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Abstract

From whole organisms to individual cells, responses to environmental conditions are influ-

enced by genetic makeup, where the effect of genetic variation on a trait depends on the

environmental context. RNA-sequencing quantifies gene expression as a molecular trait,

and is capable of capturing both genetic and environmental effects. In this study, we explore

opportunities of using allele-specific expression (ASE) to discover cis-acting genotype-envi-

ronment interactions (GxE)—genetic effects on gene expression that depend on an environ-

mental condition. Treating 17 common, clinical traits as approximations of the cellular

environment of 267 skeletal muscle biopsies, we identify 10 candidate environmental

response expression quantitative trait loci (reQTLs) across 6 traits (12 unique gene-environ-

ment trait pairs; 10% FDR per trait) including sex, systolic blood pressure, and low-density

lipoprotein cholesterol. Although using ASE is in principle a promising approach to detect

GxE effects, replication of such signals can be challenging as validation requires harmoniza-

tion of environmental traits across cohorts and a sufficient sampling of heterozygotes for a

transcribed SNP. Comprehensive discovery and replication will require large human
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transcriptome datasets, or the integration of multiple transcribed SNPs, coupled with stan-

dardized clinical phenotyping.

Introduction

A substantial fraction of variability in gene expression is controlled by changes in transcription

rates, mainly mediated by transcription factor (TF) proteins binding to specific DNA sequence

motifs that define regulatory elements [1,2]. The abundance of such proteins and their regulatory

co-factors may in turn be controlled by intrinsic mechanisms inherent to a cell, such as an indivi-

dual’s genetic makeup or regulatory programs specific to a cell type, as well as cellular responses

to environmental cues. A regulatory element, defined by the DNA region recognized by a DNA-

binding TF and other required transcriptional machinery, may be either intrinsic or environ-

ment-dependent. In intrinsic elements, the TF and binding machinery is controlled by cell-intrin-

sic mechanisms that operate within a closed system and are unresponsive to environment. By

contrast, in environment-dependent elements the TF and binding machinery is responsive to an

environmental stimulus. Both regulatory element types are susceptible to perturbation by genetic

variation because the region recognized by the TF is encoded in the DNA sequence.

Many genetic studies document the effects of genetic perturbations of regulatory elements

on gene expression—expression quantitative trait loci (eQTLs; reviewed in [3,4]). Although it

is in principle possible to probe for trans (different physical chromosome) effects, eQTLs are

typically identified within a local window, centered on the transcription start site (TSS), and

are assumed to act via cis (on the same physical chromosome) mechanisms. Variation in

intrinsic regulatory programs is expected to give rise to such “standard eQTLs”, identified by

modeling genetic effects on gene expression.

However, it is also likely that variation in environment-dependent elements will be detected in

standard eQTL studies. For an environment-dependent regulatory variant to pass undetected in a

standard eQTL study, the variant must change the relationship between gene expression and envi-

ronment without altering the mean gene expression levels for each genotype, an unlikely event.

Therefore we would expect a subset of eQTLs detected by modeling only genetic effects to also

have effects unique to an environmental context. If one were to model the combined environmen-

tal and genetic effects on gene expression, such variants would exhibit interaction effects between

genotype and environment (GxE) and could be described as environmental response expression

quantitative trait loci (abbreviated as reQTLs in this paper), a specific type of eQTL whose effect

changes in response to an environmental context. To date, the overlap between standard eQTLs

and reQTLs in human is largely unknown, as few studies have co-measured environmental and

genetic effects at scale, and the technology for mapping such reQTLs is in its infancy.

In human populations, several GxE signals have been reported across diseases for various

quantitative traits (reviewed in [5]), but few have mapped transcriptional reQTLs on a large

scale, treating gene expression as a molecular quantitative trait [6–20]. Indeed, transcriptional

GxE effects have primarily been studied in model organisms where the environment and geno-

type can be controlled [21–26]. The challenge of mapping reQTLs using transcriptomic data

outside of controlled laboratory settings lies in the confounding effects of environmental, bio-

logical, and technical factors on gene expression data, and the difficulty in isolating and/or

accounting for such effects while preserving effects of the environment of interest.

