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Abstract 

Cancer is a leading cause of death worldwide and a major public health 

burden. Technological advances in high-throughput genomic 

technologies now allow us to extract gene specific measurements at 

multiple levels, such as mutation, copy number alterations, gene 

expression to list a few. Genomic profiling of patient tumors have 

revealed massive heterogeneity in cancer, making it difficult to pin point 

the driver genes and translate this knowledge for clinical use. 

Alternatively, functional profiling based on RNA interference and drug 

sensitivity screens provide complementary information for 

understanding the functional relevance of genes related to cancer. Such 

screens can be used to chart the genetic vulnerabilities of cancer cells 

which can be useful in exploring therapeutic options. However, undesired 

off-target effects often complicate the interpretation of the results, and 

the consistency of these screens have been questioned. With the 

increasing availability of large-scale data on the molecular and functional 

characteristics of cancer cell lines, computational approaches are 

required to extract meaningful information from these datasets. Novel 

computational methods that are able to account for the complex 

biological mechanisms involved in RNA interference will improve the 

prediction of genetic vulnerabilities, and augment the discovery of novel 

biomarkers and targets for personalized treatment of cancer. 

In this work, I have developed and applied novel computational 

approaches for integration of large-scale genomic and functional 

datasets. Firstly, I developed an approach to remove noise from genome-

wide RNAi screens with the aim to increase their consistency. Further, I 

applied rigorous statistical analyses in multiple datasets to integrate 

mutational profiles with genome-wide RNAi screen data to predict novel 

synthetic lethal partners of major cancer driver genes that were 

experimentally validated by CRISPR/Cas9 knockout assay. Secondly, I 

explored the question of predictability of genetic dependencies by 

developing machine learning models using large-scale genomic datasets 

to reveal insights into gene dependencies that are more predictable, and 

identified the molecular features that contribute prominently to such 

predictions. Thirdly, I show the usefulness of performing computational 

analysis to identify a gene expression signature associated with cancer 

stemness, which predicts sensitivity of cancer cells to cancer stem cell 
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inhibitors. Further, I show that the expression signature is useful in 

identifying patient sub-groups that will most likely benefit from the 

therapy. Altogether, the methods developed and applied in this work 

demonstrate clearly the usefulness of computational approaches to data 

integration in cancer cell line datasets. These findings advance current 

translational efforts for cancer therapy under the precision medicine 

paradigm. 
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1 Introduction 
Cancer is a deadly disease which inflicts havoc on the life of the individual 

diagnosed with it, also making the experience traumatic and emotionally 

overwhelming for individuals and families gripped by its influence. With 

14 million new cancer patients diagnosed yearly and approximately 9 

million deaths, cancer is the second leading cause of death worldwide (1). 

Although substantial progress has been made in terms of understanding 

its causes as well as development of prevention and treatment strategies 

(2), cancer remains a psychological, social and economic burden, and a 

major global health challenge (3). 

Cancer is an outcome of abnormal cellular growth, in which normal cells 

go awry and disobey the regular rules of tissue growth and differentiation 

that are necessary for maintaining tissue homeostasis, physiology and 

function. While normal cells behave in a disciplined manner and are 

programmed to work in unison with each other to guarantee survival of 

the organism, cancer cells have only one motive: make more copies of 

themselves (4). Although this nature of cancer was clear from early on, 

little progress had been made in terms of understanding the causes and 

the process of carcinogenesis. It was the discovery by Varmus and Bishop 

in 1976 (5), showing that genetic alterations in normal cells had the 

potential to transform them into cancerous cells, which provided the first 

coherent view that cancer is a genetic disease. From then on began the 

modern era of cancer biology, and massive strides have been made in 

gaining a molecular mechanistic understanding of cancer ever since. With 

this, also came the realization that cancer is dauntingly complex. 

In 2000, Hanahan and Weinberg distilled a giant body of scientific 

literature on the molecular studies of cancer and tumorigenesis into a 

generalized conceptual framework called ‘the hallmarks of cancer’ (6, 7). 

They overlayed the molecular and biochemical complexities of cancerous 

cells with the organizing principles of cellular physiology, and proposed a 

set of rules that underlie the transformation of normal cells to a 

malignant phenotype. These acquired capabilities of cancer cells:  

sustained proliferative signalling, resisting cell death, evading growth 

suppressors, limitless replicative potential, activation of invasion and 

metastasis, and sustained angiogenesis – served as a coherent template 

for making sense of the diverse molecular alterations present in cancer 

cells. They have also been very useful in interpreting the findings from 
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subsequent genomic studies that followed with the onset of genomic 

revolution, and has also ushered an era of targeted therapy for treatment 

of cancer patients (7). 

Post Human Genome Project the field of cancer genomics blossomed, and 

several large-scale projects were undertaken to systematically survey the 

frequency of genomic alterations in specific cancer types (8). These 

studies revealed frequent driver mutations of various kinase genes in 

melanoma, colon and lung cancer (9-12). Further, it was observed that 

several of the frequent kinase driver mutations were correlated with 

clinical responses to drug inhibition of the kinase activity (9, 10). These 

observations fortified the previous clinical success of the kinase inhibitor, 

imatinib mesylate, for treatment of chronic myeloid leukaemia (CML) 

patients having driving mutations in the BCR-ABL fusion gene, thus setting 

the stage for arrival of targeted cancer therapy (13, 14). The targeted 

therapy approach requires the identification of molecular targets crucial 

for the survival of cancer cells in a given genetic background, whose 

inhibition by a small molecule is expected to be highly selective to killing 

cancer cells with fewer side effects (13). This approach contrasts with the 

conventional approach of using chemotherapeutic agents that are 

relatively non-specific and yield considerable side effects.  

Spurred by the promise of targeted therapy began a quest to extensively 

characterize patient tumours (15-17). Big consortium projects such as The 

Cancer Genome Atlas (TCGA) (15) and International Cancer Genome 

Consortium (ICGC) (16) were launched for systematic genomic 

characterization of many cancer types, and are still ongoing. These 

massive efforts were aided by the maturation of sequencing technologies 

and the dawn of massively parallel sequencing (MPS), which made it 

possible to collect variety of genomic information with the same 

sequencing platform from a large collection of cancer patients (8). For 

instance, the MPS technology could be used in discovering point 

mutations, detecting copy number variations, quantifying transcript 

levels, and also in measuring DNA methylation. These studies were quite 

successful in discovering new driver genes and genetic alterations that 

have led to an improved molecular level understanding of the processes 

involved in cancer (8, 18).  

