [24]:

• The frequency band from one fifth of a hertz up to 4 Hz is called the
delta band. Oscillation in this band is often found in epilepsy and other
dysfunctions. Large delta waves can also be recorded in deep sleep.

• The frequency range from 4 Hz to 8 Hz is called the theta band. High
amplitude theta waves are associated with drowsiness and often found
in young children. The oscillation in this band is modulated by the
limbic system. Large theta waves can also be observed in states such as
hypnosis, trances, deep concentration and light sleep.

• Alpha waves are oscillation in frequency range from 8 Hz to 12 Hz. They
are characteristic of a relaxed but vigilant state of consciousness and
are present from early childhood. They are attenuated when the eyes
are open and amplified with relaxation. They are posterior dominated,
especially when the eyes are closed.

• Frequency band from 12 Hz up to 30 Hz is called the beta band. Multiple
and varying frequencies in the band are often associated with an active
concentration, the salience and the emotional valence of stimuli. Dom-
inant beta oscillation is associated with various pathologies and some
drug effects. An important subcategory in beta band is the sensorimotor
rhythm (SMR), also known as the μ-rhythm. It is found in frequency
range from 12 Hz to 16 Hz. The oscillation is most prominent in parietal
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areas. It is attenuated by physical movements and thus associated with
physical stillness and body presence.

• The waves in the frequency range from 30 Hz up to 90 Hz are called
gamma oscillations. Gamma rhythms are found to be involved in, e.g.,
active perception, problem solving, fear, and concentration.

The term oscillation is often used rather loosely in the EEG/MEG research,
since oscillation would require distinctive power peak in the analyzed frequency.
In EEG/MEG analyses often the total power in a band is used to describe
oscillations. However, as the rhythmic activity of large neuronal populations is
the basis of the gathered signal also advanced analysis techniques rely on them.
The more advanced signal analysis utilize temporal dynamics in localized
populations including power changes, phase shifts and more complex features
such as functional connectivity to other areas.

Subsequent features extracted from EEG/MEG signals derive specifically
from event related synchrony and desynchrony (ERS/ERD) [86] that are due to
an increase or a decrease in synchrony of the underlying neuronal populations
in a specific frequency. The phase-shift and other reorganizations of the phases
in the ongoing activity in the networks is also one contributing factor in an
analysis method called event-related potentials (ERP, or event-related fields
(ERF), in MEG) [107]. Like oscillations these time- and phase-locked signal
averages have spectral and spatial properties that can be used as features
in analyses. Another type of event-related activation is induced activity
[9]. Induced activity is not necessarily phase-locked to the event but rather
increased power in a localized oscillations of change in frequency of a localized
oscillation.

Historically the ERPs are explained as transient evoked signals following
from a receptor cell stimulation resulting a cascade of measurable neural
potentials [88, 89]. Albeit, as explaned above, ERP can also follow from
modulations of ongoing activity. The ERPs are traditionally averaged over
tens or hundreds of repetitions of the stimulus to discover the particular
excitation related to investigated stimuli. And especially in the case of EEG
(when source localization is not used) average is also computed over the
different individuals to produce a grand average. However, in some cases the
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ERPs can be recognized even without averaging [69]. These single-trial ERPs
provide more naturalistic settings for the study of evoked brain activations.
Nevertheless, usually the averaging is required and thus ERP studies are
more typically used in laboratory conditions. Evoked activations suitable for
ecologically valid settings, such as ERS/ERD, discussed in detail in Section
2.3.2.

The MEG is a laboratory based method while the EEG can be recorded
with variety of ambulatory devices. These devices record continuous changes
of voltage over time. Usually electrodes are located in standardized placements
over the scalp and are prepared with conductive gel although dry electrode
technologies are evolving and suitable for many situations. Signals are recorded
comparing ground electrode to other electrodes or between an electrode pair,
namely monopolar or bipolar recordings respectively. The signals are amplified
usually in two phases, resulting gain is typically 60-100 dB. The potential
difference of two electrodes on scalp varies from -100 to 100 μV but on cortex
(requires invasive electrocorticogram) the amplitude is around 1 mV. The
scalp attenuates the signals with factor of 10. For the ERPs amplitudes are
around 10μV. In the MEG the magnetic field generated by the alpha rhythm
is fractions of 1 pT, millions of times weaker than the Earth’s magnetic fields.
The amplitude of the evoked activity in MEG is tenth of that. The MEG
needs to be recorded in a magnetically shielded room to prevent artefacts from,
e.g., electric cords and the fluctuations in the magnetic field of the Earth.

2.2.2 Electrocardiography and Magnetocardiography

Electrocardiography (ECG) and magnetocardiography (MCG) are methods
that measure and record electromagnetic fields produced by the heart. The
ECG was developed by Willem Einthoven in the late 19th century [50]. He was
awarded the Nobel Prize in Medicine in 1924. The MCG was first recorded in
the 1960s [8]. ECG and MCG signals originate from muscle fibers in the heart.
The registered traces convey the information of the heart rate and activation
pattern of the muscular fibers in the system.

The contraction of the heart muscle is caused by cells called myocytes.
When the sinoatrial (SA) node in the upper part of the wall of the right
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Figure 2: Illustration of one electrical cycle of heart. The segments illustrated
above the trace denote activity in different parts of heart. First segment from
the left depicts P wave, second the QRS complex, and the segment in the right
the T wave. The RR (or inter-beat) interval (IBI) below the trace illustrates
one cycle in heart activity.

atrium fires an electrical signal, the myocytes depolarize and compress rapidly
allowing sodium to flow into the cells. This series of activations produce a
distinct wave in the electrocardiogram (see Figure 2) named the P wave. The
depolarization slows down when the sodium cascade reaches the atrioventicular
(AV) node. Here the process reverses and the cells allow potassium flow from
the intracellular medium to outside. In the ECG trace this shows as a gap
between the P and the R complexes. Once the signal moves forward from
the AV node it reaches the ventricles and again a rapid contraction occurs.
This produces the R complex to the ECG trace. The rest of the cycle is
repolarization which has a distinct trace from the depolarization due to tissue
reforming and reverse flow of the ions. In the trace the last part is called the
T wave. It represents the repolarization of the ventricles [28].

The nervous system regulates the heart rate by separate ganglia in and
around the SA node by exciting and inhibiting the SA node firing rate and
altering the width of the P and the T complexes in the ECG trace by adjusting
conductivity in the tissue. The electrocardiogram contains abundant informa-
tion on functioning of the heart itself. However fluctuations in it are interesting
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as they can be studied with digital techniques to interpret the activation of
the ANS. The ECG trace has been used as a diagnostic tool since early 20th
century but digital analyses are not more than few decades old. One interesting
feature of the ECG are the HRV parameters [20]. Numerical methods have
been used for more complex analysis, e.g., separating mother-foetal signal or
to characterize the individual features in the ECG trace [31].

