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Abstract

Modern society produces vast amounts of digital data related to multiple
domains of our lives. We produce data in our free time when browsing
the net or taking photos with various personal devices, such as phones or
ipads. Businesses and governments also gather a lot of information related
to our interests, habits or otherwise personal information (legal status,
health data, etc.). The amount of data produced is growning too large for
us to be handled manually, and so to assist the user, specialized information
retrieval systems have been developed to allow efficient perusal of different
types of data. Unfortunately, as using such systems often requires expert
understanding of the domain in question, many users get lost in their at-
tempt to navigate the search space. This problem will only be exacerbated
in the future, as the amount of data keeps growing, giving us less time to
learn about the domains involved.

Exploratory search is a field of research that studies user behaviour in
situations, where users have little familiarity with the search domain, or
have not yet decided exactly what their search goal is. Situations such as
these arise when the user wishes to explore what is available, or is otherwise
synthesizing or investigating the data. To assist the user in exploratory
search and in finding relevant information, various methodologies may be
employed, such as user modeling techniques or novel interfaces and data
visualization techniques.
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This thesis presents exploratory search techniques for online personaliza-
tion and feature representations that allow efficient perusal of unknown
datasets. These methods are showcased in two different search environ-
ments. First, we present a search engine for scientific document retrieval,
which takes the user’s knowledge level into account in order to provide
the user with more or less diverse search results. The second search en-
vironment aims at supporting the user when browsing through a dataset
of unannotated images. Overall, the research presented here describes a
number of techniques based on reinforcement learning and neural networks
that, compared to traditional search engines, can provide better support
for users who are unsure of the final goal of their search or who cannot
easily formulate their search needs.

Computing Reviews (1998) Categories and Subject
Descriptors:

H.1.2 User/Machine Systems

H.3.3 Information Search and Retrieval

H.5.2 User Interfaces

General Terms:
Exploratory Search, Information Retrieval

Additional Key Words and Phrases:
Content-based Information Retrieval, Deep Learning, Bandit Algorithms
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Chapter 1

Introduction

The amount of digitally stored data has been steadily rising through the
last decades, and is predicted to continue so in to the foreseeable future.
The source is not only in government or business produced information, but
also in the rising personal production, and most of it tends to be without
annotation or other meta-data. Over the last three decades, this growth
has made accessing and perusing these repositories an arduous task for all
involved, and the need for methodologies to understand and explore these
repositories have been in high demand. Several advances have been made in
various directions to address this problem, from trying to ease the overload
of information [87], to adding semantic structure to the data [104] or having
adaptive, personalized search systems at our service [22].

Still, most modern search engines rely on look-up search, where the
user’s query is directly translated into results [75]. In these methodologies,
the user is assumed to know what they are looking for, and it is assumed
they will reach it with only a single query. This is a problematic assumption
when a user is still just getting acquainted with the topic they are facing,
or are otherwise interested in learning about the scope of available data:
They might not know what they are looking for yet, and would prefer to
peruse the available content in an efficient manner. Studies have shown
that these kinds of scenarios may be relevant in as much as half of modern
search sessions [48]. In these scenarios it is important for the system to
zoom in onto the relevant parts as fast as possible, while guaranteeing a
good coverage onto what is available.

There are also other considerations for the search process which arise
during the session. Users are rarely able to give explicit feedback, which
would lead to a singular correct answer, but rather accidentally or purpose-
fully wander around the search space. Even in cases where the feedback is
explicit, it might be very sparse, only highlighting positive examples from
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2 1 INTRODUCTION

the data. Furthermore, users usually want results immediately, rarely wait-
ing for more than 4 seconds before they feel the system is slow [23]. In these
cases knowing how to utilize the available feedback information is crucial.

Exploratory search [75] studies scenarios like these, where the user has
not yet decided on a target or is still learning to navigate and understand the
search topic. This field aims to give the user a better understanding of the
available data, using a large set of tools from data visualization, to semantic
understanding of the content or greater control over communicating the
user’s interest.

In this dissertation we focus on optimizing the results of search engines
based on information that can be collected during the search session. The
core question is thus, how do we detect the user’s needs in online settings,
even before they do? By creating models of user behaviour, we aim to de-
velop methods for search engine parameter optimization that are applicable
for existing information retrieval systems. During our research we built two
content-based information retrieval engines that were designed specifically
to test exploratory search scenarios where we can control the user’s famil-
iarity with the data: one is meant for scientific document retrieval, while
the other is for image retrieval.

The main focus of the presented research is on dynamic exploratory
search that reacts quickly to the changing needs of the user. Whatever the
user’s knowledge level, search context or their interests, the retrieval engine
reacts quickly, giving a comprehensive view of the dataset. Each system
utilizes a form of similarity measure, which is used to propagate the esti-
mation of the relevance over the whole dataset. Thanks to this, the engines
rely on content-based retrieval methods without the need for tagging the
data. The personalization is further augmented with information gained
from the user’s behaviour, such as when assessing their knowledge level.
Our findings open interesting venues for further development in informa-
tion retrieval, especially for environments that lack pre-made annotations.

Another theme for our research is to find alternative ways to measure
both the breadth and success of a single iteration of exploration. Evaluation
of exploratory search has been notoriously hard to do, especially now that
more and more ad hoc tools for learning are being developed. The success of
exploratory search cannot be measured comfortably with the tools available
for classical information retrieval methods, as the user still does not have
a singular target within the search space. Hence, precision, recall and F1
scores become useful only after multiple search iterations, when a singular
target has been formed in the user’s mind. We explored a novel metric for
measuring search space coverage, as well as a new user study setting.
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The dissertation will start out by covering the background of these
concepts: In Chapter 2 exploratory search, Chapter 3 relevance feedback
and in Chapter 4 content-based information retrieval. Each of these fields
used together form the basis for search engines that today allow users to
tackle novel data. After this, in Chapters 5 and 6, we introduce new ways
to preprocess the data for our scientific document search tool and the image
retrieval framework, specifically regarding the similarity measures. Finally,
we conclude the findings presented by our work in Chapter 7, and list the
publications describing these systems.

1.1 Objectives

The objective of the dissertation was to develop frameworks with capac-
ity for reactive exploratory search in the wild. These frameworks should
elicit the ability to work in a varied set of domains, and require mini-
mal effort from the user during application. My final work is based on
four claims, which together have comprehensive implications for future ex-
ploratory search systems which have a low threshold for incorporation into
a search engine.

Claim 1: It is possible to personalize the search parameters per session
and user, thus accommodating users outside of population-wide ten-
dencies.

Claim 2: People, who know what they do not know, give more reliable
feedback, and this information can be utilized efficiently when opti-
mizing the search system’s parameters.

Claim 3: It is possible to use very general features, yet still catch a very
specific target with contemporary transfer learning.

Claim 4: Users do not need to know exactly what they want at the be-
ginning of the search session, but with appropriate support from the
search engine, they can direct their search towards a desired direction.

Claim 1: 1 argue that personalization is possible to be done online,
and learning the needs of each user, per session, yields superior results
compared to population-based modeling. Contemporary personalization
methods rely on population-level generic statistics, which often omit a large
portion of users and use cases. Our results indicate that a combination of
user information and generalizable features from multiple domains produce
robust side information for this purpose.
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Claim 2: The presented work posits that novice seekers give noisy feed-
back, while people with intermediate to expert knowledge give more pre-
cise feedback. This indicates that users with better knowledge levels on
the topic give feedback that can be utilized in classical relevance feedback
systems, while users completely new to the topic might gain more from con-
ventional exploration strategies. The reasoning is that people who do not
know what they do not know are unable to direct the search consciously,
which renders most feedback systems moot.

Claim 3: T argue that modern deep learning has attained robust transfer
learning capabilities, allowing us to create end-to-end online systems for
information retrieval. This allows the real-time retrieval of items, which
converges towards a group of relevant items within a reasonable number
of iterations, with minimal feedback from the user. These systems can
be implemented with low effort using existing, unannotated datasets, and
require little domain expertize from the user to peruse comfortably.

Claim 4: 1 posit that it is possible for users to use their intuition when
directing the search, as long as the search engine exhibits the necessary
transfer learning capabilities. This means it is no longer necessary for the
user to be acutely aware of their search target, but they can instead ex-
plore the search space by giving relevance feedback that indicates a general
" preference” towards one item or another.

1.2 Author’s Contribution

Publication I:

Medlar, Alan and Pyykko, Joel and Glowacka, Dorota, Towards Fine-
Grained Adaptation of Exploration / Exploitation in Information Re-

trieval, Proceedings of the 22Nd International Conference on Intelli-
gent User Interfaces, IUI "17, 2017, pages 623-627, ACM, [80].

Contribution:

I was involved in designing the system and planning the user exper-
iments. I conducted all of the user studies. Lastly, I was part of the
writing process, writing the experimental setup section and helping
in the revision of the whole manuscript. I took part in the analy-
sis of the data both as an expert reviewer and when discussing the
implications of our work.
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Publication II:

Medlar, Alan and Pyykko, Joel and Glowacka, Dorota, Fine-grained
adaptation in exploratory search systems using simple user behaviour
characteristics, Accepted in UMAP 2018, the 26th Conference on User
Modeling, Adaptation and Personalization [81].

Contribution

I was involved in planning the user experiments. I conducted half of
the user studies along with Evgenia Lyjina. Lastly, I was part of the
writing process, writing the experimental setup section and helping in
the revision of the whole manuscript. I took part in the analysis of the
data both as an expert reviewer and when discussing the implications
of our work.

Publication III:

A reinforcement learning approach to query-less image retrieval, Hore,
Sayantan and Tyrvéinen, Lasse and Pyykkd, Joel and Glowacka,
Dorota, International Workshop on Symbiotic Interaction, pages 121—
126, 2014, Springer [50]

Contribution

I participated in the theoretical discussion of the system development
phase and the underlying algorithm along with Dorota Glowacka and
Sayantan Hore. I was part of the design process of the various inter-
face options.

Publication IV:

Pyykko, Joel and Glowacka, Dorota, Interactive Content-Based Im-
age Retrieval with Deep Neural Networks, Symbiotic Interaction: 5th
International Workshop, Symbiotic 2016, Padua, Italy, September 29—
30, 2017, Springer International Publishing, pages 77-88, [89]

Contribution

Along with Dorota Glowacka, we worked on the planning phase of
the system. I developed and implemented the underlying system,
algorithms and conducted the experiments. I and Dorota Glowacka
wrote and revisioned the manuscript.

Publication V:

Pyykko, Joel and Glowacka, Dorota, Dynamic Exploratory Search in
Content-Based Image Retrieval, Image Analysis: 20th Scandinavian



1 INTRODUCTION

Conference, SCIA 2017, Tromsg, Norway, June 12-14, 2017, Proceed-
ings, Part I, 2017, Springer International Publishing, pages 538-549,
[90]

Contribution

Along with Dorota Glowacka, I worked on the planning phase of the
system. I developed and implemented the underlying system, algo-
rithms and conducted the experiments. I and Dorota Glowacka wrote
and revised the manuscript.

Publication VI:

Daee, Pedram and Pyykko, Joel and Glowacka, Dorota and Kaski,
Samuel, Interactive Intent modeling from Multiple Feedback Domains,
Proceedings of the 21st International Conference on Intelligent User
Interfaces, IUI ’16, 2016, pages 71-75, ACM [32].

Contribution

With Dorota Glowacka and Samuel Kaski, I considered the potential
for a joint Gaussian Process Bandits model which would pass rele-
vance feedback information from two related domains. During the
development of the theoretic foundation for this system, with Pe-
dram Daee, I built the system for the user studies, and performed
them together half and half. Pedram Daee wrote the initial draft of
the manuscript, after which all the participants joined for revisions.
With Pedram, I designed and built the system for the user studies.



Chapter 2

Exploratory Search

Research on exploratory search [121] has become a prevalent field over
the last few decades, mostly due to the increasing need for navigating the
growing online repositories of data. The field of exploratory search grew
around the existing Information Retrieval (IR) research [102], where an
extensive list of background work indirectly supported it. As the automated
search tools from the early-80’s developed, requirement to support activities
such as learning and assessing all of the available data became prevalent
[95]. This created a need for efficient data management, what the classical
query-response paradigm can no longer supply, where the query is a one-
time information need of the user.

Greedy search looks only for relevant documents. Whenever the user
refines their query further, the best fitting items are shown for them, tak-
ing into consideration only the query word itself. Exploratory search, in
contrast, often looks at the available information from multiple directions
and balances the shown results with greater variety. With this in mind,
common Web search could be characterized as precision oriented ranking,
where the focus is on avoiding irrelevant items. This is usually manifested
in the system avoiding less relevant objects from the results. Exploratory
search in contrast is said to be recall oriented [27], where the focus is on not
missing any relevant documents instead, usually showing a broader aspect
of the data.

However, it is not enough to merely rerank the results to contain more
recall oriented items: if the space and time for shown documents is the
same as in the precision oriented setup, the coverage will still be lacking.
Hence, exploratory search has focused a lot on the presentation of the data
too, condensing and bringing the information in an optimal fashion to the
user [17]. This can be done by simply having easy access to lowly ranked

7



8 2 EXPLORATORY SEARCH

hits, or offer various ways to group relevant hits and give overviews of them.
Giving the user control over these view forms makes an even more refined
system.

Exploratory search gives the user a more thorough view over these
search spaces, and assists in learning and decision making. For example,
it was found that query reformulation, the practice of rewording the orig-
inal query word after learning more about the topic, was needed roughly
on 50% of search sessions [48]. Furthermore, Teevan et al. [112] observed
that users usually directed their search with small steps, instead of directly
jumping to the end result. Each step used local knowledge, which was used
to navigate the search space, and often helped them form an understanding
of it on the way: Such behaviour happened even when the users knew what
they were looking for. These findings are often unsupported in modern
search engines that dominate the field.

Finally, taking into consideration the various needs of different users
has been studied extensively. To speed up the search process, the system
should take into consideration the users’ knowledge level of the topic, as
well as related topics in general. Also, the user’s information needs, be they
superficial or in depth, should be accounted for. Relating these needs to
what is available is needed, as certain databases have different information
to offer, and choosing the best presentation of data for a particular session
is difficult.

For example, what if the user does not know what they are looking
for, or are looking for multiple topics at the same time? Or what if they
have a vague idea of the target, but would like to have a better look at
what is available? In each scenario, a broader selection of documents helps
the user to make up their mind sooner. The users usually want to form
a cohesive opinion on the topic, requiring various aspects of knowledge to
be present as soon as possible. Specifically, the documents missing from
precision oriented ranking are the ones that discuss these differing views,
as the focus of precision ranking is instead on showing merely the best hits
to a query word. More often than not, the user is oblivious to the most
fitting query words for the topic to begin with, and has to figure them out
during the search.

Three Activities The various activities that happen during search ses-
sions can be divided into three loose categories: lookup search, learning,
and investigating ([75], see Figure 2.1). The focus of exploratory search is
on the latter two, learning and investigation. Lookup is the straightforward
retrieval of known items, where a query word or similar identification brings
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Figure 2.1: The three overlapping paradigms outlined by Marchionini [75],
from lookup to learning and investigating.

precise results. This is good for situations where the user already knows
the topic, and simply has to check the details for further reference, for ex-
ample when a painter queries for Mona Lisa for reference. Learning on the
other hand is more about comprehension of the data, aggregating relevant
items and comparing them with each other for indepth understanding. It
is about searching to learn, to acquaint oneself with the topic. Finally,
investigation is about analysis, evaluation and synthesis of data, a more
meta-data approach to what is actually available and how it relates to the
whole picture.

Although the three activities are listed as separate, people often perform
more than one of them within a session. The user might, for example, look
up more information on a topic they have just learned to understand, or
investigate a large number of items they have just retrieved individually.
These types of activities are thus better thought of as ”search tasks”, and
identifying what type of task the user requires at any given moment helps
the search engine react to the user’s needs.

Lookup search was originally conceived for database perusal, where the
target was already known and easily found with a single query. These sit-
uations have grown increasingly rarer, as the Internet offers information
in more varied settings for everyone. Users tend to be less knowledgeable
about the topic and the contents of the database, and might not be inter-
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ested in simple lookup activity in the first place.

Investigative search is more concerned with recall than precision, as
finding more relevant objects is more important than avoiding irrelevant
ones. Although experts know precise query words when looking for content,
they also need robust annotation tools and other sophisticated resources to
assess and analyze the data. In these cases, using relevance feedback [74]
has been shown to give invaluable directive force for the search. However,
people are often reluctant to interact enough with the system step by step,
which has led to an increased interest in innovative interfaces [49, 62, 98,
113, 124].

Several authors [27] further elaborate on Marchionini’s philosophy by
noting a distinction in the context of structured data and unstructured
data. For example, Herschel notes that for structured data the problem of
exploratory search has a well defined solution in online analytical processing
(OLAP) and data warehouses [31], where data integration, comparison,
planning and forecasting are present in data reports. But when it comes
to unstructured data, there are three use cases for further development in
exploratory search: discovery, adaptation, and user centricity.

Exploratory search is all about exploring and discovering the new, as
data that has not been labelled nor annotated is difficult to tackle. Adap-
tation on the other hand is the ability to break free from a set paradigm.
The user has to be able to redefine the approach and facet [124] by which
they wish to investigate the data. The third point is that much of the
structure behind data is set and defined by the experts of the field. To
be truly exploratory, the search has to accommodate those who are still
researching the topic. For them, to explore the data means to learn the
structure underneath as they peruse the data.

