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When metal surfaces are subjected to high electric fields, plasma is formed even under ultra
high vacuum conditions. This phenomenon, known as vacuum arcing, is a major limiting factor in
various modern applications such as particle accelerators, fusion reactors, etc, as practice shows that
surface cleaning is not sufficient to prevent it. In this letter we report an intrinsic mechanism of how
a metal surface responds to the application of a very high electric field, which leads to plasma build-
up. We present multi-scale atomistic simulations that concurrently include field-induced forces,
electron emission with finite-size and space-charge effects, Nottingham and Joule heating. This
unique approach allowed us to analyze the dynamic evolution of a copper nano-tip in atomic detail.
We observed a thermal runaway process that triggers atom evaporation at a rate sufficient to initiate
plasma.

Electric discharges in the form of arcs appearing in
vacuum, also known as vacuum breakdowns, have been
studied thoroughly for more than 70 years both experi-
mentally and theoretically1–8. Vacuum breakdown phe-
nomena play a significant role in various technological
applications by being either exploitable or highly unde-
sirable. For example, they can be used in ion sources9

or for physical vapour deposition7. On the other hand,
they hinder the function and limit the performance of
various vacuum devices that require high electric fields,
such as fusion reactors10, vacuum interrupters11, electron
sources4 and powerful linear accelerators to be used in
particle colliders for new insightful experiments at CERN
(CLIC)12.

Over decades, vacuum arcing strongly attracted the at-
tention of researchers from different fields, since various
physical phenomena are involved. However, the mecha-
nisms of plasma onset are still under debate. During an
arc, plasma is ignited in the vacuum and burns until the
available energy from the power source is consumed. It
is well-known since the 1950’s2,3,7,8 that vacuum arcs ap-
pear after intense field electron emission, but the physical
mechanism that leads from the latter to plasma ignition
is not yet fully understood.

Recent experimental studies show that the improve-
ment of surface and vacuum quality cannot diminish the
probability of vacuum arcing13. In the same direction,
arcs were found to appear on single metal tip cathodes
when their current density exceeded a critical value even
for well-controlled emission conditions1. These indicate
the existence of an inherent mechanism of surface re-
sponse that initiates breakdown.

One hypothesis commonly used to explain the
plasma build-up from field emission is ”explosive
emission”7,14–16. According to it, when intensive field
emission takes place, there is a critical current density
beyond which heating is produced at a rate the emitter
cannot dissipate. This leads to heat accumulation and
extremely high local temperatures, sufficient to cause in-

stant explosion and plasma formation7. However, this
hypothesis is based on only phenomenological consider-
ations, since the atomic level insight in such a complex
phenomenon as vacuum arcing was not available.

Here we present multi-physics atomistic simulations
that reveal a thermal runaway process. The latter is
based on the gradual deformation of an emitting tip, due
to the field-induced forces. The simulations show that
both high current density and sufficiently large tip size
are needed to initiate the melting at its apex. After that,
the field-induced forces gradually deform the tip, elongat-
ing and sharpening its apex in a process similar to the
Taylor cone formation in liquid metal ion sources17–19.
This process, in combination with the decrease of the
electrical and thermal conductivities at high tempera-
tures, leads to a positive feedback thermal runaway mech-
anism. Eventually, large fractions of the emitter evapo-
rate in the form of neutral atoms, but also as charged
nano-clusters. The total number of evaporated atoms
(both isolated and clustered) is compatible with the mini-
mum evaporation rate required to ignite plasma, as found
by recent Particle-In-Cell (PIC) calculations20,21.

In order to study the atomic level processes leading to
the initiation of plasma, we perform Molecular Dynam-
ics (MD) simulations. However, the thermal runaway
process involves various physical phenomena, which clas-
sical MD cannot describe implicitly due to its atomistic
nature. The electric field interacts with the material, in-
ducing charges and forces on the surface atoms and gen-
erating electron emission. The latter heats the nano-tip
due to the Nottingham22,23 and Joule effects. The com-
bination of the above causes significant changes in the
structure and geometry of the material and hence they
have to be quantified and included in the calculations.

