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A B S T R A C T

The concept of accessibility – the potential of opportunities for interaction – binds together the key physical
components of urban structure: people, transport and social activity locations. Most often these components are
dynamic in nature and hence the accessibility landscape changes in space and time based on people's mobilities
and the temporality of the transport network and activity locations (e.g. services). Person-based accessibility
approaches have been successful in incorporating time and space in the analyses and models. Still, the more
broadly applied location-based accessibility modelling approaches have, on the other hand, often been static/
atemporal in their nature. Here, we present a conceptual framework of dynamic location-based accessibility
modelling that captures the dynamic temporality of all three accessibility components. Furthermore, we em-
pirically test the proposed framework using novel data sources and tools. We demonstrate the impact of temporal
aspects in accessibility modelling with two examples: by investigating food accessibility and its spatial equity.
Our case study demonstrates how the conventional static location-based accessibility models tend to over-
estimate the access of people to potential opportunities. The proposed framework is universally applicable be-
yond the urban context, from local to global scale and on different temporal scales and multimodal transport
systems. It also bridges the gap between location-based accessibility and person-based accessibility research.

1. Introduction

The UN has projected that the amount of people living in urban
areas will rise from the 54% at present to 66% by 2050 (UN, 2014,
2015). Our cities are forming an ever more complex global network
society (Castells, 2000) that is steered by the flows of people, products,
waste, money and data (Urry, 2007). This reshaping of mobile urban
societies is influencing not only the daily lives of citizens (Cresswell &
Merriman, 2011) and the dynamic structures of cities (Batty, 1971), but
also the global economy and urban hierarchies (Sassen, 1991). The
rapidly urbanizing world is challenged by a myriad of environmental
and social problems. A comprehensive understanding of the dynamics
of cities from spatial, temporal and social perspectives is needed to be
able to plan sustainable and liveable cities, and to mitigate social
challenges such as socio-spatial inequality, public health, segregation
and aging.

Spatial accessibility is one of the key conceptual and methodological
tools for examining and modelling urban patterns and processes
(Bertolini, le Clercq, & Kapoen, 2005; Geurs, Krizek, & Reggiani, 2012).

The concept of accessibility binds together the key components of an
urban structure: people, mobility and social activities, and makes it
possible to have a functional view of urban structures and processes. In
general, spatial accessibility describes “the potential of opportunities
for interaction” (Hansen, 1959). However, the concepts of access and
accessibility are slippery notions that have many definitions (Gould,
1969; Penchansky & Thomas, 1981). The conceptualization and oper-
ationalization varies substantially depending on whether accessibility is
examined from a location-based (also referred to as place-based) or a
person-based perspective. Also, the applied approach for measuring
accessibility (constraint-, attraction-, or benefit-oriented), the com-
plexity of modelling (e.g. social, economic, and environmental com-
ponents), the measure of network distance (time, distance, CO2 load or
trip quality, e.g. Banister, 2011) as well as the broader research context
influences how (and what) accessibility is examined (Geurs & van Wee,
2004; Miller, 2005). Overall, defining accessibility and developing
methods to measure accessibility has improved over time and continues
to be an ongoing effort (van Wee, 2016).

Accessibility has become an important analytical approach and the
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existing literature is rich in applications (van Wee, 2016). From a lo-
cation-based modelling perspective, accessibility has been used as a tool
to understand the compactness, functioning, sustainability and equity
of the urban form and to identify likely centres of social interaction.
Examples range from analysing transport network efficiency and land
use strategies (Benenson, Martens, Rofé, & Kwartler, 2011; Geurs & van
Eck, 2003; Gutiérrez & García-Palomares, 2008; Kujala, Weckström,
Mladenović, & Saramäki, 2018; Vandenbulcke, Steenberghen, &
Thomas, 2009) to the economic performance of a city (Chin & Foong,
2006; Salas-Olmedo, García-Alonso, & Gutiérrez, 2016). Accessibility
has also been applied to understand the social and environmental jus-
tice (Farrington & Farrington, 2005; Laatikainen, Tenkanen, Kyttä, &
Toivonen, 2015; Wolch, Byrne, & Newell, 2014) and the spatial equity
in urban areas (Dai & Wang, 2011; Lucas, van Wee, & Maat, 2016; Talen
& Anselin, 1998; Van Wee & Geurs, 2011). Recently, more applications
are being linked to public health (Neutens, 2015; Tenkanen, Saarsalmi,
Järv, Salonen, & Toivonen, 2016; Widener, Farber, Neutens, & Horner,
2015), wellbeing and the quality of life of urban dwellers (Casas, 2007;
Lowe & Mosby, 2016; Serag El Din, Shalaby, Farouh, & Elariane, 2013).

While the concept of spatial accessibility is inherently related to
time, as it determines access to, and the use of desired social oppor-
tunities, the time dimension has to date been poorly incorporated into
spatial accessibility modelling (Kwan, 2013). Despite advances in time-
dependent person-based accessibility modelling (see, e.g. Neutens,
Delafontaine, Schwanen, & Weghe, 2012; Widener et al., 2015), still
most of the location-based accessibility models rely entirely or partially
on an atemporal view of access (Chen et al., 2017; Lucas et al., 2016).
Such “sedentary” models presume that people are at home, and that
both transport supply and the opportunities for activities of social
practices are fixed in time. However, neglecting the temporal dynamics
of cities and the mobility of inhabitants (Schönfelder & Axhausen,

2010) may lead to biased or even misleading conclusions in accessi-
bility models (Neutens et al., 2012; Tenkanen et al., 2016).

One factor limiting the full incorporation of the time dimension into
a location-based accessibility modelling has been the lack of temporally
sensitive spatial data. In recent years, however, suitable data sources for
modelling have gradually emerged. For example, General Transit Feed
Specification (GTFS) data is providing temporal data on public trans-
port, and platforms like Foursquare or Yelp on the activity locations of
people (Dewulf et al., 2015; Tenkanen et al., 2016; Widener et al.,
2015). Still, even in the case of partially dynamic location-based ac-
cessibility studies, there is often a lack of information on the actual
whereabouts of people in time (see, e.g. Widener et al., 2017). Such
information would be needed to facilitate dynamic accessibility mod-
elling instead of using static census data. However, the widespread use
of mobile communication technologies and the emerging big data re-
volution are providing additional data sources (e.g. mobile phone or
social media data) to reveal dynamic locations of people (Chen et al.,
2018; Kitchin, 2014; Moya-Gómez, Salas-Olmedo, García-Palomares, &
Gutiérrez, 2017). The latter is needed for applying fully dynamic ac-
cessibility modelling.

In this paper, we aim to contribute to the conceptual development of
location-based accessibility research by proposing a generic conceptual
framework of dynamic location-based accessibility modelling, where all
three of the core components of accessibility (people, transport, and
activity locations) are considered as a function of time. Furthermore,
we exemplify the proposed framework by investigating urban food
accessibility. This example was chosen because food is one of the basic
physiological needs for everyone, and because the social inequality of
accessing food stores from the spatial accessibility perspective often
depends on time (Fransen et al., 2015; Stępniak & Goliszek, 2017). We
take advantage of novel data sources (GTFS, mobile phone data,

Fig. 1. The conceptual framework for a dynamic location-based accessibility modelling (top), where all three basic components of spatial accessibility (people,
transport and activities) vary as a function of time. The implementation of the framework (bottom) is an illustration of our case study, exemplifying the variation of
accessibility in space and time to grocery stores in Helsinki, taking into account all the three accessibility components within a 24-h timeframe. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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OpenStreetMap) and test systematically: 1) how different components
of the dynamic accessibility model are affected by time; 2) to what
extent a fully dynamic accessibility model differs from a static model;
and 3) how temporal dynamics in accessibility influence the measures
of spatial equity. Finally, we discuss the pros and cons of dynamic ac-
cessibility modelling and identify potential data sources for the im-
plementation of dynamic accessibility models.

2. Dynamic accessibility modelling as a generic conceptual
framework

2.1. Components of dynamic accessibility

Given that everything in our world takes place in inherently inter-
related space-time, it is evident that accessibility is inherently both a
spatial and a temporal phenomenon. We acknowledge the conceptual
idea of a person-based space-time accessibility modelling (Hägerstrand,
1970; Miller, 1991; Neutens, Schwanen, Witlox, & De Maeyer, 2010;
Pirie, 1979) and apply it to a location-based accessibility modelling
framework. The generic conceptual framework of dynamic location-
based accessibility modelling consists of three components – people,
transport, activities – which all occur in and are shaped by inter-
dependent spatial and temporal dimensions (Fig. 1).