Exploratory Search and Information Retrieval Exploratory search
is highly symbiotic with information retrieval [106], and originates from
the same foundation. Indeed, one of the early appearances within the
community was a workshop in an information retrieval conference [82].
Many of the widely used performance measures, user study setups and
system designs are also familiar from IR literature.

Information retrieval is defined as a field that studies the efficient inves-
tigation and perusal of collections of data sources, such as text or multime-
dia [74, 102]. These searches may focus on documents, information within
the documents themselves or metadata that describe the collection. The
active engagement of the user gives feedback to direct the search engine,
which in turn yields results for the user to peruse based on this feedback.
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During a single session, there may be multiple communication iterations,
where the user and the engine refine the results until the user is satisfied.

One early example of common history is Information-Seeking Support
Systems (ISSS [77]), which were outlined as an extension of early informa-
tion retrieval, spanning towards exploratory search, interactive search and
human-computer information retrieval. The focus moved from the preva-
lent query-based search engines to cover planned behaviour and decision
making, as well as to systems designed specifically for information seeking
and learning.

As is evident, exploration is already an integral part of the information
retrieval paradigm, and is implied throughout the definition. Exploratory
search is thus the explicit formalization of the need and procedure by which
information retrieval may be directed in a comprehensive manner [75, 121].

2.1 Interfaces

Interfaces play a major role in successful exploratory search and have been
researched widely in the information retrieval field. A good layout makes
the data more assessable, by visually condensing and abstracting informa-
tion from the whole database. Sometimes less is more, as too much infor-
mation may cause a cognitive overload [87], making the retrieval process
tasking for the user. Furthermore, with the correct setup the user is able to
give more informed feedback to the system. This can be done for example
as a dial manipulating the available valences or features, or presenting the
relation between documents as a spatial view.

An example of a minimalist interface is Google’s search interface [2],
which can be seen in Figure 2.2. Google’s search engine retrieves websites
from around the Internet based on queries, which may be given as a string
of characters. The results are listed in descending order of importance,
and the following is presented: The link’s title, a description formulated
either automatically or by the site maintainer, their fitness to the query
and several other meta-data fields.

Google’s search interface, and the manner by which it can be used,
represents the classical query-based search paradigm. It requires careful
formulation of queries to work effectively, requiring both knowledge of topic
as well as expertise in using the search engine itself. In this case, the search
algorithm responds better to certain kinds of wordings, which can be further
refined via syntactical specifications. Furthering the search often requires
learning more on the topic from the available links, from which consecutive,
fresh queries have to be issued.
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Figure 2.3: The Intent Radar interface [99], which was designed for as-
sessing the user’s intent during search. After querying the system with
73D gestures”, the user is presented with a radar of keywords and a list of
highest ranking documents. By manipulating the relevance of keywords on
the radar, the user is able to fine-tune their search, repopulating the list of
documents online.
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Users have different starting points and goals every time they search for
something, requiring flexibility from the search engine. They might have
different knowledge levels, depending on the topic they explore. Similarly,
the search tasks themselves might require various views of the data, where
one view might help analyzing the seen data, while another helps navigating
to relevant regions in the database. One such system can be seen in Figure
2.3, which presents the Intent Radar [99], an interface that helps the user
better convey their intent to the system.

Finally, a given community itself produces and presents the data in a
certain manner, and bringing this into a presentable form for people outside
of the community might require extra work. For example, doctors might
diagnose patients with a shorthand notation familiar to medicine, which
would be uninterpretable for a patient accessing their own record online.

One large repository of useful work around interfaces has been done
by the HCI (Human-Computer Interaction, [35]) community. Their work
revolves around incentivizing users to provide more feedback, which is es-
pecially relevant for exploratory search. Instead of matching queries to
results, HCI sees users as active agents with information needs and skills,
while digital resources are maintained by communities, both of which evolve
over time. This vantage point illuminates the complex environment a single
procedure is a part of.

Many of the first interfaces were designed as menu views [75], which
got their inspiration from restaurant menus. These views often break the
information into a ready hierarchy as defined by the experts. Navigation
in this category is mainly done with hypertext links, which were called
embedded menus. Eventually, research found use for the refined feature
representations, which enabled systems to react to singular details within
the data.

Query-By-Example Query-By-Example interfaces (QBE, [130]) are sys-
tems based on non-textual queries in the multimedia domain. Contrary to
lengthy descriptions or sets of key words, they instead provide actual exam-
ples from the database. This works well in domains that contain hard-to-
annotate items, such as images, and has been used in various formats since
its early formulation by Shneiderman in 1997 [105]. These environments
are usually navigated via links from one query to another, and are thus well
suited for the Web.

One earlier example is the Open Video Digital Library [76], which is a
service for dynamic digital video viewing, as seen in Figure 2.4. It provides
an eagy interface for over-viewing available videos, as well as previewing
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Figure 2.4: The Open Video Project’s interface [76]. The items in the
dataset contain meta-data that allows the user to search with a wide variety
of options, such as genre or producer. Each query returns a list of video
segments, as well as a detailed view of the selected item.
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segments of their content. The service supplies alternative textual and
visual representations too, supporting flexible control over the videos. The
search can be further faceted with various ready-made partitions, and meta-
data such as date, popularity, or title. All of this information together helps
the user in choosing which parts of the database they want to download for
further perusal, saving time and assisting decision making.

Faceted Search Large databases often contain multiple dimensions the
data adheres to, any of which might be interesting to the user. For example,
digital book libraries might contain meta-data from date of publication to
writer, genre and excerpts from the books. These dimensions could be
perused for information on publication density, content of the library and
the productivity of a single author.

In faceted search [124], the user is allowed to add various filters over the
dataset according to the chosen classification. The classification places each
data point along a number of dimensions common to the database, which
have been predefined, for example, by entity extraction. This requires
analysis of either the meta-data of the dataset, or the data itself. Both
are plausible for existing web pages, which is why they are often easy to
implement.

For example, Relation Browser (RB) [40] was developed as a user in-
terface for a variety of government statistical data, and their presentation
to the public. The system specializes in exploring and combining informa-
tion from different facets of public data, and was made generic enough for
almost any kind of data set available. RB is a faceted search engine that
may presents, for example, the topic, time, space or data format, with sim-
ple mouse-brushing actions. The facet may be moved along its axis, and
frozen with a simple click, freeing the user to browse another facet along
the partition.

Another system is Factic [115, 116], which presents an interface for
personalized exploratory search, seen in Figure 2.5. The browser used a
faceted approach to show semantic data of images (although applicable on
other domains too), which used an ontological user model. Factic was later
augmented with multi-paradigm exploration and a novel interface genera-
tion method that adjusted to the domain ontology in the various web pages
where it was used [116].
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Figure 2.5: Factic’s interface [115]. The initial query can be explored with
the available facets of the data, which are for example tags, date or location
of creation. Along with the thumbnail, a set of metadata is presented for
each result.
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2.2 User Modeling

In HCI, user modeling [38] is utilized to personalize the user experience by
adapting the system’s behaviour to suit the person’s needs. This can be
achieved by modeling anything from the user’s skills or knowledge base,
to their interests and demographic. By correctly predicting what the user
needs at a given time, the system can speed up the search the user is
undertaking, and avoid inefficient use.

When finding deciding factors for the model, data on the user can be
gathered from multiple sources. Direct questions at the start of the session
may yield quick adjustment in performance, such as asking for demographic
information or their knowledge level on a given topic. For example in Factic
[115], the various facets help in personalizing the search for the user, hence
modeling their need better for the session. Each data source depends on
both the available data, but also the purpose of the system. Users in certain
settings will not tolerate long wait times, nor extended interaction with the
interface. Thus, a less invasive way is to simply observe their behaviour,
such as elapsed time on a page to clicked links.

The system may then adapt at a simple level, such as delivering partic-
ular search results for a certain user, or system-wide where every aspect in
the environment is modified. The model of the user may be static, where
once the profile is generated it no longer changes, or dynamic, where a life-
long adaptation occurs. For example, the same system could first act as
an information retrieval browser for the available content and later on as a
visualization tool that allows the user to better reflect on the found data.

Similarly, the personalization model may be based on stereotypes or
classes of previous users, or be highly adaptive to a single user, making
no assumptions from outside. In rule-based decision making, simple IF-
THEN clauses are used to navigate the specific scenarios. On the other
hand, regression models [80] may be used to track the user on a continuous
valence. Collaborative filtering allows the comparison of different users’
usage histories, which then indicates successful paths for the system when
guiding the session.

Finally, the system may evaluate the user’s intent in a given session.
An example of this can be seen in SciNet [98], where the user’s intent is
modeled by their fine-tuning of the keywords. Having feeling of control
has been shown to give users a sense of empowerment and satisfaction,
thus helping them interact with the system until the desired results can be
achieved.
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Personalization Personalization [94] is a key component in many rec-
ommender systems, advertisement and social media in general; anywhere
where tracking the user’s static preferences may help tailor the service for
them. When personalizing their experience, the system may target any
visible aspect from the user.

Behaviour during the visitation, as well as contextual information from
the entry location or time may be used to guess the needs and type of the
user. Also, utilizing the actual history of the user (for example from exter-
nal site cookies), or any similar user for the matter (collaborative filtering),
gives an even more detailed profile. Such side information is gathered from
any and all sources where a single user can be tracked. Various patterns of
interest are followed, and at the best, every user gets assigned to a profile
as soon as they enter the domain.

Using personalized data in explorative search has been a broad topic.
For example, one study did prototyping to visualize Google search history
using Timeline JS [13]. Their system collected data explicitly about the
user’s gender, age and relevance of the shown documents, while the user’s
knowledge on the issue was implicitly conveyed from their behaviour. In
[8] Athukorala et al. devised a user study which analyzes how different
exploration rates affect search performance and user satisfaction. Based
on this, they presented a framework that recognizes whether the user is
performing a lookup search, or an exploratory search [10].

Adapting to the user is nowadays one of the key components of search
engines, and development of these methodologies has focused on inferring
as much as possible from the little data available.

Recommender Systems Recommender systems [93] are specifically rel-
evant in personalization of information retrieval scenarios. The purpose of
such systems is to predict each user’s preference, which can be used to
recommend items for them. Profiles of similar interests and personal in-
formation are gathered en masse for this purpose, and then used to bring
relevant objects for the user.

One of the most classical recommendation systems is for films (IMBD)
[3], where entertainment preferences are tracked to match people with sim-
ilar interests, and then recommend yet unseen movies to others. These
recommenders can be seen ubiquitously elsewhere in the Web, from on-
line shopping centers [1] to navigation (restaurants, shops, museums), life
services (finance and insurance), news and online dating [4].

Recommendation is often based on the assumption that like-minded
people exist and are prevalent throughout the society. When person A
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likes a certain set of two movies, and another person B likes one of them,
it is likely that B would also think similarly of the other movie. When
this process is utilized over thousands of users and tens of thousands of
objects, the statistical significance of profiling emerges. This allows the
recommender systems to make more informed decisions when showing items
to the users. And even if a large number of recommended objects would
not be acted upon (such as in an advertisement), even a few successful
recommendations can make or break an industry.

One major problem and subject of research is managing a cold start
[93]. This is the issue of populating a recommendation list before anything
is known of the user, such as the first time a user enters the service, there is
no information regarding their preferences. Many solutions recommend the
most likely set of items as their default set, such as news sites that show
the user sports and generic global news.

Collaborative Tagging/Filtering Sharing information socially with col-
laborative tagging [38] has been recently researched as a way to navigate
unlabelled content. As web users tag and document content as they pass by
it, they produce valuable meta-data for future visitors and seekers. This in-
formation is collected in many sources explicitly, forming areas of expertise
that are solely based on the thriving community, easing the management
needs of the administrators. One such example is Wikipedia [5], an online
free encyclopedia that is open for anyone to peruse and edit.

These sites also help people to add meta-data and personification pro-
files to often used data sets, helping new users navigate through the con-
tent. For example, collaborating in a search space was done with Re-
sultSpace [28], which is an asynchronous collaborative information retrieval
tool. Awareness is supported with a display for the history of queries, which
is further enhanced by an aggregation of their ratings from other collabo-
rators.

The same can be done for implicit user data too, well showcased in [52],
where Hu et al. proposed a factor model for implicit feedback. They found
unique properties from this feedback, which the factor model was able to
formulate into explanations for previous recommendations.

Social tagging has been found to help exploratory search considerably.
In [58] Kang et al. found that social tagging helped novices and experts
alike. These tags were still more easily interpretable for the experts, but
showed an overall improvement for both groups. This was presumed to
be due to the community struggling and understanding similar problem
descriptions together. Still, experts were found to have a clear advantage
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in interpreting social tags. Their research highlights the interaction between
knowledge-in-the-head and knowledge-in-the-social-web, and how domain
expertise is an ever important aspect in the world.

One of the classical examples that rely on crowd-sourcing, a form of
collaborative tagging, is Amazon’s Mechanical Turk [26], which is a popu-
lar tool for public information refinement. In this service, customers may
recruit the public to annotate data in a manner suitable for their needs,
in exchange for a small monetary payment. It has been widely used to
tag anything from images to videos and audio, adding information on their
semantics and empowering large datasets. These have been tasks that are
notoriously hard for algorithms to annotate.

Intent Modeling There is often a large discrepancy between what the
user wants to search for, and how they end up formulating it for the search
engine [113]. The target of the search also tends to change during the
search session [48], as the user learns from intermediate results. As the
user’s knowledge of the topic increases, the target shifts closer to what
they really want. Furthermore, the user’s frustration is a concrete problem,
affecting the time and resources spent on the search [48]. Even the best
search engines might not get the chance to prove useful, if the user feels
helpless with the tools provided.

Intent modeling [48] is a design that targets these situations in partic-
ular, giving the system a way to react to the current needs of the user.
The user is better able to express their interest one way or another, usually
through a valence or set of features. The interface also plays a crucial role
here, as the data has to be accessibly presented for the user to understand
how they are affecting it with their choices. Intent can also be modelled
behind the scenes, capturing the particular information needs of the user
for the session, and recognizing what their current goal is. At best, a good
intent model will let the user feel in power of their choices, advocating easy
and fast response to their actions.

Intent Radar [99], as seen in Figure 2.3, was designed to give users
control over their search intent with intuitive and simple tools. The Radar
presents the user with a spatial view of keywords relevant to their initial
query. Keywords closer to the center are seen as more relevant, while
similarity was measured as the angle. Users were allowed to modify the
keywords as per their intent, which changed the view of relevant items.
Moving the keywords closer to the middle, for example, showed interest
in that item, which in turn prompted the system to recalculate a new
orientation for the results as indicated by the new keyword constellation.
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The system was compared to a simple list-type interface in task-based
exploratory experiments. The user’s task performance was better than in
conventional interfaces, as seen from expert evaluations and the number
of bookmarked items. This was attributed to the increased quality of dis-
played information, as well as improved support for directing the search.

Context Trap One more reason to advocate exploratory search is to
avoid the context trap [62]. The context trap happens, when a search ends
up in a dead end, from which the user cannot break free during the session
anymore. In classical systems, this happens when the user has specified
their feedback so far that the system is able to recommend only a restricted
list of items, and no amount of new feedback lets the user escape from this
context. Instead, they must restart the search, and any relevance feedback
they gave until up to that point will be lost.

The problem is, common search engines tend to converge towards the
correct solution over the search session, attempting to show only the most
relevant information at each iteration. For this to work, the procedure
requires the full attention of the user, enough patience that the convergence
can happen, and enough knowledge on the topic so that each iteration the
feedback is correct.

If on the other hand the user was not giving perfect feedback towards
the goal they were trying to achieve, the search ends up in the wrong place
of the search space. Now if the engine only retrieves the most relevant
images given the feedback, stagnation of results occurs, and the user can
no longer escape from the results they have at present. Managing the
balance between greedy relevance exploitation and exploratory search is
always a tough problem.

2.3 The Exploration - Exploitation Dilemma

One of key tenets of exploratory search is the diversity of results during a
search session. Pure exploration is not interesting alone though, as maxi-
mizing the diversity of results would end up in a minimal number of relevant
documents. This is why it is important to know when to keep exploring,
and when to stop and utilize the resulting knowledge of what is relevant.
This is called the exploration - exploitation dilemma [111], which describes
the problem of choosing between exploring for better reward options, or
playing the empirically best option we know thus far. The question is
sometimes simplified to: when do we know enough of the problem at hand
to start exploiting the system for the best rewards?
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Solutions that consider exploration - exploitation tend to be utilized in
the fields of recommendations and information retrieval, where the user’s
interests are initially unknown to the system. Tasks from filtering [127] to
ad placement [85] and recommendation [15] itself have a large search space
that requires mapping for lucrative matches.

One formalization for this dilemma is the multi-armed bandit environ-
ment [111], which has been used as a basis when developing exploratory
systems. This method is well known both in statistics and in reinforcement
learning, having a theoretically strong background there. In multi-armed
bandits, an agent is presented with K one-armed bandits, each with un-
known reward distributions. The agent has a certain number of game tokens
to spend, which defines a horizon until which the game may continue. The
agent’s task is to maximize the reward from the bandits, but to do so it
has to figure out which bandit yields the most reward. By spending several
tokens in each bandit, the underlying reward distribution can be asserted,
but certainty has to be balanced with the remaining tokens. Once the agent
knows where the best rewards can be found, it can exploit that bandit for
the remainder of the tokens. In exploratory search domains, a common in-
terpretation is that the bandits represent the various recommendable items,
the tokens are the act of recommendation and the horizon is measured as
the user’s patience.