Contrary to the expectations based on the early success of inhibiting 

specific driver kinases, the genomic investigations did not reveal many 

recurrently mutated driver or druggable  cancer genes (8). Instead, the 
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sequencing studies made it clear that tumors generally harbor multiple 

genomically altered events, highlighting the incredibly complex landscape 

of genomic alterations and massive heterogeneity across cancer types, 

and even within the same tumor (18). Moreover, it became a challenging 

task to identify the genetic alterations that are relevant to cancer survival 

and growth, and also the presence of multiple genetic alterations 

mapping to several molecular processes, made it particularly difficult to 

pinpoint the druggable targets or pathways (18). Thus, the aspirations of 

targeted therapy are still beyond reach, with significant roadblocks in 

translating the genomic knowledge into clinically actionable treatment 

strategies. 

To fill the gap in the clinical translatability of the deluge of information 

obtained from the genomic studies, complementary strategies are 

needed to functionally characterize the variety of genes that are altered 

in cancer, so as to identify the ones relevant for cancer treatment (19-21). 

In vitro loss-of-function screens based on gene suppression using RNA 

interference (RNAi), or gene inactivation using the recently developed 

clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 

system have become widely-used techniques for interrogating the role of 

genes essential in various cancer types (21, 22). The ease of scalability of 

these genome perturbation techniques to high-throughput settings have 

allowed the examination of the functional roles of genes at genome-scale, 

thus making it possible to survey the gene essentiality landscapes in 

panels of cancer cells (23, 24). These techniques are also well suited for 

identifying promising drug-targets, because they mimic the desired effect 

of drug inhibitors, i.e., reduce the activity of the target protein product 

(22). Similarly, cell-based high-throughput drug sensitivity screens have 

also been developed to functionally assay the response of cancer cells to 

a library of small molecules, and are routinely being used to identify 

promising drug candidates and druggable genetic addictions of cancer 

cells (25-31).  

Several projects are being undertaken to extensively characterize the 

genomic and functional landscapes of a diverse panel of cancer cell line 

models from a wide variety of histological and tumor backgrounds (27, 

28, 30, 32-37). Since functional profiling and genomic profiling methods 

provide complementary information on the cancer cells, these datasets 

are extremely valuable resources for mining the links between the cancer 

genotype and phenotype. However, unlike the sequencing based-
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genomic technologies that are known to be quite robust, functional 

profiling techniques have several pitfalls. For instance, both RNAi and 

drug screens are known to suffer from off-target effects, and questions 

have been raised about the consistency and utility of these data for 

personalized medicine (38-40). Furthermore, the ‘big data’ nature of 

these datasets requires the application of sophisticated data analysis 

techniques and computational algorithms to extract knowledge with 

potential clinical applicability.  

The goal of this thesis is to develop and apply computational and 

analytical methods that can improve the estimation and prediction of 

genetic dependencies and druggable vulnerabilities in cancer cells. The 

ultimate objective is to identify genomic biomarkers potentially linked to 

effective targeted therapy of cancer. A wide variety of methodologies 

based on predictive machine learning models, unsupervised clustering, 

survival analysis and statistical methods are applied for the analytical 

settings considered in this work. These systems medicine approaches are 

expected to become important for the emerging translational efforts 

built on the concepts of personalized medicine and precision oncology. 
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2 Review of the literature 
2.1 RNA interference 

RNA interference (RNAi) is a phenomenon of RNA mediated gene 

silencing. It was first observed in C. elegans when long double-stranded 

RNAs (dsRNA) introduced into the organism led to the cleavage of mRNA 

transcripts with identical sequences (41). Following this discovery, RNAi 

very quickly became a powerful and widely used tool for genetic screens 

by gene knockdown. Later studies revealed that several types of RNA 

molecules could also trigger RNAi, such as RNA viruses, transposons and 

microRNAs (miRNAs) (42). Moreover, exogenously introduced chemically 

synthesized short RNA duplexes; also called short-interfering RNAs 

(siRNAs), or endogenously expressed hairpin RNAs; also called short-

hairpin RNAs (shRNAs), are also capable of inducing gene silencing (41). 

The discovery of the RNAi pathway has led to a fundamental shift in the 

understanding of how post-transcriptional gene regulation is achieved in 

eukaryotic systems. RNAi is known to have important biological functions; 

for instance, RNAi mediated by dsRNAs plays a major role in viral immunity 

in plants (41, 43). In addition, RNAi triggered by miRNAs, endogenously 

expressed non-coding RNAs, play an important role in regulation of gene 

expression during animal and plant development (41, 43). 

Although RNAi was recognized early on as a widespread phenomenon, 

present in both plants and animals, its application to mammalian systems 

revealed that long dsRNAs mediated RNAi triggers the activation of 

cellular immune response, eventually leading to cell death (44). Further 

biochemical investigations on the mechanistic underpinnings of RNAi 

machinery in different organisms revealed that short duplex siRNAs are 

capable of inducing gene knockdown in mammalian cells without 

activating the immune response (44). Chemically synthesized siRNAs that 

are transfected into cultured cells or shRNAs expressed by genomically 

integrated viral expression cassettes, are processed by an RNase III 

enzyme, Dicer, to yield duplex siRNA molecules (Figure 1). siRNAs, usually 

~21-23 nucleotides long are the effector molecules of RNAi machinery, 

which ultimately causes target gene suppression by degrading its mRNA 

(44). However, unlike the effector siRNAs derived from shRNAs or 

synthetic siRNAs; the effector siRNAs derived from miRNAs do not induce 

mRNA cleavage and rather repress protein translation by binding to the 3’ 

UTR of target mRNA (42).  
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Figure 1: RNAi mechanism of action. Target mRNA and virally tranduced shRNA 

expression cassettes integrated in the genome are transcribed from their respective 

promoters. The mRNA product from the shRNA expression cassettes form hairpin 

structures that are processed further into double-stranded short interfering RNAs 

(siRNAs). Only one of the strands of the duplex siRNA, known as the ‘guide’ strand or the 

‘antisense’ strand, is then loaded into a catalytic unit, called RNA-induced silencing 

complex (RISC). The guide strand serves as a template for guiding the RISC complex to 

target mRNAs based on sequence complementarity and induce its cleavage in a 

processive cycle, thereby inhibiting protein translation from the target mRNAs. Adapted 

from Mohr et al. (45).  