In the clinical settings the ECG is measured with a ten electrode system.
Six of the electrodes are placed on the chest, and four on the limbs. ECG is
assessed against a baseline since the magnitude of the recorded signal depends
on size of an individual and other properties of the body. In a clinical ECG
recording 10 electrodes are used in a 12-lead setting. The 12 connections
contain three bipolar and nine monopolar signals. Typical voltage levels on
chest, during the R-peak are up to 1 mV. The bipolar potentials are measured
from limbs; right arm, left arm, and left foot. Using these connections a
reference point for the chest electrodes is computed. Using a multi-lead setting
source localization is possible. Localization techniques are briefly discussed in
the context of the brain signals in Section 2.2.1. However, also systems with
fewer electrodes are adequate in, e.g., HRV feature analyses.

2.2.3 Electrodermal activity

Electrodermal activity (EDA) is a term generally used to describe changes to
the electrical properties of the skin caused by autonomic nervous system (ANS)
activations. The EDA is a widely exploited response system in the history of
psychophysiology. Its study dates back to the 19th century [17]. Terminology
have been changing accordingly, though the term galvanic skin response is
still commonly in use. However, one should prefer modern terminology, which
constitutes of three letter acronyms namely, starting wih S for skin, and
then expressing the unit used (R for resistance or C for conductance), finally
announcing either R for response or L for level, giving, e.g., skin conductance
response (SCR). The difference with response and level is explained in Section
2.3.4.

There are two types of sweat glands in the human skin, namely eccrine
and apocrine, for sweat excretion and for delivering hormonal compounds,
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respectively. Given that the main function of human sweat glands is thermoreg-
ulation, especially those eccrine glands located on palmar and plantar surfaces
have been serving other functions as well. It has been hypothesized that they
are related to grasping behavior and thus more responsive to significant and
threatening stimuli [37]. This has been proposed as a main cause for psycho-
logical sweating, the phenomenon of interest when measuring EDA. Although
the eccrine glands on palmar and volar surfaces are believed to be involved
in distinct psychological sweating other locations express similar patterns of
activation. But palm sweating is usually most evident because of the high
gland density when compared to other parts of the body.

The EDA is recorded using two electrodes typically placed either on thenar
eminences of the palms or the volar surface of the medial or distal phalanges
of the fingers. All sites are equal (bipolar recording); hence it does not matter
in which direction the measurement current flows between the two electrodes.
The measurement can be either passive, i.e., electrical potential difference
(endosomatic method) or active (exosomatic measurement), wherein a current
is passed between two electrodes to measure the skin’s conductivity. The
exosomatic measures usually have higher signal-to-noise ratio (SNR) even
though the conductivity varies greatly among individuals. However, the EDA
has quite high SNR and individual responses can be easily measured with
ambulatory devices.

2.3 Psychophysiology

Cognitive neuroscience and psychophysiology are branches of science that
study the activations of nervous system related to experiences and sensations.
The former focuses on detailed description of biological processes related to
perception and action while the latter studies connections of bodily functions
and higher cognitive processes, states, or stages. The branches can be best
described by description; psychophysiology represents a top-down approach
within the neurosciences that complements the bottom-up approach of psy-
chobiology. Thus, psychophysiology can be defined as the scientific study of
social, psychological, and behavioral phenomena as related to and revealed
through physiological principles and events in functional organisms.
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In other words, the fields study the physiological activations associated
with mental events. These changes are recorded by activations of the nervous
system. In case of the EEG and the MEG the signals derive from activations
of central nervous system (CNS), i.e., functioning neurons in the brain. In the
M/ECG and the EDA recordings the mental states more indirectly by assessing
the activations of the autonomous nervous system (ANS). The ANS is the
part of the peripheral nervous system that activates involuntarily. The ANS is
divided to two parts, sympathetic and parasympathetic branches. Sympathetic
branch shows more activity while high arousal whereas the parasympathetic
branch stimulates the body’s vegetative activities such as digestion.

The psychophysiology builds on models that describe relationships between
psychological variables and mathematical formulations of measured physiolog-
ical signals. The correlations help to create theories between mind and the
body.

This section presents the general principles how the measured electro-
physiological signals (presented in Section 2.2) are transformed to legitimate
psychological indices. First, an overview of data analysis is given and then
each of the signals of interest are described in detail and common features to
be used in analysis are presented and finally followed by an introduction to
synthesis of the signals.

2.3.1 Data analysis techniques

Extracting psychological information from physiological signals requires signal
processing and data analysis work flow. In this process feasible features of
the voltage differences captured by the electrophysiological equipment are
extracted. Please find the schematic representation of data analysis process in
Figure 3. It is of high importance to understand the biological processes to
best describe and have plausible connections to the psychological phenomena
that are of interest. Only by this one can find meaningful features for input
in classification methods such as machine learning [14]. Several techniques
are used in order to perform the classification, the most well-known being
Fisher Discriminant Analysis, Artifical Neural Networks, and Support Vector
Machines. The classification methods are a potential field of development in
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future use of psychophysiological indices. Notwithstanding, this section focuses
on earlier steps in the data analysis.

Raw data collection The first step is to collect the data subjected to
further analysis. The collection of the data is explained in Section 2.2.

Preprocessing Usually the first step in the signal processing is to narrow
down the frequency band of interest, i.e., band-pass filter the voltage data.
Essentially this is already done up to some degree in the recording device
electronics, before the process of digitalization of the continuous analog voltage
signal. Here the time points of the signals are stored in a finite number of bits
thus converting the continuous analogue signal to a discrete one. The signals
are generated by deterministic biological processes, however, our models to
describe them are insufficient and the amplifier always generates some amount
of noise during the recording process. Hence the recorded signals can be
considered stochastic.

Furthermore, since usually physiological measurements are extremely noisy
it is of great value if we can increase the SNR by attenuating the irrelevant
frequency bands. In more complex cases we might want to use more sophis-
ticated methods to diminish extraneous phenomena in the signals. These
methods include Independent Component Analysis, Signal-Space Separation,
and Signal-Space Projection [41].

Feature extraction After the preprocessing the next step is the feature
extraction. In this phase meaningful parameters are pinpointed from the
underlying continuous signals. In general these features are distinctive indices
and metrics of the signal. A feature is derived with a single, strictly defined
calculation formula, whereas classes of features, in which many possible for-
mulae can correspond to a single metric are present in the research as well.
Metric is a quantification of the signal that can be linked to a psychological
variable of interest. [19]

In the CNS signals features may include couplings between signals in
different frequency bands, while, e.g, for the heart rate amount of variation
is a common measure. Extracted features can also be couplings of signals in
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Figure 3: Schema of the main steps applied to the data analysis.

collocated individuals. Inter-individual features are discussed further in the
original publications and in Section 3.2.