The first core component of dynamic accessibility – people – is re-
lated to the needs and abilities of individuals regarding their socio-
economic factors, values, preferences, attitudes, prejudices and habits
that influence one's opportunities to access certain transport modes and
activities (Geurs & van Wee, 2004). This is directly related to what type
of activities people are performing, and where and when the given
activities are conducted. Thus, it is important to know how individuals
are spatially distributed in relation to the activity locations. In location-
based accessibility modelling, the spatial distribution of people has so
far been regarded as the most static as it is commonly derived from
residential areas (Tenkanen et al., 2016; Widener et al., 2017), despite
the critiques against the assumption of home-based journeys in trans-
port research generally (Naess, 2006).

Certainly, home is one of the most important locations in our daily
lives (Vilhelmson & Thulin, 2008), yet people are not spatially fixed to
their homes as accessibility research predominantly presupposes
(Schönfelder & Axhausen, 2010). People from different socio-economic
groups conduct different social activities (e.g. sleep, work, and conduct
leisure activities) at certain places and at certain times with certain
activity sequences resulting in a dynamic spatial distribution of people
in hourly, daily, weekly, monthly and yearly temporal patterns (Deville
et al., 2014; Järv, Muurisepp, Ahas, Derudder, & Witlox, 2015;
Schönfelder & Axhausen, 2010). Thus, the dynamic (also referred to as
ambient) population – the actual whereabouts of people (e.g. by dif-
ferent social group) in time – need to be considered for modelling more
realistic accessibility.

The second core component of dynamic accessibility – transport –
allows people to move from an origin to a desired destination location.
The transport component comprises the spatial outcome of the trans-
port system, including different modes of travel (walk, bicycle, private
car, public transport). The “cost” that it takes to move from one place to
another is most often measured in time or distance (Banister, 2011), but
also measures of CO2, monetary value, or the quality of a trip have been
used as measures of the cost of moving between places (Lahtinen,
Salonen, & Toivonen, 2013; Salonen, Tenkanen, Heikinheimo, &
Toivonen, 2016). Different modes of transport and different measures
of cost have different sensitivities to temporal changes (Tenkanen et al.,
2016). At a small temporal granularity (24 h, a week), the public
transport (PT) supply is generally the most dependent on time, as the
availability and density of lines and routes changes (Salonen &
Toivonen, 2013), influencing travel times and experiences. For a pri-
vate car, the day of the week and hour of the day (e.g. peak hours) do
not necessarily change the distances, but can significantly affect travel

times and experience, as actual travel speeds vary from free flow to
congested situations (Dewulf et al., 2015; Yiannakoulias, Bland, &
Svenson, 2013). Furthermore, the time and effort spent on finding a
parking space and reaching a desired destination depend on timing. For
non-motorised transport (walking, cycling), differences between in-
dividuals are generally greater than temporal variation, and the CO2

burden is always roughly the same. Temporality becomes very im-
portant, however, when the inspection is expanded over seasons: de-
pending on the latitude, biking can be much more challenging in winter
than in summer conditions (Noland, Smart, & Guo, 2016).

The third core component of dynamic accessibility – activities –
comprises all the possible activity opportunities in order to perform
social practices that people desire, or are bound to conduct, such as
going to work and school, meeting people, obtaining services, attending
events, or discovering desired places. Potential activity locations for
possible social opportunities are determined by the spatial distribution
of given activity locations as well as their temporal availability – op-
erating hours of the day, weekday schedule as well as the seasonal
schedule (Delafontaine, Neutens, Schwanen, & Weghe, 2011; Tenkanen
et al., 2016; Widener et al., 2017).

2.2. From components to dynamic modelling

Integrating the dynamics of each component into accessibility
models allows inspection of dynamic location-based accessibility
landscapes. In mathematical terms (Equation (1)), the framework of
dynamic accessibility DA can be defined as:

∫=DA P T A( )st (1)

where P refers to the people component, i.e. the spatial distribution of
people as origins from where they depart, T refers to the transport
component, i.e. the spatial distribution of the transport system supply
allowing people to reach desired destinations with a certain cost, and A
refers to the activities component, i.e. the spatial distribution of op-
portunities for activities as destination locations for desired social
practices in space s and time t. Certainly, the implementation of a fully
dynamic accessibility model depends on what accessibility is being
modelled, and what kind of time perspective it is feasible to include.
The proposed framework also allows one to consider more complex
modelling by considering the clustering of activities of people and their
trip chaining, if the given data is available.

The given framework stems from ideas of a person-based accessi-
bility modelling where the time dimension is already well-adopted and
many advanced time-dependent methods are developed, such as in-
dividual space-time accessibility (Lee & Miller, 2018; Neutens et al.,
2012; Widener et al., 2015). In recent years, also activity- and trip-
based transport simulation modelling has been applied for assessing
accessibility (Bellemans et al., 2010; Horni, Nagel, & Axhausen, 2016;
Ziemke, Joubert, & Nagel, 2017). However, the vast popularity of lo-
cation-based accessibility modelling among scholars and practitioners
lies in its generic nature and simplistic use. With our proposed frame-
work, we take location-based accessibility modelling one step closer to
a person- (activity)-based accessibility modelling framework – we
combine the strength of place-based accessibility with time-dependent
spatial modelling.

3. Demonstrating the framework: data and methods

We demonstrate the applicability of the proposed framework in
practice by presenting an empirical study on urban food accessibility
over a 24-h period in Tallinn, the rapidly transforming post-Soviet ca-
pital city of Estonia (Sjöberg & Tammaru, 1999).
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3.1. Mobile phone data as one proxy for people

This study employed a set of one-month anonymized mobile phone
call detail records (CDRs) collected by the largest mobile network op-
erator in Estonia in March 2015. Whenever a mobile subscriber used a
phone within the city of Tallinn, the anonymous user ID, time of the
call, and the location of the user at base station level was recorded. The
inherent uneven spatial resolution bias of CDR data is minimized using
a multi-temporal function-based dasymetric interpolation method (see,
e.g. Järv, Tenkanen, & Toivonen, 2017). Here, the CDR-based estimate
of the number of people per antenna is allocated to 500m×500m
statistical grid cells suitable for accessibility modelling for each hour of
a day. For more details, see Supplementary Information S1. We consider
the relative distribution of hourly CDR data as a proxy for population
distribution by grid cells (Supplementary Information S2). The allo-
cated locations of people at given hour of the day are the departure
locations (the centroids of grid cells) from which the travel times to the
closest open grocery store are calculated.

3.2. Temporally sensitive transport supply and service network data

We use grocery stores in Tallinn as the destination activity locations.
Data for grocery store addresses and opening hours were derived from
the websites of the stores in March 2016. Addresses were further geo-
coded into target points. We use open-access General Transit Feed
Specification (GTFS) data to retrieve up-to-date routes and schedules
for public transport (PT), and select Wednesday 16th March 2015 to
represent working day schedules. OpenStreetMap road network data is
used to calculate the walking parts of a PT journey by setting the
walking speed to 70m per minute (4.2 km/h). For short travel dis-
tances, walking is used as a travel mode, if that is faster than reaching
the destination by PT. We calculate the travel times from the centroids
of 500m statistical grid cells. We apply an advanced door-to-door ap-
proach for the travel time measurements, where all parts of the journey,
including walking and possible transfer and waiting times, are taken
into account (Salonen & Toivonen, 2013).

We apply a freely available open source accessibility tool localrou-
te.js (www.github.com/HSLdevcom/localroute) to calculate the fastest
routes between origin and destination by PT and walking based on a
modified version of Dijkstra's algorithm (Järvi, Salonen, Saarsalmi,
Tenkanen, & Toivonen, 2014). The fastest routes for every hour of the
day are calculated from the centroids of each statistical grid cell to the
nearest open grocery store at a given time. Since departure times may
affect travel times due to varying schedules of PT, we select the fastest
route based on a set of routes with 5 different departure times for each
hour (e.g. departures 12:01, 12:04, 12:09, 12:11 for 12 o'clock) ac-
cording to the Golomb ruler (Bloom & Golomb, 1977). The developed
codes and tools for the applied methods are openly available at GitHub
(http://www.github.com/AccessibilityRG/DYNAMO).