2.2 Clustered regularly interspaced short palindromic repeat 
(CRISPR)/Cas9 
CRISPR systems were originally thought to be similar to RNAi (46), and 

were first discovered in E. coli (47). Later it was recognized that they play 

an important role also in immunity to viruses (48). When bacteria are 

exposed to viral or foreign genetic material, short fragments of their DNA 

are incorporated in the host genome at CRISPR locus separated by a 

conserved repetitive element (48, 49). Transcripts that are generated 

from a CRISPR locus are processed by CRISPR-associated (Cas9) 

nucleases into short CRISPR-derived RNAs (crRNAs) that are 
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complementary to the previously exposed foreign DNA material. The 

crRNAs assemble with Cas proteins to form large complexes that 

functions as an adaptive immune system in the bacteria, sensing and 

cleaving any foreign genetic material in the intracellular environment. 

Later it was realized that the sequence specificity of the crRNA/Cas9 

ribonucleoprotein complexes and the ability of Cas protein to create 

double strand breaks in the DNA can be exploited to conduct genetic 

perturbations of human cells (49). Cas9 can be targeted to specific 

genomic loci using a ‘guide’ RNA, which recognizes the target DNA and is 

able to induce mutagenesis by DNA double-strand break repair pathway. 

Short single guide RNA (sgRNA) that is complementary to the target DNA 

is often being used to target the Cas9 nuclease to a desired location in the 

genome. A sgRNA is typically 20-bp in length and also contains a 3-bp 

proto-spacer adjacent motif (PAM) after the 20bp region. The cleavage of 

target DNA, typically a coding region of gene, is induced by the Cas9 

nuclease, and loss-of-functions or indels are introduced by the non-

homologous end-joining mediated double stranded break repair pathway, 

creating a knockout of the targeted gene (49). 

2.3 Genome-wide RNAi screens 
The ability to ectopically introduce RNAi agents into cells, and the ease of 

scalability of the technique to high-throughput settings, has made it 

possible to perform high-throughput loss-of-function screens, radically 

enhancing the utility of RNAi to explore a variety of research questions 

(50, 51). Post human genome project era, the availability of complete 

human genome sequence has allowed the designing of libraries of RNAi 

agents to conduct genome-wide RNAi screens in human cultured cells and 

cancer cell lines (24, 52). RNAi screens can be performed in human cells 

either using synthetic siRNAs that are introduced by transfection, or 

using shRNAs that are expressed from vectors integrated into the host-

cell genome. However, the issue of transient gene silencing due to short 

life of siRNAs inside the cell, the difficulty of efficient transfectional 

delivery especially to primary cells, and the expensive cost of chemically 

synthesizing siRNAs, has limited their use in genome-scale screens (52).  

shRNA-based screens circumvent these problems by using expression 

cassette vectors that can be stably integrated into the host-cell genome 

of various cell types using lentiviral or retroviral transduction (44). These 

expression cassettes have promoters that drive the synthesis of shRNA 
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molecules, forming a hairpin structure with 19–29 bp (stem connected by 

a 6-9 bases long loop, that are processed to generate effector siRNAs (44). 

This provides a stable and renewable source of siRNAs making it possible 

to study the phenotypic effects of prolonged periods of gene 

suppression. Moreover, shRNA vectors are amenable to pooled 

’barcode’ screens that are less labor intensive, cheap and easily scalable 

in comparison to plate-based array screens (52, 53). Several shRNA 

libraries are available commercially with varying coverages of the number 

of genes that can be screened (24, 52). For example, The RNAi Consortium 

(TRC) library covers ~80% of the human coding genes, with an average of 

six unique shRNA clones per gene. The clones consist of hairpin sequences 

that are designed based on sequence composition, specificity, and 

position scoring to increase the likelihood of target gene knockdown (24). 

A desired feature of shRNA library is to have high redundancy in number 

of clones per gene, which is important in order to reduce false positive 

results that are due to off-target effects (24, 52).  

Brummelkamp et al. (53) introduced the idea of using vector encoded 

shRNA template sequence as a molecular tag or barcodes to quantitatively 

estimate the abundance of each shRNA vector in the population of cells 

transduced with a library of shRNA expression vectors. The relative 

abundance of each barcode sequence can be quantified by PCR 

amplification coupled with microarray hybridization or next generation 

sequencing (54). Genome-wide shRNA screens (Figure 2) have been 

routinely applied to study gene dependency profile of cancer cell lines and 

identify potential drug targets for cancer treatment (21, 22, 55-57). 
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Figure 2: Genome-wide shRNA screen workflow. A pooled genome-wide shRNA screen 

involves a library construction of pooled plasmids from bacterial culture, followed by viral 

packaging of the shRNA clones, which is done by transfecting large number of packaging 

cells together with packaging plasmids. Virus titres produced after 48-72 hours post 

transfection is pooled and then cell lines of interest for loss-of-function screen are infected 

and selected to eliminate the uninfected ones. Typically, after this step, an aliquot of the 

cells is separated and genomic DNA is isolated and used for a quantification of the initial 

shRNA abundance; and then depending on the experimental design, the cell cultures are 

divided into two or more sets. For instance, in a drug response modifier screen, cells are 

divided into treated and untreated aliquots. Alternatively, in a cell viability screen, a 

sample of cells can be taken and stored for analysis at each passage, to generate a 

viability time-course. The abundance of each shRNA vector at the final time points is then 

measured and compared to the initial conditions to get a quantitative estimate of the 

effect of each shRNAs knockdown on the proliferative capacity of cells (54). 

2.4 Off-target effects in RNAi screens 
One of the pitfalls of RNAi screening technique has been its propensity to 

cause off-target effects; therefore limiting its promise and potential (38, 

45, 58). Transcriptional profiling after inhibition with multiple siRNAs 

targeting the same genes revealed that the siRNAs also produce strong 

downregulation of genes other than their primary targets, and moreover 

each individual siRNA produced a unique fingerprint of transcriptional 
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changes of multiple targets (59). Sequence analysis has revealed that 5’ 

end of the guide strand of the siRNAs may have partial complementarity 

to off-target transcripts, suggesting a sequence-dependent off-target 

effects (60). Biochemical studies also confirmed that 5’ end of the guide 

strand contributes maximally to the target binding and its subsequent 

cleavage (61). Sequence alignment studies revealed that the ‘seed’ region, 

which stretches from 2-8 nucleotide positions at the 5’ end of the 

antisense or guide strand of the siRNA, was enriched in the 3’ UTR region 

of the off-targeted transcripts, suggesting a microRNA-like gene silencing 

pattern (62, 63). Alterations in the seed-region of a siRNA or shRNA may 

also alter the profile of off-targeted transcripts, indicating the importance 

of its role in mediating the off-target effects (63). Likewise, Anderson et 

al. found that siRNAs that have higher number of seed matches to 3’ UTR 

in the transcriptome have a higher propensity towards off-target effects, 

based on the induced gene expression changes (64). 