Feature selection An important step in successful signal analysis is to
choose the features that best capture the phenomena of interest. This step
requires strong foundation in neuroscience to link the underlying neural pro-
cesses and all the affected parameters to the psychological experiences and
actions that are to be studied. The parameters are then listed as indices of
interest. For the signals presented here more details are found in the following
sections.

Classification Finally, for the decision making a statistical algorithm that
separates the feature vectors into two or more subspaces corresponding to
an index or indices is applied. This phase is called the classification. For
psychophysiology, a classifier is usually supervised; it is trained on data
prelabelled with indices from a model-of-choice. For emotion detection the
model can be, e.g., the valence/arousal emotional circumplex (Figure 1). In
practice this would require recording of at least two features whose mappings
to the circumplex space is linearly independent.

2.3.2 Central nervous system responses

Since EEG and MEG signals base on the rhythmic firings of neuronal popu-
lations, the applications in psychophysiology rely largely on the phenomena
of event related synchrony or desynchrony (ERS/ERD) [86, 39]. Practical
example is imaginary movement used in the brain-computer-interfaces (BCI).
In the BCI imagining a movement of a hand leads to beta band ERD on the
contralateral parieto-temporal areas (attenuated mu-rhythms), and subsequent
ERS after the imagined movement ends. This can be captured and analyzed
with ambulatory EEG equipment.
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Traditionally, the features extracted are temporal changes in band powers in
particular sets of electrodes. Usually, the sets are weighted linear combinations
of several channels. Also more sophisticated methods exist. These methods
include connectivity measures, complexity measures, and some chaos-theory-
inspired metrics. The connectivity features include spatial and temporal
changes in the connectivity parameters. The connectivity parameters extracted
are synchronization of signals in different locations or different frequency band,
e.g., θ band phase modulated γ amplitude "phase-amplitude coupling" has
been observed in the face recognition [94]. The interplay between frequency
bands has received renewed attention during the last decade [83].

The clinical applications for the EEG and the MEG for adult popula-
tion consist of several methods such as presurgery localizations for epilepsy
seizures [96], other epilepsy related diagnostics, anesthesia monitoring [77], or
polysomnography that can be used as a diagnostic tool in dysfunctions of the
sleep [13]. EEG is also used for screening abnormalities in hearing by exploring
the brainstem responses to sounds [102]. Also a variety of clinical studies use
pyschophysiological indices.

The psychophysiology applications of the ambulatory EEG include emotion
recognition, EEG biofeedback neurotherapy, and classifications of attention,
motivation, and vigilance [39, 68]. Also the ERP/ERFs are in use of psy-
chophysiology research and clinical diagnostics, however, their applicability
outside laboratory is limited [81].

2.3.3 Cardiovascular responses

As the heart is innervated by both the sympathetic and the parasympathetic
branch of the ANS the applications for HRV parameters in less specified but
on the other hand wide. The sympathetic branch of ANS reduces the interbeat
interval (IBI) while the parasympathetic system has the opposite effect. These
neural underpinnings can be used to assess psychological states based on the
heart rate and moreover the HRV [20]. The HRV is the most widely used
methodology to assess psychophysiologial parameters based on cardiovascular
functions. Some extra information can be achieved by using blood pressure
and photoplethysmography (PPG) and combining the PPG with the ECG
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trace also some estimates on the blood pressure can be obtained [70]. However,
the PPG is prone to artifacts and hence not as robust measure when compared
to the ECG.

The changes in the ANS activations are best derived from the variability in
the ECG traces. For these properties corresponding to the heart beat, usually
the R-peaks, need to be extracted from the ECG trace. The resulting RR or
IBI series, i.e., durations between consecutive heart beats are recorded and
analyzed.

The HRV is an umbrella concept for all the metrics describing how the
rhythm of the heart varies. Various parameters can be extracted from the
IBI series. Multiple methods are in use, they can be divided to time-domain,
frequency-domain, and non-linear metrics. Two examples of time-domain
metrics are the standard deviation of interbeat intervals (SDNN), reflecting
overall variation, and the square root of the mean of the squares of the IBIs
(RMSSD), reflecting short-term variations in the IBI series [20]. In spectral
analysis, the power of the signal is considered primarily in three bands: the
very low-frequency (VLF) band (0 − 0.04 Hz), the low-frequency (LF) band
(0.04 − 0.15 Hz), and the high-frequency (HF) band (0.15 − 0.40 Hz). The
HF component is usually linked to the parasymphatetic activation and LF
to the symphatetic activation. The power ratio of the bands (HF

LF ) has been
shown to exhibit the sympathovagal balance [34], which expresses regulation of
ANS activations. Non-linear parameters include, for instance, signal entropy
metrics.

Despite being highly responsive to physical activity the HRV has abun-
dance of applications in the psychophysiology. The ANS responses to various
emotionally and cognitively meaningful stimuli is usually reduced to few param-
eters computed from the HRV. Nonetheless, e.g., in some cognitive workload
paradigms the HF/LF ratio has been successfully linked [44, 59] to the stress
levels in laboratory conditions. Also emotional responses have been successfully
associated with the HRV [61].
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2.3.4 Autonomous nervous system responses in skin

Despite the thermoregulatory role of the sweat glands, it has been shown that
the eccerine glands on palms are highly responsive to, for instance, arousal
[109].

Unlike the ECG the EDA traces are controlled only by sympathetic branch
of the ANS. However, the sympathetic system is controlled by various neural
mechanisms and pathways to the CNS. The EDA has been most often used as
a measure of arousal but there is a simultaneous emotional valence component
[62]. Thus, the activation is often referred as affect arousal [16].

CNS areas correlating with excitation of the EDA are the ventromedial
PFC, inferior parietal region, the anterior cingulate, and the orbitofrontal
cortex. Also subcortical structure activations correlate with palm sweating.
[78]

For psychophysiological feature extraction the EDA is first divided in to two
components, in case of conductance measurements, namely skin conductance
level (SCL) and response (SCR). The SCL can be thought of as a general
level of the conductance. When the effect of the slow changing general level is
removed from the signal the remaining activity is the SCR. The spiky SCR
signal corresponds to the sympathetic arousal, resulting from the orienting
response to significant, surprising, or aversive stimuli. When the stimulus
events are recorded, latency-based detection of SCR features are in use. The
features include rise times, amplitudes, and spike counts in a time window.

Features extracted are different if the stimulus presentation times are not
recorded. The term nonspecific SCR (NS-SCR) is often used when the EDA
is not locked to stimuli, regardless if the stimuli is present or not. A widely
used measure of the NS-SCR activity is their rate per minute, which typically
is between 1 and 3/min while the subject is at rest. The SCL on the other
hand is always analyzed in wider window and the most common parameter to
extract is average level between time-points.