However, such limitations may be mitigated if a study quantifies gene expression using

RNA-seq technology because RNA-seq enables the measurement of allele specific expression

(ASE), an alternative readout less prone to the confounders of gene level measurements
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[20,27]. By quantifying differences in expression between haplotypes in samples heterozygous

for a transcribed allele (abbreviated tSNP in this paper), ASE provides an internally controlled

measurement where biological and technical exposures on the cells are essentially identical for

both haplotypes. This makes ASE ideal for reQTL mapping since it minimizes batch effects

while preserving cis-mediated environmental effects. Indeed, ASE has been utilized in several

studies to identify genome wide GxE effects [7,10,15,20], including Knowles et al. [20], who

recently developed the EAGLE method (Environment-ASE through Generalized LinEar

modeling), a hierarchical Bayesian model, which we apply in this study.

An additional challenge for GxE studies is validating results, which at one level can be per-

formed within an RNA-seq study by integrating ASE with standard gene expression data

between individuals (abbreviated to gene-level expression in this paper) so that the two data

types serve as orthogonal forms of signal to validate reQTLs. In cases of true cis-regulation of

gene expression, when a TF preferentially binds to one allele, we would expect to observe

increased ASE in participants heterozygous for the regulatory SNP. As an example, Fig 1

shows the different types of potential regulatory elements and the impact of different polymor-

phisms in schematic form. At the gene expression level, we would expect a reQTL to have dif-

ferent effects across environmental contexts in a genotype specific manner. In the ASE data,

we would expect correlation between ASE and the environment only in individuals heterozy-

gous for both the reQTL-SNP and tSNP. As opposed to standard eQTLs, which can be summa-

rized by box-plots stratified by genotype, we believe a 6-panel regression plot is the most

informative, and examples of expected behavior are shown in S1 Fig.

In this study, we explore the opportunities and challenges for reQTL mapping and replica-

tion using gene-level expression and ASE data. We illustrate our approach using RNA-seq

from 267 skeletal muscle biopsies from the Finland-United States Investigation of NIDDM

Genetics (FUSION) tissue biopsy study [28], as this dataset features RNA-seq co-measured

with rich clinical phenotypes spanning blood metabolites, anthropometric measurements, and

medication (S1 Table). Physiologically, a variety of factors may contribute to the variability of

such clinical phenotypes. Rather than identifying these sources of variability, our study focuses

on mapping genetic effects on gene expression that are specific to an environmental context,

approximated by these phenotypes. Collectively, we treat all clinical phenotypes as “environ-

mental traits” since we model skeletal muscle gene expression and therefore the response of a

population of cells to the surrounding cellular environment—adjacent cells, extracellular

matrix, blood plasma, and interstitial fluid—approximated by each phenotype.

As one clear limitation is sample size, we reduce the multiple testing burden by only testing

eQTLs for GxE signals, based on the assumption outlined above that at least some of the stron-

gest reQTLs will also show effects on mean gene expression when stratified by genotype and

be detected also as eQTLs. With a well-calibrated statistical test, we identify 12 GxE signals

that span 10 candidate reQTLs at a trait-specific FDR of 10%. Replication of such findings is

challenging because of the lack of human studies on equivalent tissues with equivalent envi-

ronmental measurements; however, two of the three testable traits shared with the larger

GTEx study show non-random aggregate replication, although the need to restrict to heterozy-

gous individuals limits the extent of this replication. This study highlights the utility of ASE

based GxE analysis in observational studies.

Results and discussion

reQTL results

As candidate reQTLs for each gene, we considered the most significant skeletal muscle eQTL

(FDR 5%) per gene for 14,080 autosomal, protein coding genes with at least one significant

Skeletal muscle gene-environment interactions
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eQTL from our previous study of 267 Finnish muscle samples [28]. We tested for interaction

of these SNP-gene pairs with 17 clinical phenotypes (S1 Table) by jointly modeling the impact

of genotype effects on gene level expression and ASE levels (Methods). The resulting p-value

distributions are well calibrated (S2 Fig), with the vast majority of tested SNPs consistent with