In this letter we propose a model, which extends the
capability of the classical MD method by solving the
heat and electrostatic equations concurrently for a dy-
namically evolving nano-emitter shape. We have up-
dated our HELMOD model24 that couples MD simu-
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lations with electric field calculations, and includes the
charge-induced forces in the MD interactions. Although
this model provided many interesting insights into the
interaction of high electric fields with metal surfaces, the
rigid grid used to calculate the electric field imposed
critical limitations for systems dynamically evolving at
high temperatures. To overcome this limitation we used
our recently developed model FEMOCS25,26 to calculate
the electric field distribution around the tip on a flexible
mesh, and integrate this information into HELMOD.

FEMOCS solves the Laplace equation ∇2Φ = 0 using
the Finite Element Method (FEM) on an unstructured
mesh. This mesh is generated automatically from the
atomic positions in order to follow the varying nano-tip
shape. A Dirichlet boundary condition Φ = 0 is then
applied on the nano-tip surface. Once the electrostatic

potential Φ and field ~E = −∇Φ are obtained, we cal-

culate the induced charge Qs = ε0| ~E|As on an elemen-
tary surface area As (see supplementary material section
I) of the material-vacuum surface. This surface charge
is then distributed to the nearby surface atoms. Given
the charge qi on each atom, we calculate and add to the

MD interaction the Lorentz force ~Fi = 1
2qi

~Ei and the
Coulomb forces between the charged atoms. Details on
the implementation of these calculations are given in the
supplementary material section I and ref.24.

Our previous calculations27,28 showed that the thermal
effects caused by electron emission play an important role
in the nanotip evolution under high fields. The classical
electron emission equations29–31 are inadequate to de-
scribe combined thermal-field emission32 from nanomet-
rically sharp emitters33–35. However, our recently devel-
oped computational tool GETELEC36 provides with the
means to consistently and efficiently calculate the elec-
tron emission current and Nottingham heat distributions
from sharp nano-tips, even at temperatures beyond the
melting point. We also note that the local fields and the
current densities calculated here are close to the Space
Charge (SC) limit; thus the SC effect37 is also included
in our model.

Calculating fully the charge density distribution in-
duced by the emitted electrons in three dimensions
(3D) is a complicated and computationally expensive
calculation38, which is usually done with the PIC
method39,40. Nevertheless, Forbes41 claimed that the
standard 1D SC model for field emission42 can be used
to obtain the reduction of the surface field if a simple
correction is introduced to account for the non-planar
nature of the emitter. We used this approximation af-
ter confirming its validity by comparison to full 3D PIC
simulations40. Details on our SC model can be found in
the supplementary material section II.

Using the results from the SC model we calculate the
Joule and Nottingham heat distributions along the tip.
For the Joule heating, we also need to obtain the resis-
tivity ρ which depends on the local temperature and the
size of the nano-tip. For a given temperature T , we ob-
tain ρ(T ) by interpolating tabulated values found in the

literature43,44. ρ(T ) is capped at the highest available
value of 3500K. Furthermore, the mean free path of the
electrons in the material is decreased due to the nano-
metric size of the nano-tip. To correct our ρ values for
this finite-size effect, we use the simulation method and
tool of Yarimbiyik et. al.45. The latter can calculate the
mean free path reduction for a given nano-wire diame-
ter. The value we use for the latter is the mean diameter
along the tip for the initial geometry.

In order to obtain the temperature distribution on the
emitter we solve the heat diffusion equation46. The ge-
ometrical structures which we simulate, have one domi-
nant dimension, i.e. their height h is much longer than
the lateral dimensions. Hence, in line with our previous
publication27, we use a 1D version of the heat equation
which is solved using an explicit Euler scheme. Thus
we obtain the temperature distribution T (z, t) along the
tip for each time step. The heat conductivity κ is cal-
culated from ρ according to the Wiedemann - Franz
law46. A reduced value for the Lorentz number L =
2.0× 10−8WΩK−2 is used due the nanometric tip size47.
A detailed description and validation of our heat diffusion
method is given in the supplementary material, section
III.