Many of the EDA features have been linked to arousal and relaxation levels
and they have many applications in various domains. The EDA is also highly
suitable for real world settings where the environment is inconstant and robust
parameters need to be extracted in real time.
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2.3.5 Data fusion

Multiple sources of physiological and contextual data can be combined for
determining the cognitive and the affective state of a user or users. This
is termed data fusion. In data fusion two or more signals are merged and
transformed into information or an index elusive for a single signal source. In
psychophysiology the index is usually a complex psychological phenomenon,
such as mental stress level during a workday. In addition to mere integration
of data, data fusion includes an additional step of transforming the result to a
new dimension. In its simplest, data from, e.g., multiple electrodes in the EEG
is transformed to a one dimensional source signal in a specific location on the
cortex. However, we usually refer to the term data fusion when we measure
signals from multiple modalities.

The most classical example of multimodal measurements is a specialized
machine called the polygraph, first used in court in 1923 [56]. It measures
multiple physiological signals (EDA, heart rate, etc.) to help detect deception.
However, in the early days the fusion of the data was left to the experimenter
using the machine.

Detection of affective states is one of the most studied topics within
data fusion. Several studies have successfully applied multimodal approaches
in classifying the affective state based on multiple signals [55, 108, 4, 71].
For example, determining emotion, based on the simple circumplex model of
emotions [93] (Figure 1) would require two signals that are linearly independent
when mapped to the circumplex space, as explained in Section 2.3.1.

Furthermore, also mental workload and other cognitive state assessments
have benefited from the data fusion. A recent study [45] noted that the use of
multiple physiological signals is expected to enhance the estimation of mental
workload if the chosen signals represent separate aspects of the workload. They
extracted features from the EEG, the ECG, skin conductance, the respiration,
pupil size, and eye blinks. Using these as inputs for machine learning algorithms
high accuracy of classification was achieved. Another study showed that the
interaction of the EDA and the EEG features predicted learning outcomes in
a game-like task wherein the individual signals alone were uninformative [25].

Many of these systems aim for real time assessment of the user state. Use
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of multiple signals increases the robustness of the system. Usually, some
contextual information is also collected to further increase the classification
power, not only to enable evaluation of the current affective and cognitive state
but to adapt the system for the needs of the user, especially in HCI settings
[24].

3 Experimental research

In this chapter I describe and discuss the experimental studies included in this
thesis (Publications I-III). All protocols were approved by the ethical review
board of Hospital District of Helsinki and Uusimaa, Finland. And they follow
the guidelines of the Declaration of Helsinki for human experiments. First
I will elaborate the research questions for each study and then describe the
settings. All the research questions are listed below for reference:

• RQ1 Is the test-retest stability of working memory associated ERF
component found stronger in intra-subject follow-up recordings than in
group-level during cognitive load? (Publication I)

• RQ2 Do emotions affect on attention modulated ERF components during
cognitive load in longitudinal research design Publication I)

• RQ3 Is it feasible to extract any physiological compliance from the HRV
features in an ecologically valid setting (Publication II)

• RQ4 Is there interpretable components in observed physiological com-
pliance? (Publication II)

• RQ5 Is the self reported performance correlated with physiological
compliance? (Publications II & III)

• RQ6 Is there test-retest reliability in physiological compliance observed
in ecologically valid setting? (Publication III)

• RQ7 Is it feasible to extract any physiological compliance from faster
physiological signals? (Publication III)
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• RQ8 Do the emotionally meaningful events affect signals observed to
covary physiological compliance? (Publication III)

Publication I (later Test-retest study) was conducted in MEG laboratory
while the Publications II & III (later Classroom studies) were carried out
in ecologically valid settings in real world environments inside a classroom.
The first study serves as a foundation for psychophysiological indices used in
latter experiments by evaluating the stability of the neural underpinnings. The
classroom experiments explore the indices measured from ANS responses to
analyze the inter-subjective space, i.e., the communications and collaboration
between individuals.

3.1 Test-retest study

In this section I describe our laboratory based MEG study for reliability
assessment of brain generated signals linked to specific cognitive functions.
In this experiment the reliability of the signals were assessed in relation to
natural variations in physiology, mood related factors, and environment. The
test-retest reliability was assessed for ERFs in working memory test with
different cognitive loads.

3.1.1 Research questions in the test-retest study

The primary goal (RQ1) was to evaluate the test-retest reliability for an
ERF component and a late error-related component associated with working
memory test in intra-subject recordings. We also aimed to explore the source
of variability between the participants. The MEG literature was lacking test-
retest stability support for these components. Yet the reliability is crucial for
instance in endophenotype research and other gene-expression applications.
However some comprehensive studies have been published since [72, 103].

Secondary target (RQ2) was to examine trends in the psychophysiolocial
responses across different mental states. Mood and attention modulate the
observed ERP/ERFs as shown by literature [70, 80]. Our design explored
natural variation in the mood, vigilance, and fatigue caused by the measurement
protocol along with different types of affective environments during the pause
in the protocol. All the variations were tracked with questionnaires.
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3.1.2 Paradigm

To study the test-retest reliability of electrophysiological responses related
to cognitive task we measured seven healthy adults (2 males, mean(sd) age
26(5.8) years) in four repeated measurements each. The measurements took
place in two separate session approximately two weeks apart. Both sessions
contained two repeated measurement sequences consisting of cognitive tests.
The sessions differed by a pause spent between measurement sequences. This
pause difference controlled the induced mood. The pause types included music
listening or construction yard noise. Thus the paradigm was 2x2 design with
different pause types and before and after measurements for both.

In the research article [3] and here we present data from N-back task. N-back
task is a classic working memory task used abundantly in electrophysiological
studies as a cognitive stressor [33]. It has also been used in test-retest paradigm
for fMRI [90] and for EEG signals [47].

The task used was a basic N-back task with numerical stimuli. The
paradigm followed a forced choice protocol, in which participants respond to
each stimulus corresponding to the category. The targets were identified with
right hand and to the non-targets the response was given with left hand. The
task had three levels of memory load; in the 0-back condition, participants
were responding for a predetermined number, whereas in the 1-back and the
2-back the aim was to determine whether the stimulus matched the previously
presented number, or the one before the previous stimulus, respectively. The
background variables and induced mood were monitored and collected with
questionnaires; NASA Task Load Index, Karolinska Sleepiness Scale, and
Profile Of Mood State (POMS) [40, 114, 74].