Fig 1. Genetic and environmental effects on gene expression. Blood insulin levels represent a cellular environment for tissues such as skeletal muscle. The left panel

depicts a single genome with color-coded genomic elements and various heterozygous sites. The right panel shows the relative transcript abundance for the

corresponding locus on the left panel. Some genomic elements contain genetic variants. When the variant is the same color as the element, the element is active. In some

cases the variant is black, indicating that the variant renders the regulatory element nonfunctional and only basal transcription occurs. The purple element represents a

gene with a transcribed SNP (tSNP), shown in the transcripts. Allele specific expression is calculated across both chromosomes and compared to the high and low

environment. (A) When regulated by an insulin-responsive element (green), gene expression changes according to insulin concentrations in the extracellular

environment. (B) When regulated by an insulin-independent element (orange) containing genetic variation, gene expression changes according to the presence of a

genetic variant (eQTL), but not to insulin levels. The tSNP shows allelic bias due to the eQTL effect, but is not associated with the insulin environment. (C) When

regulated by both an insulin-responsive element and an insulin-independent element containing genetic variation, the effects of the insulin environment and the genetic

variation on gene expression may be additive, although more complex relationships are possible. The tSNP shows some imbalance due to the eQTL effect and is

associated to insulin levels. Such cases may be identified as weak reQTLs. (D) When regulated by an insulin-responsive element containing genetic variation, there may

exist an interaction effect between the genetic variant and insulin levels such that changes in gene expression across insulin environments depend on the genetic variant.

The tSNP shows allelic imbalance associated with insulin levels due to the reQTL effect. One of several possible interaction effects depicted.

https://doi.org/10.1371/journal.pone.0195788.g001
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the null distribution. Using a 10% FDR per trait, we identify 10 candidate reQTLs across 6

traits (12 unique gene-environment trait pairs) (Fig 2; Table 1; S2 Table). Of the clinical vari-

ables considered, sex is unique in that GxE sex signals could be due to environmental (for

example, circulating sex hormones) or intrinsic, within cell, effects due to differences in gene

expression from the sex chromosomes. In addition, we note that we did not find strong corre-

lation between GxE signals of ASE and gene-level models (Table 1; S2 Table), which may indi-

cate power limitations due to sample size.

Summary of most significant tSNP for each reQTL-gene pair. Coordinates based on

GRCh37/hg19. The three p-value columns record the ASE, whole gene expression level, and

combined p-value respectively. The combined p-values are used for q-value calculation.

Results with all reQTL-tSNP pairs are recorded in S2 Table.

GTEx replication

We sought to replicate these results using skeletal muscle data from the GTEx study (http://

www.gtexportal.org). Shared across studies, four traits were available for this purpose:

age, sex, body mass index (BMI), and type 2 diabetes (T2D) status. Three of these variables:

Fig 2. GxE signals. (A) Number of reQTLs per clinical variable (10% FDR). (B) Number of tSNP-environment associations per clinical variable

(10% FDR).

https://doi.org/10.1371/journal.pone.0195788.g002

Table 1. reQTL results FDR 10%.

Clinical Trait Gene Chr tSNP position reQTL alleles (ref/alt) reQTL position p-value ASE p-value gene p-value combined q-value

Age PCNT 21 47786817 G/T 47823229 4.29x10-6 1.25x10-1 8.28x10-6 0.0735

Sex BSG 19 582775 T/C 572878 1.75x10-5 1.00x10-1 2.50x10-5 0.0567

Sex NRAP 10 115412793 C/T 115385650 1.65x10-7 5.61x10-1 1.59x10-6 0.0136

BMI DAGLB 7 6449272 C/T 6476915 3.54x10-2 1.55x10-5 8.48x10-6 0.0753

SBP ELP2 18 33750046 T/G 33743660 3.24x10-5 3.58x10-2 1.70x10-5 0.0607

SBP FHOD3 18 34324091 T/C 33970347 2.82x10-4 5.07x10-3 2.06x10-5 0.0607

SBP IGF2R 6 160453978 T/C 160379096 1.34x10-3 9.18x10-4 1.80x10-5 0.0607

TC, fasting AGMAT 1 15909850 T/C 15918676 2.52x10-3 8.60x10-5 3.54x10-6 0.0315

LDLc, fasting AGMAT 1 15909850 T/C 15918676 1.20x10-3 4.82x10-4 8.88x10-6 0.0501

LDLc, fasting DEPTOR 8 121061879 G/T 120930135 4.43x10-2 1.69x10-5 1.13x10-5 0.0501

LDLc, fasting FHOD3 18 34232657 T/C 33970347 6.78x10-3 4.54x10-4 4.21x10-5 0.0623

LDLc, fasting TMEM261 9 7799653 A/G 7830189 8.31x10-5 1.39x10-2 1.69x10-5 0.0501

https://doi.org/10.1371/journal.pone.0195788.t001

Skeletal muscle gene-environment interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0195788 April 16, 2018 5 / 17

http://www.gtexportal.org/
http://www.gtexportal.org/
https://doi.org/10.1371/journal.pone.0195788.g002
https://doi.org/10.1371/journal.pone.0195788.t001
https://doi.org/10.1371/journal.pone.0195788


sex, BMI, and T2D status, had similar distributions in the GTEx and FUSION cohorts (S1

Table).