2.3.1 Multi-armed Bandits

Multi-armed bandits [96] is the formalization of the exploration - exploita-
tion dilemma, which by now consists of years of theoretical and practical
background, and are popular even today. These methods have often been
used in ranking [91], where they provide a solid framework for managing
exploration.

Popularization of bandits has lead to multiple advances in information
retrieval settings through the years, such as Dueling Bandits [125], which
is based on pairwise comparisons that worked well with merely implicit
feedback. The algorithm attained sublinear regret, as well as worked with
discontinuous rankings, all features that show great promise in online set-
tings.

Another such system was introduced by Radlinski et al. [91], which
was an online ranking engine that maximizes the probability of finding a
relevant document in the top k& documents, and attains a polynomial total
payoff while doing so. All of this happens without labels in the dataset,
and by utilizing the similarities between documents and user feedback. Sys-
tems like these optimize the ranking of documents both for relevance and
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diversity, granting users a more thorough set of items from the start.

Formally, K-armed bandits is defined by a set of random variables R; ,,
for 1 <i < K and 1 < n, where i corresponds to a possible action (pulling
an arm) and n corresponds to the number of times any arm has been tried.
Pulling an arm 7 yields rewards R; 1, R; 2, ...R; , which arei.i.d. across i and
n, and are rewards from an unknown distribution and unknown expectation
;. The objective is to modify the policy to first learn the distributions of
the variables (exploration), and at the same time maximize the expected
reward (exploitation).

Let t;(n) be the number of times an arm has been pulled over the first
n rounds. Now we may measure the regret after n rounds by

K

Regret(n) = p*n — pi; > E[t;(n)], (2.1)
7=1

where we define p* = maxj<;<k p;, and E is the expectation. Regret is
thus the expected loss for not pulling the best known arm, given our current
knowledge at the time. It was further proven by Lai and Robbins [67] that
a lower bound for regret exists for any policy, and that the regret of the best
algorithm is of the order O(K log(n)). These bounds were later tightened
on several attempts, most notably with Upper Confidence Bounds [11].

There are several exploratory paradigms for bandits, such as e-greedy
or explore-first tactics [120], which solve the problem adequately in most
scenarios. e-greedy picks the best choice it knows of with 1 — €le € [0, 1]
chance, and takes a random option otherwise. Explore-first explores for
the first [ rounds, where | < K, to form an initial understanding of the
dataset. Neither method comes with strong guarantees for success, as the
parameters are independent of the environment’s properties, and indeed,
of what the algorithm discovers during exploration.

Upper Confidence Bounds A classical way to balance exploration and
exploitation is to use Upper Confidence Bounds (UCB) [11], a method that
further elaborates on the bounds defined above. By tracking the confi-
dence of expected reward with confidence bounds, it is possible to solve
the interplay of exploration and expected reward optimistically in an ana-
lytic form. Practically, this optimism is seen as the method assuming that
any unexplored data point may contain maximal rewards. As exploration
progresses, this assumption is relaxed towards the true expected reward,
hence lowering the chance of these data points being tried again due to
uncertainty.
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Confidence bounds are defined by a normal distribution around a certain
mean p and variance o, such that one tail of variance is the upper bound
and the other the lower bound. A certain portion of the population will lie
between these two bounds, ensuring that at high probability, using these
bounds and the mean make for a powerful tool. The true expected reward
falls into this confidence interval with overwhelming probability.

Confidence bounds define the statistically significant interval around
the most likely outcome in the following manner:

g
v

where p is the mean, « is the confidence level, o the standard deviation,
and n the sample size. Together Z, /, defines the confidence coefficient.

CB = M:l:Za/2 . (22)

UCB is based on a one-sided confidence bound, where only the upper
bound is considered. The results in [11] show that there exists an allocation
strategy, UCB1 (Algorithm 1), which achieves logarithmic regret uniformly
over n and without any preliminary knowledge about the reward distribu-
tions. It is the sum of two terms, namely the current average reward and a
one-sided confidence interval for the average reward which to expect with
high probability.

Algorithm 1 UCBI algorithm introduced by Auer et al. [11].

1: Initialization: play each arm j once.
2: for each t in n do
3:  Play the arm j that maximizes

2Inn
Z; + ,
1

where z; is the average reward obtained from arm j, n; is the number
of times arm j has been pulled thus far, and n is the number of pulls
done in total thus far.

4: end for

A decision may be made by looking at the highest upper bound, giving
us a well informed decision, combining both the expected reward and un-
certainty under optimism. The point with the highest upper bound may
then be used directly as the next prediction, as it balances the exploration
and exploitation. UCB has uniform logarithmic regret for any set of reward
distributions that elicit a known bounded support.
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2.3.2 Contextual Bandits

Many practical applications have access to additional information, which
can be used for better decision making within bandit settings. This is
especially true in advertising content, where customers’ behaviour can be
monitored while they browse. These marketing strategies are visible every-
where from search engines and social media streams to any website which
is based on ad revenue.

Utilizing this information was studied in Contextual Bandits [117],
where the side information, or context, is considered as the features as-
sociated with the reward gained. This context was structured from the
clicks, visitation times, website history or location. The model is a great
match for online settings where search queries can be understood as the
context, and relevant ads to be shown are the multi-armed bandit problem.

For example, in [70] a general contextual bandit was proposed for per-
sonalized news recommendation, which could be evaluated efficiently offline,
based on previously recorded traffic. Their method reached a 12.5% click lift
compared to the standard context-free bandit algorithm on Yahoo! Front
Page Today Module dataset. Another work addressing the exploration -
exploitation trade-off used Thompson sampling [29]. It was tested on the
same news article recommendation problem, as well as displaying adver-
tisement, where they reached higher click-through-rates than the previous
state of the art, such as UCB. In both systems, accounting better for the
context gives additional information on the needs of the user.

LinRel LinRel [12] was designed for solving exploitation-exploration de-
cisions based on uncertain information, as an extension to upper confidence
bounds. It is a deterministic algorithm that utilizes linear value functions
and confidence bounds to measure the uncertainty of the environment.

Unlike in classical bandit scenarios, LinRel considers side information
associated with each arm 7 in the form of a feature vector X € R, which
describes the expected reward. It is assumed that there exists an unknown
vector f € R%, which is fixed and describes the relation between the feature
vector and the expected reward, f-xz;(t) = E[r;(¢)] for alli € {1,..., K} and
ted{l,.. T}

LinRel (as seen in Algorithm 2) utilizes features X, which are listed
as a matrix, where each column x;(t) € R%! represents a feature vector
and A(Aq,...,\q) represents the diagonal matrix. In the eigenvalue de-
composition X (t) - X (t)'; A(t), ..., Ae(t) > 1, Mga1(t), ..., Aa(t) < 1, and
Ut) -U(t) = A(1,...,1). The purpose is to learn the upper confidence
bounds for the means E[r;(t)] = f - x;(t) from the weighted sum of the
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Algorithm 2 LinRel algorithm, as introduced by Auer [12]. The aim is
to learn the upper confidence bounds for the means of the weighted sum
of previous rewards. From here the highest option is chosen as the next
solution.

Parameters: ¢ € [0, 1], the number of trials 7.
Inputs: Selected features, ¥ (t) C {1,...,t — 1},
new features, z1(t), ..., zx (t).
1. Let X(m) = (z3r)(I'))rey) be the matrix of selected features
and R(m) = (ryr)(I'))rey() the vector of corresponding rewards.
2. Calculate the eigenvalue decomposition
X(t)-X@) =U@) A1), .., Aa(t)) - U(2)
3. For each z;(t) set Z;(t) = (&3 1(t), ..., Zi,a(t)) = U(t) - zi(t)
and 4;(t) = (i‘iyl(t), e i’i7k(t), 0,..),
0;(t) = (0, ..., 0, Z; 41 (2), ..., Ty ().
4. Calculate a;(t) = u;(t) - A(ﬁ(t), ey ﬁ(w,o, . 0) - U(t) - X (1)
5. Calculate the upper confidence bounds and its widths, i =1, ..., K,
widthi(t) = a:(6)[(/I@TE/D) + ||as )]
ucb;i(t) = r(t) - a;(t) + width,(t).
6. Choose the alternative i(t) which maximizes ucb;(t).

previous rewards. Thus, a feature vector z;(¢) is a linear combination of
some previously chosen feature vectors x;(I"), where I € ¢» C {1,...,t — 1},

zi(t) = Y ai(D)ayry(T) = X(m) - ai(m)’ (2.3)
rey(t)

for some a;(m) € RV where X (m) is a matrix of previously chosen
feature vectors.

Now, the exploration-exploitation trade-off can be managed by offer-
ing the largest upper confidence bound as the optimal solution. The ex-
ploitation is controlled by the estimation of the mean, while exploration is
controlled by the width of the confidence interval.

Gaussian Process Bandits Gaussian Process Bandits (GPB) [36, 109]
is a kernel method for bridging UCB and Gaussian Processes for tasks that
have expensive objective functions. It also has a strong and well defined
theoretic background, which has made it a popular topic for research [47,
108].

Gaussian Processes are used to model the reward distributions, such
that each bandit is a point in the Gaussian Process. Kernels are used to
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Figure 2.6: Gaussian Process Bandits [109] updates the neighbourhood
around a new observation (circled red).

express pair-wise similarities in a feature space when updating the model.
The similarity is measured as an expression of the data representations in
the input space.

Similarly to Upper Confidence Bounds, in GPB the mean and variance
are treated as the confidence bounds (see Figure 2.6). For the bandits
setup, the upper bound gives a natural best guess for the optimal move,
as it combines the information theoretic uncertainty and the estimate of
a good reward into a single prediction. If a point is already explored and
yields a high reward, then nearby points will be updated to be in higher
uncertainty, relative to the distance. Thus, they will be explored sooner
than regions where a nearby result has low reward.

Gaussian Process is then updated over the nearby region in the following
manner: Pulling an arm will collapse the confidence bounds for an obser-
vation, at the same time affecting nearby, yet unobserved arms relative to
their distance. In Figure 2.6 we can see how the uncertainty crashes around
an updated point, as the knowledge is propagated to similar entries near
the seen point. As more and more points are seen, the landscape starts to
form towards the true probability function. There are proven regret bounds
for Gaussian Processes for UCB (GP-UCB), which are sublinear for GPB
optimization with commonly used kernels [47, 108].

The GP-UCB algorithm (Algorithm 3) combines Gaussian Processes
with the UCB algorithm. Each point in the input space D corresponds to
a Gaussian Process, with mean p and variance o. The variance and mean
are set to maximum, for example in reinforcement learning the upper and
lower bounds (tails of variance) to maximum and minimum rewards.

Each update changes all entries by the relation of their distance to the
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Algorithm 3 GP-UCB algorithm introduced by [109]. The bandits are
formulated as a joint distribution of variables x € X, each regarded as a
Gaussian distribution.
: INPUT: Input space D: GP Prior ug =0, o9, k
: for each t in n do

Choose x; =zep pi—1(x) + v/ Bror—1(x)

Sample y; = f(z¢) + &

Perform Bayesian update to obtain u; and oy
end for

AN S A e

seen object. The updated item itself will have zero variance and the mean
is set to y; itself. Other items gain a relative change depending on their
distance, with variance greater than zero.

Several improvements have been made on GP-UCB over the years, such
as in Contextual bandits [117], which were devised to have a better repre-
sentation of the mapped feature vector. In it a context vector is maintained
at each iteration of the search, containing the current features associated
with the shown content. This feature vector is then mapped to the gained
reward, such that the context of each feature is learned over the session.

2.4 Challenges and Future Research

Exploratory search has recently received interest from multiple research
communities related to information retrieval. The commonly seen query-
response paradigm is becoming increasingly inefficient, as people wish to
explore domains outside of their expertise more often. Exploratory search
is a natural extension for the inquisitive behaviour people have a penchant
for. One of the future challenges is to better define measures of explo-
ration, both analytical and quantitative. At the moment, there are next to
no objective functions that measure the quality of exploration itself, such
as its coverage or expressibility. All studies have focused on the statistical
analysis of subjective experience by the users, which although is needed for
an end-product, is a bottleneck for quick development of new methodolo-
gies: Collecting new data from user studies is always time consuming and
requires careful planning to succeed.

Assessing Exploratory Search Classical information retrieval systems
rarely support exploratory search tasks. This is partially due to, and the
cause of, having little empirical backing on how exploratory search and
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lookup search differ from each other. The distinction is hard also because
the user studies implemented in the field are applicable for regular search
scenarios too.

Athukorala et al. [10] highlighted this difference by measuring be-
haviour patterns. With six search tasks, three exploratory and three lookup
tasks, they showed that these tasks can be differentiated. This illustrates
meaningful indicators for detection of exploratory tasks, which is an impor-
tant aspect for cohesive study design. In their studies, the best indicators
were query length, maximum scroll depth and task completion time: the
longer these were, the more likely the associated task was exploratory in
nature.

Another study was performed by Liu et al. [71] where they found that
exploratory search is often associated with long query lengths, continuous
query reformulations, careful search result evaluation and numerous search
results click-through. They generated a multivariate regression model for
tracking search interaction performance, which combined user search ex-
periments, search query log analysis and search system development.

Additionally, in Publication V I have suggested a quantifiable coverage
score that shows how widely a metric space has been explored. It allows for
a search engine to know how much a certain set of retrieved objects covers
from the whole dataset, and thus a way to optimize a system to increase
exploration.

Assessment of exploration in search is a fledgling field, and is often ap-
proached by either user studies or classical content-based retrieval. We will
theorize on its future over the span of this dissertation on a few occasions,
and highlight lucrative opportunities on how to further the field.
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Chapter 3

Relevance Feedback

Relevance feedback [14] is often used in information retrieval systems to
evaluate the value of items for the user. This is done by extrapolating
from existing knowledge onto items that have not yet been seen by the
user, allowing more efficient retrieval. The various brands of feedback give
different types of information, requiring the application of methodologies
ranging from reinforcement learning to feature selection, and may be used
to better understand the information needs of the user.

Feedback itself can be in any form from the explicit user score to the
implicit visitation time [14]. For example, once a particular facet in the
data is found [124], it is possible to show relevant results from the correct
perspective. Tuning down to the correct subset of data as the user interacts
with the system can be challenging.

One key challenge in information retrieval systems has been the users’
ability to affect the search. The feeling of having control over the feedback’s
interpretation is important, as this is how the user is able to adjust and
then direct the search. One problem stems from systems that take the
user as a passive source for relevance feedback. In these cases both the
user profiling and the state of search are seen as a single entity. This was
further studied in [60], where the user was given extensive control over their
environment. Their system interprets the user’s action as having an intent
towards a goal, mitigating the chance of misinterpretation. User studies
indicate their system gives a better control over the search procedure, which
in turn motivates the user to further the search.

31
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3.1 Implicit and Explicit Feedback

User data collection in relevance feedback can be classically divided into
two major categories, implicit and explicit [62]. Both methodologies have
their advantages and disadvantages, but most contemporary systems tend
to utilize them both. Hence, it is important to know what both are capable
of, and how to interpret them given the interface, the user, and the engine’s
needs.

The most practical explicit feedback collection can be done when the
user is directly queried for their preference, via questionnaires or simple
text fields. More advanced interfaces supply various gauges [76], 2D or
3D representations of the search space [99] or tools to extract relevant
features from the documents [76, 130]. Often useful in standard search,
the user can fill in the query fields or give likes or numeric values to their
preferences, and thus tell the system what is relevant in the dataset, or
otherwise communicate their intent.

Explicit feedback is often easy to attain, is usually reliable and gives
the user a sense of control, which further facilitates their search experience.
The downside is that a lot of information that could have been used from
implicit interaction, thus requiring extra effort on the part of the user to
get on the same level. Users often get tired of giving lengthy amounts
of feedback, often opting to stop after a few iterations of interaction [48].
Finally, the user might not always even know what they are really looking
for, hence their feedback might be faulty, biased or lack information content
regarding relevance.

Implicit feedback [14, 56], the more recent counterpart to the dichotomy,
covers the usage of side information and behavioural cues to understand
the user’s needs. Here various hints can be gathered from the user’s time
spent on pieces of information, clicks or other ways to collect data on their
attention. For example, implicit feedback may come in the form of gaze
detection, reading time, scroll time, or any other cue that the user gives
during their visit. With this data, it is possible to evaluate the user’s
acknowledgement of the data, their interests and needs.

Implicit information is easy to collect, and happens all the time without
the user’s direction. It is ubiquitous both where and when it appears, and
may be exploited fast and easily. Often, the opportunity cost of using
implicit feedback is also low, such as when the user has to only like a
particular document, and the system then figures out what features were
relevant for them. Such a system does not need specialized interfaces to
work, nor does it take time from the user when giving the feedback. Existing
machine learning methods can in theory extract enough data from such
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feedback for informed decisions.