The obtained temperature distribution T (z) is fed back
to the calculations for the next step in two ways. First,
it is given as input to the electron emission calculations
performed by the GETELEC code for the next timestep.
Second, it is used to scale the MD atomistic velocities ac-
cording to the Berendsen48 temperature control scheme
with a relaxation time τ = 1.5ps. The described proce-
dure is repeated for every MD timestep, skipping the full
calculation if possible to increase the computational effi-
ciency. If the root-mean-square average of the atomic dis-
placement (compared to the last full-calculation step) is
smaller than 0.38Å, the last calculated solution is reused.

We simulate a conical Cu nanotip built on a {100}
surface (see figure 1). The cone is terminated with a
hemispherical cap of a radius R = 3nm. The tip has a
total height h = 93.1nm and a full aperture angle of 3o.
In order to keep the computational time feasible, only the
upper half of the tip is fully simulated with MD. Accord-
ing to our estimations, only this part significantly heats
providing high kinetic energies to the atoms. The bot-
tom half maintains practically a constant shape and we
consider it fixed; the field and temperature calculations
are extended to the continuous limit in that region. Thus
the total number of simulated atoms is 206000 and the
MD simulation box has a size of 11.64× 11.64× 46.6nm
(shown with grey lines in figure 1).

However the electric field and heat are calculated on
the whole tip domain, which includes an extension of the
MD system shown by the ”virtual” particles lying out of
the box in figure 1. These points are used to generate
the FEM mesh on a 280 × 280 × 560nm box. This size
is sufficient to assume periodic boundary conditions at
the sides and a Neumann boundary condition at the top.
Only a small part of this box is shown in the figure.
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FIG. 1. Simulated tip shape illustrated by the MD atoms (in
the box) and the constant ”virtual” atoms (out of the box).
The color coding represents the steady-state temperature dis-
tribution for constant shape. The inset illustrates the atom
charges qi by the color coding and, the corresponding forces
~Fi by the black-line arrows.

For the MD simulations we used two different inter-
atomic potentials with a constant timestep ∆t = 4.05fs.
The Sabochick and Lam (SL) EAM potential49 and the
one from Mishin et. al.50. In order to take into account
the stochastic nature of the process, we repeated the
same simulation 7 times for each potential. Since our
tip is isolated and continued to the bottom, no periodic
boundaries were applied. The two bottom atomic Xlay-
ers of the MD systems were fixed to obtain a smooth
connection to the rest of the tip and avoid translational
motion of the whole structure. Finally, the ten bottom
layers above the two fixed were controlled to linearly in-
creasing temperatures from 0 to T (z) in order to avoid
possible artefacts caused by extreme velocity mismatch.

The inset shows a closer view on the tip apex with
the color coding corresponding to the calculated field-
induced charges qi for each atom and the black arrows

corresponding to the forces ~Fi.

A macroscopic electric field E0 = 0.8GV/m, is applied
instantly after the MD system is run to relax for 0.5ps.
This value for E0 is relevant to the surface fields used
in modern high-gradient accelerating structures13,51. At
the initial configuration, the maximum local field at the
apex as calculated by the Laplace equation is found to
be Emax = 17.9± 0.04GV/m. However, such a high field
induces an emitted current density with an average value
at the bottom of the MD simulation domain (middle of
the conical tip) Javg = 3.57 ± 0.02 × 10−5Anm−2. This
will suppress the fields due to the SC effect by a factor of
θ = 0.68± 0.0008 and converge to a final current density
of Javg = 4.6 ± 0.02 × 10−6Anm−2. For the SC model,
we have assumed an applied voltage of V0 = 3kV which
is then multiplied by a correction factor ω = 0.25 (see
section II of the supplementary material).

In this initial configuration, the deposited heat power
is very high (reaches 3± 0.1× 10−5Wnm−3) and is dom-
inated by the Nottingham effect. However, if the system

geometry is kept constant, the heat is rapidly dissipated
towards the bulk due to the high thermal conductivity
of Cu, and the temperature distribution converges to a
steady state after about 233ps, with a maximum value of
about 2378± 10K at the apex. Furthermore, even if the
applied field and voltage are increased to unrealistic val-
ues (double the previous ones), the current density Javg
is limited by the SC to a value of ≈ 1.3×10−5Anm−2, and
the maximum steady-state temperature does not exceed
6200K. All the numerical results reported in the format
”x ± δx” correspond to the mean values and standard
errors as obtained from 16 different simulation runs.