3.1.3 Physiological data and analysis

The MEG recordings were carried out in BioMag laboratory of Helsinki Uni-
versity Central Hospital with a 306-channel Elekta Neuromag Vector View
MEG device placed in a three-layer magnetic shielded room (Euroshield, Eura,
Finland). Data from all MEG channels were band-pass filtered with 0.1–170
Hz filter, sampled at 500 Hz and stored locally. First, Martinos MNE [36]
software was used to filter the recodrings with a 1–20 Hz band-pass filter.
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After, the epochs around the stimuli were collected. For dimension reduction
the global field power (GFP) for each preprocessed trial epoch was computed
in MATLAB (8.3, MathWorks), as defined by Lehmann and Skrandies [64].

In the ERF analysis the epochs were first averaged. Then we isolated
a component termed M170, peaking at around 150–200 ms from event on-
set. M170 is shown to reflect attention and cognitive processes such as face
recognition [92], and complex lexical decisions [104]. We also computed the
long-latency ERF component labeled late positive potential (LPP) [97, 30].

The M170 peaks were determined using local polynomial regression fitting
(loess) in an automated algorithm. The method reduces the noise-derived
variation in the signals [22] and allows an automatic peak detection. The
parameters for the fitting algorithm were adjusted to result in an R2 fit of 0.9
for every original signal. For each extracted epoch the peak amplitude and
latency for M170 was set at local maxima between 100-250 ms after stimulus
onset. The LPP was defined as a signal amplitude average between 600 and
900 ms post-stimulus. The intraclass correlation (ICC) analysis was performed
to examine the consistency in the features within and between the participants.

In the research article we also performed analysis for partial sensor selections
(by computing partial GFPs) to confirm that the found responses are in line
with neural underpinnings found in the literature of such cognitive functions
(listed above). Partial selection of sensors over right frontal cortical areas
were examined for more prominent changes in the partial GFP signals in the
cognitive tasks [53, 113].

3.1.4 Test-retest study results

Our GFP analysis shows (see Table 1) that ICC is high within individuals
between the sessions recorded during the same visit but also between different
visits. This provides evidence for our RQ1. ICC within participants reaches
0.75 (p < 0.001) for the LPP amplitude. The task difficulty levels (see Table
1) show consistent change in the physiological signals but the variance is high
across the participants. ICC for task difficulty levels is not significant except
for the same LPP amplitude (0.04 (p < 0.001)). The ICC within the task loads
across participants is very low compared to within participant ICC between
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Table 1: Intraclass correlation coefficient (ICC) analysis of global field power
(GFP) computed from all sensors in magnetoencephalography (MEG) data and
averaged as an event-related field (ERF) for a given measurement, response
type, and task difficulty or participant. Columns show ICC coefficient for each
ERF feature. Rows represent different groupings in data. For the first row
the grouping factor is participant thus illustrating the intraclass similarity
in different measurements for each individual. The second row uses task
difficulty level as grouping factor thus showing the similarity of the different
measurements within each task difficulty. Each cell tells the ICC-value and
(F-value in parenthesis).

Grouping M170 amplitude M170 latency LPP amplitude

participant 0.54 (28.05) 0.37 (13.86) 0.75 (83.14)
task level -0.01 (0.90) -0.01 (0.45) 0.04 (13.31)

the visits in all the features.

In the rest of the results in the Publication I we clearly show that the ERF
features are linked to the behavioral task on hand. The regression analyses
suggest that the ERF features are affected by the response times (change in
M170 latency is > 10ms per response second (p < 0.05)). The behavioral
analysis suggests that task difficulty level is a contributing factor for the
response times (ANOVA, F = 28.99, p < 0.001).

Partial sensor selections suggest that even the features with small longitu-
dinal within-participants variation individual differences are apparent. The
participants’ LPP amplitudes around the brain areas linked to the n-back task
show significant differences when they are divided to groups according to their
behavioral responses. The LPP amplitude appears higher in participants with
faster response times in more difficult tasks (LPP amplitude (t-test, t = 3.0,
df = 26, p = 0.005 and t = 2.8, df = 27, p = 0.009, respectively for the 2-back
and the 1-back task loads, but not for the 0-back task load). This suggests
that while LPP amplitude shows the most stable results in ICC analysis it
still conveys information on task performance and the cognitive load.
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3.1.5 Test-retest study discussion

The primary objective of the related article was to examine the test-retest reli-
ability of the evoked field components with associations to cognitive functions
such as the working memory in the MEG. Specifically, we demonstrated higher
consistency in latency variables in working memory related ERFs compared to
amplitude features

. While sufficient intra-subject test-retest reliability was achieved in labo-
ratory conditions, differences between healthy individuals remain substantial.

Highly controlled laboratory settings are suitable for studying persistent
inter-individual differences, e.g., endophenotypes. However, if one is interested
in group level variations in, e.g., external conditions real world settings are a
natural continuum for studies on robust biosignals. While controlled laboratory
conditions give a good baseline they lack variation created by natural condi-
tions and on the other hand act as an excessive stressor for the participants.
Our laboratory study failed to show change in emotional state of the partici-
pants, regardless of the exposure of distracting or pleasant stimuli between
measurement sessions. Thus we were not able to address RQ2. Laboratory
environments are not ideal for studying cognitive performance and stress levels
where emotional valence variation would be typical, for instance in everyday
work-life. The laboratory environments impede the natural variations in mood
states and generate physiological stress reactions in the paradigms. This sets
limitations in studies conducted in laboratories.

3.2 Classroom studies

In this section I report the pair programming experiments designed to assess
collaboration in an ecologically valid classroom setting. Studies explored
heart rate variability (HRV) and electrodermal activity (EDA) responses
in naturalistic collaboration. The details and minor differences of the two
experiments are explained below.

Both experiments constructed of classes of university students working
together in a classical pair programming paradigm. The classes only differed
from normal pair programming assignments due to the physiological measure-
ments during the sessions. The assignments were from their normal curriculum
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and pairs were formed in typical manner. In addition to the physiological
measurements the programming environment includes a tracking system to
assess the performance throughout the sessions.

In these experiments we aimed at on an automated evaluation of collab-
oration between the pairs working together. To isolate this inter-subjective
phenomenon we relied on established result that the physiology of collocated
interacting individuals will synchronize [35, 63, 65]. This phenomenon termed
as physiological compliance has been studied in collaboration for decades [42].

3.2.1 Research questions in the first classroom study

Primary objective of the first classroom experiment was to test the feasibility
to extract any physiological compliance from any HRV signal feature in a
ecologically valid setting (RQ3). For this, we contrasted Pearson’s product-
moment correlation within collaborating pairs HRV signals to non-collaborating
dyads of signals in the classroom. Secondly we examined the differences in
correlations between the HRV features (RQ4). This allowed us to study
whether the physiological compliance was derived from physical activation or
rather due to activation levels of the ANS.

Lastly we studied if the hypothesized social physiological compliance is in
line with self-reports on the task of interest (RQ5). The self-reports should
explain the variation in the physiological features accounted for the stress
levels.