Silencing of off-target genes mainly arises due to the similarity of the 

siRNA pathway with the endogenous microRNA (miRNA) pathway (58). 

The externally introduced siRNAs utilize and recruit the same components 

of the downstream RNAi machinery to repress the targets, which is also 

utilized for normal gene regulation by the miRNAs (58). Once the guide 

strand of siRNA is loaded into the RISC complex and bound to the target, 

the Argonaute protein of RISC cleaves the target mRNA. Argonaute 

requires perfect sequence complementarity with the target site to induce 

cleavage; hence siRNAs can strongly reduce gene expression. In contrast, 

in the miRNA pathway, complete sequence complementarity of miRNAs 

with target mRNA is not necessary, and the RISC does not induce target 

mRNA cleavage (65). Thus, miRNA induced gene-silencing leads to 

translational repression and is incomplete as compared to siRNA induced 

gene silencing. The partial sequence complementarity in the miRNA 

pathway is mediated by the seed region, extending from 2-8 nt of the 5’ 

end of the guide strand of the microRNA (65). Because of this partial 

sequence similarity requirement, microRNAs are known to have larger 

number of target sites that are generally located in the 3’ UTR regions of 

transcripts, and it is estimated that each miRNA may have potentially ~300 

target sites (66). In addition to target site abundance, other properties 

such as strength of seed pairing at the target site, its location and spacing 

in the 3’ UTR, local sequence and structural context, are other 

determinants of miRNA targeting efficiency (67). Given the similarity 
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between the miRNA pathway and siRNA pathway, these determinants are 

also likely to influence the off-target propensity of siRNAs. 

Off-target effects have also challenged the interpretability of high-

throughput RNAi screens (68), with several studies reporting the top hits 

being false positives. For instance, in a screen designed to identify 

regulators of HIF1-α transcription pathway, the top siRNAs targeting other 

genes were still shown to downregulate HIF-1α by an off-target effect 

mediated through the seed region (60). Similarly, in a screen designed to 

identify modulators of resistance to apoptotic inhibitor ABT-737, the top 

hits were shown to downregulate another key anti-apoptotic protein, 

MCL-1, through seed mediated off-target effects (69). Sigoillot et al. also 

observed nonspecific targeting of MAD2 by the active siRNAs in a screen 

for genes required in spindle assembly checkpoint formation (70). These 

observations highlighted caution in interpreting results from large-scale 

RNAi screens, and also incited alternate strategies to mitigate the false 

positive hits (38, 58). Using multiple siRNAs per gene, appropriate 

controls, internal validation with alternative techniques, and performing 

rescue experiments by expressing a functional version of the target gene, 

are some of the ways to counter off-target effects in RNAi screens. The 

false discovery rates in RNAi screens have been discussed extensively (38). 

Meta-analysis of three genome-scale siRNA screens studying host-factors 

necessary for HIV replication identified virtually no common hits, with <7% 

overlap between any two screens (71). Some studies have also shown that 

the top hits from a genome-wide shRNA screen for synthetic lethal 

partners of the oncogene KRAS was not found to be essential in KRAS 

dependent cancer cell lines, and also did not show any response towards 

its targeted inhibition (72-74). Although the low rate of validation of hits 

can be due to several factors, such as differences in library, experimental 

protocols or screened cell lines, and functional redundancy of genes, 

these observations have raised concerns about the usefulness of large-

scale RNAi screens and the reliability of the findings (39, 75, 76). 

2.5 Methods for inferring gene dependencies from RNAi 
screens 
Genome-scale RNAi screens are experimental techniques that generate 

massive amount of data, and simultaneously create new challenges for 

statistical analyses and interpretation to extract meaningful information 

(77). Statistical handling and analysis of RNAi screening data can 

contribute substantially to the identification of true hits that can influence 
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the consistency and reproducibility of these methods (77). The primary 

goal of a genome-wide RNAi screen is to provide a quantitative estimate 

of the phenotypic effect specific to each gene in a given cellular context. 

Computational methods that can take into the account the library design, 

controls and off-target effects, offer the potential to provide accurate 

estimates of the gene-specific phenotypes. Several computational 

methods for estimation of gene dependency scores have been developed, 

ranging from simple statistical techniques to more sophisticated models 

incorporating seed-mediated off-target effects of the shRNAs (described 

below). 

2.5.1 Redundant siRNA activity (RSA) 

The Redundant siRNA Activity (RSA) analysis method (78) makes use of the 

redundancies in the number of RNAi reagents tested per gene in genome-

scale screens to estimate the probability of a gene being a hit. Simply put, 

the RSA ranks the shRNAs according to their observed quantitative effect 

and calculates an enrichment p-value based on an iterative 

hypergeometric distribution method (79), similar to pathway analyses 

based on Fisher’s exact text. The p-value indicates the probability of the 

shRNAs for the gene being distributed towards the top ranks more likely 

than expected by chance. Because RSA uses probablistic models to infer 

gene-level phenotypes, it is a powerful approach and outperforms the 

cutoff based approach of hit calling based on activity of shRNA scores.  

2.5.2 RNAi Gene Set Enrichment (RIGER) 

RIGER is a non-parametric method (80), which shares similarities with the 

Gene Set Enrichment Analysis (GSEA) technique (81) used in differential 

expression pathway analysis. RIGER utilizes the power of multiple shRNAs 

per screen to estimate whether they are randomly distributed towards 

the top or the bottom of the hit list. RIGER calculates gene-level 

enrichment scores by ranking the entire list of shRNAs, and calculates a 

running-sum test statistic similar to using a Kolmogorov-Smirnov statistic. 

Normalized gene-level enrichment scores are then calculated, which takes 

into account the variability of the number of shRNAs per each gene. The 

RIGER method does not require any arbitrary threshold to estimate the 

enrichment scores. Directional RIGER (dRIGER) (82), an extension of 

RIGER, has also been used for transforming shRNA-level scores into gene-

level scores by computing directional normalized enrichment scores 

(dNES).  
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2.5.3 Gene Activity Rank Profile (GARP) 

GARP score (83) takes into account the dropout behaviour of the shRNAs 

across several time points. First, a summarized shRNA activity ranking 

profile (shRNA) score is calculated by averaging the relative change in 

shRNA abundances, which is normalized by the number of population 

doublings in the assay. Then, from the multiple sets of shRNAs targeting 

the same gene, the average of two shRNAs with lowest shARP scores is 

considered as the GARP score. Statistical p-values are calculated from 

permutation testing across 1000 random scores, as a measure of the 

statistical ‘significance’ of an observed GARP score. 