Despite significant differences in cohort populations, laboratory techniques, and analy-

sis pipelines, we observe a trend in the replication rate of BMI and sex that increases with

the significance of the reQTL in the FUSION discovery dataset (Fig 3). This trend was not

observed in T2D, perhaps due to different criteria for inclusion of individuals with T2D.

The FUSION tissue study only included individuals with newly diagnosed T2D, not yet

treated with antihyperglycemic medications (described in [28]). By contrast, GTEx indi-

viduals may have had longstanding and heavily treated T2D [29,30].

Although this bulk replication is reassuring, closer inspection of the BMI and sex trends

revealed that two pairs of genes are driving the observed trend in both BMI and sex, highlight-

ing the need of large sample sizes for such GxE analyses. To this point, only two significant

reQTL-tSNP pairs from FUSION met the tSNP filtering criteria in GTEx (Methods), neither of

which showed similar GxE effects, potentially indicating false positives (S3 Fig).

Specific reQTL example: FHOD3
Despite the small number of reported hits and replication challenges, we observe some puta-

tive reQTLs with clear, consistent GxE effects in both gene expression and ASE data. The most

clear, consistent example is FHOD3, formin homology 2 domain containing 3. FHOD3 is

essential for myofibril formation and repair, forming a doughnut shaped dimer, capable of

moving along and extending actin filaments (reviewed in [31–33]). FHOD3 is critical for heart

development and function in mouse [34,35] and fly [36] and exhibits tissue specific splicing

patterns [37,38] shown to enable myofibril targeting in striated muscle [37,39].

Fig 3. GTEx replication. Replication rate (y axis) as a function of FUSION reQTL p-value cutoff (x axis). Dashed line

represents two standard deviations from the null distribution, calculated using the hypergeometric distribution.

https://doi.org/10.1371/journal.pone.0195788.g003
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We observed a GxE effect for FHOD3 with both low-density lipoprotein cholesterol (LDLc)

levels and systolic blood pressure (SBP) (Fig 4; S4 Fig). The LDLc association was discovered

separately in the ASE of two tSNPs, spanning different exons (S2 Table; Fig 4; S4 Fig), while

the SBP association was discovered with an additional tSNP, falling in an exon separate from

the LDLc tSNPs. In addition, although not significant in the FUSION dataset, a GxE effect

with BMI and FHOD3 was one of the main drivers of the observed GTEx BMI replication

trend (2.47x10-4 FUSION and 8.40x10-4 GTEx—minimum combined p-value across tSNPs).

Evaluation of the raw data showed modest replication of the FHOD3-BMI signal between the

FUSION and GTEx datasets (S5 Fig).

We previously calculated a muscle expression specificity index (mESI), comparing skeletal

muscle expression to a reference panel of 16 diverse tissues, and binned these scores into deciles

such that genes in the 1st decile are uniformly, lowly expressed and genes in the 10th decile are

highly, specifically expressed in skeletal muscle [28]. We found FHOD3 expression to be highly

specific to skeletal muscle (mESI decile of 9). The reQTL tag SNP, rs17746240, and rs2037043,

an additional SNP in high linkage disequilibrium (R2 = 0.99 in Finns from the GoT2D reference

panel), overlap a skeletal muscle stretch enhancer (Fig 5A), a regulatory element shown to be a

signature of tissue-specific active chromatin [40]. In addition, these variants fall in two distinct

ATAC-seq peaks unique to skeletal muscle, an indicator of open chromatin (Fig 5B).

Both SNPs affect predicted TF binding sites, as measured by the delta score (Methods).

rs17746240 disrupts motifs for the GATA protein family, TBX5, and EP300 (Fig 5C). Within

our skeletal muscle data, we find GATA2, GATAD1, GATAD2A, GATAD2B, and EP300 to be

expressed (median FPKM > 1). The other variant, rs2037043, disrupts many motifs (Fig 5C)

of which ZNF263, YY1AP1, YY1, SMAD4, SIN3A, RXRA, RAD21, NR2C2AP, NR2C2, NFIC,

HES1, ESRRA, CTCF, and BDP1 are expressed in skeletal muscle (median FPKM > 1), mak-

ing it difficult to identify a specific TF.