Unfortunately, implicit feedback at the same time tends to be very
unreliable in what can be inferred from it. A system such as described
above would need several iterations of feedback, before the correct subset of
features could be targeted. An explicit targeting from the user would have
given the information far earlier. Similarly, the user’s gaze and attention
may linger on an object or a page not because they are interested in it, but
because they are lost in thought or fail to grasp what they are looking at.
Clicks might be similarly missclicks, scrolling time may be different due to
poorly functioning apparati, and making too precise predictions based on
them is hard. Implicit feedback has to be treated as noisy information at
all times.

Pseudo / Blind Feedback Pseudo-feedback [14], or blind feedback, is
a method to automate the relevance measurement process locally for a
single user. It removes the manual part of giving feedback, which improves
retrieval performance, while allowing the user to skip some of the interaction
with the system.

This methodology starts out with a regular retrieval setup, but after the
first round of user supplied feedback, the system assumes that a number
of the top ranked documents will be relevant without verification. These
documents are then used as a basis for the following iterations, for example
by extracting the most prominent features, and then propagating their
relevance to the rest of the dataset. As many classical retrieval methods
tend to have a high recall already, this assumption allows the system to
bypass unnecessary steps with feedback acquisition.

There is compelling evidence that pseudo-feedback improves on global
feedback techniques. For example, when developing the classical Cornell
SMART system by Buckley et al. [25], they found out that on the TREC 4
dataset pseudo-feedback gave a rise of approximately 10% in retrieval preci-
sion, when compared to similar methods without pseudo-feedback. Results
like this support the addition of pseudo-feedback as a tool for systems that
need an edge in response time.

Negative Feedback The most common user behaviour often contains
only positive instances of feedback, as the users’ actions rarely indicate
which products they actively disliked during their visit. This makes the
data extremely one-sided, which is a problem for most machine learning
methods that would learn to model the user.

There are several ways to augment this lack of negative information,
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from making it easier to supply feedback, to making assumptions on what
constitutes as an unwanted feature for the user, or even simply inferring
more from missing data. For example, in [52] Hu et al. suggest a factor
model to better include implicit negative feedback in the user modeling.
They considered not only the valence for preference, but also confidence,
which the factoring uses for prediction. Their method was applied for large-
scale TV show recommendation, where surprisingly good levels of recall
were seen for difficult situations.

Another work that studied negative feedback was done by Peltonen et
al. [86], in which they introduced a continuous-value feedback system for
an exploratory document retrieval engine. The interface supports both
positive and negative feedback in an intuitive setting, as seen above in
Figure 2.3. The studies showed superior performance over state-of-the-
art positive feedback only systems, illuminating the information value of
negative feedback.

3.2 Ranking with Relevance Feedback

Ranking of search items according to relevance feedback is one concrete way
of formulating a response for information retrieval systems [14]. Ranking
is a list that contains the search algorithms idea of best fitting items for
that particular query, and the ordering may be used directly to populate
the page with results for the user. Once a listing is done, each consecutive
page can be generated simply by going further down the ranks.

There are several venues to expand upon with the inclusion of relevance
feedback in ranking. For example, the original query might have already
been exhausted of relevant hits after the first iteration, as the items down
the list might be based on only a few relevant features. Furthermore, re-
trieval systems tend to have a limited capacity for relevant document recall.
Only a subset of all relevant documents can be recalled at once, depending
on the completeness of the original query. Thus it is often important to
further refine the original query, such as by adjusting the term weights with
information gleaned from relevance feedback.

Query Expansion One early development for refining ranking was query
expansion [14], which populates new entries to the ranking list for the
next iteration. Query expansion takes the user’s original query, any other
feedback there is available, and then generates a new query that furthers
the search. For example, if the user queries the system with the word
”dog”, they often want to query with the word “hound”, too. The goal
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of this is to increase the recall of relevant items, although trading this for
overall precision.

Query expansion is one way to avoid falling into the context trap [62], as
the original query might be too narrow, or lead to irrelevant regions in the
search space. Thus, instead of needing the user to redefine the query, the
system can automatically expand on it and populate the response. Query
expansion may also be made with several different methods [14], from local
clustering to context analysis or term reweighting.

3.3 Ranking with Vector Space Models

Vector space models [14, 24] are algebraic constructs that form similarity
measures between the objects of datasets. In these models, each document
is represented as a vector of features, often generated in a domain-specific
manner. This is a popular method in information retrieval, where a vector
space can be used to propagate relevance from one seen object to all unseen
objects. The user simply has to give feedback to a single entity in the
dataset, and a natural ranking for all items can be generated by measuring
the distance to this object.

When performing ranking, the given distance measure can be used to
find items that are close to a relevant item, which are then assumed to
be more relevant than distant items. Finding the right distance measure
has to be based on the features that best describe the dataset. This also
constrains the search to be effective only in the given description. Still,
it is also possible to relearn the feature representation to fit the relevance
information of the present user.

Cosine Similarity Cosine similarity [106] is a simple yet effective metric
for measuring similarity, as it gives a measure of similarity between two data
points that can be easily calculated in online settings. Cosine similarity is
often used in text vector spaces, where the vector consists of, for example,
the TF — IDF vectors of the dataset [102].

The cosine similarity ~ (A, B) = cos(f) of two non-zero points, A and
B from an inner product space, and may be calculated with the following
formula:

cos(f) = A-B_ 2iz1 AiBi (3.1)

FALTBL ~ a2y, 2

where A and B are vectors, with ¢ indexing their components. Now, de-
pending on angle between them, similarity is often interpreted to be either
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maximally dissimilar, when cos(©) = 0, i.e. when © = 90°, or maximally
similar, when © = 0°). When two vectors that are at a 90 degree angle to
each other, they share no similar features between them.

Rocchio’s algorithm Rocchio’s algorithm [101] is one of the classical
methods for creating ranking from relevance feedback, also stemming from
the SMART research back from the 60’s [24]. It is a method for generating
queries from vector space models, which later became a popular baseline
for many information retrieval systems.

Rocchio calculates a new query vector for each iteration, by which the
next set of retrieved documents may be presented. It assumes that the user
has approximate knowledge of which documents are relevant and which not.
Rocchio’s query vector is calculated as a sum of three sub-products:

— — 1 — 1 —
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where a is the query vector with m being the new, modified one and o the
original one. The parameters a, b and ¢ are weights by which the relevance
is modified, D is the document vector, with j being the related documents,
k the non-related ones and D, and D,, their respective sets.

In summary, the new modified query vector is recalculated such that the
set of related documents move closer towards each other, while non-related
documents move away from each other. The velocity of this change is di-
rectly affected by the three constants, for example a high ¢ includes more
non-relevant documents for the next iteration. One classical parametriza-
tion used extensively in the literature is ¢ = 1.0, b = 0.8 and ¢ = 0.1.



Chapter 4

Content-Based Information
Retrieval

The increasing diversity of digital multimedia has forced the evolution of
common information retrieval engines. Simple, text-based data can be eas-
ily queried with keywords, but what about unannotated photos, videos or
music? The need to make such items available led to the advent of Content-
Based Information Retrieval (CBIR) [69], which lets the user search for in-
formation with full or partial examples of what they are looking for. These
systems do not require extensive analysis of the database, but rather de-
scriptive feature representations that find semantically important aspects
from the data.

To get salient, informative features associated with data items, the items
usually need to be processed in a low level, such as pixels in an image or
words in a document, that fits the domain in question. These feature
representations require careful construction and planning, as the choice
affects the possible targets the users can access.

Often, a higher level of abstraction has to be constructed from the
initial features, which in turn explains them as a part of some semantic
phenomenon. For example, Content-Based Image Retrieval [61] started
out with combining pixels into shapes, textures and edges, forming higher
level, local feature representations for bag-of-words models [123].

To get to a proper, comprehensible representation, several more layers
of abstraction are often needed, after which these have to be translated to
a summary of what the item stands for in terms of queryable words. Still,
it is possible to use this preprocessing directly to figure out the relevant set
of items for the user. It is not always necessary to identify and exhaustively
explain what a particular item is, if the features underneath are directly
used to make the decision.

37
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Unfortunately, low-level feature representations come with a price for
their cheap generation, as a semantic gap may emerge between them and
the higher, human-level perception. This is why development has moved
towards more advanced methodologies, such as more refined similarity mea-
sures and feature representations [118].

Similarity Measures Content-based information retrieval requires a rep-
resentation that captures the essence of a given database, often found as
a feature representation specifically made for the domain, or even for the
dataset itself. One option is to utilize metric learning [16], which creates
a distance function between any two items in the dataset to measure their
similarity. This distance can be directly utilized as relevance: the user
chooses one item from the dataset, and immediately every unseen item can
be ranked according to their similarity to this item.

Metric learning methodologies have seen more and more success over
the years, often becoming a key enabler for information retrieval tools [16,
51, 78]. Their strength is in a descriptive feature representation, where a
metric can often be taught based on previous user feedback, or semantic
knowledge of one form or another. These methods are often straightforward
projections into the chosen metric, giving a fast and easy way to generate
them.

There are several ways to generate similarity measures, often depend-
ing on the domain’s parameters. One option is to form the metric from the
pairwise distance [16] of any two items, where an external evaluation func-
tion tells whether two items are similar or dissimilar, which is then, on the
basis of the items’ features, used to learn the distance function. This works
especially well when the domain consists of a free-form set of unrelated fea-
tures, with no underlying structure present previously. This function may
be the cosine similarity, a classic metric such as the Euclidean distance,
or a measure specifically suited for the problem, such as the Mahalanobis
distance [73] or the Hamming distance [83].

Deep learning offers a dynamic and robust environment for learning
new metrics. Utilizing similarity measures with neural networks was seen
for example in [30] and [51], where a network was trained to identify faces
with different illumination, pose, obscuration or facial expression, based on
a pairwise comparison of two faces. In both setups, the methods attempt
to maximize the inter-class variation while minimizing the intra-class vari-
ation, which moves similar images into clusters within the target metric
space. Their results worked well in face recognition tasks even in extreme
conditions, such as highly varied pose, expression, lighting or position, and
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showed promise in generalizing to other domains with large numbers of
classes.

Features in Various Domains Successful content-based information
retrieval is highly dependent on a dependable underlying feature represen-
tation. As each type of data has a specific way to formulate the features,
it is imperative to have comprehensive domain knowledge when developing
search engines for them.

As an example, text is often straightforward to handle on the character
level, but requires extensive modeling and comprehension as the semantic
meaning of the sentences is extracted. On the other hand, image features
are hard to map to the semantics of the content, while after successful
classification there is little need for further elaboration.

Nonetheless, one of the standing challenges for each new search engine is
finding the correct feature representation that best encodes what the users
might want to look for in the data. Having a structure that is precisely de-
fined prevents the user from targeting special cases, and makes explorative
search harder. If the focus is too much on abstraction, on the other hand,
the accuracy of the prediction is severely reduced, making the convergence
on a target hard. Having both might prove a difficult task, as it requires
accumulating several feature representations and then careful interweaving
them together to work. Hence, finding a good balance for the given task is
important.

4.1 Features for Text

Formulating the structure, meaning and relation of textual data has been
studied under the domain of natural language processing [57] for years.
Systems employing various forms of natural language understanding have
been widely adopted in the last decades, being a component for search
engine infrastructures.

Although most natural languages conform to numerous rules, they still
exhibit an infuriating number of exceptions. Working around these excep-
tions often requires special care in the definition of linguistic data struc-
tures, such as syntax trees. Natural language also tends to sprawl dynam-
ically, forming recursive structures and having multiple correct interpreta-
tions at times (disambiguity). Due to this, many methodologies have relied
on hand-crafted ontologies and rules from Part-Of-Speech (POS)-taggers
to syntax trees and lexical semantics [57].
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Machine learning has brought further advancements to the field, with
the statistical properties of large datasets converting into powerful feature
representations. Tools from topic modeling to language generation and
sentiment analysis have all entered the field, moving dispositions towards
systems that help in understanding large volumes of text [57]. Generating
features out of text is often done statistically from a large corpus, often
covering multiple different topics and fields.

Text features are often based on full words, although some character-
level models do exist. These features are traditionally then subjected to
multiple preprocessing steps, where disambiguity and low information con-
tent are removed. For example, as some words tend to appear throughout
all text documents, a stop-word list is often used to exclude the ones with
least information content. Salience-wise, removing the suffixes of words
also helps the process.

From here, the full words may be collected into bag-of-words models
[74], with which, although losing information on the ordering, we gain
a descriptive feature representation for many applications. Bag-of-words
models are one of the standard feature representations used in many natu-
ral language processing systems.

TF-IDF Many of the advanced methods used for understanding docu-
ments content is based on TF-IDF (Term Frequency - Inverse Document
Frequency) [102], which is a numerical method for counting the occurrence
of words in a set of documents. This frequency can be used to estimate
what a single document represents, but also how it relates to the collection
as a whole. The more mentions of single terms are found in a proportion-
ally small number of documents, the better they describe and highlight the
content common to them.
TF-IDF consists of two terms, the first being term frequency:

Jtad
max(ft/,d 1t e d)
where t is the term, d the document f; 4 the raw count of how many times
the term is in the given document. The inverse document frequency is
measured as:

F(t,d)=0.5+0.5- (4.1)

Dl
(de D:ted)|’
where | D| is the total number of documents in the corpus. When multiplied

together, they show how strongly a single word describes a particular docu-
ment: if it is found often in a small subset of documents, but rarely outside

IDF(t,D) = log (4.2)
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of them, the score will be high, indicating a common theme between the
documents. If a term on the other hand appears throughout the corpus, it
holds little information value when trying to distinguish the documents.

TF-IDF also creates a natural distance between documents, as the TF-
IDF wvalues of a document can be used as a feature vector describing it.
This feature has been used to a great effect in many occasions, such as in
topic modeling, text mining or user modeling [102].

Okapi BM25 Okapi BM25 (Best Matching) was part of the Okapi prob-
abilistic language processing suite [97], developed in London’s City Univer-
sity in the 1980’s. The original purpose of the system was to target short,
similar-length abstracts and catalog records, with which it works well even
today.

Okapi’s BM itself is a retrieval function based on the bag-of-words model
with TF-IDF, which ranks documents based on their content. It consists
of a family of scoring functions (BM25, BM15, BM11, BM1, BMO0), each
being a different parametrization of the same function.

The BM25 score, which measures the keywords ¢1,¢2...q, in common
with the query ), may be calculated as follows:

TF(qgi, D) - (k1 +1)
TF(gi,D)+ ki - (1—b+b-

(4.3)

n
score(d, Q) = ZIDF(%‘) : 7 ),

i=1 avgdl
where |d| is the length of the document and awvgdl the average docu-
ment length. The free parameters k; and b are used in lower-bounding
TF normalization. Now, much like in the common TF-IDF, the repeti-
tion of query words is compared against the commonality of them in the
whole corpus. What is different is for one the term in the denominator,

TF+k - (1—-b+b- m';;' 1) which weighs repetitions as less important than
|d|

differing query words. Additionally, the term avgdl decreases the impor-
tance of lengthy documents.

By changing the parameters b and ki, the function can be modified to
change the importance of their corresponding terms. This allows one to for
example ignore the importance of document length.

Topic modeling Topic models [18] are one of the most popular contem-
porary ways to formulate textual data statistically into semantic groups.
These models formulate a corpus of text as distinct groups of discussions, or
topics, describing the constituent parts of each individual document. Once
topics are defined, multiple applications may be used to better analyze the
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Figure 4.1: An example of the output of probabilistic topic models by Blei
[19]. The topic proportions are assigned to each document based on their
content, which then formulates a feature description for the document.

available data. Topic models are utilized in various information retrieval
systems, where they can serve as advanced feature representations.

Much like with TF-IDF, topic consistency of a document may be thought
of as a feature vector, giving each document a semantically relevant posi-
tion in a vector space. Many modern topic modeling systems are based on
TF-IDF, but have introduced probabilistic tools to the modeling procedure.

Such is for example Latent Dirichlet Allocation [20], as seen in Figure
4.1, which is a popular generative probabilistic model for discrete text data.
LDA assumes that words arise from a mixture of k latent topics, each
drawn from a distribution over the vocabulary. The joint distribution of
the generative process can be written as

p(B1:K, @1~D721:D7w1:D) =

D
H (Bi) H (©4)( Hp 24,n|©a)p(Wan|BrKcs 2dn)),
k=1 d=1

(4.4)

where the observed words in document d are wq, n counting the word posi-
tion in the document. (1.x is the set of topics, each f; being a distribution
over the words. The topic proportions are marked as ©4, and topic assign-
ments as 2q -

Certain dependencies are the key of LDA, distinguishing it from other
similar methods. Such are, for example, the dependency of topic assignment
on topic proportions, or the dependency of observed words on the topic
assignment. Distinct assumptions made by other topic modeling methods
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define their usability, such as Correlated Topic Models (CTM [66]), which
maximizes the correlation between topics.

4.2 Features for Images

The most popular feature representation for images has long been in the
form of keywords, assigned to them manually. For example for Google [2],
the side information on the websites and any textual annotations of the
images has been in use for most of the search engine’s existence. Unfor-
tunately, unannotated images litter most databases, remaining unseen for
efficient perusal of users. Several methodologies have since been invented
to close this semantic gap between the pixels and the user’s search queries.

For images, the first experiments for content-based retrieval date back
to 1992 [61], where a query-by-example system was introduced for images.
A variety of feature descriptors or local representations have been used to
present the images, from colours to edges and textures, and furthermore
with local feature representations, such as the bag-of-words models [123]
in conjunction with local feature descriptors (e.g. Scale Invariant Feature
Transform - SIFT based description [72]).