3.2.2 Research questions in the second classroom study

Since the first study provided results to separate the environmental effects from
the task related physiological compliance, we further developed the paradigm
for the automatic assessment of the level of the performance in the tasks and
to extract more detailed physiological responses of the collaboration, and to
test the reliability in revealed physiological compliance measures from the first
classroom study (RQ6).

Primary objective was to assess the relevance of faster physiological re-
sponses (EDA) in physiological compliance (RQ7). For this the Pearson’s
product-moment correlation in the signals of interest was contrasted between
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collaborating pairs to general levels in the classroom.
We also wanted to examine the task dependency of these faster ANS

responses (RQ8). For this emotionally meaningful events were extracted from
the records of activities in the programming environment and the physiological
signals around them were studied.

3.2.3 Paradigms

Our paradigms took place in a classroom environment for novice computer
science students, in which participants worked on assignments taken from the
course curriculum without manipulation. The paradigms in the two studies
differed only in minor details for timing the actions used in pair-programming
protocol for role changes and for the assignment structures.

Participants were seated on arrival, two for each computer in class. Each
dyad worked on a single computer pursuing standard assignments in a typical
pair-programming design, where roles of driving, i.e., typing and testing the
program, and navigating, i.e., guiding and commenting on the work are changed
with fixed intervals. The task requires cooperation to accomplish a shared goal.
Settings were naturalistic and the participants were not interrupted within
the sessions and they set their own pace for processing the assignments. The
assignment structure was recorded in finer detail in the second experiment by
the automated tracking system in the programming environment. Counter-
balancing of the assignments within each classroom were in use in both studies.
Twenty four (24) dyads were recorded in the first study and thirty (30) dyads
in the second study concluding 9 classrooms. The assignments demands and
the alertness of the participants did not differ between experiments according
to NASA Task Load Index and Karolinska Sleepiness Scale [40, 114]. The
only difference found in subjective evaluations between participants of the
two experiments was found in a questionnaire item time spent awake before
participating the sessions. The second experiment had more afternoon classes.

3.2.4 Physiological data and analysis

Both studies used medical grade device for recording ECG (eMotion Faros
180◦, Mega Electronics Ltd.) with sampling frequency of 250 Hz. The ECG
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electrode placements were on right coracoid process and on the lower left
rib-cage.

The second experiment used additional research purpose device for EDA
recordings (Shimmer 3+ GSR) with sample frequency of 51 Hz. The recording
devices were mounted on wrist of the non-dominant hand. The electrodes were
attached to medial phalanges of index and middle finger.

HRV analysis From the ECG signal R-peaks were automatically detected
with Colibri library1 and used to form the IBI series, the basis of the HRV
analyses. Preprocessing and extraction of the features (heart rate (HR), the
standard deviation of IBIs (SDNN), and in the paradigm of the first study, the
square root of the mean of the squares of the successive differences between the
adjacent IBIs (rMSSD)) was also performed with Colibri. The HRV features
were calculated in windows from 60 seconds up to 300 seconds. In the analysis
of the second study only short 60 second windows and canonical 300 second
windows were used. The features were computed according to their standard
definitions [20]. The ECG analysis is identical in both studies. An additional
one second average of heartrate (HR1) was used in the second study to make
the comparison of cardiac activations with EDA responses.

For a given window length, we obtained feature vectors for every participant,
denoted xP

i , and xP
i , where i ∈ {1, 2, . . . , N} is a participant identifier from 1

to the N that is the number of participants. P is the parameter (HR, SDNN, or
rMSSD). The feature vectors were compared using average Pearson’s product-
moment correlation coefficient in permuted sets of vectors to the correlations
in real collaborating participants’ signals. The values of cor(xP

i , xP
j ) for every

pair arranged to result x̃true, that is the arithmetic mean of these pairwise
Pearsons’ correlation coefficient.

For isolating the physiological compliance we used permutation tests. Our
null hypothesis was that the correlations within pairs do not differ from corre-
lations in randomly chosen signals in each recording session. The permutation
r is drawn uniformly at random to form a shuffled signal pair (ri, rj). The
arithmetic mean of sets equal to the size of true set, denoted μr, was used
as a sample from the null hypothesis. The μr was computed 10000 times

1https://github.com/bwrc/colibri/
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to estimate distribution of average correlations across participants in similar
conditions. The obtained distribution sets confidence intervals (CIs) for the
μr and allows us to compute our one-tailed p-values for the true correlation
averages (x̃true). These CIs were corrected according to the number of analysis
made by Holm-Bonferroni in both experiments (separately).

Self-report dependency The hypothesized physiological compliance was
contrasted on NASA-TLX results to test the relevance of the physiological
responses in the first classroom study. This was tested by fitting a linear
regression model to the Pearsons’ correlation coefficient of the HRV features
and the self-report items in the dyads. Specifically we have

cor(xP
i , xP

j ) ∼ β0 + βmMDij + βtTDij + βpPeij + βeEfij + βfFrij (1)

in which the P is the HRV feature in in specific time window (HR60, HR300,
SDNN60, SDNN300, rMSSD60, and rMSSD300) and Xij denotes the sum of
the corresponding self reported item X from NASA-TLX questionnaire, i.e.,
mental demand, temporal demand, performance, effort, and frustration, for
participants i and j and βx its coefficient.

EDA analysis The collected EDA data was subjected to analysis by first de-
tecting and correcting motion induced artifacts through interpolation and then
decomposed into phasic and tonic components through Continuous Decompo-
sition Analysis (CDA) [10]. The phasic and tonic components represent the
skin conductance response (SCR) and skin conductance level (SCL) portions
of the signal, respectively.

The data sampling was lowered to one second by averaging. The SCL
and SCR signal trains of each participant, denoted xSCL

i and xSCR
i , where

i ∈ {1, 2, . . . , N} is a participant identifier were subjected to correlation analysis
similar to HRV signals. For a given window lengths again Pearson’s product-
moment correlation coefficient was estimated for collaborating pairs. The
resulting arithmetic means in correlations were used as estimate of physiological
compliance x̃true similar to the HRV analysis above and were tested against
shuffled correlations across the classrooms.
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Event based EDA analysis Automatic tracking of events in which the
participants either tested their code or tried to run it was used to extract
event related physiological responses. The extracted signals were classified
based on the participants role, i.e., driving or navigating, during the event and
whether the code was compilable or the tests were successful. A participant-
wise averages of z-scored SCR signal in each of the above mentioned categories,
i.e., successful and unsuccessful event while in navigating and while in driving
role were produced. Thus resulting four event averages for each participant.
Subsequently the grand averages were computed for each category.