3.3. Modelling dynamic accessibility

Accessibility can be measured in various ways. However, travel time
is often used as a tangible measure of accessibility in providing a sur-
rogate for the easiness of reaching these opportunities (Bertolini et al.,
2005; Frank, Bradley, Kavage, Chapman, & Lawton, 2007). Hence, we
measure accessibility as travel time between origins (locations of
people) and destinations (available activity locations) for each hour of
the day.

In total, we apply five different accessibility models (see Table 1).
We first calculate the static accessibility model, where all three acces-
sibility components are atemporal (model 1): we consider the PT net-
work and schedule of a morning peak hour at 7:00–7:59 a.m. as a
benchmark indicator in line with other studies (El-Geneidy et al.,
2016); the distribution of population is derived from population reg-
ister data; and all grocery stores are considered to be open. Then, we

include temporal data into each accessibility component at the time,
resulting in three partially dynamic accessibility models (models 2–4).
Finally, the model 5 is fully dynamic accessibility model where we
consider time in all the three components of accessibility.

3.4. Spatial equity measure

The final aspect is to demonstrate how the fully integrated time
dimension in accessibility modelling influences the measures of spatial
equity, which has rarely been studied from the temporal perspective
using a systematic approach (Stępniak & Goliszek, 2017). The Gini
coefficient (GC) is a widely used indicator of social equity (Gini, 1936),
and often used also in relation to accessibility as an indicator for spatial
equity (see Lucas et al., 2016 for an overview). Here, GC is used to
evaluate the spatial equity of accessibility to grocery stores as GC is
calculated for each hour of the day by comparing the ratio of the area
between the Lorenz curves (accessible population) and the line of
perfect equality, which assumes uniform accessibility among all people.
The Lorenz curve represents the rank-ordered cumulative share of po-
pulation with access to stores.

4. Demonstrating the framework: results

4.1. Implementing dynamic accessibility - case of food accessibility

The baseline for our analysis is a conventional static accessibility
model without incorporating time into any of the three components: the
location of people is derived from register-based home locations; the
transport network is based on one snapshot of a public transport
schedule; and all grocery stores are assumed to be open. According to
the static model (Fig. 2A), some 82% of people in the case study area
reach the closest grocery store within 10min by public transport.

The effect of incorporating time into each of the three accessibility
components separately is shown in Fig. 2. From the model considering
the hourly variation in population distribution as the only dynamic
component (with the other two components being static), some 70–77%
of people reach their closest grocery store within 10min depending on
the hour of the day (Fig. 2B). By considering the hourly variation in
public transport supply (routes and schedules) as the only dynamic
component in the model, the outcome shows no significant temporal
changes in accessibility, since the model assumes that all stores are
open and people stay at home (Fig. 2C). The model considering the
hourly variation in activity locations (i.e. the availability of grocery
stores) as the only dynamic component reveals a clear influence of time
– the availability of destination locations affects clearly the spatial ac-
cessibility in time (Fig. 2D). According to the latter model, some 82% of
people reach their closest grocery store within 10min at a day time (9
a.m.–10 p.m.) while at other times accessibility is more limited due to
fewer grocery stores being open.

Fig. 2E presents a full dynamic model where all three components
are temporally sensitive. The overall hourly pattern shows how spatial
accessibility is influenced by time. From a city level, differences in
accessibility vary slightly from 9 a.m. to 9 p.m. and on average 74% of
people reach the closest grocery store within 10min. Differences do
occur from late night until early morning; for example, at 10 p.m. only

Table 1
Different scenarios applied to demonstrate the impact of time on different
components of fully dynamic accessibility model.

People Transport Activity locations

Model 1 Static Static Static
Model 2 Dynamic Static Static
Model 3 Static Dynamic Static
Model 4 Static Static Dynamic
Model 5 Dynamic Dynamic Dynamic
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39% of people reach the closest grocery store within 10min, while at 8
a.m. some 65% of people reach them accordingly. During the night,
access to a grocery store is limited given the lack of public transport
supply and fewer grocery stores being open.

At a local scale, the temporal variation of access to a grocery store in
the case of travel time is evident within a city (Fig. 3). Dynamic ac-
cessibility reveals how travel time to the closest grocery store varies in
space regarding the transport system supply and potentially available
activity locations (i.e. grocery stores) at a given hour of the day

(Supplementary Information S3).

4.2. Dynamic vs. static accessibility model

At a city level, differences between the static and dynamic acces-
sibility models are evident – a static accessibility model tends generally
to overestimate people's access to a grocery store, and particularly from
late evening until the morning hours (Fig. 2E). At local (grid cell) level,
differences between the static and dynamic models depend on time of

Fig. 2. A step-wise incorporation of time into accessibility modelling in case of Tallinn. Lines indicate the share of people reaching the closest grocery store by hour of
the day, based on a fully static accessibility model (A), a model with only dynamic population component (B), a model with only dynamic transport component (C), a
model with only dynamic activity locations (e.g. stores), and a model with fully dynamic accessibility components (E). Figure E includes the line for the static model
as a baseline to compare the influence of time on food accessibility. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 3. Spatial variation of travel times to the closest grocery store by grid cell level at four different time periods of the day. N indicates the number of open grocery
stores at a given time. The variation of food accessibility in Tallinn for the whole 24-h time frame as an animation is available at GitHub (http://www.github.com/
AccessibilityRG/DYNAMO). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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the day (Fig. 4A). In particular, grid cells located further away from
open grocery stores tend to have more significant differences in travel
time.

According to the dynamic accessibility model, the travel time to the
closest store is at least 5 min longer for 9% of the population in the
morning (8 a.m.) than in the case of the static model (Fig. 4B). At 1
p.m., differences in travel time between the two models for reaching the
stores are less evident (up to 5min), although given differences influ-
ence some 15% of population. During the day (from 9 a.m. to 5 p.m.),
the latter share remains between 12 and 19% (Supplementary
Information S4). Overall, only for a marginal share of the population
(3–6%), travel times are faster according to the dynamic model than
with the static model.

In the late evening (10 p.m.), the dynamic model indicates that
travel time to the closest store takes at least 5 min longer than the static
model for up to 45% of the population. After 11 p.m., when most of the
stores are closed in the study area, some 65% of the population have at
least 15 min longer travel times to the closest grocery store, and 13% of
them would need to travel more than 30min compared to the static
model. The differences are the biggest at 4 a.m., when only one grocery
store is open. The static model completely overestimates accessibility,
as it assumes a normal public transport supply and that all grocery
stores are open.

When looking at the accessibility of each store separately, the dif-
ference between the two models is highly case-specific, as it depends on
the two other components of accessibility – transport supply and
whereabouts of people. For example, the static model clearly under-
estimates the accessibility of grocery stores located in the city centre,
whereas the accessibility estimation may be equal or overestimated in
the outer parts of the city (Supplementary Information S5).

4.3. Impact of time on spatial equity

As a final step, we assessed the variations in travel times to grocery
stores and spatial equity to access stores by each hour of the day

(Fig. 5). According to the dynamic accessibility model, the variation in
accessing the closest grocery store by public transport in Tallinn shows
that during the day, travel times are rather stable within the city, but
from the late evening until morning times significant spatial variations
occur in accessing the stores. Interestingly, however, the hourly varia-
tion of Gini coefficients (GC), indicates the highest level of spatial
equity in food accessibility among the population, especially during the
night, whereas there is more inequity during the day. Hence, the level
of spatial equity is lowest during the day (GC between 0.6 and 0.8)
when travel times are shorter, but there is more spatial variation in
them. The spatial equity is the highest (GC between 0.3 and 0.5) during
the early morning hours (3–7 a.m.). This, however, relates to the fact
that during this period the service accessibility is equally poor for most
residents of Tallinn.