Since then, most of image classification methodologies have moved on to
utilize neural networks [46], which work on an end-to-end basis between the
images and predefined class labels. Content-based image retrieval method-
ologies followed on the same path [64, 118], as it was found that they can be
applied in a highly dynamic manner for various tasks on the field. Another
important aspect in these methodologies has been the high quality of fea-
tures these networks produce. For example, it is possible to extract features
from the middle layers of the network, which has been found to work well
for many forms of image recognition tasks. Although the features suffer
from the black-box -effect, they also benefit from it: human intervention is
not required to gain state-of-the-art features for any complex problem.

Convolutional Neural Networks The latest breakthrough in visual
recognition tasks has been largely thanks to convolutional neural networks
(CNN, [68]), which utilize the same principles as the human visual cortex
to assess visual scenes. The existing universal approximation capability of
neural networks is further specialized for the visual domain, by the spa-
tial assumption that pixels near each other correlate highly. Today, many
ground-breaking discoveries in image recognition are based on these net-
works, be they simple classification or complex temporal activity recogni-
tion [54].
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CNNs generate salient features on each layer, which resemble in their
function anything from Gabor-filters on the first layers to advanced con-
ceptual cells in later layers [6, 126]. Once trained, these features maintain
strong, generic information about the visual world, and can be reused in
completely different tasks later, not to mention retrained for new purposes
(known as transfer learning [64, 84]). This has enabled the same methodol-
ogy to be used in widely varying image recognition tasks, further spreading
its popularity.

Classical CNNs are formed of a number of convolutional, max-pooling
and fully-connected layers (see Figure 4.2), each containing a number of
neurons chosen according to the task. These neurons are linked to a certain
set of neurons on the previous and next layers by weights, which form the
parameters of the learning task.

A convolutional layer has connections only on a certain filter range f,
unlike in fully connected layers. This can be formulated as the convolution
operation,

S(i,§) = (I« K)(i,5)=>_ > I(mn)K({i-m,j—n), (45)

where K is the two-dimensional kernel, I the input image, and the indices
1,7,m and n denote the location of the kernel with respect to the image.
In effect, when applying the convolution over an image, it does a static
sliding window over it, presenting each offset of the kernel as its output
to the next layer. The initialization of the network’s parameters is done
randomly, but as training progresses, they start to converge towards task-
specific configurations.

Every neuron then has an activation function that non-linearly scales
their output, based on the input. This activation function is used to prop-
agate the presence of relevant features throughout the network, enabling
differentiation necessary for gradient descent optimization. For convolu-
tional neural networks, the most common activation functions are Rectified
Linear Unit (ReLU), hyperbolic tangent (tanh) and the sigmoid function.

One popular layer between convolutional layers has been max-pooling.
Max-pooling is used to down-sample the size of the learned representation
within the hidden layers, highlighting the relevant features and reducing
the number of parameters.

Training is conducted via backpropagation, which uses gradient descent
to update the weights towards the defined natural outputs by propagating
the derivatives of errors. The derivatives are calculated with regards to the
error between the predicted and the true output, defined by the loss func-
tion. The loss function used plays a critical role here in finding coherency
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Figure 4.2: A convolutional neural network [68]. Each convolutional layer
describes a kernel map from the previous layer, abstracting features onto a
higher level of representation relevant for the final classification.

from the data, and is chosen according to each problem. For example,
classification tasks may be solved with the softmax loss function, giving a
probability distribution of the best fitting classes for each data item. On the
other hand, if the loss function (as well as the underlying network) is con-
trastive, the output is a location in a similarity space, enabling clustering
of data points.

Convolutional networks are further augmented with various method-
ologies, such as DropOut [110], which take care of regularizing the data.
DropOut randomly remove connections from the input while training, which
creates robustness towards noisy signals and eliminates dependence on sin-
gular connections.

Networks are often trained with a number of CNN layers followed by a
number of fully connected ones. While the convolutions adhere to the visual
features, the fully connected layers collect the final convolutional layer’s
features and form the final target representation (often the classification
task). As per most machine learning methods, neural networks can utilize
advanced iterative optimization techniques, such as regularization, batch
learning and momentum.

Siamese Network Siamese networks [21] were originally developed for
identifying signatures written on a pen-input tablet, but later became pop-
ular in other image recognition tasks, such as face recognition [30]. One of
their novel qualities is that they project data points onto a metric space,
generating a similarity measure between them. This enables inference for
data points that have not yet been labelled, which is an important and
powerful aspect for document retrieval purposes. Images that are close to
each other in the new projection contain relevant details for the retrieval.
This is especially true if the projection is changed during the training to
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take into account relevant details.

The projection is learned by introducing a pair of images to the network,
and depending on whether they are from the same category or not, they
are then moved closer or further apart in the projection space. For this, a
contrastive loss function was developed:

»
L(W) =) LW, (Y, X1, X3)"), (4.6)
i=1
and
(W, (Y, X1, X2)") = (1= Y)Ls(Djy) + Y Lp(Diy), (4.7)

where (Y, X1, X3) is the i-th labelled sample pair, Lg and Lp are the
partial loss functions for a pair of similar or dissimilar points, respectively,
and P is the number of training pairs. Y = 1 if the two images are from
the same class, and Y = 0 if they are from different classes, Dy, is the
network’s predicted distance between X; and Xy given W. This function
aims to maximize the intra-class similarity, in the case where X; and X,
belong to the same class, and to minimize the inter-class similarity if they
belong to different classes.

The siamese architecture (as seen in Figure 4.3) is able to find a new
representation in the feature space that helps to distinguish between differ-
ent aspects of the image, making it an ideal choice for our image retrieval
engine. An important aspect of this architecture is that it generates a dis-
tance metric, which may be used to rank or generate relevance scores for
all the images in a dataset.

The siamese network consists of two networks, Gy (X1) and Gy (X2),
which share their weights W. A different image is introduced for both of
them, and the both networks output a location in an initially arbitrary
metric space. The contrastive loss function is told whether they are similar
or dissimilar via the compatibility function Eys, and based on this, the
networks are trained whether the images were supposed to be close or apart
from each other.

Transfer learning Transfer learning [84] is a framework where reusing
existing representations in new contexts allows faster learning of a new
domain. It has seen increasingly more research within various machine
learning fields, especially deep learning.

Neural networks are naturally good at learning meaningful patterns
from data, and this principle allows relearning arbitrary sub-networks for



4.2 Features for Images 47

Ew

[[Gw(X1) — Gw (Xo)]|

Gw(X1) Gw(X2)
Gw(X) Gw(X)
| W —
Convolutional Convolutional
Network Network
X1 Xo

Figure 4.3: The siamese neural network [30]. Two images are fed to the
network, and a contrastive loss function is used to distinguish whether the
images belong to the same class or not. The weights W are shared by
the networks, so that they learn the same representation for images. The
purpose is to learn a distance metric that measures the similarity of images.

fine-tuning. Some of the latest research on the topic covers relearning ob-
ject detectors to detect scenes instead [64], or using randomly downloaded,
unlabelled entries to enhance the classification accuracy.

Transfer learning is the essential part of our method’s dynamism. It
allows the exploitation of good features learned in one domain in order
to obtain good features for the target domain. By allowing layers to be
reparameterized, it is possible to utilize the existing features, and build
upon them a new representation. When retraining the network with what
the user finds relevant, the resulting representation is able to project every
item in the data set based on the user’s preference, enabling online ranking.
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Chapter 5

Personalization of Exploratory
Search

Creating information retrieval systems that match the information need of
an individual is a difficult task, as choosing what to show to the user is
highly varied between search sessions. This was noticed to be an especially
relevant problem in scientific literature search, where users would easily feel
the system is unresponsive to their behaviour and needs [59, 60]. One reason
for this problem is that each user, even each session, requires different
results for the same query.

Previous research has shown that it is already possible to set the ex-
ploration rate effectively for a homogeneous population of users [8]. This
was done by modeling the exploration - exploitation trade-off as a direct
relationship between the exploration rate parameter, as well as the number
of documents that are perceived by the user as interesting or relevant. Al-
though this system works well for the average user, it does not account for
the differences between individuals, who require varying levels of support
during the search.

It was previously demonstrated that course-grained adaptation to two
broadly defined search task types — exploratory and lookup, can be per-
formed based on user behaviour characteristics. For example [10] presents
an approach where the user’s interaction data (clicks, reading time and
scroll depth, etc.) from the first page of results is used to train a classi-
fier to determine whether the user is conducting an exploratory or lookup
search. This classification is then used to change the exploration rate of the
system to either 0 (for lookup tasks) or 1 (exploratory tasks). This system,
however, assumes that a single exploration rate is sufficient to support all
users engaged in exploratory search, irrespective of their level of familiar-
ity with the topic. Although this system can distinguish between lookup

49
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and exploratory tasks, it fails to account for the fact that different types
of users, or even the same user, may require varying degrees of exploration
depending on their background or knowledge related to a specific task or
query. Their work assumed that users are from a homogeneous group and
only a single parameterisation of the system is necessary for all exploratory
search tasks.

In this section I discuss my first and second claims of this dissertation,
which tackle these problems in particular. The claims are based on our
work on scientific article retrieval system ARES (Publications I and II),
and the publication on Gaussian Process Bandits (Publication VI).

e Claim 1: It is possible to personalize the search parameters per ses-
sion and user, thus accommodating users outside of population-wide
tendencies.

e Claim 2: People who know what they do not know give more reli-
able feedback, and this information can be utilized efficiently when
optimizing the search system’s parameters.

In this work, we develop an approach to automatically set the level of
exploration in a search system based on each user’s individual information
needs on a per-search basis. With this we show that by using measures that
can be collected online during the search, it is possible to better match the
information needs of the individual. This supports my first claim.

Our results indicate that taking the user’s knowledge level on a given
topic into account supports the user’s exploration efficiently. This is espe-
cially true when the user has at least a basic knowledge on the topic, as
this helps them set each piece of information into context. This supports
my second claim.

Our approach is based on interval regression using the exploration rate
as the response variable, which is, to our knowledge, the first time in the
field. As we do not know the optimal exploration rate beforehand, we
created censored intervals based on user feedback. In brief, each experiment
is performed at a random exploration rate, v, and we determine if the value
should have been set higher (requiring a right-censored interval from ~ to
+00) or lower (left-censored from 0 to ). Our explanatory variables are
all based on simple-to-collect metrics based on user search behaviour and
can be measured precisely.
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The Future of Neural Networks @
Authors: Sachin Lakra, T. V. Prasad, G. Ramakrishna Venue: arXiv Computer Science Date: 20 Sep 2012

The paper describes some recent developments in neural networks and discusses the applicability of neural networks in the development of a machine that mimics the human brain. The
paper mentions a new architecture, the pulsed neural network that is being considered as the next generation of neural networks. The paper also explores the use of memristors in the
development of a brain-lie computer called the MONETA. A new model, multiinfinite dimensional neural networks, are a recent development in the area of advanced neural networks. The

paper concludes that the need of neural networks in the development of human-like technology is essential and may be non-expendable for it

ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks @
Authors: Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci, Aaron Courville, Yoshua Bengio Venue: arXiv Computer Science Date: 03 May 2015

In this paper, we propose a deep neural network architecture for object recognition based on recurrent neural networks. The proposed network, called ReNet, replaces the ubiquitous
convolution+pooling layer of the deep convolutional neural network with four recurrent neural networks that sweep horizontally and vertically in both directions across the image. We
evaluate the proposed ReNet on three widely-used benchmark datasets; MNIST, CIFAR-10 and SVHN. The result suggests that ReNet is a viable altemative to the deep convolutional

neural network, and that further investigation is needed

A High Quality Text-To-Speech System Composed of Multiple Neural Networks @

Authors: Orhan Karaali, Gerald Corrigan, Noel Massey, Corey Miller, Otto Schnurr, Andrew Mackie Venue: arXiv Computer Science Date: 04 Dec 1998

Figure 5.1: The interface of our system. After the query is given at the top,
a list of scientific articles are presented for the user, complete with their
abstract and meta-data. The user may then indicate relevant items with
the like/dislike feature (thumbs up or down). The next button in the top
right corner proceeds the search onto the next iteration.

5.1 System Description

The interface of the system is presented in Figure 5.1. After typing in
the search query, the user is presented with 20 documents where seven
documents are visible without scrolling. We display more documents than
in traditional IR systems because in exploratory tasks users examine more
results [121]. The initial set of documents is ranked based on the Okapi
BM25 algorithm [107]. All documents initially have a “thumbs down” icon
in the right margin. Users can indicate which documents interest them by
toggling the icon to a “thumbs up”. After clicking the “next” button in
the top right corner of the page, a new set of documents is displayed based
on all the feedback provided by the user. The users can provide feedback
to as many documents as they wish. Documents that do not receive an
explicit relevance feedback, retaining a “thumbs down”, are assumed to
receive relevance score of 0. The current version of the system is based on
around 1.1 million documents from the arXiv repository.

To help the user explore the document space, we use LinRel [12], which

was previously used in exploratory search systems [7, 8, 10, 79]. Suppose
we have a matrix D, where each row d; is a TF-IDF feature vector repre-
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sentation of documents presented so far. Let r = (r1,73, ...,7¢)" be a column
vector of relevance scores received from the user up to time t. We estimate
the expected relevance r; of a document d; as E[r;] = d; - w, where the
vector w is estimated from user feedback. LinRel estimates w by solving
r =D -w and estimates the relevance score for each d; as r; = d; - w.

In order to deal with the exploration-exploitation trade-off, we present
documents not with the highest score r;, but with the largest upper con-
fidence bound for the relevance score. Thus, if o; is an upper bound on
standard deviation of relevance estimate r;, the upper confidence bound of
document d; is calculated as r; +~yo;, where v > 0 is a constant used to ad-
just the confidence level of the upper confidence bound. In each iteration,
LinRel calculates s; = d;- (D" -D+AI)~'DT, where X is the regularization
parameter which is set to 1 as each of the feature vectors sums up to 1
(following [12]) and the documents that maximize s; -7+ 3| s;|| are selected
for presentation. The first term, s; - r, effectively ranks all the documents
based on their similarity to the documents the user has selected so far and
thus it narrows the area of the search space (exploitation). The second
term, Z||s;||, ensures that the user is presented with a more diverse set of
results. The exploration rate is controlled by the v parameter. The higher
the value of 7, the more diverse, or exploratory, the results are.

5.2 User Studies

Two separate user studies were performed during our experiments, an initial
study to assess the parameterization of a regression model, and another
study to verify its applicability in fine-grain personalisation of exploration.

The goals of the user studies were to investigate how different explo-
ration rates affect: 1. the number of clicks and the reading time, 2. subjec-
tive satisfaction, and 3. overall correlation between the user’s knowledge of
a given research topic, the exploration rate and the user search behaviour.
For the initial study we recruited 20 MSc students who were in the process
of writing their final dissertations. For the verification study we recruited
25 students working on their MSc dissertation or in the first year of their
PhD, recruited separately from the previous study.

Prior to both studies we provided the subjects with a background ques-
tionnaire to assess their experience with literature search and their self-
reported knowledge of a set of search topics on a 5-point Likert scale, where
1 = “no knowledge” and 5 = “very familiar”. All participants reported ex-
perience in scientific literature search.
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Design An expert researcher from the machine learning domain selected
six topics that have sufficient data in the arXiv dataset: clustering, pri-
vacy, image processing, natural language processing, security, and neural
networks. The machine learning domain was chosen because it was easier
to find both domain experts for creating tasks, and a homogeneous group
of participants who had taken at least an introductory machine learning
course. Every participant performed two search tasks. For each task the
exploration rate was randomly sampled without replacement from the set
of values between 0.0 and 1.0 (inclusive) at intervals of 0.1. Thus, overall
there were 11 possible exploration rates. As users engaged in exploratory
search aim to acquire new knowledge [122], we specifically assigned to each
participant two search topics that they reported to have some knowledge
of but were not overly familiar with (scores 2, 3 and 4 on the Likert scale).

We described the tasks using a template that places participants in a
scientific essay writing scenario, suitable for exploratory search tasks [122].
To preserve consistency among the tasks, all task descriptions followed the
same template:

“Imagine that you are searching scientific literature to write an essay
about topic X. We provide you with a search engine. Follow your natural
literature search process and search for articles that help you to learn
about this topic. You must prepare an abstract for your essay at the
end.”

In order to ensure that all the studies for a given search topic were ini-
tiated from the same starting point, we provided the initial search query.
Additionally, in order to ensure that all the participants went through an
equal number of iterations, we limited each search session to five iterations.
Based on our pilot study, five iterations provided the users with enough
documents to perform the task, but at the same time kept the search ses-
sion short enough to keep the users focused. There was no time limit set
with regards to the duration of each search session or each iteration.

Measures and Procedure The initial studies were conducted in a con-
trolled laboratory room, with a desktop computer with a 27-inch display.
The verification studies used the same environment, but were conducted
on a laptop computer with a 19-inch display. We automatically terminated
the search session after five iterations. Prior to the study we informed the
participants about the number of iterations required per task, introduced
the search system and gave them one training task. We showed the partic-
ipants how to select relevant articles and proceed to the next iteration. We
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explained that by providing feedback they allow the system to learn about
their interests and retrieve more suitable results in subsequent iterations.
The participants were not aware of the different exploration rates per task.
Participants were allowed to take notes using their comfortable technique —
a word processing application or pen and paper. At the end of every task,
we provided a web form to write the abstract of their essay.