A novel technique called minimum width envelope (MWE) was introduced
to obtain confidence intervals in time-series data with multiple data points
[57]. We used the greedy algorithm to set the confidence intervals (CI) to
match 95% confidence levels. The MWE provides a confidence band for signals,
controlled for the family-wise error rate and corrected for the autocorrelation
or any internal dependencies in the signal. Thus even single deviation from
confidence band leads to rejection of the null hypothesis.

To also examine the signal level change within a single subject, autocor-
relation analysis for participant-wise average signals was introduced. The
confidence limits were obtained as above using the MWEs.

Valence found in EDA signals The relevance to the task of the event
related EDA signals was examined by contrasting the EDA averages between
different conditions. The successful event averages were contrasted with the
failed event averages and average signals in the driving role were contrasted
with average signals in the navigating role. Also the differences in signal level
changes (the autocorrelations of individual averages) were examined across
conditions.

3.2.5 Classroom HRV results

The SDNN correlation for the collaborating participants is significantly greater
than that for the null hypothesis (see Tables 2 and 3), i.e., across randomly
selected signals in the classroom (p = 0.02 in 60 second window), as our RQ3
predicted. The result is robust across all tested window lengths in the first
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experiment (p = 0.007 in 300 second window). Furthermore while SDNN was
highly modulated by the collaboration, the HR in the collaborating participants
did not differ from general correlation across the classroom. This indicates that
HRV is modulated by collaboration while the HR is modulated by common
environment and task factors (RQ4). Thus the modulated HRV parameter
distinguish the elevated ANS activation from the physical activity. The HR was
more correlated presumably due to a decreasing trend over the measurement
sessions. Grand averages in collaborating dyads for these variables were:
corHR60 = 0.24 and corSDNN60 = 0.16.

The HRV results were partly replicated in the second experiment (RQ5).
Within the short window lengths, i.e., in HR60 and SDNN60 the results were
similar. The results were significantly more similar when the data was cleaned
for the forced behavior, since the second study contained more of it. The
results from both experiments are collected in Table 2

More interestingly a feature of instantaneous heart rate (HR1), intrinsi-
cally ineligible to differentiate between physical and ANS activations, was
significantly correlated within collaborating pairs. Regardless that, it contains
information from both HR and HRV parameters, it behaved similarly to EDA
responses suggesting linkage between HRV and EDA (RQ7). This result is
found in Table 3.

3.2.6 Classroom self-report results

The mean HR did not express linear dependencies on the self-reports, i.e.,
NASA-TLX results. Self reported performance explained some of the variance
in SDNN60. The adjusted R2 is small, however, at group level the explanatory
power is statistically significant (RQ6). Furthermore if we only test the correla-
tion of self reported performance and SDNN60, then R2 = 0.218. This suggests
that with bigger datasets, the experienced performance in collaboration would
appear in physiological compliance measures in SDNN.

3.2.7 Classroom EDA compliance results

Skin conductance response and level (SCR and SCL, respectively) and in-
stantaneous heart rate (HR1) results are presented in Table 3. Here the fast
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Table 2: Average correlations of collaborating pairs (avg. cor.) and confidence
intervals (95 % ci) of distributions estimated under null hypothesis that the
correlation is independent of the pair assignment within the class collected.
The features are mean heart rate (HR), and standard deviation of successive
differences (SDNN). Statistical significance is clarified with p< 0.05 * and p<

0.01 **. Statistical significance is corrected according to multiple comparisons
in both studies independently.

HRV feature window (s) avg. cor. 95 % ci adj. p-value

Results from the experiment 1
Mean HR 60 0.24 [0.11, 0.31] 0.31
SDNN 60 0.16 [0.02, 0.15] 0.02∗

Mean HR 300 0.22 [0.05, 0.40] 0.52
SDNN 300 0.29 [-0.04, 0.23] 0.01∗∗

Results from the experiment 2 (task switch epochs removed from data)

Mean HR 60 0.34 [0.13, 0.34] 0.14
SDNN 60 0.17 [0.05, 0.15] 0.04∗

Mean HR 300 0.42 [0.15, 0.45] 0.32
SDNN 300 0.23 [0.05, 0.28] 0.39
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Table 3: Average correlation of the classes of collaborating pairs and confidence
intervals of the distribution of average correlations collected by random in the
classrooms for the fast (1 second resolution) signals: skin conductance response
(SCR), skin conductance level (SCL), and instantaneous heart rate (HR1).
Statistical significance is clarified with p< 0.01 *. Statistical significance is
corrected according to multiple comparisons in all listed parameters.

signal avg. cor. in dyads 95 % ci adj. p-value

SCR 0.12 [0.04, 0.09] < 0.01∗

SCL 0.38 [0.26, 0.44] 1.00
HR1 0.13 [0.04, 0.10] < 0.01∗

sympathetic responses are found in SCR while the SCL reflects slower general
increased inactivity across all participants. Again the emotional and the stress
related responses distinguish the collaborating pairs from general level changes
in the classroom. HR1 also separates pairs from general levels of correlations
in a classroom, as a result of carrying both information on the HR and the
HRV features.

3.2.8 Classroom event based EDA results

The main outcome from the event based analysis reveal longer periods of
significant signal level difference in driving role compared to navigating role
and mutually inverse morphology in failed and in successful events (RQ8).
Failed events tend to increase the SCR signal while successful have decreasing
trend before the events. Statistically this can be observed as higher signal
levels in failed events briefly before the actual events.

The phenomena can also be observed indirectly within each signal by
looking into autocorrelations in the signal level averages. See the Table 4
for overview. In driving role for the failed events the increase is observed in
autocorrelation around the events and for the successful cases a decline is
observed briefly before the events. In navigating role both event types show
statistically significant increase after the events, however the morphology of
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Table 4: Trend in auto-correlation curves in different conditions before event,
over event, and briefly after event. Upward arrow shows either statistically
significant increase in the signal. The downward arrow marks statistically
significant decrease in the signal level.

outcome role before during after

Failed Driving ↗ ↗ ↘
Passed Driving ↘ ↗ -
Failed Navigating - - ↗
Passed Navigating - ↗ ↘

the autocorrelation averages follows the driving role counterparts with a delay.
This is also supported with combined analysis of both roles where similar
effects found in the driving role conditions are even more pronounced. Here the
significant increase around the event is observed in failed cases and significant
decrease before the successful events.

3.2.9 Classroom studies discussion

Main outcome from the classroom experiments is the collaboration associated
with physiological responses. The physiological compliance is associated with
both, the common task and the experienced performance. This encourages in
using physiological compliance as a quantifier of successful teamwork on group
level.

In the both experiments, the self-reports explained little of the variation in
the HRV parameters. However, on group level the self-reports carry information
of the variation in both the HRV and the EDA compliance. Due to low SNR it
seems unlikely that a single collaboration could be classified based on simple
HRV or EDA metrics. This promotes the usage of physiology in group level
analysis still preserving the anonymity of individual.