5. Discussion

In this study, we have proposed a conceptual framework for mod-
elling dynamic accessibility landscapes taking into account the three
dynamic components of accessibility – people, transport and activity
locations. Our practical presentation of the framework stems from the
recent studies acknowledging the importance of incorporating the
temporal dimension in location-based accessibility modelling, and the
potential of novel big data sources to enable dynamic analyses of people
(Ahas, Silm, Järv, Saluveer, & Tiru, 2010; Chen et al., 2018; Kitchin,
2014), networks (Kujala et al., 2018) and services (Moya-Gómez et al.,
2017). We combine these aspects to present a fully dynamic accessi-
bility modelling framework. Below, we discuss 1) the empirical findings
obtained, 2) the data sources, and 3) the importance and challenges of
the conceptual framework.

5.1. Lessons learnt from the empirical tests

Our empirical example on multi-temporal food accessibility de-
monstrates how temporally sensitive modelling of spatial accessibility

Fig. 4. Comparison between the fully dynamic accessibility model and the static accessibility model. The maps (A) show differences in travel time to the closest
grocery store between the two models at different times of the day (A). The graphs (B) show the population in Tallinn aggregated to given travel time difference
categories. In both cases, red indicates more minutes of travel according to the dynamic model compared to the static model, whereas blue indicates shorter travel
times in the dynamic model compared to the static model. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version
of this article.)
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may differ from the more traditional static modelling. Taking into ac-
count simultaneously the dynamic population distribution, changing
transport supply and activity opportunities at a given time of the day
will provide more realistic modelling results. As shown by our example,
conventional static modelling has a risk of overestimating (or under-
estimating in some cases) the access of people to activity opportunities.
As in our example, the most influential accessibility component tends to
be the activities of social practices if they have strict opening hours, like
the availability of stores.

Also, our findings suggest that understanding spatio-temporal dis-
parities of spatial equity is a relevant issue to consider in social equity
research. This is certainly relevant for 24-h urban societies where ac-
tivity practices are mixed in terms of the time of day (Glorieux,
Mestdag, & Minnen, 2008; Hubers, Schwanen, & Dijst, 2008). For ex-
ample, even if the issue of accessing groceries during the night is a
reality for only a relatively marginal social group, it is a matter of social
and spatial justice, and the right to the city (Soja, 2010). Our findings
show that social equity regarding opportunities for people in space is
not static either and depends on time. Certainly, the importance of
temporal variation and the most important component of dynamic ac-
cessibility is context-specific, and the findings may depend on the study
context (see e.g. Widener et al., 2017).

5.2. Data sources for dynamic location-based accessibility modelling

Data availability has been a key limiting factor for developing
temporally sensitive location-based accessibility modelling.
Fortunately, the gradual emergence of various temporally sensitive
spatial data sources which are suitable for dynamic accessibility mod-
elling is mitigating this limitation (Chen et al., 2018; Moya-Gómez
et al., 2017) (Table 2).

Until now, the most significant limitation has been the lack of data
revealing the dynamic population distribution. Information on dynamic
population can be acquired from mobile devices, either doing the

collection actively using GPS positioning (e.g. Wolf, Schönfelder,
Samaga, Oliveira, & Axhausen, 2004) or passively, based on mobile
phone CDR data (e.g. Ahas et al., 2010). Also, other pervasive geo-lo-
cated data such as location-based sensors, smart card transactions (e.g.
transit, bank, and customer cards) and geo-located social media data
are promising sources to reveal population dynamics (Table 2). Access
to such detailed population data can, however, be a challenge.

Similar big data sources can also be used to generate meaningful,
temporally sensitive information on activity locations as destinations in
accessibility models. Several websites and platforms provide informa-
tion on the locations and opening hours of services, while some services
(e.g. Google Places) can also provide information on the volume of the
service usage. Location-based social networks and social media plat-
forms provide another good source of information on service locations.
Certainly, the best source for the destinations is specific to the case
study. While social media sources and service catalogues work well for
commercial services and leisure time activities, workplaces or educa-
tional institutes (as destinations for accessibility analyses) would best
be found on public registries.

In many cities, information on transport is collected at a very de-
tailed level. Traffic flows and road network speed can be derived from
vehicle navigation data, floating car data, mobile applications and lo-
cation-based sensors (Table 2). Public transport routes and schedules
may be obtained from open-access data sources such as General Transit
Feed Specification (GTFS) and OpenStreetMap (OSM). These sources
can generally be used to gain at least rough average estimates on travel
times with different modes of transport. More detailed estimates of e.g.
door-to-door travel times with a private car (including parking) may be
more difficult to obtain (Salonen & Toivonen, 2013). Our example used
travel time as the network measure to calculate accessibility. In some
other cases, the physical distance, price of travelling or route quality/
experience might be more important. Then, also the sources of relevant
information would be different.

Fig. 5. Hourly variations of both accessi-
bility and spatial equity in case of access to
grocery stores. The studied spatial units are
divided into quartiles based on travel time
to the closest open grocery store by public
transport as an indicator of accessibility
(right). Gini coefficients indicate the level of
spatial equity in reaching groceries among
the population (left) in Tallinn.
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5.3. Considerations of the conceptual framework

The temporal aspect has long been considered as a fundamental
characteristic in spatial accessibility when attempting to understand
urban structures, social processes and phenomena for planning and
developing urban societies (Kwan, 2013; Urry, 2007). Without con-
sidering temporality, we may end up making decisions based on un-
realistic or false information regarding e.g. spatial structure, sustainable
mobility or social equity in terms of service provision.

The proposed framework is generic and applicable regardless of the
study setting. Hence, it is not limited only to the examination of 24-h
urban food accessibility for the entire population by public transport, as
we demonstrated. Conceptually, dynamic location-based accessibility
modelling is applicable similarly for both urban and rural settings, for
spatial scales from neighbourhood to global level, for different time
scales from hourly to yearly, and for various measures of network dis-
tance (time, physical distance, cost, quality, or CO2 emissions).
Furthermore, the framework can be used for more sophisticated ac-
cessibility modelling. It could be used, for example, when studying
multimodal transport systems (private car, public transport, walking,
cycling, air and marine traffic) for transport supply, and modelling the
more complex demand of people by considering socio-economic sub-
groups.

Making fully dynamic accessibility models, however, requires more
input data, efficient computing resources and more advanced analyses.
Hence, each case study needs careful consideration of how, and to what
extent to apply the framework. For example, for examining school ac-
cessibility on foot, the conventional static model works well in most
cases – schools do not compete with opening hours, the origin for the
trip is obtained from residential registry data as children go to school
from home, and the characteristics of travel (time, effort and distance)

tend to be the same regardless of the hour of the day or weekday. Only
seasonality due to climate conditions may influence travel.

The dynamic location-based accessibility modelling framework al-
lows one to consider the clustering of activities of people and their
mobility. Hence, it is a step forward in bridging the gap between a
mainstream location-based accessibility and a person- (activity-) based
accessibility modelling – allowing the incorporation of time into the
three components of accessibility and the activity travel behaviour of
population at an aggregated level. However, the focus of the two ap-
proaches remains different, as they focus on accessibility from different
perspectives. Location-based accessibility modelling aims to provide a
general overview of spatial accessibility landscapes as realistically as
possible, without detailed input on individual activity-travel behaviour
as in person-based modelling.

In conclusion, this study provides a solid starting point for advan-
cing fully dynamic location-based accessibility modelling by proposing
a generic framework and exemplifying its applicability in practice, and
identifying a set of potential temporally-sensitive data sources.
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Table 2
Examples of potential data sources for dynamic accessibility modelling given the three core components of accessibility, in comparison to data sources of static
accessibility modelling.