We logged all the interactions with the search system: number of clicks,
scroll data, details of all the displayed documents and selected documents.
A domain expert performed a blind review of the abstracts and rated them
from 0 to 5 (0 = failure and 5 = excellent). The aim of the assessment
was to ensure that the participants were able to complete the task and find
relevant documents. In order to assess user satisfaction, after each task
the participants completed a short ResQue questionnaire [88], including a
question related to their subjective satisfaction of the diversity of presented
articles with reference to the initial search query:

“The search results recommended by the system contained documents
closely related to the initial search query as well as articles related to
other topics with varying degrees of relevance to the initial query. Based
on the search session that you have just completed, would you prefer the
search results to contain:

a) more articles closely related to the initial search query
b) more articles related to other topics with varying degrees of relevance
to the initial search query”

The responses provided to this question were later used in building our
ARES interval regression model (the details will be presented in the next
section). We included this question in our verification experiments to refit
the model and compare it with the ARES model obtained in [80] to assess
whether it can be replicated. Each study lasted approximately one hour.
We compensated every participant with a movie ticket. At the end of the
verification study we conducted a short interview with each participant to
learn more about their experiences with each system.

5.3 Results for the Model Fitting

As our analysis is based on interval regression, we needed to combine the
subjective satisfaction feedback with the randomly assigned exploration
rate to determine an appropriate interval for fitting the model. If a user
was randomly assigned the exploration rate, v, and they stated in the post-
experimental survey that they would have liked more articles closely related
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Figure 5.2: Boxplots showing the distribution of variables collected from
implicit feedback. All variables except the number of articles given positive
feedback vary with the experimental outcome.
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Figure 5.3: Graphical representation of regression model. Predicted explo-
ration rate increases as a function of number of clicked documents, time
spent with the interface and the level of self-reported knowledge in the
order of the graphs (levels 3, 4 and 2). Area of circles is proportional to
predicted exploration rate.

to the initial search query (from now on referred to as more specific), then
this was encoded as a left-censored interval, [0,~]. If, however, they stated
they would have liked to see articles related to more diverse topics (more
diverse), a right-censored interval, [y, +oc|, was used. In addition to the
censored intervals we have to provide the distribution for the predicted
variables, for which in this case we used a Gaussian distribution. Interval
regression was performed using the Survival R package (ver. 2.38) [114].

A total of 40 experiments were performed, of which five were excluded
from further analysis for the following reasons: in one experiment the post-
experiment survey was incomplete. Another user had both experiments
excluded as they appeared to have misunderstood the task. Further two
experiments were excluded after being identified as outliers with principal
component analysis.

Figure 5.2 shows the distributions of implicit variables collected during
the first iteration of each experiment. Time spent with the interface ex-
cluding reading time (top-left), average reading time per article (top-right)
and number of documents clicked (bottom-left) are higher on average when
users want to see more diverse articles.

The number of articles given positive feedback (bottom-right) appears
to be independent of user satisfaction. Self-reported knowledge level 2 had
15 data points; levels 3 and 4 had 10 data points each.

We performed model selection to find the simplest model that would
enable us to predict an appropriate exploration rate. First, we fit a full
model using all variables (average reading time per article, time spent with
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the interface, number of clicked articles, number of articles with positive
feedback, self-reported knowledge and the order of experiments). We en-
coded self-reported knowledge and the order of experiments as categorical
variables (self-reported knowledge appears like it would be ordinal, but this
is not the case). All other variables are strictly positive and were there-
fore log-transformed. Co-variates were dropped from the model if a x?
goodness-of-fit test comparing the current and nested models (the current
model minus the co-variate being investigated) was not statistically sig-
nificant. After dropping a co-variate, the nested model became the new
current model.

After applying this model selection procedure, the model had only three
significant predictor variables (p-values determined by x? test): time spent
with the interface (p = 0.017), number of clicked articles (p = 0.025) and
self-reported knowledge (p = 0.0024). Contrasts between levels of self-
reported knowledge was tested using general linear hypotheses tests. While
the difference between 2-3 was highly significant (p = 0.0004), the differ-
ences between levels 2-4 (p = 0.06) and 3-4 (p = 0.46) was not significant.
This might be due to the fact that some of the participants were over-
confident when reporting their level of knowledge.

The final regression model to predict the exploration rate, -, is:

v =0.29In(z1) + 0.22In(z2) — 0.4423 — 0.2924 + 0.06, (5.1)

where 1 = time spent with the interface, excluding document reading
time, in minutes, xo = number of documents clicked, 3 and x4 are dummy
variables for the self-reported knowledge levels 3 and 4, respectively.

Figure 5.3 shows how the predicted exploration rate changes as a func-
tion of each co-variate; increasing at a similar rate proportional to the
log of both the number of documents clicked (z-axis) and time spent with
the interface (y-axis). Self-reported knowledge is ordered by the coefficient
magnitude (note: level 2 is the base-line in equation 5.1). We note that
while our experiments only used exploration rates in the range [0,1], the
model predicts exploration rates in the range [0,400].

Figure 5.4 shows whether our predictions are logically consistent with
user feedback. Users that wanted documents more specific to their search
query (blue dots) should have been predicted lower exploration rates than
their experiments and therefore be under the y = x dashed line. Symmet-
rically, users wanting more diverse documents (red dots) should be above
y = x. The graph shows four blue dots and three red dots on the wrong
side of the line, making 80% of predictions consistent with feedback. We
note, however, that all of these inconsistent data points are close to the line

Yy =2
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Figure 5.4: Predictions that are logically consistent with user feedback
are red dots (users that wanted more diverse documents) above the line
y = = and blue dots (users that wanted to see more specific documents to
the search query) below it. 80% of predictions were consistent with user
feedback.

5.4 Incorporating the Regression Model into an
IR System

The initial study’s regression model was incorporated into a system which
we call Adaptive Regression-based Exploratory Search (ARES). In this ver-
sion of the system, the user first specifies their level of knowledge related
to the subject area of their current search query. After examining the first
page of results and clicking on the “next” button, the user interaction data
and pre-specified knowledge level of the user are passed on to the regression
model, which calculates the optimal exploration rate for the current search
session (Figure 5.5).

The study involved 25 participants (9 female and 16 male), performing
two experiments each. Six participants were first-year PhD students and



5.4 Incorporating the Regression Model into an IR System 59

¢ Relevance feedback

@ @ * User interactions

[Interfaoe Eli] [ Aljgtc;iriet\ﬂw g +b ]

Ranked documents

Figure 5.5: An overview of the ARES retrieval system. The user types in an
initial query and specifies their level of knowledge of the search topic. The
user is presented with a list of documents, clicks on the document(s) and
proceeds to the next iteration by clicking the “next” button. The clicks,
the self-reported knowledge level and the user interaction data, i.e. reading
time or scroll depth, are passed on to the regression model, which calculates
an appropriate level of exploration for the current search session. This
exploration rate is unchanged for the remainder of the search session.
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Figure 5.6: Mean ResQue score stratified by self-reported knowledge level
and system. There are two regimes: users with level knowledge 2 prefer
the baseline, while users with knowledge levels 3 and 4 prefer ARES.

19 were Masters students. The final number of experiments with ARES
included in the analysis was 24, and with the baseline system 25. Of the 49
experiments, 14 were with a self-reported knowledge level of 2 (9 with ARES
and 5 with the baseline), 21 with 3 (8 with ARES and 13 with the baseline),
and 14 with 4 (7 with ARES and 7 with the baseline). Throughout this
section, we used regression analysis due to the imbalanced nature of the
data and to allow us to incorporate control variables, where appropriate.

5.4.1 User Perception

To understand whether there is a difference in user perception between the
systems, we analyzed the user ratings from the ResQue questionnaire (Table
5.1). We also analyzed the qualitative feedback given by each participant
during the post-study interviews and the expert assessment of the essay
abstract written by each participant.

Users with self-reported knowledge levels 3 and 4 tended to prefer
ARES, whereas those with knowledge level 2 appeared to prefer the base-
line. The average ResQue score was 38.21 (SD = 4.11) for ARES and 38.04
for the baseline (SD = 4.32). There was no significant difference between
systems (#(40) = —0.028, p = 0.83).

Closer inspection of the distribution of ResQue scores shows that users
preferred different systems depending on their knowledge level (Figure 5.6).
Rerunning our previous analysis for only knowledge levels 3 and 4 showed
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there was a significant difference between ResQue scores given for each
system (t(25) = 2.488, p = 0.02), with users preferring ARES (M = 39.2,
SD = 3.75) to the baseline (M = 36.85, SD = 3.75).

Analysing knowledge level 2 in isolation shows the average ResQue score
for ARES is 36.56 (SD = 4.36) and the baseline is 42.8 (SD = 3.11). The
difference is significant (¢(5) = —2.646, p = 0.046), however, the sample
size is low (14 observations: 9 ARES + 5 baseline) suggesting it is too
underpowered to draw conclusions.

We further analyzed individual ResQue questions for knowledge lev-
els 3 and 4 using ordinal logistic regression (ordinal R package, version
2015.6.28). This is similar to multinomial logistic regression with the ex-
ception that response variables are ordered, as in Likert scale responses.
Again, we controlled for the ordering of experiments, the search query and
self-reported knowledge level. We report the logit values of the system
coefficient together with P-values from one-tailed z-tests (Table 5.1).

From the results, we can see that ARES suggested papers that were
more appropriate for the users’ level of knowledge than the baseline (Q5,
p = 0.035). Documents shown by ARES were less similar to each other
(Q10, p = 0.044) and, therefore, more diverse (Q1l, p = 0.059) than the
baseline. ARES provided users with more novel papers than the baseline
(Q8, p = 0.019), which users felt were good suggestions (Q4, p = 0.072).
While the baseline always uses an exploration rate of 1, in these particular
experiments ARES used lower exploration rates, especially for knowledge
levels 3 and 4. It is, therefore, interesting that users perceive the system as
giving more diverse results including more novel articles. This is suggestive
that participants define documents as “diverse” or “novel” in reference to
the initial query, but not more random documents from elsewhere in the
search space.

Qualitative feedback Overall 15 out of 25 participants preferred searches
performed with the ARES system. Some of the comments about the sys-
tem included: “the papers were informative” [P22], “the system seemed to
find relevant things” [P1], “the system went into different directions really
well” [P4]. Participants who expressed a preference for ARES complained
about the baseline system because “it went off the track” [P25] or “it con-
verged on too specific details too soon” [P11]. There was a clear correlation
between the level of knowledge and system preference. In general, partici-
pants with knowledge level 2 did not rate the ARES system highly. On the
other hand, the majority of participants with knowledge level of 3 and 4
who conducted the search with ARES preferred it over the baseline (13 out
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# Question ARES Baseline | Logit P-value

1 The papers suggested by the sys- | 4.33 3.85 |1.16 0.08

tem were diverse

2 The suggested papers helped me | 4.07 4.0 0.39 0.313
to learn more about the topic

3 The topic was covered comprehen- | 3.2 3.2 0.60 0.221
sively during the search session

4 The system gave me good sugges- | 3.8 3.55 | 1.12 0.08
tions

5 The papers suggested by the sys- | 3.93 3.65 [1.63 0.033 |
tem were appropriate for my level
of knowledge

6 Some of the suggested papers are | 2.07 2.3 0.36 0.33
familiar to me

7 The papers suggested by the sys- | 4.33 4.15 |0.96 0.14
tem were interesting

8 The papers suggested by the sys- | 3.93 3.6 2.09 0.013 |«
tem were novel

9 The system helped me to discover | 4.4 445 1-091 0.22
new papers

10 The papers suggested by the sys- | 2.73 3.3 -1.44  0.035 |

tem are similar to each other

Table 5.1: Each question from the Quality of Recommended Items section
of ResQue was analysed independently using ordinal logistic regression.
The final column states whether P-values were significant at 0.05 (x) or 0.1
(-). Papers suggested by ARES were appropriate for participants’ level of
knowledge (Q5), were novel (Q8) and not similar to each other (Q10, logit
sign is negative).



5.4 Incorporating the Regression Model into an IR System 63

(S}
1

IN
'

w
1

N
1

Expert abstract assessment

o
1

2 3 4
Self-reported knowledge level

Figure 5.7: Boxplots showing the distribution of expert abstract assess-
ments for each self-reported knowledge level. Expert assessments correlated
well with self-reported knowledge level.

of 15 participants). This is concordant with our analysis of the responses
given in the ResQue questionnaire by these participants. The preference
for ARES at higher knowledge levels was unaffected by the knowledge level
of their other search query conducted with the baseline.

Expert assessment According to a blind assessment by a third expert,
there was no significant difference in the quality or length of abstracts
produced using either system, nor in abstract assessment or word count
for either system when compared using only knowledge levels 3 and 4.
Figure 5.7 shows the expert assessments correlate well with the participants’
self-reported knowledge levels. The mean abstract assessment score was 2.8
(SD = 0.94) for participants using ARES and 2.75 (SD = 1.25) for the
baseline.

5.4.2 User Behaviour

During the user study, we logged information related to user behaviour,
including the total time spent using the interface, the number of docu-
ments clicked and given positive feedback, and the time spent reading each
document.

The analysis of user perception data has shown that users with higher
knowledge levels preferred ARES over the baseline. We analysed user be-
haviour data for these participants (knowledge levels 3 and 4) with regres-
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sion models for count data. Our goal was to understand whether the user
experience results are reflected in user behaviour metrics.

Interactions The number of documents that were clicked or received pos-
itive feedback was independent of which system was being used. The mean
number of documents clicked for reading was 4.93 (SD = 2.60) with ARES
and 6.0 (SD = 4.21) with the baseline. While there appears to be a differ-
ence between the systems, it was not statistically significant (LRT = 3.524,
p = 0.061). The mean number of documents given positive feedback was
12.47 (SD = 7.30) with ARES and 15.8 (SD = 12.77) with the base-
line. The difference between the systems was not statistically significant
(LRT = 0.547, p = 0.46).

Interface and reading time While the time spent with the interface
was independent of the search system, users on average spent much longer
reading each document with ARES compared to the baseline. The mean
time spent with the interface was 823.85 seconds (SD = 511.91) with ARES
and 1129.61 seconds (SD = 846.12) with the baseline. There was no signif-
icant difference between systems (LRT = 2.47, p = 0.116). The mean read-
ing time per document was 589.14 seconds (SD = 291.41) with ARES and
625.23 seconds (SD = 495.04) with the baseline. While the raw mean read-
ing times are very similar, when control variables are taken into account,
participants spent on average ~1.7 times longer reading each document
with ARES (LRT = 6.93, p = 0.008). It is unlikely that the documents
returned by ARES were inherently better, but the phenomenon was prob-
ably due to users quickly inspecting some of the more diverse documents
returned by the baseline.

5.4.3 System Behaviour

Despite clear differences in user experience between ARES and the baseline
at higher knowledge levels, there does not appear to be a difference between
the diversity of documents presented to users in either system. We mea-
sured document diversity using the mean pairwise cosine distance between
TF-IDF transformed bag-of-words representations of document abstracts.
Figure 5.8 shows how document diversity decreases over iterations as par-
ticipants give positive feedback to documents to narrow down their search.
We compared the diversity of articles presented by each system in the fi-
nal iteration of the experiment using linear regression, controlling for the
ordering of experiments, the search query and the self-reported knowledge
level. The mean pairwise distance between documents returned by ARES
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Figure 5.8: Document diversity measured using mean pairwise cosine dis-
tance between documents over iterations for experiments performed at
knowledge levels 3 and 4. As participants progress through iterations giving
positive feedback to documents, the diversity of search results decreases.

was 0.63 (SD = 0.11) and by the baseline was 0.62 (SD = 0.12). There
was no significant difference between systems (p = 0.561).

5.4.4 Refitting ARES

The ARES regression model is robust and can be replicated using data
from this study. The experiments from [80] used randomised exploration
rates and user feedback to derive the ARES regression model. To restate,
the model is as follows:

v =0.291In(z1) + 0.221In(z2) — 0.4423 — 0.2924 + 0.06, (5.2)

where 1 = time spent with the interface, excluding document reading
time, in minutes, zo = number of documents clicked, z3 and x4 are dummy
variables for the self-reported knowledge levels 3 and 4, respectively.

During the post-experimental questionnaire in this user study, the par-
ticipants were again asked whether they felt the search results were too
diverse or too specific with respect to the initial search query. This time we
encoded intervals not using random exploration rates, but the exploration
rates predicted by ARES. The interval regression model was fit using the
Survival R package (ver. 2.38). The refit regression model is:

v =0.311n(z1) + 0.221In(z2) — 0.43x3 — 0.2924 + 0.02. (5.3)
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Figure 5.9: User behaviour characteristics, stratified by knowledge level.
While the number of clicked articles appears to be correlated with knowl-
edge level, most metrics that can be collected during a search session only
distinguish between knowledge level 4 and all other levels.

All coefficients in this slightly refined model are within the standard errors
of the ARES model that was derived in [80]. Conversely, all coefficients of
the ARES model [80] are within the standard errors of the current refined
model, with the exception of the intercept (the intercept, however, is not
significant in either model).