2.5.4 Analytic Technique for Assessment of RNAi by Similarity (ATARiS) 

ATARiS (84) evaluates the quantitative behaviour of shRNAs targeting the 

same gene across various samples to identify the shRNAs that are likely to 

produce on-target effects. For identifying the on-target shRNAs, ATARiS 

creates a consensus profile from the activity profiles of all the shRNAs 

against a gene in several samples by using information divergence and 

alternative minimization techniques, which separates the shRNA-specific 

effects from the consensus effect. Then, the algorithm performs iterative 

correlation analysis of each of the shRNAs with the consensus profile, and 

discards the ones that are statistically insignificant and recomputes the 

consensus profile. The final consensus profile based on the on-target 

shRNAs is used as the gene-level score. Further, the algorithm also 

calculates a consistency score for each shRNA reagent, indicating the 

likelihood of its on-target effect. Because ATARiS considers the 

consistency of shRNA effects across several samples, the number of 

samples used in the analysis also influence the number of genes for which 

the final scores are derived. 

2.5.5 Gene-specific phenotype estimator (gespeR) 

gespeR (85) performs a statistical modelling for the estimation of gene 

level scores by taking into account the on-target and off-target activity of 

the shRNAs. gespeR uses elastic net regularization to fit a linear regression 

model on the observed shRNA activities against a shRNA-target gene 

relationship matrix. The shRNA-target gene relationship matrix is obtained 

by using the TargetScan algorithm (67, 86), which quantitatively predicts 

the probability of knockdown of off-target genes for each shRNA based on 

its seed sequence. TargetScan also considers other properties of shRNA 

sequences, such as seed pairing stability, target abundance and 3’ UTR 
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location of target site and local AU context to predict the knockdown 

efficiency of off-target genes. The final regression coefficients derived 

after cross-validation are considered as the gene-level scores. 

2.5.6 DEMETER 

DEMETER (87) assumes that each shRNAs phenotypic effect is a linear 

combination of target gene knockdown effects and seed-specific effects.  

DEMETER takes into account the numbers of shRNAs per each gene in the 

library, and also the numbers of shRNAs with the same seed sequence. 

For each shRNA, it considers two seed sequences positions, 1-7 and 2-8 of 

the guide strand. DEMETER performs deconvolution of the shRNA level 

data into a linear combination of gene and seed-level effects using 

stochastic gradient descent. It also provides a performance metric for 

each shRNA, a measure of the variance explained by gene effect and seed 

effect. It was recently shown that the removal of seed effects from shRNA 

level data led to a substantial improvement in the correlation of shRNAs 

targeting the same gene (36). 

2.6 Functional genomic characteristics of cancer cell lines 
 Large-scale sequencing efforts, such as TCGA and ICGC, have aided 

massively in our understanding of the major genetic alterations in cancer 

genomes, in addition to providing an overview of the genomic landscapes. 

The cancer sequencing studies have catalogued an impressive list of new 

genes, previously unknown to be involved in cancer with some genes 

more frequently mutated than others. While these studies are ongoing 

and identifying more genes associated with cancer, alternative strategies 

are also required to make a sense of the plethora of genetic alterations.  

Loss-of-function screens based on RNAi and CRISPR/Cas9 are suitable 

methods for understanding the functional implications of the cancer-

associated genes, which can lead to a better understanding of the 

dependencies of cancer cells on certain genes or biological processes. 

Several efforts are being carried out to functionally characterize large 

collections of cancer cell lines with genome-wide loss-of-function screens, 

along with characterizing their genomic features including mutations, 

copy number variations, transcriptome, proteome and the epigenomic 

profiles. Integrated analysis of these datasets can provide valuable 

insights about the biology of cancer, as well as identify biomarkers for 

patient stratification for the right treatment strategy and novel targets for 

targeted anticancer treatment. 
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2.6.1 Cancer cell lines as models for anticancer therapies 

Preclinical models, such as human cancer-derived cell lines, have 

contributed immeasurably to the understanding of the biology of cancer 

(88). The advantages of in vitro cancer cell lines are multifold: they can be 

easily cultured, are renewable, are amenable to high-throughput assays, 

can be easily adapted to sophisticated experimental designs like studying 

drug resistance modulators, or response to combinations of drugs. 

Moreover, linking the molecular and genetic features of cancer cell lines 

with their phenotypic and drug sensitivity profiles has the potential to 

identify promising biomarkers for targeted therapy (89). The National 

Cancer Institute (NCI) resource (NCI-60), that characterized a panel of 60 

cancer cell line models representing 9 different cancer types was the first 

cell line resource initially setup to screen the activity of a large library of 

compounds (89-91). Initial studies revealed that drugs with similar drug 

response profiles were similar in their mechanism of action, suggesting 

that cellular state influences the phenotypic responses (92). More 

importantly, studies of drug response profiles in NCI-60 panel led to the 

identification of the proteasomal inhibitor, bortezomib, for treatment of 

patients with multiple myeloma, hence highlighting the usefulness of the 

cell line based functional screens (93, 94). Later, it was also found that 

gene expression features are correlated with drug responses, suggesting 

that molecular features of cell lines can be used to predict their functional 

phenotypes (95).  

Genomic characterizations of NCI-60 and other cancer cell line panels 

have revealed that they retain the recurrent genetic and epigenetic 

alterations present in tumors (92). Moreover, cancer cell line models also 

mimic their sensitivity to targeted drugs, for example, lung cancer cell 

lines with oncogenic driver alterations, such as EGFR, BRAF mutations, ALK 

translocations and HER2 amplifications, retain their sensitivity to the 

respective kinase inhibitors, suggesting that they also able to recapitulate 

the therapeutic response profile of tumors (88, 96, 97). However, 

contradicting observations have been made for the comparisons at the 

transcriptome level (98). Lukk et al. performed a combined analysis of 

gene expression data of cancer cell lines and patient tumors representing 

similar tissue types, and observed that the cancer cell lines clustered 

together with each other rather than with the tumor samples of the 

respective tissue type (99). In contrast, Ross et al. observed that breast 

cancer cell lines were able to faithfully recapitulate the tumor subtypes 

based on the gene expression data (100). Additionally, Barretina et al. 
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demonstrated that huge compendiums of cancer cell lines mirrored the 

architecture of human tumors suggesting that profiling a larger panel of 

cancer cell lines would be required to recapitulate the heterogeneity 

present in patient tumors (27). Based on the genomic studies on patient 

tumors by TCGA and other consortia, it was realized that more cell lines 

need to be profiled to capture the genetic variability (36, 89). Hence, 

several projects have been undertaken to molecularly and functionally 

characterize larger panels of cancer cell line models to recapitulate the 

heterogeneity associated with patient tumors (27-29, 33, 35-37, 101-103). 