On the other hand, if we let the whole MD system
evolve according to the algorithm described above, we
obtain a completely different picture. Figure 2 demon-
strates the heat and shape evolution of the nano-tip for
one of the simulations with the SL potential. The graph
shows the time evolution of the height of the tip. The
inset figures (a-g) demonstrate the snapshots of the tip
evolution at the time steps designated on the graph re-
spectively. The tip shape initially stays approximately
constant (t < 50ps), while its temperature gradually in-
creases. When the temperature exceeds the melting point
at the apex, the top atoms become mobile and the field-
induced forces can pull the apex atoms upwards, thus
sharpening and elongating it. This leads to higher local
fields, higher forces and higher emission currents, thus
producing more heating. The above process increases
further the temperature, thus forming a positive feed-
back loop and eventually leading to thermal runaway.

After about 200ps the deformed tip has reached more
than 3000K. Meanwhile, the field-induced forces cause
neck-thinning which becomes more pronounced as the
simulation evolves (frame C). This thinning confines the
total emitted current in a small cross-sectional area, thus
producing a high local current density and Joule heating.

Eventually, the high local temperature in combination
with the forces cause detachment of the upper part of
the tip, creating an evaporated nano-cluster. The latter
is charged (due to partially charged atoms on its surface)
and is rapidly accelerated and removed by the field. Al-
though its full behaviour requires further investigation
(interaction with the field, collision with the evaporated
atoms, emitted electrons, etc), for the purpose of this
work we consider it instantly removed and continue the
simulation with the remaining tip. All evaporated atoms
and clusters are marked and removed by a cluster analysis
algorithm52 implemented in FEMOCS26, with a distance
cut-off equal to the one of the MD potential (4.94Å for
SL and 5.5Å for Mishin).

The thermal runaway process is reinitialized in the re-
maining tip until a new smaller cluster is evaporated.
After the detachment of several small nanoclusters (E,F)
and numerous atom evaporation events, the process fi-
nally stops as the tip blunts and cools down (G). The
full animation of the evolution of the tip can be found
in the supplementary material. Although the runaway
and the evaporation appeared at different times and the
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FIG. 2. The tip height (red line, left axis) and the evaporation
rate (black dashed line, right axis, inverted upside-down) as
a function of time. The inset images demonstrate the shape
and the temperature distribution (color coding) in 7 different
frames (A-G). The black lower case letters on the height graph
demonstrate the time stamp of each frame (a-g).

tips took various shapes in the simulation runs with dif-
ferent random seeds, the steps described above remained
qualitatively similar.

An arising question is whether the above process is
enough to initiate self-sustaining plasma. In a recent
work20,21, PIC simulations showed that plasma can build
up in the vicinity of an intensively field emitting spot.
This happens if the cathode, emits not only electrons,
but also neutral Cu atoms at a rate of at least 0.015 neu-
trals per emitted electron. However, the physical pro-
cesses that can lead to the emission of neutrals along
with electrons was not fully understood.

We define the average evaporation rate 〈rCu〉 as the
total number of atoms detached from the tip (isolated or
clustered) over the total time interval between the first
and the last evaporation events. If we divide this quantity
by the average emitted electron current during the same
period, we obtain the mean evaporation rate per emit-
ted electron 〈rCu/e〉 = 0.025 ± 0.003atoms/e. This rate

is strikingly close to the values estimated in20 and even
exceeds the reported minimum of rCu/e = 0.015atoms/e
required to ignite plasma.

The consistency of our results with the previous inde-
pendent simulations that used a different method (PIC)
indicates that there is an intrinsic mechanism able to sup-
ply neutral atoms sufficient to ignite a vacuum arc near
the cathode surface. Our rigorous calculations, based on
the state-of-the-art understanding of the electric field–
material interactions suggest that an external source of
neutral atoms is not necessary to ignite the plasma; the
latter can also be fed through self-evaporation of the sur-
face atoms, in a process much less violent than the ”ex-
plosive emission” conventionally assumed.