In opposition to the results from the ResQue questionnaire, we note
that users with knowledge level 2 are evenly split on whether the search
results should be more diverse or more closely related to the search query
(five out of nine wanted results to be less diverse). While we were able to
replicate the ARES model, more nuanced subjective workload assessments
have shown that feedback from less knowledgeable users is unreliable.

5.5 Discussion
The aim of this study was to validate the effectiveness of incorporating a

regression model into an IR system in order to provide fine-grained support
to users preforming exploratory search tasks in an interactive setting. Our
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implementation, ARES, requires users to provide a search query along with
an estimate of their knowledge level for the topic of that query. Additional
user behaviour metrics required by the model (number of clicked documents
and time spent with the interface, excluding reading time), were collected
automatically by the system. Using these variables, a regression model in-
fers the most appropriate exploration rate to parameterize a reinforcement
learning algorithm that is used to build a user model interactively.

Our findings highlight that modeling subjective user expectations of sys-
tem behaviour succeeds for users with higher knowledge levels, and when
it fails for users with the lowest knowledge level. Users with knowledge
levels 3 and 4 reported significant differences in novelty among the search
results and found that papers suggested by the system were appropriate
for their level of knowledge. These two findings in particular were the
most important to us because we are performing exploratory search (and
therefore want to encourage serendipitous discovery of novel papers) and
because the model explicitly includes the knowledge level (and was statis-
tically significant enough to warrant inclusion). At the lowest knowledge
level 2, however, users appeared to prefer the baseline. While analysing this
subset of users in isolation is statistically underpowered, their preference
for the baseline is backed up by the qualitative analysis of post-experiment
interviews.

Exploratory search support ARES provides fine-grained support for
exploratory search by mapping the information needs of the user to an
appropriate exploration rate using mostly implicit feedback. ARES was
successful in supporting exploratory search, improving user experience for
a wide range of users (Section 5.4.1). The model is not perfect, but those
it failed to support (knowledge level 2) could be accommodated with the
baseline system, which is a simple distinction to implement.

Another important feature was the low training cost of the model, as
fitting it required only 35 observations [80]. This, combined with the trans-
parent nature of linear models, makes it an easy choice for any practical
search environment.

Finally, the covariates used by ARES (clicked documents, interface time
and the knowledge level) are highly robust. We found no significant differ-
ences in the number of clicked documents or time spent with the interface,
despite the underlying system being different (Section 5.4.2). Furthermore,
knowledge level, which is self-reported by the participant, is concordant
with the expert abstract assessments (Figure 5.7).
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Epistemic modeling failures Several participants commented they felt
their ratings of each system were related to their knowledge of the query
topic. For example, one participant stated that “the level of knowledge
affected the rating here very highly” [P22]. From one perspective, this may
not be important because ARES and the baseline had identical interfaces.
These users could therefore have been attributing their perceived differences
to things they were actually aware of, i.e. the search query and their own
knowledge of the topic. However, given that ARES failed to support users
with the lowest knowledge level, this could be related to failures in the
modeling process.

There are two types of uncertainty: aleatoric and epistemic. Aleatoric
uncertainty is the kind of uncertainty that we can model statistically, i.e. the
unknown factors that result in random variation when experiments are re-
peated. Epistemic uncertainty, however, is the “unknown unknowns” and
represents the variability present because we have not asked the right ques-
tions, lack sufficient knowledge of the problem or information is purpose-
fully hidden. ARES attempts to overcome aleatoric uncertainty: we are
modeling users’ expectations about how the system should feel and predict
the exploration rate from behaviours that are associated, but not contin-
gent on, how exploratory users want the system to be. However, we have
introduced epistemic uncertainty by asking lower knowledge users whether
the system should present documents that are more or less diverse. These
users, by their own admission, lack knowledge on the search topic, making
their feedback potentially unreliable.

Confusingly, when we refit the model using new data from this study,
the resulting model was almost identical to the ARES model (Section 5.4.4).
Despite knowledge level 2 users preferring the baseline — which always gave
a higher exploration rate than ARES — approximately half of these partic-
ipants (five out of nine) stated that they wanted the search results to be
more closely related to the initial search query. We would therefore expect
this model to be correct, but the more in-depth subjective workload assess-
ments reveal otherwise. Despite good model fit and all covariates in the
model being highly significant, the participant’s own lack of knowledge on
the topic — the epistemic uncertainty that we do not model — prevents us
from inferring appropriate exploration rates.

Inferring knowledge level ARES only uses simple, easy to collect in-
teraction data with the exception of knowledge level, which we need to
explicitly ask the user to provide. Ideally, the search engine would only
use implicit feedback to parameterize itself for different users. Figure 5.9
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shows boxplots of six metrics that are easy to collect, stratified by knowl-
edge level. Of all the variables that can be collected during a search session,
only the number of clicked documents correlates with the knowledge level
(Figure 5.9, top row, centre graph). There is no correlation with the num-
ber of documents given positive feedback (Figure 5.9, bottom row, centre
graph) and a partial correlation with interface time and average reading
time, with knowledge level 4 taking longer than others (Figure 5.9, left
column, top and bottom graphs, respectively). Metrics that can only be
evaluated after the search session (abstract word count) or offline (expert
abstract assessment) correlated with the knowledge level. These could be
easily used by a search system with persistent user accounts, where infor-
mation about interests and exam grades could be stored.

The positive correlation between the number of clicked documents and
knowledge level (Figure 5.9, top row, center graph) is suggestive that users
with greater knowledge might be more curious. That is, their increased
knowledge of the field, e.g. specialized terminology, may enable higher
knowledge users to identify documents worth considering for relevance.
Highlighting words that are associated with terms enriched in the set of
documents already given positive feedback, may increase users’ curiosity of
seemingly unrelated documents. Alternately, all users may simply be good
at filtering out documents not appropriate for their level of knowledge, with
lower knowledge users filtering out proportionally more.

5.6 Conclusions

Our findings demonstrate that it is possible to build a system that provides
fine-grained personalised support for users conducting exploratory search
in the scientific domain using only simple and easy to collect user behaviour
characteristics. The derived regression model is simple to implement and
could so be easily deployed in large-scale commercial search engines. Addi-
tionally, our approach does not require any special equipment, such as eye
trackers, that would need to be deployed on the client-side. The main draw-
back of our approach is that users have to specify their knowledge level,
which might make the resultant system somewhat cumbersome for some
users. However, we suggest this obstacle could be overcome with persistent
user accounts.

We also show that different modeling approaches might be required for
users with a higher knowledge level of a given subject versus less knowl-
edgeable users: the more knowledgeable the user is, the more reliable their
feedback is, which, in turn, leads to a higher level of personalisation with
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very little feedback required. Less knowledgeable users provide less reliable
feedback, which prevents the system from fully catering to their informa-
tion needs. Our suggestion for personalising exploratory search for this
type of users is to base it on population-level statistics. However, further
studies are needed to investigate other approaches for modeling users with
a lower level of knowledge.



Chapter 6

Exploratory Image Retrieval

Large-scale image retrieval has been dominated by methods that employ
textual annotations for the identification of content. These techniques are
dependent on high quality meta-data, and work best in scenarios where the
target is exactly described by them. Unfortunately the growth of data has
far surpassed our ability to maintain tags on every new image, and even
when this has been done, the search can only find them within the context
of the tags. It might be easy for a user to define their query if they are
looking for an image of a cat, but how do they specify that the cat should
be playing with a ball of yarn? A solution to this is content-based image
retrieval (CBIR) [33], especially in combination with relevance feedback
[129], that actively involves the user into the search loop and utilizes his
knowledge in the iterative search process [8, 9, 10, 43, 60].

The interactive nature of CBIR poses additional difficulties for the
search engine, from the requirement for fast responsiveness to the lack
of directing feedback. The response time itself may not exceed 4 seconds,
or else it interferes with the user’s experience [23]. Similarly, the systems
needs to learn what the user is interested in from a very small amount of
feedback — the users tend to indicate only a few images as relevant per
iteration [41, 44, 50, 63].

Earlier CBIR systems utilized a variety of feature descriptors that were
readily extracted from pictures, from texture detectors to local feature rep-
resentations, such as the bag-of-words models [123] in conjunction with
local feature descriptors (e.g. SIFT [72]). The downside of these meth-
ods is their distance to human understanding and perception, forming a
semantic gap between them and what the user wants. The latest advances
in deep neural networks has made it possible to further close this gap [46].
The first application of deep learning was for image classification, where
they gained fame in the ImageNet competition [100]. The network’s abil-

71
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Figure 6.1: The siamese architecture with the image feature preprocessing
step. The online component accepts two feature vectors, one per image,
and user feedback as the label.

ity to form high-level representations has proven an asset in various image
recognition tasks, even in tasks for which they were not trained, such as
scenes or CBIR [45, 92, 118].

Learning deep hierarchies for fast image retrieval was considered before
by using autoencoders [65] or creating hash codes based on deep semantic
ranking [128]. While both methods are fast, neither is flexible enough to
learn the image target based on the small amount of relevance feedback ob-
tained from the user. Similarity measures were studied by Wan et al. [118],
where deep learning was applied to learn a similarity measure between im-
ages in a CBIR setting. Unfortunately, no consideration was given to the
time requirements of the learning task, which is an important aspect of
interactive retrieval systems. The reported training procedure uses entire
datasets and the training itself can take days. Similarity learning can also
be used to find new metrics between faces by maximizing the inter-class
difference, while minimizing the inner-class difference [30, 51], however, the
method was not tested with a broader set of images and features. Two
recent studies [39, 119] took into consideration the training time require-
ments. However, their system setting relies on using thousands of images
for training, which is too large for a user to tag over the span of a single
search session.

The third and fourth claims of this dissertation are based on the three
publications on our exploratory CBIR system [50, 89, 90]:

e Claim 3: It is possible to use very generic features, yet still catch a
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very specific target with contemporary transfer learning.

e Claim 4: Users do not need to know exactly what they want at the
beginning of the search session, but with appropriate support from the
search engine, they can direct their search towards a desired direction.

Our goal for the system was to show how to learn a definite represen-
tation of the user’s target with only a few training examples, as well as to
reach this solution in less than 4 seconds. Furthermore, we will show how
this can be done with a set of generic and accessible deep learning features,
over which we learn the representation that the current user needs. The
system consists of an interface specialized for quick content-based selection
of images, a similarity-based backend for learning the representation of rel-
evance, as well as algorithms to optimize the exploration of the learned
metric space more efficiently. Together, these systems make the proposed
system interactive enough, keeping the user engaged in the search loop,
answering the third claim.

The ultimate purpose of our system is to assist the user in finding images
that cannot be easily described using tags, such as an image of ”beautiful
sky”. By testing the system over several datasets representing targets from
abstract and generic to specific targets, we test the speed and versatility
of transfer learning. Together with the exploratory system presented in
Publication 1V, the results indicate a user should be able to merely click
through relevant images, and soon arrive at their point of interest. As our
claim four posits, this requires little conscious effort from the user, helping
them explore unknown territories with ease and celerity.

6.1 System Overview

Our system needs to learn what the target of the search is through rele-
vance feedback obtained on the small number of images displayed at each
iteration. As the user’s final search target may be an image containing any
combination of features, our method utilizes a distance metric between im-
ages to learn what features or combination of features might be of interest
to the user. This allows the system to learn a representation based on the
user feedback on the presented images, and show the user more relevant
images as the search progresses. The system differs from a classifier in that
it does not predict which particular classes the user is interested in, but
instead tries to learn what features or combination of features might be of
interest to the user.
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The system described in Publications III, IV and V adheres to a search
procedure that can be briefly summarised as follows. The search starts
with a random selection of images presented to the user. At each search
iteration, the user is presented with k images and indicates which images
are relevant to their search by clicking on them. The remaining images in
the set of k£ images that did not receive any user feedback are treated as
irrelevant. Based on this feedback, all the images in the dataset are re-
ranked using a distance measure and the top k images are presented to the
user at the next iteration. Images that were presented to the user so far are
excluded from future iterations. If no images are selected as relevant by the
user, we assume that all the presented images are irrelevant, and images
that are maximally distant from the presented ones are shown to the user
at the next iteration. The search continues until the user is satisfied with
the presented images.

Additional to this, Publication V presents an exploratory system which
works as follows. Based on the feedback, a central target is located, indicat-
ing the image with the estimated highest potential relevance for the user,
and is suggested as the first result for the next search iteration. As this es-
timation is done over the now changed relevance space, all images closest to
the central target are also the most relevant, relevance lowering as distance
grows. The neighbourhood around this image is then clustered, and the
centroids of these clusters are added to the results. As each image comes
from a distinct group, they are iconic representations of the neighbourhood
of images, ensuring a fair exploration into the region.

Below, we describe the feature extraction process and the architecture
of the system in more details.

6.1.1 Feature Extraction

In order to obtain a good base representation, we use CNNs to extract
image features. CNNs generate high quality classification results end-to-
end from low, pixel-level data to image labels by utilizing deep non-linear
architectures. The higher level features from these networks have been suc-
cessfully used in tasks involving classification of images that were not in
the initial training set. This can be achieved by fine-tuning the parameters
of the network based on information related to the user’s interests. For
our tests, we use features extracted with OverFeat [103] and relearn only
the last few fully connected layers for the target representation. OverFeat
is a publicly available CNN trained on the ILSVRC13 dataset [100], on
which it achieved an error rate of 14.2%. ILVSRC13 contains 1000 object
classes from a total of 1.2 million images. OverFeat has been shown to be
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Layer Input size Output size

FC1 4096 100 Fully connected layer
ReLU Rectified Linear Unit
FC2 100 20 Fully connected layer
ReLU Rectified Linear Unit
Feat 20 6 Final feature layer
CLF Contrastive loss function

Table 6.1: Composition of the neural architecture used in our system.

successful at various image recognition tasks from fine-grained classifica-
tion to generic visual instance recognition tasks [92]. The chosen features
were a set of hidden nodes as the fully connected graph begins from layer
7 (19 within the architecture), corresponding to 4096-dimensional image
representations. The images were shrunk and then cropped from all sides
to produce images of equal size of 231 x 231 pixels. Table 6.1 shows the
composition of the neural architecture used in our system, after the 4096-
dimensional OverFeat vectors were used as inputs.

6.1.2 System Architecture

Our system employs the siamese architecture [30], which is used for learn-
ing similarities between images by labeling pairs of images as similar or
dissimilar, and maximizing the distance between different image groups.
We employ user relevance feedback to divide the presented images into the
two classes, i.e. images with positive feedback (relevant class) and images
with negative feedback (non-relevant class). The overview of the system’s
architecture can be seen in Figure 4.3 in Section 4.2.

The siamese similarity metric aims to find a function that maps the
input into a new space, where the target distance measure, such as the
Fuclidean distance, may be used to determine the proximity of two data
points. This similarity function, F, is parameterized with weights W, which
the system tries to learn to form the similarity metric:

Ew (X1, X2) = [|Gw (X1) — Gw(X2)|l, (6.1)

where X7 and X5 are paired images.

This metric aims to minimize the intra-class similarity, in the case where
X1 and X5 belong to the same class, and to maximize the inter-class simi-
larity if X7 and X5 belong to different classes. The algorithm accepts a pair
of observations, which when the loss function is minimized, minimizes or
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maximizes the similarity metric Ey (X1, X2) depending on whether these
observations belong to the same class.
The contrastive loss function used in the siamese architecture is:

L(VV, (Ya Xla X2)Z) =

, . 6.2

(1 —Y)LG'(Ew(Xl,XQ)Z) —i—YL](Ew(X,l,XQ)Z), ( )
where (Y, X1, X5)* is the i-th sample, which is composed of a pair of images
and a label (inter- or intra-class), L¢ is the partial loss function for an intra-
class pair when Y = 0, and Ly is the partial loss function for an inter-class
pair when Y =1 [30].

The siamese architecture (Figure 6.1) can find an angle in the feature
space that helps to distinguish between different aspects of the image, such
as different position of the face or different facial expressions, making it an
ideal choice for our application. An important aspect of this architecture
is the fact that it generates a distance metric, which may be used to rank
or generate dynamic relevance scores for all the images in a dataset.

6.1.3 Exploratory Search

In Publication V we introduced a method for exploratory search that at-
tempts to cover the search space over the first few iterations of the session,
at the same time balancing the user’s interests. As the siamese neural net-
work produces a metric representation for the images, the system is able
to separate data points spatially into regions of interest. The exploratory
methodologies we present here affect two variables in the framework: first,
what the primary point of interest in the search space is, and second, how
to explore the region around this point. For our primary location, we eval-
uate a focal point that is far from irrelevant images and close to the center
of the cluster of relevant images. From here we explore nearby groups of
images to find images that cover as large a portion of images as possible.

Central target v is the starting point of the exploration in our method.
It is chosen to be the center of the cluster of images rated as relevant, which
should be close to the highest estimated relevance according to the siamese
network. This point is found by minimizing the distance for each positively
ranked image x4 € X, while maximizing the distance to all the negatively
ranked images z_ € X. The central target is thus selected by the following
function:

y = argmingex (Y (lz, z4[) + Y (C — |z, - ]))), (6.3)

rzeX zeX
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where z is an image that may or may not have yet been ranked, ||z, z ||
is the distance measure between z and x4, and C' is a suitably selected
constant. The purpose of the constant is to work as the exploratory term
— moving more aggressively away from the edges of positive clusters allows
the method to find the center of each relevant region faster.