The use of cancer cell lines for drug discovery efforts have also been 

questioned (104). As they are grown in vitro on plastic surfaces, they do 

not recapitulate the tumor microenvironment and the drug 

pharmacokinetics. Moreover, it has been observed that the adaptation of 

cells to the plastic surface introduces new mutations and genetic 

aberrations that might change their genetic characteristics (105-107).  

2.6.2 Genomic profiling of cancer cell lines 

To model the genetic diversity of tumors, several large scale, pan-cancer 

efforts such as the Cancer Cell Line Encyclopedia (CCLE) (27), Cancer 

Genome Project (CGP), and its resource called Genomics of Drug 

sensitivity in cancer (GDSC) (28, 29, 108), and Genentech Resource (109) 

have recently been undertaken to molecularly characterize panels of cell 

lines from various tumor types. Tissue-type specific panels such as breast 

(110), ovarian (90), non-small lung cancer, head and neck cancer (111) and 

colorectal cancer (112) cell lines have also been profiled separately. 

Comparison of copy number variations (CNV) and gene expression profiles 

of breast cancer cell lines with tumors established that the functionally 

important alterations were preserved, with 72% agreement of the gene 

expression changes (110). Interestingly, a greater number of CNVs were 

observed in the breast cell lines underscoring the caution in clinical 

interpretability of observations from cell lines (110).  

Cancer cell lines from several solid tumor types, including ovarian, head 

and neck and colorectal cancer, closely resemble the mutational profiles 

of their respective tumors, but have higher number of point mutations 

(111-113). Whereas the CNV profiles of head and neck cancer cell lines 

were different from the tumor samples (111), good agreement of the CNV 

profiles of colorectal (112), melanoma (114), non-small cell lung cancer 

(115) was observed. A large panel of cell lines characterized by CCLE, 

approximately 1,000 cell lines representing 36 cancer types, also showed 
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strong correlation of all three genomic profiles: mutation, CNVs and gene 

expression with their respective tumor types in most cases (27). In the 

same vein, the GDSC project, which profiled ~1000 cell lines representing 

29 tumor types, also revealed good agreement in the mutational 

landscapes (28). The GDSC study observed high levels of agreement 

between functional events that were defined as clinically relevant, with 

1063 present in cancer cell lines out of 1273 events present in tumors (28). 

In addition, the authors also reported high agreement for pathway level 

alterations and global signatures of events associated with driver 

mutations.  

Transcriptomic analysis of 675 cancer cell lines comprising of 18 tissue 

types from the Genentech resource revealed that the lymphoid cell lines 

clustered separately from the set of cell lines or other tissue types as 

observed in previous studies (99, 109). Moreover, the latter group further 

sub-clustered into epithelial and mesenchymal subtypes correlating with 

the classification based on genes associated with epithelial-to-

mesenchymal transition (EMT)-signature (116). Although EMT is a 

transdifferentiation program activated in cells during embryonic 

development (117, 118), its induction has also been correlated with 

invasive and metastatic potential of cancer cells during tumor progression 

(116, 119-123), and more importantly with the emergence of drug 

resistance (124-126). Importantly, the acquisition of mesenchymal traits 

through EMT is associated with the expression of stem cell markers, i.e. a 

cancer stem cell (CSC)-like phenotype (119, 127). CSCs are known to self-

renew and contribute to tumor heterogeneity and are resistant to chemo- 

and radiation therapy (126, 128-130). Several studies have identified 

subpopulations of CSC-like cells in cancer cell lines from breast (131-134), 

glioma (135) and head and neck cancer (136), demonstrating that cancer 

cell lines can also be used to study the survival mechanisms of CSCs.  

2.6.3 Functional profiling of cancer cell lines 

Lessons from genomic studies of cancer cell lines have fortified their use 

as faithful models for expediting the discovery of effective targets for 

precision anticancer treatment. However, these studies do not provide 

answers on whether the identified genomic alterations are important for 

the tumor biology, and whether they yield a therapeutic opportunity as 

druggable targets. Hence, several large-scale efforts based on loss-of-

function and drug sensitivity screens have also been undertaken to 

functionally characterize the cancer cell line panels. Project Achilles (32, 



Review of the literature 

30 

36, 102), by the Broad Institute, performed systematic genome-wide RNAi 

screen of 501 cancer cell lines, representing 30 different cancer types and 

identified ~750 genes that are differential essential in cancer cell lines 

(36). The authors observed that only 76 genes from this set was present 

in almost 90% of the cell lines, suggesting that the same essential genes 

are relevant across many tumors. Moreover, a substantial proportion of 

the essential genes were also druggable (36).  

An earlier report from Project Achilles also revealed essential genes that 

are tissue-specific and aberrantly activated due to amplification or 

overexpression in multiple cancer types (102). The Project DRIVE also 

interrogated the functional effect on cell viability of ~8000 genes by 

genome-wide shRNA library in nearly 400 cancer cell lines, representing 

26 cancer types and identified the dependence of cancer cell lines on 

lineage-specific transcription factors (33). Marcotte et al. observed that 

the gene essentiality profiles of breast cancer cell lines partially 

corresponded to the breast tumor subtypes, in addition to observing 

driver mutation-specific and cancer type-specific dependencies (83). The 

COLT-cancer database comprises of functional profiles from genome-wide 

shRNA screening of ~15000 genes in 72 cancer cell lines from pancreatic, 

ovarian and breast cancer types (37, 83). In another study on a larger 

panel of breast cancer cell lines, Marcotte et al. identified gene 

dependencies in EGFR and MAPK pathway genes that were correlated 

with the response of the cell lines to targeted inhibitors of EGFR/MEK/ERK 

(34). Recently, genome-wide CRISPR/Cas9 based knockout screens have 

also been performed in large panel of cancer cell lines (137-141), revealing 

potential targets for acute myeloid leukemia (139), and vulnerabilities 

important in the context of KRAS mutated cancer cells (137).  

In addition to the functional profiles based on loss-of-function screens, 

several studies have performed drug sensitivity profiling of cell lines 

against a library of small molecules. The CCLE profiled the activity of 24 

targeted and cytotoxic agents against cancer cell lines at several doses, 

and by performing predictive modelling with elastic-net regression, they 

identified several genomic predictors of the drug responses (27). Similarly, 

the Cancer Therapeutic Response Portal (CTRP) (30, 31) and GDSC (28, 29) 

projects have also profiled the activity of a library of drugs, 480 and 265 

respectively, in a larger panel of cell lines. Drug sensitivity screens have 

also been used to identify CSC-specific inhibitors in breast epithelial cell 

lines induced to undergo EMT (142). Although drug sensitivity screening is 
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not a functional genomics tool in its true sense, it provides 

complementary information on the phenotypic characteristics of the cell 

lines, and has led to identification of novel drugs for cancer treatment (26, 

143, 144). However, drug screens also suffer from the off-target effects 

and promiscuity of inhibitors to modulate related proteins, making it 

difficult to attribute the observed drug responses to their primary targets, 

also called target deconvolution problem of phenotype-based drug 

discovery approach.  