An important question is what are the prerequisites

to initiate thermal runaway. The latter is a complicated
process that depends on various initial configuration pa-
rameters, namely material, geometry, applied field and
voltage. A full analysis of all these parameters is out of
the scope of this letter, and will be given in a forthcoming
publication. However, as a general comment, two are the
main contributing factors to the initiation of the thermal
runaway: melting and force. This means that the tip
height and the current density have to be sufficient to
cause melting at the apex region. The minimum height
depends on various other parameters that affect the heat-
ing, namely specific geometry, applied voltage and con-
ductivities. In general, the current density required to
produce such a heating is of the order of 1012A/m2, in
agreement with the experimental results of Dyke et. al1,2.
Moreover, the importance of tip melting prior to an arc
has been observed also experimentally by Batrakov et.
al.53.

On the other hand, the balance between the field-
induced forces and the surface stress plays also a sig-
nificant role. For the simulations we presented here, a
minimum local field at the apex of about 10-12GV/m is
necessary. In view of the above, it would be safe to as-
sume that tips with a height of at least several tens of nm
are required in the case of Cu. This is in agreement with
experimental results54, demonstrating that field emission
with measured enhancement factors of the order 20-100
always precede vacuum arcs on Cu surfaces. This means
that assuming a minimum tip radius of 1nm, the involved
tips have heights of several tens of nm.

In conclusion, we have simulated the thermal and
shape evolution of intensively electron emitting Cu nano-
tips by means of a multi-scale atomistic model. Our re-
sults reveal a thermal runaway process initiated by the
field-induced forces acting on the molten apex of a nano-
tip. The thermal runaway leads to evaporation of metal
fractions in the form of either atoms or nano-clusters, at a
rate that exceeds the minimum needed to ignite plasma.
This is a self-sufficient process, which does note depend
on an external source of neutral atoms. Thus we show
that the onset of a vacuum arc in ultra high vacuum is an
intrinsic response of a metal surface to the applied high
electric field.
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SUPPLEMENTARY MATERIAL

I. CALCULATION OF FIELD-INDUCED
CHARGES AND FORCES

In order to calculate the charges and forces on the sur-
face atoms, we use an extension of the Molecular Dynam-
ics – ElectroDynamics (MD–ED) method we developed
previously for HELMOD24. We build a rectangular grid
on the Molecular Dynamics (MD) simulation box so that
every atom belongs to a certain grid cell. Since the atoms
are in an FCC crystal (at least when the temperature is
still low), there are numerous grid cells (roughly half)
that contain no atoms. Furthermore, when the temper-
atures approach or exceed the melting point there might
be some cells (a small percentage) containing more than
one atoms, but this does not affect the functionality of
our method.

When each atom is assigned to a certain cell, the cells
are separated into material and vacuum domains. Figure
3 illustrates this separation. The cubes correspond to the
cells of the material domain, for the initial configuration
of the simulated tip after a relaxation of 0.5ps. The ma-
roon spheres correspond to the atomic positions. In the
inset a closer view of the area in the box is demonstrated,
with the smaller grey cubes corresponding to some of the
cells of the vacuum domain.

The separation is done in the following way. If a cell
contains an atom or has a number of first nearest neigh-
bours containing an atom N ≥ 4, then it is designated as
material (e.g. cell c1 in the inset). If it does not contain
an atom and it has N ≤ 3 it is designated as vacuum
(e.g. cell c2 in the inset).

FIG. 3. Atoms on the tip apex (maroon spheres) after a
relaxation of 0.5ps along with the corresponding material-
designated cubic grid cells. The color coding on the cells
corresponds to the charge qc assigned to each cell. The inset
demonstrates a closer view in the box area, with the grey
small cubes being vacuum-designated cells.

Then the surface charges are calculated in every cell

face separating a vacuum cell from a material cell ac-
cording to the Gauss law

qf = ~Ef · n̂fAf (1)

where qf is the surface charge on each cubic face, ~Ef
is the local electric field in the center of the face, and
n̂f is the unit vector normal to the cubic surface. The
electric field distribution has already been calculated by
solving the Laplace equation using the recently developed
Finite Element Method (FEM) tool FEMOCS26. Then
the charge on each surface cubic cell is calculated as

qc =
∑
fMV

qf (2)

where the summation is done over all the faces of the
cell that are in contact with a vacuum one. The charges
qc are shown in the color coding of the cells in figure 3.
Note that inner cubic cells that have not a common face
with vacuum cells have qc = 0.