Conclusion

Understanding the genetic regulators of molecular responses to environment, both at the

cellular and organismal level, is essential for a complete understanding of the relationship

Fig 4. FHOD3 reQTL, rs17746240 (18:33970347). The data for each of the three possible reQTL genotypes are presented in

separate plots (columns). The top row plots show the relationship between gene expression (y axis) and the clinical variable (x axis).

The bottom row plots show the relationship between the allelic imbalance of the tSNP and the clinical variable (x axis). Note the

bottom row has fewer samples because it is limited to samples heterozygous for the tSNP. (A) LDLc GxE effect with rs72895597

(18:34232657) as the tSNP. (B) SBP GxE effect with rs2303510 (18:34324091) as the tSNP.

https://doi.org/10.1371/journal.pone.0195788.g004
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between genotype and phenotype. Environmental influences are a critical part of human dis-

ease etiology, but are far harder to study than intrinsic genetic factors. RNA-seq technology

provides an information-dense molecular readout that includes ASE, an internally controlled

experiment that minimizes technical artifacts by comparing read counts within samples
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instead of between samples [20,27]. Because ASE reduces confounding effects present in gene-

level data that are difficult to distinguish from environmental effects, ASE is an ideal molecular

readout for probing GxE effects. This study, which is amongst the first to leverage ASE in

humans to map trait specific GxE effects [10,15,20], demonstrates both the potential and the

limitations for using ASE to unravel complex gene-environment regulatory structures. Using a

well-calibrated model, we find a handful of reQTLs and show some level of bulk replication.

Despite the low level of discovery in this study, which we believe is primarily limited by sample

size, our success suggests that at least some eQTLs are likely to be in fact reQTLs.

This study highlights several challenges associated with using ASE signal for mapping regu-

latory loci. Such analyses require sufficient sampling of double heterozygotes of the reQTL and

tSNP, and therefore large sample sizes are required for a well-powered study. Another limita-

tion of ASE is that it can only be used to identify cis-effects. Previous studies indicate that

many reQTLs operate distally, in trans, on highly regulated genes with more opportunities in

the regulatory chain for genetic perturbation [6,11,25,26]. Because our method requires ASE,

we could only assay local, cis-effects, and therefore may miss many large trans-effects.

In the future, we will need larger studies of specific human tissues with co-measured

genetic, molecular, and clinical information. The possibility of mapping reQTLs underscores

the importance of detailed characterization of study participants, especially when integrating

molecular and genetic data with detailed clinical information. This becomes particularly rele-

vant for replication studies, and argues for the standardization of a core set of phenotypes and

environmental exposures between large cohorts. In addition, further development of statistical

models to boost power will be needed—for instance by simultaneously modeling total gene

expression and ASE, as well as accommodating technology developments, such as the integra-

tion of perfectly phased tSNP allele counts within a gene, made possible by long reads.

Materials and methods

Sample recruitment, muscle biopsy procedures, and RNA sequencing have been previously

described [28].

Ethics statement

The study was approved by the coordinating ethics committee of the Hospital District of Hel-

sinki and Uusimaa. A written informed consent was obtained from all the subjects.

Genotype processing

Genotypes were measured and processed as described in [28]. Briefly, using DNA extracted

from blood, we genotyped the 267 samples on the HumanOmni2.5-4v1_H BeadChip array

(Illumina, San Diego, CA, USA) with minimum call rate>98.7%. We excluded SNPs with

probe alignment problems, known variants in the 3’ end of probes, call rates <95%, minor

allele count (MAC) <1 or Hardy–Weinberg equilibrium P value <10−6. Using the 1,642,012

SNPs that passed these filters, we pre-phased (https://mathgen.stats.ox.ac.uk/genetics_

software/shapeit/shapeit.html) and imputed [41] genotypes using 2,737 European individuals

from the Genetics of Type 2 Diabetes (GoT2D) project. We kept 8,406,237 variants with impu-

tation quality r2>0.3 and MAC>5 for subsequent analyses.

Phenotype processing

Metabolites were measured after a 12-hour overnight fast, during a 4-point (0, 30, 60, 120

min) oral glucose tolerance test (OGTT) [28]. Serum triglycerides, total and HDL cholesterol
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were measured by enzymatic methods with Abbott Architect analyzer (Abbott Laboratories,

Abbott Park, IL, USA). LDL cholesterol concentration was calculated using the Friedewald for-

mula [42]. Serum insulin and serum C-peptide concentrations were assayed by chemilumines-

cent microparticle immunoassays using Architect analyzer. Patient medications were also

recorded at time of OGTT. Patient medications were analyzed and categorized by physician

review. All phenotypes considered are listed in S1 Table.