2.6.4 Consistency of functional and genomic datasets 

With the availability of genomic and functional profiles of cancer cell lines 

from different laboratories, a natural question that arises is how 

consistent these profiles are. Cancer cell lines are known to acquire 

genetic aberrations during the culturing process, and because cancer cell 

lines are widely used across research labs, it is important to understand 

whether the datasets generated from the panels of cell lines by various 

studies draw a consistent portrait. In addition, the consistency of the 

datasets can also be influenced by laboratory protocols and workflow, 

experimental factors such as cell confluency, genomic drift, clonal 

variations, growth medium, the robustness of the platform being used for 

high-throughput measurement and computational methods used in data 

post-processing (145).  

Genomic platforms are known to be quite robust and extensive work has 

gone into standardizing workflows and data processing pipelines. 

Encouragingly, comparison of the transcriptomes of cell lines profiled 

commonly in the Genentech Resource with CCLE and CGP have revealed 

nearly 80% agreement between the datasets (109). Comparison of gene 

expression and mutational profiles between CCLE and CGP also indicated 

high correlation levels (109). In contrast, the consistency of drug 

sensitivity screens has been a matter of recent debate with several groups 

reporting dissimilar observations (40, 146-148). Originally, Haibe-Kains et 

al. observed only ~30% agreement between drug responses measured in 

CCLE and CGP (40). In subsequent analysis, Mpindi et al. observed that 

correlation of the profiles could be increased up to 70% by using 

standardized metrics of quantifying drug sensitivity, and by standardizing 

assay methods and protocols (148). It was also observed that higher 

concordance can be achieved by using more biologically motivated 

statistical analysis methods, and accounting for experimental factors like 

cell seed density and cell growth media (149). Functional profiles based 
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on genome-wide RNAi screens are also known to be noisy and 

inconsistent, mainly due the off-target effects mediated by partial 

complementarity (38, 58). However, systematic comparisons of the 

consistency of RNAi or CRISPR/Cas9 datasets have not been performed. 

2.7 Integrating genomic and functional profiles 
The goal of precision medicine and targeted cancer therapy is to identify 

biomarkers that will help tailor the best treatment option for each patient. 

Treatment of breast cancer patients overexpressing HER2 receptor with 

HER2 antibodies, and leukemia patients harboring BCR-ABL fusions with 

imatinib are some successful examples, based on the idea of oncogenic 

addiction, demonstrating how single genomic markers can guide effective 

cancer treatment (8, 18). However, the genetic alterations in many cancer 

driver genes do not always correspond to it being essential for survival. 

Extensive genetic heterogeneity resulting from multiple alterations also 

makes it difficult to pinpoint the specific dependencies in cancer cells. 

Integrative analysis of molecular features of cancer cell lines and their 

functional profiles can be used to identify the genetic dependencies 

associated with a certain genetic background.  

2.7.1 Beyond oncogene addictions: synthetic lethality  

Synthetic lethality is defined as the significant reduction of cellular 

viability due to simultaneous loss-of-function of two partner genes, such 

that when the genes are inhibited individually they do not compromise 

the cell viability (150-153). Cellular signalling is a robust process with 

several feedback loops and functional redundancies which ensure that 

cells are capable of surviving when a certain genes’ function is lost or 

inhibited (151). Thus, simultaneously inhibiting these functionally 

redundant genes to compromise the viability of cancer cells is a promising 

strategy for anticancer treatment (152, 153). The idea is to exploit on the 

vulnerability of cancer cells; having a frequently occurring genomic 

alteration makes the cancer cells more dependent on the synthetic lethal 

partner for survival. It is expected that only cancer cells harbouring the 

genetic alteration will be sensitive towards the inhibition of the activity of 

the synthetic lethal partner gene, hence having a broader therapeutic 

window and less side effects in normal cells (154). Moreover, targeting 

synthetic lethal partner of tumor suppressors, which already have loss-of-

function mutations, is especially beneficial as they are not easily amenable 

to drug inhibition (154). The synthetic lethality approach is different from 
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the concept of ‘oncogene addiction’ which is based on inhibiting the 

activity of single altered driver oncogene, such as HER2, BCR-ABL, EGFR 

and BRAF (154).  

Synthetic lethality provides also a framework for associating the genomic 

features of cancer cells with their phenotypic characteristics. Functional 

profiles from genome-wide loss-of-function screens in cancer cell lines are 

a rich source of information for identifying novel synthetic lethal 

interactions and have been used routinely in the past (22, 155). Frequently 

occurring genetic alterations of cancer driver genes are associated with 

changes in the cellular signalling and processes, which renders the cancer 

cells being vulnerable to their inhibition. For instance, mutations in the 

BRCA1 and BRCA2  genes are associated with sensitivity of the cancer cells 

towards inhibition of DNA repair machinery (156-158). BRCA genes are 

involved in repair of DNA breaks by homologous recombination, and thus 

the inhibition of PARP genes that are involved in base excision repair 

results in a strong synthetic lethal interaction with BRCA. Several 

synthetic lethal screens in cancer cell lines have identified putative 

synthetic lethal partners of undruggable cancer driver genes, such as 

KRAS, MYC and TP53 (159). Genome-wide RNAi screens in panels of 

mutant KRAS and wild-type cell lines or isogenic cell line pairs identified 

several synthetic lethal partners such as PLK1, SKT33 (160).  

However, it has been difficult to translate these findings to a clinical 

setting due to lack of supporting evidence in other cell lines, in vivo 

models or by drug targeting. So far, only one anticancer treatment 

based on the synthetic lethal strategy has progressed to the clinical 

practices, namely, the approval of PARP inhibitors for treatment of 

breast cancer patients with germline BRCA mutations (159). One reason 

for such disappointing clinical translation rate is that robust synthetic 

lethal interactions are difficult to identify, as they are known to be 

highly context-dependent and influenced by the genetic background or 

microenvironment of the tumors (161). Moreover, genome-wide RNAi 

screens are known to be noisy and contain wide off-target effects, which 

further make it harder to detect the true synthetic lethal hits from the 

background noise. It has been argued that integrated analyses to 

identify robust, context-specific synthetic lethal interactions  a panel of 

cell lines from a variety of lineage backgrounds and various genomic and 

functional datasets may lead to the identification of clinically actionable 

synthetic lethal partners of cancer driver genes (162). 
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Figure 3: Concept of synthetic lethality for cancer treatment. While normal cells have 

functional protein products of both gene A and gene B, cancer cells may have loss-of-

function mutations in either gene A or gene B individually and are are still viable. 