Since we want to calculate the inter-atomic Coulomb
interactions and the field-induced Lorentz forces, the
charge on each atom qi needs to be calculated. For this,
all the grid-point charges have to be assigned to atoms
while the total charge is conserved. This is done in a very
simple way. If a grid point contains one or more atoms,
then all its charge qc is assigned to those atoms (divided
equally). In the vast majority of the cases there is only
one atom in each grid cell. On the other hand, if a grid
cell does not contain any atoms, its charge is distributed
equally to the atoms belonging to its first-neighbouring
cells.

Finally, the Lorentz force ~Fi on each atom is calculated

by the formula ~Fi = 1
2qi

~Ei. The 1/2 term stands for the
fact that the atoms are exposed to the electric field only
from the one side of the material-vacuum surface. The
Coulomb forces are calculated and included in the MD
interaction by the same method described in ref.24.

II. THE 1-DIMENSIONAL SPACE CHARGE
MODEL

The space charge (SC) plays an important role in the
determination of the electric field and the emission cur-
rent around the emitter, especially in the very high field
regime we simulate here. Although a simple model to de-
scribe the SC effects in field emission has been developed
since the 1950’s42, it is applicable only for quasi-planar
emitters. Nevertheless, it has been proposed by Forbes41

that the standard 1D model can be used even for nano-
metric scale emitters, if the applied voltage V is multi-
plied by a correction factor ω < 1. Here we describe how
this approach is developed, implemented in our simula-
tions, and validated versus existing 3D Particle-In-Cell
simulations.

According to the standard 1D SC model, the local field
on the emitter (uniform in 1D) is found as F = θFL,
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where θ is the dimensionless field-lowering factor and FL
is the field found by the Laplace equation, i.e by ignoring
the SC effects. θ is a function of the the emitted current
density J , the local field F and the total applied voltage
V which is here an external parameter. J and F are also
dependent on θ, which means that a self-consistent set of
J, F, θ has to be obtained.

However, for a 3D nanometric emitter, J and F are
not well-defined. In a quasi-planar emitter, the values at
the apex can be used, since the SC is localized around it
in a region much smaller than the radius of the emitter,
where these quantities are practically constant. On the
contrary, in a nanometric emitter the whole tip surface
contributes to the SC, which means that the apex values
are no longer representative.

Thus we will define the following representative values
Fr, Jr for the field and the current density correspond-
ingly

Jr =

´
Sh

JdS´
Sh

dS

Fr =

´
Sh

FJdS´
Sh

JdS
. (3)

In eq. (3) the surface integrals are performed on the full-
width-half-maximum emission surface Sh, i.e the surface
where J > 1

2Jmax. On this surface, Jr is the mean value
of J and Fr is the weighted mean value of F , with the
weight being the emitted current density.

Using the representative values, the θ factor is calcu-
lated according to equation (13) of reference41 and then
the whole potential and field distributions on the emitter
are multiplied by θ. Then Jr, Fr are recalculated accord-
ing to the new electric field distribution. This procedure
is repeated iteratively until self-consistency is reached.
Note that the obtained θ is used to multiply the whole
electric field distribution, thus affecting not only the elec-
tron emission, but the charge and forces calculations de-
scribed in section I.

In order to validate our 1D space charge model, we
compare its results to full Particle-In-Cell (PIC) simula-
tions performed by Uimanov40. We reproduced the solu-
tion of the Laplace equation for the geometries presented
in ref.40, and then used our model to obtain the field-
lowering factor θ, using a corrected applied voltage ωV .
θ is obtained for various values of the applied voltage and
for two of the geometries simulated by Uimanov: ”FE4”
and ”FE5”. ”FE4” is an emitter with 10nm radius and
”FE5” with 1nm, thus being the most relevant to our
simulated tips that have a 3nm radius.

In figure 4 we see the F − FL (values at the apex)
curves reported in figure 6 of ref.40 (markers) along with
the results of our model (lines) for the same geometries.
The corresponding fitted values for the correction factor
ω are shown in the legends. We see that our model is
in very good agreement with the full 3D PIC calculation
with an error of less than 1%, at a range of FL up to
about 35GV/m.