We inverse normalized all continuous traits. Blood pressure measurements were missing

from 2 participants, whose samples were dropped when analyzing blood pressure traits. Prior

to fitting models, we regressed all continuous traits on age, age2, and sex, except for age where

we regressed only on sex.

ASE processing

We quantified ASE in autosomal, protein coding genes (gencode V19) as described previously

[28]. Briefly, we quantified strand-specific read coverage of SNPs using SAMtools mpileup

(v0.1.18) [43], requiring a minimum mapping quality of 255, minimum base quality of 20, and

that reads mapped in a proper pair. We also removed reads that failed vendor quality checks

or that were not the primary alignment. We excluded SNPs in ENCODE blacklist regions [1]

and any SNP within 101 bp of an indel greater than 4 bp or overlapping an indel of any length.

We followed procedures from Lappalainen et al. [44] to remove tSNPs that exhibited mapping

bias based on 101 bp simulated reads, dropping SNPs with a total simulated coverage of<193

or>202, and removing SNPs with simulated count allele / count total deviating from 0.5 by> =

5%. We removed tSNPs per sample with < 30 total reads. We subsequently required that

tSNPs were heterozygous in> = 20 samples. From the remaining 25,913 autosomal tSNPs, we

discarded 1,254 tSNPs where one or more sample exhibited near mono-allelic expression,

defined as | 0.5 - (count alternate SNP / count total) |> 0.4. Altogether, we considered 24,659

tSNPs to map candidate reQTLs.

reQTL discovery

As input SNPs to test for GxE effects in the ASE and gene expression data across all clinical

traits, we used the single best (lowest p-value) eQTL per gene across 14,080 autosomal, protein

coding genes with at least one significant eQTL (FDR 5%), published in Scott et al. [28]. For

ASE data, we used EAGLE [20], which models count overdispersion using a random effect

term with per tSNP variance (vs) given an inverse gamma prior IG(a, b). We learned the hyper-

parameters a, b for this distribution across all tSNPs after filters, estimating them to be 1.80,

0.0024 respectively. For sample i and tSNP s, we mapped GxE signals by fitting the model:

minðyis; nis � yisÞjb; ms; ϵis � Binomial½nis; sðeisg
e
s þ hisg

h
s þ eishisb

eh
s þ ms þ ϵisÞ�

Here nis and yis denote the total and alternative read count for individual i at tSNP s, eis the

environment, his the indicator that the eQTL is heterozygous, μs an intercept term to take into

account unexplained allelic imbalance unrelated to the environment, σ(x) = 1/(1 + e−x) the

logistic function, εis|v ~ N(0, vs) a per individual per locus random effect modeling overdisper-

sion, and, ge
s ; gh

s , and b
eh
s the effect sizes of the environment (Fig 1A), eQTL heterozygosity sta-

tus (Fig 1B), and SNP�environment interaction (Fig 1D), respectively. We test the null

hypothesis b
eh
s ¼ 0 using a likelihood ratio test. As covariates, we included the first two princi-

pal components (PCs) calculated across all genotypes, consistent with Scott et al. [28]. In our

analyses we required� 15 homozygous and� 15 heterozygous samples for the eQTL tag SNP

and, in the case of dichotomous variables, no group was formed with < 5 samples. With these
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filters, we could only test for reQTL effects in a subset of genes that differed according to clini-

cal trait in the case of discrete variables where the total sample size was not constant due to

missing data (S6 Fig).

We also mapped GxE interaction effects for each candidate reQTL in total gene expression

data using a linear model for expression levels, testing interactions for each gene-environment

pair. Let yj be a vector of inverse normalized FPKMs for gene j across individuals. We consider

the following linear genetic model of gene expression:

yj ¼ Zaj þ ege
j þ gg

g
j þ ðg � eÞbj þ cj; � Nð0; s2

eÞ

Here Z denotes the matrix design of fixed effect confounding covariates, e and g the environ-

ment and genotype vector, g� e their element-wise product, ψj Gaussian noise, and αj, ge
j ; g

g
j ,

and βj the effects of covariates, environment (Fig 1A), genotype (Fig 1B), and the genoty-

pe�environment interaction (Fig 1D) respectively.