Temporal
dimension

Spatial dimension Data sources References

People Static predefined locations Registers and databases (e.g. census,
population register)

Dynamic De facto locations in time Active mobile devices (GPS, mobile
positioning)

Ahas, Aasa, et al. (2010) and Ahas, Silm, et al. (2010); Wolf et al. (2004);

Passive mobile devices (mobile phone
CDR data)

Ahas, Aasa, et al. (2010) and Ahas, Silm, et al. (2010); Deville et al. (2014);
Järv et al. (2015); Diao, Zhu, Ferreira, and Ratti (2016); Reades, Calabrese,
and Ratti (2009)

Location-based sensors (WiFi,
Bluetooth)

Bhaskar and Chung (2013); Lei and Church (2010)

Smart card transactions (transit, bank,
customer cards)

Ma, Wu, Wang, Chen, and Liu (2013); Long and Thill (2015)

Geo-located social media Hawelka et al. (2014); Steiger, Westerholt, Resch, and Zipf (2015)
Transport Static predefined routes Transport network with speed limits

(e.g. national road network)
Dynamic De facto routes by travel

mode in time
Private car:
Online navigation services Páez, Moniruzzaman, Bourbonnais, and Morency (2013)
Car navigator data Moya-Gómez and García-Palomares (2015)
Floating car GPS-data Dewulf et al. (2015); Tenkanen et al. (2016)
Location-based services Wang, Wei, He, Gong, and Wang (2014)
Public transport:
GTFS data El-Geneidy et al. (2016); Widener et al. (2015); Kujala et al. (2018); Lee

and Miller (2018)
Online journey planners Salonen and Toivonen (2013); Djurhuus, Sten Hansen, Aadahl, and Glümer

(2016)
Cycling and walking:
OpenStreetMap, Zielstra and Hochmair (2011)
Mobile sports applications Sainio, Westerholm, and Oksanen (2015)

Activities Static predefined locations Register-based data (e.g. enterprise
register)

Dynamic De facto locations given the
availability in time

Service websites Delafontaine et al. (2011); Tenkanen et al. (2016)
Geo-located social media Dunkel (2015)
Location-based social networks
(Foursquare; Google Places, Yelp)

Noulas, Scellato, Mascolo, and Pontil (2011)
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Appendix A. Supplementary information

Supplementary information related to this article can be found at
http://dx.doi.org/10.1016/j.apgeog.2018.04.009.

References

Ahas, R., Aasa, A., Silm, S., & Tiru, M. (2010). Daily rhythms of suburban commuters'
movements in the Tallinn metropolitan area: Case study with mobile positioning
data. Transportation Research Part C, 18(1), 45–54. https://doi.org/10.1016/j.trc.
2009.04.011.

Ahas, R., Silm, S., Järv, O., Saluveer, E., & Tiru, M. (2010). Using mobile positioning data
to model locations meaningful to users of mobile phones. Journal of Urban Technology,
17(1), 3–27. https://doi.org/10.1080/10630731003597306.

Banister, D. (2011). The trilogy of distance, speed and time. Journal of Transport
Geography, 19(4), 950–959. https://doi.org/10.1016/j.jtrangeo.2010.12.004.

Batty, M. (1971). Modelling cities as dynamic systems. Nature, 231(5303), 425–428.
https://doi.org/10.1038/231425a0.

Bellemans, T., Kochan, B., Janssens, D., Wets, G., Arentze, T., & Timmermans, H. (2010).
Implementation framework and development trajectory of feathers activity-based
simulation platform. Transportation Research Record: Journal of the Transportation
Research Board, 2175, 111–119. https://doi.org/10.3141/2175-13.

Benenson, I., Martens, K., Rofé, Y., & Kwartler, A. (2011). Public transport versus private
car GIS-based estimation of accessibility applied to the Tel Aviv metropolitan area.
The Annals of Regional Science, 47(3), 499–515. https://doi.org/10.1007/s00168-010-
0392-6.

Bertolini, L., le Clercq, F., & Kapoen, L. (2005). Sustainable accessibility: A conceptual
framework to integrate transport and land use plan-making. Two test-applications in
The Netherlands and a reflection on the way forward. Transport Policy, 12(3),
207–220. https://doi.org/10.1016/j.tranpol.2005.01.006.

Bhaskar, A., & Chung, E. (2013). Fundamental understanding on the use of Bluetooth
scanner as a complementary transport data. Transportation Research Part C: Emerging
Technologies, 37, 42–72. https://doi.org/10.1016/j.trc.2013.09.013.

Bloom, G. S., & Golomb, S. W. (1977). Applications of numbered undirected graphs. In:
Proceedings of the IEEE, 65(4), 562–570In: . https://doi.org/10.1109/PROC.1977.
10517.

Casas, I. (2007). Social exclusion and the Disabled: An accessibility approach. The
Professional Geographer, 59(4), 463–477. https://doi.org/10.1111/j.1467-9272.2007.
00635.x.

Castells, M. (2000). The rise of the network society. Blackwell Publishers.
Chen, B. Y., Wang, Y., Wang, D., Li, Q., Lam, W. H. K., & Shaw, S.-L. (2018).

Understanding the impacts of human mobility on accessibility using massive mobile
phone tracking data. Annals of the American Association of Geographers, 1–19. https://
doi.org/10.1080/24694452.2017.1411244.

Chen, B. Y., Yuan, H., Li, Q., Wang, D., Shaw, S.-L., Chen, H.-P., et al. (2017). Measuring
place-based accessibility under travel time uncertainty. International Journal of
Geographical Information Science, 31(4), 783–804. https://doi.org/10.1080/
13658816.2016.1238919.

Chin, H. C., & Foong, K. W. (2006). Influence of school accessibility on housing values.
Journal of Urban Planning and Development, 132(3), 120–129. https://doi.org/10.
1061/(ASCE)0733-9488(2006)132%3A3(120).

Cresswell, T., & Merriman, P. (2011). Geographies of Mobilities: Practices, spaces, subjects.
Farnham: Ashgate.

Dai, D., & Wang, F. (2011). Geographic disparities in accessibility to food stores in
southwest Mississippi. Environment and Planning B: Planning and Design, 38(4),
659–677. https://doi.org/10.1068/b36149.

Delafontaine, M., Neutens, T., Schwanen, T., & Weghe, N. V. D. (2011). The impact of
opening hours on the equity of individual space-time accessibility. Computers,
Environment and Urban Systems, 35(4), 276–288. https://doi.org/10.1016/j.
compenvurbsys.2011.02.005.

Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., ... Tatem, A.
J. (2014). Dynamic population mapping using mobile phone data. Proceedings of the
National Academy of Sciences, 111(45), 15888–15893. https://doi.org/10.1073/pnas.
1408439111.

Dewulf, B., Neutens, T., Vanlommel, M., Logghe, S., De Maeyer, P., Witlox, F., ... Van de
Weghe, N. (2015). Examining commuting patterns using Floating Car Data and cir-
cular statistics: Exploring the use of new methods and visualizations to study travel
times. Journal of Transport Geography, 48, 41–51. https://doi.org/10.1016/j.jtrangeo.
2015.08.006.

Diao, M., Zhu, Y., Ferreira, J., & Ratti, C. (2016). Inferring individual daily activities from
mobile phone traces: A boston example. Environment and Planning B: Planning and
Design, 43(5), 920–940. https://doi.org/10.1177/0265813515600896.

Djurhuus, S., Sten Hansen, H., Aadahl, M., & Glümer, C. (2016). Building a multimodal
network and determining individual accessibility by public transportation.
Environment and Planning B: Planning and Design, 43(1), 210–227. https://doi.org/10.
1177/0265813515602594.

Dunkel, A. (2015). Visualizing the perceived environment using crowdsourced photo
geodata. Landscape and Urban Planning, 142, 173–186. https://doi.org/10.1016/j.
landurbplan.2015.02.022.

El-Geneidy, A., Levinson, D., Diab, E., Boisjoly, G., Verbich, D., & Loong, C. (2016). The
cost of equity: Assessing transit accessibility and social disparity using total travel

cost. Transportation Research Part A: Policy and Practice, 91, 302–316. https://doi.org/
10.1016/j.tra.2016.07.003.

Farrington, J., & Farrington, C. (2005). Rural accessibility, social inclusion and social
justice: Towards conceptualisation. Journal of Transport Geography, 13(1), 1–12.
https://doi.org/10.1016/j.jtrangeo.2004.10.002.

Frank, L., Bradley, M., Kavage, S., Chapman, J., & Lawton, T. K. (2007). Urban form,
travel time, and cost relationships with tour complexity and mode choice.
Transportation, 35(1), 37–54. https://doi.org/10.1007/s11116-007-9136-6.

Fransen, K., Neutens, T., Farber, S., De Maeyer, P., Deruyter, G., & Witlox, F. (2015).
Identifying public transport gaps using time-dependent accessibility levels. Journal of
Transport Geography, 48, 176–187. https://doi.org/10.1016/j.jtrangeo.2015.09.008.