FIG. 4. Local apex field including the SC F versus the one
ignoring SC FL for the two different emitter geometries sim-
ulated by Uimanov40. Markers correspond to the results of
figure 6 in ref.40 and the lines to the results obtained by our
1D SC model.

In view of the above, the 1D space charge model de-
scribed above is a good approximation for nanometric
size emitters, given that a valid correction factor ω is
used. Although we cannot obtain here its value for the
specific geometry we simulate, the fitted values obtained
above for similar hemisphere-on-a-cone geometries indi-
cate that the used value ω = 0.25 is reasonable for our
nano-tip. This value was chosen by linearly interpolat-
ing between ω = 0.15 and ω = 0.35, with respect to the
logarithm of the emitter radii.

III. SOLUTION OF THE HEAT EQUATION

The heat diffusion equation in 3 dimensions is

CV
∂T

∂t
= ∇ · (κ(T )∇T ) + p (4)

where CV is the volumetric heat capacity, κ(T ) is the
heat conductivity as a function of T and p is the local
deposited volumetric heating power density (in W/m3).
The Nottingham heat is expressed as surface density (in
W/m2), but it can also be treated as a volumetric quan-
tity, localized in the surface region with the help of the
Dirac δ function. In the following analysis it is considered
to be a component of the volumetric density p.

Since the length of the simulated structures is domi-
nant, let us integrate the temperature T (x, y, z) on an
infinitesimal ”slice” Ω, between z and z + δz with width
δz, cross-sectional area A(z) and volume δV = A(z)δz

CV
∂

∂t

ˆ
Ω

TdV =

ˆ
Ω

∇ (κ∇T ) dV +

ˆ
Ω

pdV . (5)

The integral of the left hand side equals to 〈T 〉δV
where 〈T 〉 denotes the mean temperature on Ω. The sec-
ond term in the right hand side equals to the total heat
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〈p〉δV deposited on the slice. Using the above notation
and Gauss’s divergence theorem we can rewrite eq. (5)
as

CV
∂〈T 〉
∂t

δV =

‹
∂Ω

κ(∇T ) · n̂dS + 〈p〉δV . (6)

where n̂ denotes the unit vector perpendicular to the sur-
face around the slice ∂Ω. This surface has three compo-
nents. The two cross-sections A(z) and A(z + δz) and
the ring around them. For δz � 1 the contribution of
the ring is negligible compared to A. Moreover, since the
cross-sectional surfaces are along the x−y plane, we have
n̂ · ∇T = ∂T/∂z and the surface integral on the cross-
section can be expressed as A(z)∂〈T 〉/∂z. Then eq. (6)
yields

CV
∂〈T 〉
∂t

A(z)δz = A(z + δz)κ(z + δz)
∂〈T 〉
∂z

∣∣∣∣
z+δz

−A(z)κ(z)
∂〈T 〉
∂z

∣∣∣∣
z

+ 〈p〉A(z)δz.

(7)

Dividing eq. (7) by A(z)δz and considering that the
temperature does not vary significantly in the lateral di-
rections, i.e. 〈T 〉 ≈ T , yields the 1-dimensional (1D)
heat equation for a variable cross-section and conductiv-
ity wire.

CV
∂T

∂t
=

1

A

∂

∂z

[
Aκ

∂T

∂z

]
+ 〈p〉. (8)

The above equation is solved using the Finite Differ-
ence Method (FDM) with a simple explicit Euler scheme
and a small time step ∆t = 0.06fs, small enough to avoid
numerical instabilities. We divide the tip inN finite slices
with width ∆z, that coincide with the slices of the rect-
angular grid shown in figure 3. On each surface cell the
current density and the deposited Nottingham heat sur-
face density are calculated by GETELEC, as described
in ref.36 (the space charge is also taken into account as
described in section II). Then the total current and to-
tal Nottingham heating power contributions of each cell
(ic and pNc

correspondingly) are calculated by multiply-
ing the densities with the cell face areas, similarly to the
charge calculation described by equations (1), (2) in the
previous section. We consider that the emission quanti-
ties have the same direction as the electric field of the
cell.