To capture hidden variation in gene expression data, we used PEER [45,46] as described

previously [28] to learn latent factors. For covariates in the GxE interaction model, we

included sequencing batch, the first two genotype PCs, and the first two PEER factors, as a

recent report suggests two PEER factors capture the majority of technical variation, preserving

biological effects [47]. We additionally include age and sex as covariates when either trait was

not considered as an environmental trait. We implemented the GxE model using the linear

mixed model framework LIMIX (v0.7.6) [48,49].

We combined the ASE p-values and gene expression p-values using Fisher’s combined test.

We controlled for FDR per environment using the Benjamini–Hochberg procedure [50]. Our

method assumes 1) ASE and gene expression are independent measurements for GxE and 2)

we have enough double heterozygous individuals to map the reQTL.

GTEx replication

We conducted a replication study using data from the GTEx v6 dbGaP release (phs000424.v6.

p1). We used the preprocessed, imputed genotypes and the precomputed skeletal muscle gene

expression and ASE across imputed genotypes. The GTEx samples were collected post-mor-

tem and do not have available many of the traits assayed in the FUSION samples. Of the clini-

cal variables measured in the FUSION dataset, four were also recorded in the GTEx dataset—

age, sex, BMI, and T2D status—from which we excluded age as the distribution was signifi-

cantly different between FUSION and GTEx (S1 Table).

Notably, besides the differences in collected phenotype information and age distribution,

the GTEx data differ from the FUSION data in four other relevant ways: 1) FUSION is drawn

from a more genetically homogenous population (Finland); 2) FUSION is sequenced to mean

depth of 91.3M reads per sample compared to 82.1M reads per sample in GTEx; 3) FUSION

uses a 100 bp strand specific, paired-end read protocol for RNA-seq and GTEx uses 76 bp

non-strand specific, paired-end RNA-seq; and 4) the computational analysis pipelines are dif-

ferent for read mapping, expression abundance quantification, and ASE calculations [51].

Within the GTEx dataset, we tested for GxE effects with the FUSION eQTL SNPs, using the

ASE interaction and gene expression interaction models described above. Because our goal

was replication of the FUSION genotype-environment interactions we did not require the

FUSION eQTL to be significant in the GTEx dataset. For the GTEx ASE interaction model, we

including the first three genotype PCs as covariates, as was used previously by the GTEx con-

sortium [51], and for the gene expression interaction model, we included age, sex, expression

batch, the first three genotype PCs, and the first two PEER factors from the GTEx data release

as covariates. We tested reQTL-tSNP pairs in GTEx with sufficient double heterozygotes to

Skeletal muscle gene-environment interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0195788 April 16, 2018 11 / 17

https://doi.org/10.1371/journal.pone.0195788


pass the filters described above. For genes with multiple tSNPs, we selected the minimum

reQTL p-value per gene for the GTEx and FUSION datasets separately. Treating the FUSION

data as a discovery dataset, we calculated the replication rate across varying p-value threshold

cutoffs. We selected n FUSION hits at a given p-value cutoff from N total shared reQTLs

without replacement, stopping when n< 10. At each cutoff, we calculated k, the number of

FUSION hits that replicate in GTEx (GTEx p-value < 0.01), out of the total number of nomi-

nally significant GTEx hits, K. Using the mean, K/N, and the hypergeometric distribution, we

estimated two standard deviations from the null distribution. Because we select the minimum

reQTL-tSNP pair per gene it is possible that genes with more tSNPs will be more likely to

show significant results. We calculated the average tSNPs for the replicated and not replicated

reQTL sets to explore if sampling from a larger number of transcribed SNPs was responsible

for the observed trends (S7 Fig).

Chromatin states

We used previously described chromatin state maps [52]. Briefly, we collected and uniformly

processed cell/tissue ChIP-seq (chromatin immunoprecipitation followed by sequencing)

reads from a diverse set of publicly available data [40,53–55]. Chromatin states were learned

jointly by applying the ChromHMM (v1.10) algorithm [53,56,57] at 200 bp resolution to six

data tracks (Input, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3) from each of the

cell/tissue types. We selected a 13-state model, which provided sufficient resolution to identify

biologically meaningful patterns, and mapped the biological function names to match the

Roadmap Epigenomics “extended” 18-state model [54], as described in Varshney et al. [52].