Geurs, K. T., Krizek, K. J., & Reggiani, A. (2012). In K. T. Geurs, K. J. Krizek, & A. Reggiani
(Eds.). Accessibility analysis and transport planning: Challenges for Europe and North
AmericaCheltenham: Edward Elgar Publishing Ltdhttps://doi.org/10.4337/
9781781000113.00006.

Geurs, K. T., & van Eck, J. (2003). Evaluation of accessibility impacts of land-use
Scenarios: The implications of job competition, land-use, and infrastructure devel-
opments for The Netherlands. Environment and Planning B: Planning and Design, 30(1),
69–87. https://doi.org/10.1068/b12940.

Geurs, K. T., & van Wee, B. (2004). Accessibility evaluation of land-use and transport
strategies: Review and research directions. Journal of Transport Geography, 12(2),
127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005.

Gini, C. (1936). On the measure of concentration with special reference to income and sta-
tistics, Vol. 208, Colorado College Publication, General Series73–79.

Glorieux, I., Mestdag, I., & Minnen, J. (2008). The coming of the 24-hour Economy?:
changing work schedules in Belgium between 1966 and 1999. Time & Society, 17(1),
63–83. https://doi.org/10.1177/0961463X07086310.

Gould, P. R. (1969). Spatial diffusion, resource paper No. 4.Washington, D.C: Association of
American Geographers, Commission on College Geographers.

Gutiérrez, J., & García-Palomares, J. C. (2008). Distance-measure impacts on the calcu-
lation of transport service areas using GIS. Environment and Planning B: Planning and
Design, 35(3), 480–503. https://doi.org/10.1068/b33043.

Hägerstrand, T. (1970). What about people in regional science? Papers of the Regional
Science Association, 24(1), 6–21. https://doi.org/10.1007/BF01936872.

Hansen, W. G. (1959). How accessibility shapes land use. Journal of the American Institute
of Planners, 25(2), 73–76. https://doi.org/10.1080/01944365908978307.

Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014).
Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic
Information Science, 41(3), 1–12. https://doi.org/10.1080/15230406.2014.890072.

Horni, A., Nagel, K., & Axhausen, K. W. (2016). In A. Horni, K. Nagel, & K. W. Axhausen
(Eds.). The multi-agent transport simulation MATSimLondon: Ubiquity Press. Retrieved
from http://www.oapen.org/record/613715.

Hubers, C., Schwanen, T., & Dijst, M. (2008). ICT and temporal fragmentation of activ-
ities: An analytical framework and initial empiricial findings. Tijdschrift voor
Economische en Sociale Geografie, 99(5), 528–546. https://doi.org/10.1111/j.1467-
9663.2008.00490.x.

Järvi, J., Salonen, M., Saarsalmi, P., Tenkanen, H., & Toivonen, T. (2014). Reititin: An
open source tool for analysing accessibility by public transport in greater Helsinki.
3rd open source geospatial research & education symposium OGRS 2014.

Järv, O., Muurisepp, K., Ahas, R., Derudder, B., & Witlox, F. (2015). Ethnic differences in
activity spaces as a characteristic of segregation: A study based on mobile phone
usage in Tallinn, Estonia. Urban Studies, 52(14), 2680–2698. https://doi.org/10.
1177/0042098014550459.

Järv, O., Tenkanen, H., & Toivonen, T. (2017). Enhancing spatial accuracy of mobile
phone data using multi-temporal dasymetric interpolation. International Journal of
Geographical Information Science, 31(8), 1630–1651. https://doi.org/10.1080/
13658816.2017.1287369.

Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society,
1(1), 1–12. https://doi.org/10.1177/2053951714528481.

Kujala, R., Weckström, C., Mladenović, M. N., & Saramäki, J. (2018). Travel times and
transfers in public transport: Comprehensive accessibility analysis based on Pareto-
optimal journeys. Computers, Environment and Urban Systems, 67, 41–54. https://doi.
org/10.1016/J.COMPENVURBSYS.2017.08.012.

Kwan, M.-P. (2013). Beyond space (as we knew It): Toward temporally integrated geo-
graphies of segregation, health, and accessibility. Annals of the Association of American
Geographers, 103(5), 1078–1086. https://doi.org/10.1080/00045608.2013.792177.

Laatikainen, T., Tenkanen, H., Kyttä, M., & Toivonen, T. (2015). Comparing conventional
and PPGIS approaches in measuring equality of access to urban aquatic environ-
ments. Landscape and Urban Planning, 144, 22–33. https://doi.org/10.1016/j.
landurbplan.2015.08.004.

Lahtinen, J., Salonen, M., & Toivonen, T. (2013). Facility allocation strategies and the
sustainability of service delivery: Modelling library patronage patterns and their re-
lated CO2-emissions. Applied Geography, 44, 43–52. https://doi.org/10.1016/j.
apgeog.2013.07.002.

Lee, J., & Miller, H. J. (2018). Measuring the impacts of new public transit services on
space-time accessibility: An analysis of transit system redesign and new bus rapid
transit in Columbus, Ohio, USA. Applied Geography, 93, 47–63. https://doi.org/10.
1016/J.APGEOG.2018.02.012.

Lei, T. L., & Church, R. L. (2010). Mapping transit‐based access: Integrating GIS, routes
and schedules. International Journal of Geographical Information Science, 24(2),
283–304. https://doi.org/10.1080/13658810902835404.

Long, Y., & Thill, J.-C. (2015). Combining smart card data and household travel survey to
analyze jobs–housing relationships in Beijing. Computers, Environment and Urban
Systems, 53, 19–35. https://doi.org/10.1016/j.compenvurbsys.2015.02.005.

Lowe, K., & Mosby, K. (2016). The conceptual mismatch: A qualitative analysis of
transportation costs and stressors for low-income adults. Transport Policy, 49, 1–8.

O. Järv et al. Applied Geography 95 (2018) 101–110

109

http://dx.doi.org/10.1016/j.apgeog.2018.04.009
https://doi.org/10.1016/j.trc.2009.04.011
https://doi.org/10.1016/j.trc.2009.04.011
https://doi.org/10.1080/10630731003597306
https://doi.org/10.1016/j.jtrangeo.2010.12.004
https://doi.org/10.1038/231425a0
https://doi.org/10.3141/2175-13
https://doi.org/10.1007/s00168-010-0392-6
https://doi.org/10.1007/s00168-010-0392-6
https://doi.org/10.1016/j.tranpol.2005.01.006
https://doi.org/10.1016/j.trc.2013.09.013
https://doi.org/10.1109/PROC.1977.10517
https://doi.org/10.1109/PROC.1977.10517
https://doi.org/10.1111/j.1467-9272.2007.00635.x
https://doi.org/10.1111/j.1467-9272.2007.00635.x
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref11
https://doi.org/10.1080/24694452.2017.1411244
https://doi.org/10.1080/24694452.2017.1411244
https://doi.org/10.1080/13658816.2016.1238919
https://doi.org/10.1080/13658816.2016.1238919
https://doi.org/10.1061/(ASCE)0733-9488(2006)132%3A3(120)
https://doi.org/10.1061/(ASCE)0733-9488(2006)132%3A3(120)
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref15
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref15
https://doi.org/10.1068/b36149
https://doi.org/10.1016/j.compenvurbsys.2011.02.005
https://doi.org/10.1016/j.compenvurbsys.2011.02.005
https://doi.org/10.1073/pnas.1408439111
https://doi.org/10.1073/pnas.1408439111
https://doi.org/10.1016/j.jtrangeo.2015.08.006
https://doi.org/10.1016/j.jtrangeo.2015.08.006
https://doi.org/10.1177/0265813515600896
https://doi.org/10.1177/0265813515602594
https://doi.org/10.1177/0265813515602594
https://doi.org/10.1016/j.landurbplan.2015.02.022
https://doi.org/10.1016/j.landurbplan.2015.02.022
https://doi.org/10.1016/j.tra.2016.07.003
https://doi.org/10.1016/j.tra.2016.07.003
https://doi.org/10.1016/j.jtrangeo.2004.10.002
https://doi.org/10.1007/s11116-007-9136-6
https://doi.org/10.1016/j.jtrangeo.2015.09.008
https://doi.org/10.4337/9781781000113.00006
https://doi.org/10.4337/9781781000113.00006
https://doi.org/10.1068/b12940
https://doi.org/10.1016/j.jtrangeo.2003.10.005
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref30
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref30
https://doi.org/10.1177/0961463X07086310
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref32
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref32
https://doi.org/10.1068/b33043
https://doi.org/10.1007/BF01936872
https://doi.org/10.1080/01944365908978307
https://doi.org/10.1080/15230406.2014.890072
http://www.oapen.org/record/613715
https://doi.org/10.1111/j.1467-9663.2008.00490.x
https://doi.org/10.1111/j.1467-9663.2008.00490.x
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref39
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref39
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref39
https://doi.org/10.1177/0042098014550459
https://doi.org/10.1177/0042098014550459
https://doi.org/10.1080/13658816.2017.1287369
https://doi.org/10.1080/13658816.2017.1287369
https://doi.org/10.1177/2053951714528481
https://doi.org/10.1016/J.COMPENVURBSYS.2017.08.012
https://doi.org/10.1016/J.COMPENVURBSYS.2017.08.012
https://doi.org/10.1080/00045608.2013.792177
https://doi.org/10.1016/j.landurbplan.2015.08.004
https://doi.org/10.1016/j.landurbplan.2015.08.004
https://doi.org/10.1016/j.apgeog.2013.07.002
https://doi.org/10.1016/j.apgeog.2013.07.002
https://doi.org/10.1016/J.APGEOG.2018.02.012
https://doi.org/10.1016/J.APGEOG.2018.02.012
https://doi.org/10.1080/13658810902835404
https://doi.org/10.1016/j.compenvurbsys.2015.02.005