The total current flowing through the cross-section of
the k-th (k = 0 at the apex) slice is cumulative from the
apex to the base as dictated by the continuity equation,
i.e

Ik = Ik−1 +
∑
c∈Sk

ic (9)

where Sk denotes the surface cells of the k-th slice. The
total heat deposited on the k-th slice is the sum of the
Joule and the Nottingham heat components, i.e

Pk = ρk
Ik

2

Ak
∆z +

∑
c∈Sk

pNc
. (10)

The Euler scheme for equation (8) is Tk(t + ∆t) =
Tk(t) + ∆Tk. Using equation (10) yields

∆Tk =
∆t

CVAk∆z

[
κkAk
∆z

(Tk+1 + Tk−1 − 2Tk) +

1

4∆z
(Ak+1κk+1 −Ak−1κk−1) (Tk+1 − Tk−1) + Pk

]
(11)

where the subscript denotes the slice number for all quan-
tities. Equation (11) is solved numerically for all slices
with a Dirichlet boundary condition at the bottom of
the tip, i.e TN = 300K and a Neumann condition at the
apex, i.e T−1 = T0. ρk and κk are updated at each time
step according to the current Tk. On the other hand,
Ak and Pk are recalculated and updated when either the
field distribution is recalculated by FEMOCS (meaning
that the atoms have been displaced more than a limit) or
T (z) has an RMS difference greater than 1% compared
to the last step when Ak and Pk where obtained.

Finally, the resulting temperature distribution T (z) is
used to control the temperature of the MD system. The
velocities of the atoms residing inside the k−th slice are
scaled according to a Berendsen control scheme48 with
control temperature Tk and relaxation time τ = 1.5ps.
This τ is much smaller than the relaxation time of the
heat equation, but also big enough to avoid artefacts ap-
pearing in MD when intense velocity scaling.

The above 1D model has the advantage of its simplic-
ity and computational efficiency. Solving the heat equa-
tion in 1D adds insignificant CPU time in the whole MD
and field calculation. In order to validate the model, we
compare its results with our previous 3D Finite Element
Method (FEM) model28. That model is used to solve the
steady-state heat equation on the same FEM mesh pro-
duced by FEMOCS. The emitted current and Notting-
ham heat are in that case is calculated using the standard
General Thermal-Field (GTF)32. Only for this compari-
son, we will ignore the nanometric emitter size effects in
electron emission and the space charge effect. Note that
originally the FEM model ignored the Nottingham effect.
Nevertheless, it was here implemented by adding a Neu-
mann boundary condition to the heat equation, similar
to equation (4) of reference28. The boundary condition
is

n̂ · (κ∇T ) = pN (12)

where pN denotes the surface density of the deposited
heating power and n̂ is the unit vector normal to the
material surface.

Figure 5 shows the comparison between the two mod-
els. The lines correspond to the final steady-state (af-
ter about 100ps) temperature distribution along the sim-
ulated tip, as calculated with the 1D model described
above. The markers correspond to the temperature along
the vertical axis of symmetry of the tip, as calculated
by the 3D FEM model. The calculation was performed
for two different tip geometries, taken from two different
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frames of the simulation shown in the main text. The
calculation for a ”regular tip” (solid lines and dots) cor-
responds to the original regular conical geometry (shown
in figure 1a,b in the main text) and the one for ”deformed
tip” (dashed lines and diamonds) to the deformed shape
the tip takes after 208.6ps of simulation (see figure 2 of
the main text). We see that the simplified 1D model is in
excellent agreement with the 3D FEM calculation, even
for the irregular geometry of the ”deformed tip”. The
markers correspond to the mean value of the tempera-
ture for a given slice. The deviation of the temperature
around that value is smaller than the size of the marker
in the figure.

FIG. 5. Steady state temperature distribution as calculated
by the 1D FDM (blue lines) and the 3D FEM (red lines)
models for two different tip geometries and field values. For
the regular conical geometry ”Tip 1” (solid lines) the applied
field was Eappl = 0.56GV/m and for the oblique geometry
”Tip 2” (dashed lines) Eappl = 0.45GV/m.
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