Finally, the results suggest that emotional valence is associated with group
level aggregates, i.e., averages computed over a sample, of physiological re-
sponses, thus, allowing assumptions on general well-being and productivity in
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naturalistic work-like environments.

4 Discussion

The experimental results reviewed in this thesis, study reliability of psychophys-
iological metrics and their applicability in real world situations. Furthermore
the thesis provides an overview of psychophysiological features from various
sources and their implementation prospects in legitimate contexts. Mainly the
focus is on discussing individual differences, second-order features, and in the
use of group level factors suitable for, e.g., workplaces or team performance
assessment.

Nevertheless, one must bear in mind that the data and the models in psy-
chophysiology tend to have a limited range of validity, because the relationship
is tested in certain well-prescribed contexts. A scientific theory is a descrip-
tion of causal inter-relations. With limited amount of samples, correlations
per se do not imply causality. Thus as in scientific theories, correlations in
psychophysiology and neuroscience in general are monstrosities [38, 27]. This
does not mean that such correlations have no part in science [67]. They are the
instruments by which the psychologists may test and formulate their theories.

Usually in psychophysiology, there is one-to-many relation, meaning that an
element in the psychological domain is associated with a subset of elements in
the physiological domain, or vice versa. There are rarely injective (one-to-one)
functions mapping for the recorded physiological data to the psychological
domain. Nevertheless, despite the mappings being primarily probabilistic and
equivocal, the assumptions approach universality when the normative data
becomes available, as a result of, e.g., ubiquitous measuring and large scale
research programs and initiatives.

In the first chapter I argue that growth in low-cost device/chip markets and
emerging trend of ubiquitous data collection will have enormous impacts in the
health technology sector [51]. Furthermore, I propose the potential in gathering
such signals and numerous analysis methods to extract significant metrics.
The advantages in psychophysical metrics for HCI are further discussed in
Publication IV [24].

The experimental part first illustrates reliability of neural underpinnings of
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cognitive processes. We demonstrated that the cognition and attention related
brain responses are reliable in a test-retest paradigm [3]. This is well in line
with literature from, e.g., EEG results [47]. It has also been demonstrated
that consequential ANS responses show good test-retest reliability, also with
consumer-grade devices [111, 95].

Our laboratory based experiment also pointed out that induction and
manipulation of psychological states and variables can be difficult. Thus, when
studying, e.g., mood induction moving from laboratory environment to real life
situations is preferable. Indeed, this further advocates the usage of ecologically
valid paradigms.

The second and third experiments were conducted in a classroom settings
to test new analysis techniques extracting high level features to assess and
employ psychophysiological metrics in ecologically valid paradigms. We found
correlations between psychophysiological responses and collaborative metrics
[1]. We also found reliable psychophysiological valence-arousal responses to
tasks performed [2]. Interestingly, the valence of a stimulus determines the
activation morphology measured from EDA response. This information along
with collaboration results could be fused into more specific model to illustrate
the pair dynamics in a stressful situation, especially on group level.

As the experimental results signify, only simple contextual information
is needed to extract meaningful psychophysiological indices from the ANS
responses. Additionally, many studies suggest that by combining multiple
signals the classification power increases [55, 108, 4, 71]. In the future, the
multimodal approaches should be applied also in ecologically valid settings.
Most certainly, deploying multiple signals that reflect distinct neural activations
one can achieve an increase in the dimensions describing, e.g., the mental state.

Psychophysiological analyses tend to comprise weak signals with low signal
to noise ratio and abundant individual variation. Thus group analyses and
group derived features have been promoted for alternative usage of psychophys-
iological data [82]. Additionally, the claims based on them often rely on factors
that are highly dependent on the context and may have other background
variables contributing to the signals. This is not single handedly a disadvantage,
these limitations can provide advantages in privacy and be beneficial, e.g, in
workplace management: Firstly, management demands real time information
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on the performance of its resources, yet surveillance and control on employees
may hinder the very same performance that is to be optimized [12]. Thus,
such weak signals, only providing meaningful results and information on group
level, could maintain the privacy for individuals and yet provide real time tools
for the HR and the management.

Nevertheless, the lack of test-retest research in ecologically valid settings
demand caution in implementing single research results in new environments
[112]. Even laboratory studies are often impossible to reproduce [7]. Especially,
it has been shown that neuroscience is prone for false-positive results [29, 18].
Thus, test-retest studies are important and they should be conveyed carefully.
In the original publications, the test-retest stability of our collaboration metrics
in ecologically valid settings for transient biosignals was demonstrated. In the
future, also the performance tests of ecologically valid multimodal settings
should be carried out.

4.1 Future prospects

In spite of the difficulties and the challenges, the megatrend of ubiquitous
measure could potentially enable individuals to get more insights into their daily
behaviors through technology. These trends might ultimately lead to collections
of normative data helping interested parties to assess group properties and
metrics, ultimately facilitating various processes and decision making in future
society. The technologies will also reclaim the most valuable resource for
individuals, time.

As shown here and in the literature the physiological correlates of the
psychological phenomena can be reliably replicated and they have qualities
that are suitable for the classification of group indices computed from simple
electrophysiological signals. Despite the noisiness and one-to-many mappings
of individual physiological signals the data may provide implicit use cases if
the normative materials become available and the analyses are performed at
group level, thus reducing the effects of individual variation and canceling out
the information that derives from irrelevant sources.

In addition, the influx of these technologies and practices will also further
blur the dichotomization of professional and home-life. Multipurpose work
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becomes more common, working times scatter as the quantification of work
is automatized. The work intertwines with free time but on the other hand
time management improves and, e.g. transportation times will become more
effective. Similar to the individual consumers who embrace the benefits in
self-quantification data, employees will adopt the applications in work, e.g.,
better analytics of team performance.

World Economic Forum suggests added value of 12 trillion euros in global
industries by big data analytics, wearable internet, and new technologies [76].
These technologies allow both the employees and the public to invest time more
strategically and predict performance based on real time analytics. The reports
also suggest that the workplace will be the next frontier for self-performance
technologies [32].

5 Conclusion

Main theme of the work is to present a review for taking the psychophysiologi-
cal responses from laboratory to naturalistic environments and to introduce
the prospects in the field. The experimental research show sufficiently reli-
able results in the ANS derived metrics and the measured performance in
uncontrolled conditions. Furthermore, the literature predicts large impacts on
society by physiology based automated well-being and/or performance metrics,
provided by consumer-grade devices and commonly adopted techniques.

Finally, while psychophysiological responses have a large variation across
individuals their consistency in test-retest paradigms within individuals en-
courage group-level analysis. Together with emerging accessible technology the
psychophysiological signals will have large impacts in societies and humanity.
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