https://doi.org/10.1016/J.TRANPOL.2016.03.009.
Lucas, K., van Wee, B., & Maat, K. (2016). A method to evaluate equitable accessibility:

Combining ethical theories and accessibility-based approaches. Transportation, 43(3),
473–490. https://doi.org/10.1007/s11116-015-9585-2.

Ma, X., Wu, Y.-J., Wang, Y., Chen, F., & Liu, J. (2013). Mining smart card data for transit
riders' travel patterns. Transportation Research Part C: Emerging Technologies, 36, 1–12.
https://doi.org/10.1016/j.trc.2013.07.010.

Miller, H. J. (1991). Modelling accessibility using space-time prism concepts within
geographical information systems. International Journal of Geographical Information
Systems, 5(3), 287–301. https://doi.org/10.1080/02693799108927856.

Miller, H. J. (2005). Place-based versus people-based accessibility. In D. M. Levinson, & K.
J. Krizek (Eds.). Access to destinations (pp. 63–89). Emerald Group Publishing Ltd.
https://doi.org/10.1108/9780080460550-004.

Moya-Gómez, B., & García-Palomares, J. C. (2015). Working with the daily variation in
infrastructure performance on territorial accessibility. The cases of Madrid and
Barcelona. European Transport Research Review, 7(20), 1–13. https://doi.org/10.
1007/s12544-015-0168-2.

Moya-Gómez, B., Salas-Olmedo, M. H., García-Palomares, J. C., & Gutiérrez, J. (2017).
Dynamic accessibility using big Data: The role of the changing conditions of network
congestion and destination attractiveness. Networks and Spatial Economics, 1–18.
https://doi.org/10.1007/s11067-017-9348-z.

Naess, P. (2006). Accessibility, activity participation and location of activities: Exploring
the links between residential location and travel behaviour. Urban Studies, 43(3),
627–652. https://doi.org/10.1080/00420980500534677.

Neutens, T. (2015). Accessibility, equity and health care: Review and research directions
for transport geographers. Journal of Transport Geography, 43, 14–27. https://doi.org/
10.1016/J.JTRANGEO.2014.12.006.

Neutens, T., Delafontaine, M., Schwanen, T., & Weghe, N. V. de (2012). The relationship
between opening hours and accessibility of public service delivery. Journal of
Transport Geography, 25, 128–140. https://doi.org/10.1016/j.jtrangeo.2011.03.004.

Neutens, T., Schwanen, T., Witlox, F., & De Maeyer, P. (2010). Equity of urban service
delivery: A comparison of different accessibility measures. Environment and Planning
A, 42, 1613–1635. https://doi.org/10.1068/a4230.

Noland, R. B., Smart, M. J., & Guo, Z. (2016). Bikeshare trip generation in New York City.
Transportation Research Part A: Policy and Practice, 94, 164–181. https://doi.org/10.
1016/j.tra.2016.08.030.

Noulas, A., Scellato, S., Mascolo, C., & Pontil, M. (2011). An empirical study of geographic
user activity patterns in Foursquare. Proceedings of the fifth international AAAI con-
ference on weblogs and social media (pp. 570–573). .

Páez, A., Moniruzzaman, M., Bourbonnais, P.-L., & Morency, C. (2013). Developing a
web-based accessibility calculator prototype for the Greater Montreal Area.
Transportation Research Part A: Policy and Practice, 58, 103–115. https://doi.org/10.
1016/j.tra.2013.10.020.

Penchansky, R., & Thomas, J. W. (1981). The concept of access: Definition and re-
lationship to consumer satisfaction. Medical Care, 19(2), 127–140. https://doi.org/
10.2307/3764310.

Pirie, G. H. (1979). Measuring accessibility: A review and proposal. Environment and
Planning A, 11(3), 299–312. https://doi.org/10.1068/a110299.

Reades, J., Calabrese, F., & Ratti, C. (2009). Eigenplaces: Analysing cities using the space-
time structure of the mobile phone network. Environment and Planning B: Planning and
Design, 36(5), 824–836. https://doi.org/10.1068/b34133t.

Sainio, J., Westerholm, J., & Oksanen, J. (2015). Generating heat maps of popular routes
online from massive mobile sports tracking application data in milliseconds while
respecting privacy. ISPRS International Journal of Geo-Information, 4(4), 1813–1826.
https://doi.org/10.3390/ijgi4041813.

Salas-Olmedo, M. H., García-Alonso, P., & Gutiérrez, J. (2016). Distance deterrence, trade
barriers and accessibility. An analysis of market potential in the European Union.
European Journal of Transport and Infrastructure Research, 16(2), 319–343.

Salonen, M., Tenkanen, H., Heikinheimo, V., & Toivonen, T. (2016). Future mobility and
accessibility - greater Helsinki: A case study. Transitions towards a more sustainable
mobility system: TERM 2016: Transport indicators tracking progress towards environ-
mental targets in Europe (pp. 35–37). Luxembourg: European Environment Agency,
Publications Office of the European Union. https://doi.org/10.2800/895670.

Salonen, M., & Toivonen, T. (2013). Modelling travel time in urban networks:
Comparable measures for private car and public transport. Journal of Transport
Geography, 31, 143–153. https://doi.org/10.1016/j.jtrangeo.2013.06.011.

Sassen, S. (1991). The global city. New York, London, Tokyo: Princeton University Press.
Schönfelder, S., & Axhausen, K. (2010). Urban rhythms and travel behaviour. Spatial and

temporal phenomena of daily travel. Farnham, Surrey: Ashgate Publishing Ltd.
Serag El Din, H., Shalaby, A., Farouh, H. E., & Elariane, S. A. (2013). Principles of urban

quality of life for a neighborhood. HBRC Journal, 9(1), 86–92. https://doi.org/10.

1016/J.HBRCJ.2013.02.007.
Sjöberg, Ö., & Tammaru, T. (1999). Transitional statistics: Internal migration and urban

growth in post-soviet Estonia. Europe-Asia Studies, 51(5), 821–842. https://doi.org/
10.1080/09668139998732.

Soja, E. W. (2010). Seeking spatial justice. University of Minnesota Press. Retrieved from
https://www.upress.umn.edu/book-division/books/seeking-spatial-justice.

Steiger, E., Westerholt, R., Resch, B., & Zipf, A. (2015). Twitter as an indicator for
whereabouts of people? Correlating Twitter with UK census data. Computers,
Environment and Urban Systems, 54, 255–265. https://doi.org/10.1016/j.
compenvurbsys.2015.09.007.

Stępniak, M., & Goliszek, S. (2017). Spatio-temporal variation of accessibility by public
transport—the equity perspective. In I. Ivan, A. Singleton, J. Horák, & T. Inspektor
(Eds.). The rise of big spatial data. Lecture Notes in geoinformation and cartography (pp.
241–261). Cham: Springer. https://doi.org/10.1007/978-3-319-45123-7_18.