After the central target has been located, we define the local region
as the nearest n images. This neighbourhood is then clustered to locate
images that describe the content best. Defining a range parameter such as
this one allows our method to utilize the relearned metric to increase the
relevance. The parameter may be chosen as a proportion of the total size of
the dataset balanced with the processing capabilities of the whole system.

In our system we used DBScan [37] for clustering as it generates clusters
based on the form of the data itself, creating as many clusters as there are
concentrated regions. This phase handles the exploratory phase of the
search. As DBScan does not generate centroids, we use the image closest
to the center as the centroid. This image is presented to the user if there
are enough exploratory slots left. Depending on the precision rate of the
previous iteration, we explore more or fewer items close to these centroids.
If the previous iteration resulted in only relevant images, no exploration is
done, but rather the primary central region is exploited until it is exhausted.
If, on the other hand, the precision is low, we look for more images from
the nearby clusters.

Our algorithm moves around the image representation space due to the
changes the neural net imposes on the representation. It reconfigures the
center of interest at each iteration, assuming that interesting images were
successfully separated from the rest.

We tested our method against three other CBIR setups that work in
comparable settings, e.g., with the same set of CNN features. Each of them
is based on similarity measures and assists the user in exploring a given
dataset. First, Rocchio’s algorithm [101], which is a widely used ranking
method for vector space settings. It finds a vector from around which
images are shown to the user. The relevance score given to the method
directs this vector towards a space with more related documents. We also
paired Rocchio’s algorithm with a classical exploratory method from multi-
armed bandit literature: e-greedy exploration [120]. Here, a certain number
of actions are randomized to avoid policy stagnation. More precisely, the
estimated optimal action is taken with a chance 1 —¢, and a random choice
with chance e. The initial € was set to 0.5, which was annealed linearly to
0 after 10 simulation iterations with steps of 0.05. Finally, AIDE [34] is
a recent exploratory framework for information retrieval that attempts to
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provide a good coverage of the whole dataset. It partitions the search space
into subspaces, from where it attempts to find all the relevant regions by
presenting to the user samples from each of them.

To test the quality of exploration, we measured the precision of the
retrieved images as well as the coverage of the search space. We measured
coverage C as the average of distances between all retrieved items compared
to the dataset size:

|27, 25
AR 4
t= Z maatDzst X) | xs ])’ (6.4)

where 2° is the set of retrieved images, | 2° | its size, ||z, z}|| is the distance
between the i:th and j:th member in the set averaged over the number of
retrieved images. The term maxzDist(X) is the maximum distance between
two points within the dataset, scaling the sum to be between 0 and 1. The
greater the average sum of these distances, the further apart the data points
are in the similarity space, and thus the larger the view over the data set
is.

6.2 Experiments

We conducted two sets of simulation experiments to evaluate the applica-
bility of the proposed system in interactive CBIR. For the initial study in
Publication IV, we identified the following aspects of the system’s perfor-
mance to be crucial:

1. The system needs to be trained with only a few training examples,
i.e. at each search iteration, the user is presented with only a small
number of images and often provides feedback to a subset of these,
and the system needs to be able to "learn” what the user is looking
for based on this limited feedback;

2. The search target maybe very concrete, e.g. ”red rose”, or very ab-
stract, e.g. ”happiness”, and the system needs to support all types
of searches with varying degrees of abstractness;

3. Training time has to be below 4 seconds for the system to be inter-
active.

For the follow-up study in Publication V, we compared the performance
of our new central exploration method to other exploratory search algo-
rithms with the coverage score C, as presented in Equation 6.4. The sim-
ulations we ran to assess the performance of our system were similar in
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both publications, but there were differences in the evaluation. These were
due to the different focus in the studied phenomenon. In the initial test we
were assessing the feasibility of transfer learning the user’s target in online
settings. Hence, we measured the elapsed time, as well as the Fl-score,
which combines the classical retrieval precision with recall, which is used
more in the exploratory search literature [121]. For the follow-up study, on
the other hand, we were also tracking the new cumulative coverage score,
which replaces the recall with a more informative measure. We also opted
to follow the cumulative precision, which is measured at each iteration as
the precision of all of the iterations thus far, instead of the precision of
a single iteration. This metric is more informative, as the user is able to
peruse all of the retrieved items at once, instead of the last result only.
Furthermore, cumulative precision is still able to highlight if the search has
reached a saturation point where the local context has been depleted by
the search.

6.2.1 Experimental Setup

We conducted the tests in Publication IV with small training set sizes
ranging from 10 up to 150 presented images. This is the average number
of images in a typical CBIR search session [42], when the user is presented
with 10 images in a single iteration. The same number of presented images
was used in Publication V to verify the precision and time taken. For the
main exploratory tests we simulated the user for 20 iterations, yielding a
total of 200 images. All the reported results are averaged over five training
runs for each of the existing classes in the datasets.

The target of each search is a class of images with a given label, e.g.
”dogs”, and the simulated user ”clicks” on relevant images from a given
target class at each iteration, i.e. the user feedback is 1 for images with
a relevant label and 0 for the remaining images in the presented set. The
number of relevant images in each iteration can vary from 0 to 10, depending
on the number of relevant images in a given dataset and on the accuracy
of the user throughout the search session. We assume that the user clicks
only on images with the relevant label and that the user clicks on all the
relevant images presented in a given iteration. To test whether the system
can generalize, we also included as search targets images whose labels were
not included in the training set. The search starts with a random selection
of nine images from a given test dataset plus one image with the label of the
target class for a specific search — this setting allows us to ensure that all
the simulation experiments have a comparable starting point. In summary,
our system supports the user in finding an image that best matches their
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ILSVRC2013 data

Figure 6.2: Example images from the three datasets used in our experi-
ments.

ideal target image(s) in the manner described below. In each iteration, k

images from the database I are presented to the user and the user selects

the relevant image(s) from this set, according to the following protocol:
For each iteration i = 1,2,... of the search:

e The search engine calculates a set of images x;1,...,2;% € D to
present to the user.

e If one or more of the presented images are of interest to the user,
then the user clicks on them thus providing a relevance score of 1
to the clicked images. All the remaining images in the presented set
automatically receive relevance feedback of 0.

e If none of the presented images is of interest to the user, then the
user proceeds to the next iteration and all the presented images au-
tomatically receive relevance feedback of 0.

e The search continues until the user finds their ideal target image.

We used Caffe [55] to produce the modifiable network described above.
The simulation experiments were run on a machine with an Intel Core
15 — 4430 CPU 3.00 x4 GHz and a GeForce GTX 660 Ti.

We used three different datasets (Figure 6.2):

1. 1096 images from the MIRFlickr dataset [53] with various combina-
tions of the following labels: mammals, birds, insects, locomotives.
This dataset allowed us to test whether the learned metric is able to
generalize to abstract concepts. The arbitrary nature of these classes
with regards to the model of the feature extractor is perfect to demon-
strate the robustness of our system: the features extracted from the
images may be widely different within each label class but as long
as each label can be distinguished with a set of features, the system
should be able to learn it.
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2. Our own collection of 294 images consisting of six different dog breeds,
of which only four are included in the OverFeat classification list. This
dataset allows us to test whether the model is able to learn the target
in the presence of semantically related images, some of which are not
included in the original scope of features used for training. Such a
scenario is quite common in a CBIR setting as the search gradually
narrows down towards a very specific set of images, e.g. the user
starts a search for images of dogs and gradually narrows down the
search to images of black dogs with pointy ears and bushy tails.

3. 300 classes from the ILSVRC2013 dataset [100], totalling 385412 im-
ages. We used this dataset to show that even if the presented im-
ages could potentially lead to hundreds of different target images, the
learned representation is still able to detect the relevant features and
steer the search towards the most relevant images.

Exceptions to the above were in Publication IV, where the experiments
with the dog breeds dataset were simulated only for 10 search iterations
due to the small size of the dataset. Furthermore, with Publication V, we
sampled evenly 20000 images from 100 classes of the ILSVRC2013 dataset
(from a total of 128894 images). This was due to space and time constraints
set by some of the baseline methodologies.

Before running the simulations in the initial study, we conducted a
number of experiments to configure our system and to learn what effect
various networks parameters have on the overall performance. By varying
the number of layers between one to three, we noticed smaller gains in the
ILSVRC2013 dataset, while with the other datasets the accuracy improved
when extra layers were added. We varied the number of training iterations
and noticed no significant improvement after a thousand iterations. We
settled for 1500 iterations for the final simulations. With these results, we
chose a structure that takes at most 4 seconds to train, while maximizing
gains from the network structure. For the siamese architecture, the training
time was already closer to 4 seconds with two hidden layers, thus we chose
a smaller structure, as seen in Table 6.1.

6.2.2 Experimental Results for Publication IV

The aim of the initial experiments was to test whether the system is able
to find the target image or class of images with a relatively small number
of training examples and whether the training time for each iteration is
short enough to allow the system to be used interactively. The test results
are shown in Figure 6.3 and Figure 6.4. We show the F1 measure and
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Figure 6.3: Test Fl-scores (with confidence intervals) for each of the three
datasets used in our experiments. The F-1 score increases with the number
of iterations and thus more user feedback provided to the system.
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Figure 6.4: Training times for the three datasets used in our experiments.
For all the three datasets, the training time is less than 4 seconds.
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Initial test: Precision

Data set/#Images 10 50 100 150
Dogs 0.691 0.921 0.953 0.958
MIRFlickr 0.482 0.611 0.690 0.722
ILSVRC2013 0.709 0.810 0.835 0.846

Table 6.2: Average precision with the three datasets.

the training time for each dataset. The system is able to retrieve relevant
images from all the datasets within the first few iterations. Initially, the
confidence intervals are wide, which reflects the uncertainty of the system
with regards to the user’s search target. However, as the search progresses
and the system receives more and more training points and user feedback,
the confidence intervals are getting narrower, indicating that the system is
gradually zooming in on a specific area of the search space.

In Figure 6.4 we show the average training time for each search iter-
ation. For each dataset, the average duration of each search iteration is
below the 4 seconds required to make the system interactive from the us-
ability perspective. This is the case even when the number of the training
datapoints grows with each iteration.

6.2.3 Experimental Results for Publication V

In the follow-up study of Publication V we measured the exploratory ca-
pabilities of our algorithm compared to three baseline exploratory search
methodologies. The initial average precision results are shown in Table
6.2. As can be seen, our system is able to retrieve relevant images with
high accuracy even within the first few iterations. As the training set
is increased to 150 images, the precisions become comparable to modern
ranking methodologies.

In Table 6.3 we show the average training time for each training set size.
For each dataset, the average duration for each search iteration is below 4
seconds. This makes the system interactive from the usability perspective,
and grows linearly even as the number of the training data points grows
larger.

In the second set of experiments we look at the performance of the var-
ious exploratory methods (Figure 6.5). We report the cumulative precision
until a given point with the previous iterations acting as the context for
the user throughout the search session.

Our centroid-based method gains clear advantage after approximately
five iterations as the system learns the target representation. Due to the
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Initial test: Time taken (s)

Data set/#Images 10 50 100 150
Dogs 2.861 2903 3.181 3.302
MIRFlickr 2.872 2997 3.196 3.414

ILSVRC2013 2911 3.042 3.208 3.315

Table 6.3: Training time in seconds for the three datasets.

MIRFlickr

ILSVRC2013

— Rocchio
— ADE ~
Centroid ™

— RocchioExplo

— Rocchio
AIDE
— Centroid

— RocchioExplo

Figure 6.5: Exploration tests for the three datasets, shown with cumulative
precision for the following methods: Rocchio’s algorithm, Rocchio’s with
e-greedy, central exploration, and AIDE.

small number of images present in the dog dataset, the curves for this
dataset turn downwards for most methods as the search progresses, because
all of the relevant images have been exhausted early on in the search. Still,
our method finds the relevant images sooner and finds a larger portion of
them at the end of the search. For the MIRFlickr dataset, we can see how
Rocchio’s exploits an early local cluster of good images, but fails later on in
the search as it is unable to break out of the initial context. Meanwhile our
method sacrifices a number of attempts early on and gradually achieves a
larger number of correctly retrieved images.

The cumulative average coverage shows interesting trends with different
methodologies. The baseline methods proceed steadily through the dataset
adding relatively small gains throughout the search. Our method, on the
other hand, keeps finding new regions for a long time until slowing down
after approximately seven iterations. The overall coverage with our method
is significantly larger in the different settings, showing how exploring the
changing metric spaces helps us to find new regions of interest faster.

Finally, with the ILSVRC2013 dataset the effect of sparse targets high-
lights the efficiency of our method. With 100 target classes present, the
local space of the initial target quickly exhausts valid images with centroid
exploration. It is likely that if the first image is on the edge of the valid clus-
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Figure 6.6: Exploration tests for the three datasets, shown with cumula-
tive average of coverage for the following methods: Rocchio’s algorithm,
Rocchio’s with e-greedy, central exploration and AIDE.

ter of images, the nearby images will quickly present neighbouring classes.
In Figure 6.6, we see the coverage for each method and dataset. The more
exploratory methods keep covering a larger section of the datasets faster,
while the greedy Rocchio’s lags behind.

6.3 Conclusions

We presented a deep neural network framework for learning new represen-
tations in an online interactive CBIR setting. The experimental results of
our initial study [89] show that it is possible to build CBIR systems that
can dynamically learn the target from very limited user feedback. The
system allows users to conduct searches for abstract concepts even though
the system may not have been initially trained with abstract image classes.
This aspect is also of high importance for symbiotic interactive systems,
which can automatically detect what type of images the user might be
looking for without the need on the part of the user to specify beforehand
what image features would best satisfy their needs. The results showed
that it is possible to produce near-instant image metrics with only a few
training examples. Previous studies show that CNNs are able to abstract
and discriminate beyond their original use. The descriptive value of the
original features was not diminished by the small training set size used in
our system, which is a promising step for using these in a CBIR setting.
The average duration of a search iteration with our pipeline is close to
the 4 seconds required in interactive systems, and can be further reduced
with more fine tuning of the system and improved hardware. In the future,
we are planning to run more extensive simulation experiments as well as
conduct extensive user studies to test the system for its applicability in
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various search scenarios. Additionally, decreasing the sampling size and
parallelizing the framework with GPUs are the next steps in our system’s
development. The goal is to reduce the processing speed to below 3 seconds
in a system that is able to converge to the target image in a user study
within a reasonable number of iterations.

For our Publication V, we presented a deep exploratory search frame-
work for online interactive CBIR settings, which reacts to the users feedback
dynamically and covers a larger portion of the search space than conven-
tional retrieval tools. The system allows users to conduct searches for con-
cepts outside of the initially used features. We showed that this transfer
learning is able to extend to abstract targets, robustly learning concepts
that were not originally intended for the starting features.

The system is highly dependent on good initial image features. For cases
where the dataset has not been annotated but presents natural images,
a good object classification CNN is required. In the case of specialized
image datasets, such as medical imaging, a separate neural network should
be trained just for that purpose, after which the presented methodologies
are able to learn the various combinations required to identify the target.
Furthermore, efficient sampling (or better hardware) is required to process
more images. Fortunately, computational times with modern GPU-based
neural networks scale well with larger datasets given an adequate amount
of memory.



Chapter 7

Discussion

Modern search engines have come far from simple indexing systems. They
use a multitude of meta-data and well designed features when bringing rel-
evant documents for the user. Unfortunately, the most popular algorithms
tend to go straight for the target, requiring familiarity either in the topic,
or expertize on search engine usage to work comfortably. When using con-
ventional search tools, one must always wonder if they truly retrieved the
most important documents and information available.

Exploratory search is a relevant field for these modern problems, as it
focuses on finding results that support decision making and learning. It
is yet to be fully utilized in publicly available search engines, one of the
reasons being the lack of qualitative analysis tools for the field, which has
made it difficult to assess the performance of the new systems.

At the beginning of this thesis I made four claims:

Claim 1: It is possible to personalize the search parameters per session
and user, thus accommodating users outside of population-wide ten-
dencies.

Claim 2: People who know what they do not know give more reliable feed-
back, and this information can be utilized efficiently when optimizing
the search system’s parameters.

Claim 3: It is possible to use very general features, yet still catch a very
specific target with contemporary transfer learning.

Claim 4: Users do not need to know exactly what they want at the be-
ginning of the search session, but with appropriate support from the
search engine, they can direct their search towards a desired direction.

87
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To investigate these claims, we developed three exploratory search method-
ologies, two for scientific articles and one for image retrieval. Each system
was developed as information retrieval tools for practical use, studying the
various environments and situations users encounter when they are still
learning to understand the available data.

In the Publications I, IT and VI we showed that it is possible to person-
alize search parameters in online environments such that a wider audience
of users can be modeled. This satisfies the description of my first claim.
The work in [81] further investigates our method, and the results of our user
studies suggest that the more users know about a given topic, the better
we can utilize their feedback. This is as we asserted in my second claim.

Based on the system described in Publication III, our work in Publica-
tions IV and V showed that generic deep features, combined with transfer
learning, can be utilized in online image retrieval settings to learn the intent
of the users. These are in accordance with our third and fourth claim.

We also studied several avenues for better assessment of exploration
during these papers, from user study settings to qualitatively measuring
coverage of a search in the dataset. Indeed, part of our focus was to improve
the research on exploratory search in general. Our intent is to extend this
work in the future, and thus give researchers of the field better tools to
evaluate the quality of their systems.
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