ATAC-seq footprinting

Assay for transposase-accessible chromatin (ATAC-seq) generates detailed maps of open,

active chromatin and TF binding dynamics [58]. We used previously published ATAC-seq

data in skeletal muscle [28], GM12878 [58], and adipose tissue [59]. All data was processed

uniformly as described in Scott et al. [28], using the same read trimming, alignment, filtering

and peak calling pipeline.

Transcription factor binding predictions

To identify potential transcription factor binding sites (TFBS), with particular attention to

those that may be affected by variants, we generated short sequence fragments around each of

the biallelic SNPs and short indels discovered in 1000 Genomes Phase 3 (release 5), by embed-

ding each allele in flanking sequence (29bp on each side) from the GRCh37/hg19 human refer-

ence genome. We scanned the entire reference sequence, as well as these variant fragments,

with a library of position weight matrices (PWMs) compiled from JASPAR [60], ENCODE

[61], and Jolma et al. [62], using FIMO [63] from the MEME suite [64]. FIMO was executed

using the background nucleotide frequency of the human reference (40.9% GC) and the

default p-value cutoff, 10−4.

To quantify the effect of SNPs on these motifs, we calculated a delta score, -log10(palternate allele)

—-log10(preference allele), for each SNP where at least one of the alleles passed our p-value cutoff of

10−4. In cases where a PWM hit was not detected for the second allele by FIMO at a threshold of

0.01, we use a value of 0.01 for that allele, so that the delta score will be conservative in these cases.

Skeletal muscle gene-environment interactions
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Supporting information

S1 Table. Clinical traits. Phenotype information used as traits from the FUSION tissue biopsy

study participants and GTEx skeletal muscle participants. For T2D status in GTEx, only T2D

status available, non-T2D participants presumed to be NGT. In some cases, the GTEx T2D sta-

tus was missing (NA), therefore T2D fraction calculated over non-missing data.

(XLSX)

S2 Table. All reQTL-tSNP pairs FDR 10%. All candidate reQTLs (FDR 10%).

(XLSX)

S1 Fig. Examples of genetic and environmental effects. (A) Example of a pure environment

effect in SZRD1—rs12568938 regulatory SNP (rSNP) and rs7529767 transcribed SNP (tSNP).

SZRD1 expression is associated with BMI, and the rSNP does not affect gene expression. The

relationship between SZRD1 and BMI does not change across the rSNP alleles, and BMI is not

associated with allelic imbalance. (B) Example of a pure genetic effect in RBM6—rs9881008

regulatory locus and rs2023953 tSNP. BMI is not associated with RBM6 expression or allelic

imbalance. The rSNP alleles are associated with RBM6 expression and allelic imbalance is

increased in samples heterozygous for the rSNP. (C) Example of a GxE effect in FHOD3—
rs17746240 regulatory locus and rs72895597 tSNP. The relationship between LDLc and

FHOD3 expression changes according to the rSNP allele as well as the overall expression abun-

dance levels. LDLc is only associated with allelic imbalance in heterozygous individuals, where

preferential TF binding could occur.

(TIF)

S2 Fig. QQ-plots across traits. QQ-plots of GxE signal discovery across clinical traits. Colors

and shapes depict the ASE, gene-level, and combined p-values.

(TIF)

S3 Fig. Comparison of candidate FUSION reQTLs to GTEx. (A) NRAP sex-reQTL in

FUSION. (B) NRAP sex-reQTL in GTEx. (C) DAGLB BMI-reQTL in FUSION. (D) DAGLB
BMI-reQTL in GTEx.

(TIF)

S4 Fig. Additional FHOD3 LDLc-reQTL. Additional LDLc GxE effect with rs61735993

(18:34273279) as the tSNP.

(TIF)

S5 Fig. Comparison of FHOD3 BMI-reQTL in FUSION and GTEx. (A) FHOD3 BMI-reQTL

in FUSION with rs3744903 (18:34310668) as the tSNP. (B) FHOD3 BMI-reQTL in GTEx with

rs3744903 (18:34310668) as the tSNP. (C) FHOD3 BMI-reQTL in FUSION with rs2303510

(18:34324091) as the tSNP. (D) FHOD3 BMI-reQTL in GTEx with rs2303510 (18:34324091) as

the tSNP.

(TIF)

S6 Fig. Total number of tested genes across traits. Total number of genes in FUSION consid-

ered for each clinical trait.

(TIF)

S7 Fig. FUSION-GTEx replication. Average number of tSNPs in the genes with signals that

replicated (Replication group) and signals that did not replicate (No Replication).

(TIF)
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