Talen, E., & Anselin, L. (1998). Assessing spatial Equity: An evaluation of measures of
accessibility to public playgrounds. Environment and Planning A, 30(4), 595–613.
https://doi.org/10.1068/a300595.

Tenkanen, H., Saarsalmi, P., Järv, O., Salonen, M., & Toivonen, T. (2016). Health research
needs more comprehensive accessibility measures: Integrating time and transport
modes from open data. International Journal of Health Geographics, 15(1), 23. https://
doi.org/10.1186/s12942-016-0052-x.

UN (2014). UN = United Nations, department of economic and social affairs, population
division. World urbanization Prospects: The 2014 revision, highlights (ST/ESA/SER.A/
352). New York: United Nations: Department of Economic and Social Affairs,
Population Division.

UN. (2015). World population Prospects: The 2015 revision, key findings and advance tables.
New York: United Nations, Department of Economic and Social Affairs, Population
Division.

Urry, J. (2007). Mobilities. Cambridge, UK; Malden, MA: Polity.
Van Wee, B., & Geurs, K. T. (2011). Discussing equity and social exclusion in accessibility

evaluations. European Journal of Transport and Infrastructure Research, 11(4),
350–367.

Vandenbulcke, G., Steenberghen, T., & Thomas, I. (2009). Mapping accessibility in
Belgium: A tool for land-use and transport planning? Journal of Transport Geography,
17(1), 39–53. https://doi.org/10.1016/j.jtrangeo.2008.04.008.

Vilhelmson, B., & Thulin, E. (2008). Virtual mobility, time use and the place of home.
Tijdschrift voor Economische en Sociale Geografie, 99(5), 602–618. https://doi.org/10.
1111/j.1467-9663.2008.00494.x.

Wang, J., Wei, D., He, K., Gong, H., & Wang, P. (2014). Encapsulating urban traffic
rhythms into road networks. Scientific Reports, 4, 4141. https://doi.org/10.1038/
srep04141.

van Wee, B. (2016). Accessible accessibility research challenges. Journal of Transport
Geography, 51, 9–16. https://doi.org/10.1016/J.JTRANGEO.2015.10.018.

Widener, M. J., Farber, S., Neutens, T., & Horner, M. (2015). Spatiotemporal accessibility
to supermarkets using public transit: An interaction potential approach in cincinnati,
Ohio. Journal of Transport Geography, 42, 72–83. https://doi.org/10.1016/j.jtrangeo.
2014.11.004.

Widener, M. J., Minaker, L., Farber, S., Allen, J., Vitali, B., Coleman, P. C., et al. (2017).
How do changes in the daily food and transportation environments affect grocery
store accessibility? Applied Geography, 83, 46–62. https://doi.org/10.1016/J.
APGEOG.2017.03.018.

Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and
environmental justice: The challenge of making cities “just green enough”. Landscape
and Urban Planning, 125, 234–244. https://doi.org/10.1016/j.landurbplan.2014.01.
017.

Wolf, J., Schönfelder, S., Samaga, U., Oliveira, M., & Axhausen, K. (2004). Eighty weeks
of global positioning system Traces: Approaches to enriching trip information.
Transportation Research Record: Journal of the Transportation Research Board, 1870,
46–54. https://doi.org/10.3141/1870-06.

Yiannakoulias, N., Bland, W., & Svenson, L. W. (2013). Estimating the effect of turn pe-
nalties and traffic congestion on measuring spatial accessibility to primary health
care. Applied Geography, 39, 172–182. https://doi.org/10.1016/j.apgeog.2012.12.
003.

Zielstra, D., & Hochmair, H. (2011). Comparative study of pedestrian accessibility to
transit stations using free and proprietary network data. Transportation Research
Record: Journal of the Transportation Research Board, 2217, 145–152. https://doi.org/
10.3141/2217-18.

Ziemke, D., Joubert, J. W., & Nagel, K. (2017). Accessibility in a post-apartheid City:
Comparison of two approaches for accessibility computations. Networks and Spatial
Economics, 1–31. https://doi.org/10.1007/s11067-017-9360-3.

O. Järv et al. Applied Geography 95 (2018) 101–110

110

https://doi.org/10.1016/J.TRANPOL.2016.03.009
https://doi.org/10.1007/s11116-015-9585-2
https://doi.org/10.1016/j.trc.2013.07.010
https://doi.org/10.1080/02693799108927856
https://doi.org/10.1108/9780080460550-004
https://doi.org/10.1007/s12544-015-0168-2
https://doi.org/10.1007/s12544-015-0168-2
https://doi.org/10.1007/s11067-017-9348-z
https://doi.org/10.1080/00420980500534677
https://doi.org/10.1016/J.JTRANGEO.2014.12.006
https://doi.org/10.1016/J.JTRANGEO.2014.12.006
https://doi.org/10.1016/j.jtrangeo.2011.03.004
https://doi.org/10.1068/a4230
https://doi.org/10.1016/j.tra.2016.08.030
https://doi.org/10.1016/j.tra.2016.08.030
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref62
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref62
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref62
https://doi.org/10.1016/j.tra.2013.10.020
https://doi.org/10.1016/j.tra.2013.10.020
https://doi.org/10.2307/3764310
https://doi.org/10.2307/3764310
https://doi.org/10.1068/a110299
https://doi.org/10.1068/b34133t
https://doi.org/10.3390/ijgi4041813
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref68
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref68
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref68
https://doi.org/10.2800/895670
https://doi.org/10.1016/j.jtrangeo.2013.06.011
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref71
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref72
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref72
https://doi.org/10.1016/J.HBRCJ.2013.02.007
https://doi.org/10.1016/J.HBRCJ.2013.02.007
https://doi.org/10.1080/09668139998732
https://doi.org/10.1080/09668139998732
https://www.upress.umn.edu/book-division/books/seeking-spatial-justice
https://doi.org/10.1016/j.compenvurbsys.2015.09.007
https://doi.org/10.1016/j.compenvurbsys.2015.09.007
https://doi.org/10.1007/978-3-319-45123-7_18
https://doi.org/10.1068/a300595
https://doi.org/10.1186/s12942-016-0052-x
https://doi.org/10.1186/s12942-016-0052-x
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref80
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref80
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref80
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref80
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref81
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref81
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref81
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref82
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref83
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref83
http://refhub.elsevier.com/S0143-6228(17)31144-X/sref83
https://doi.org/10.1016/j.jtrangeo.2008.04.008
https://doi.org/10.1111/j.1467-9663.2008.00494.x
https://doi.org/10.1111/j.1467-9663.2008.00494.x
https://doi.org/10.1038/srep04141
https://doi.org/10.1038/srep04141
https://doi.org/10.1016/J.JTRANGEO.2015.10.018
https://doi.org/10.1016/j.jtrangeo.2014.11.004
https://doi.org/10.1016/j.jtrangeo.2014.11.004
https://doi.org/10.1016/J.APGEOG.2017.03.018
https://doi.org/10.1016/J.APGEOG.2017.03.018
https://doi.org/10.1016/j.landurbplan.2014.01.017
https://doi.org/10.1016/j.landurbplan.2014.01.017
https://doi.org/10.3141/1870-06
https://doi.org/10.1016/j.apgeog.2012.12.003
https://doi.org/10.1016/j.apgeog.2012.12.003
https://doi.org/10.3141/2217-18
https://doi.org/10.3141/2217-18
https://doi.org/10.1007/s11067-017-9360-3

	Dynamic cities: Location-based accessibility modelling as a function of time
	Introduction
	Dynamic accessibility modelling as a generic conceptual framework
	Components of dynamic accessibility
	From components to dynamic modelling

	Demonstrating the framework: data and methods
	Mobile phone data as one proxy for people
	Temporally sensitive transport supply and service network data
	Modelling dynamic accessibility
	Spatial equity measure

	Demonstrating the framework: results
	Implementing dynamic accessibility - case of food accessibility
	Dynamic vs. static accessibility model
	Impact of time on spatial equity

	Discussion
	Lessons learnt from the empirical tests
	Data sources for dynamic location-based accessibility modelling
	Considerations of the conceptual framework

	Acknowledgements
	Supplementary information
	References