However, loss-of-function of both genes in the same cell either by mutation or knockdown 

or pharmacological inhibition results in synthetic lethality. Modified from O’Nell et al. 

(161). 

 

2.7.2 Machine learning models for predicting functional profiles in cancer 
cells  

In recent years, the application of machine learning methods in the field 

of genetics and genomics has tremendously increased and also proved to 

be very useful (163). For instance, machine learning can be used to 

identify the location of  transcription start sites, promoters, splice sites or 

enhancer sites in the genome (163). Artificial intelligence is another field 

of computer science that deals with the science of making machines that 

are able to perform intelligent and rational tasks, akin to thinking like 

humans; machine learning on the other hand is a way of achieving artificial 

intelligence (164). Machine learning involves the building and application 

of algorithms with the ability to ‘learn’ i.e. become better at a given task 

with experience. It is therefore a data-oriented field geared towards 

problems for which data is available, and on which we can learn and get 

better at prediction. Machine learning methods can be principally 

categorized into: supervised learning or unsupervised learning. 
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Supervised learning requires the use of  labels or known examples to 

train  the algorithm, which is then used to predict the respective labels 

of unlabelled cases. In contrast, unsupervised learning is concerned 

with finding patterns or clusters in unlabelled data sets, i.e. without any 

prior knowldege (163).   

The availability of large-scale functional screening profiles of cancer cell 

lines that are also molecularly characterized allows the possibility to build 

computational models that can capable of predicting the phenotypic 

responses and also identify the relevant genomic biomarkers. Building 

predictive computational models is a challenging task because of reasons 

such as: molecular heterogeneity of cancer types, data complexity in 

terms of size, noise, and standardization and normalization of datasets 

from multiple sources. However, machine learning algorithms are well-

suited for building predictive models (165). Several machine learning 

models, such as support vector machines, elastic net regression, neural 

networks and random forest, are commonly used to solve such problems 

(163).  

The core idea is straightforward: given the genomic features of cell lines 

and their functional profiles as input, the task is to learn a model that can 

predict the gene dependencies or drug responses in unseen cell lines or 

tumor samples. The standard strategy for developing such supervised 

machine learning models is as follows: first obtain the relevant normalized 

datasets containing the molecular features that is used as features, and 

the functional profiles which is considered as the predictor variable. In the 

second step, the predictive model is trained and selected using the input 

data using several statistical and machine learning frameworks. The model 

choice is dependent on the characteristics of the input and output 

datasets. While nonlinear models can capture complex interections 

between the input features in the dataset, linear models are easier to 

interpet, scalable and therefore more preferred (166). Thirdly, the trained 

model is tested on independent datasets to verify the predictive accuracy 

of the model (165).  

Supervised machine learning tasks can be categorized into regression and 

classification problems. In regression models the data to be predicted is a 

continuous variable, whereas the later deals with variables that are 

categorical in nature, such as, high response vs. low response. In 

regression models, the functional profile which is to be predicted can be 

modelled as a linear combination of the predictor variables.  
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Where y is a vector of the observed functional profile to be predicted, μ is 

the intercept, C is a matrix of the molecular features, such an gene 

expression and copy number varation, and b is the regression coefficient 

and e is the vector of residual errors.  

Regularized regression models are often used to control model 

complexity, to avoid overfitting of the training data and enable the 

generalizability to unseen data. Regularization approaches introduce 

penalty terms such as L1 and L2 norms for regression coefficients. Ridge 

regression solves the problem using L2 penalized least squares and is 

suitable in cases when there are many predictors with small effects. It is 

formulated as  
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is the L2 norm penalty, and ;	 ≥ 0 is the tuning parameter, also known as 

the regularization parameter. The regularization parameter is used to 

shrink the variable coefficents towards zero to prevent any particular 

variable from having too large effect on the model. In contrast, lasso uses 

the L1 norm penalty to build sparse models with few non-zero 

coefficients, and hence suitable for feature selection.  
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is the L1 norm penalty used for introducing sparsity in the solution, with 

;	 ≥ 0. Elastic net regression uses a mixture of the L1 and L2 penalties and 

can be thought of as an extension of lasso, but with the property to select 

variables that are still highly correlated.  
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Systematic analyses of various modelling approaches by Jang et. al. 

previously showed that the predictive accuracy is determined largely by 

the type of molecular data used as input and the choice of learning 

algorithm (167). They found that elastic net and ridge regression models 

applied to continuous response variables, such as drug response, were the 

best predictors. Moreover, modelling choices are also dependent on their 

ability to utlize multiple datatypes. For example, gene expression data is a 

continuous type of input data, whereas copy number variation data and 

mutation data can be categorical. A commonly used model building 

strategy is to combine all the input molecular features and train a single 

model. Other strategies of multiview learning based on multiple kernels 

have also been applied (168, 169).  

Machine learning algorithms based on linear models have been generally 

well formulated theoretically. However, real world problems involve 

complex relationships between variables that are often not captured by 

the linear modelling assumptions. Non-linear modelling approaches can 

be better in detecting these dependencies. To model the non-linear 

relationships, kernel methods  have been used regularly over the past few 

years. Kernel methods map the data into higher dimensional space using 

a kernel function such that the data becomes well structured and 

separated. Essentially, a kernel is a dot product between two feature 

vectors which is also used as a similarity measure. The advantage with 

using kernel functions is that when the input data is mapped into a higher-

dimensinal space, a linear dependency that exists in this space will behave 

non-linearly in the original input space. (170) Non-linear models have also 

been used previously to predict drug sensivities in cancer cell lines (169). 

The top performing model in the NCI-DREAM Challenge, which compared 

the performance of machine learning models for predicting drug 

responses in breast cancer cell lines among several teams, was based on 

kernelized regression. The winning algorithm, known as Bayesian 

multitask multiple kernel learning (MKL) method leveraged four 
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machine-learning principles: kernelized regression, multiview learning, 

multitask learning, and Bayesian inference. The kernelized regression 

approach computes kernels, similar to support vector machines, 

between the cell lines which reduces the number of model parameters 

and also captures the non-linear relationships between the molecular 

features.  

Several studies have developed predictive machine learning models of 

drug response in the CCLE and GDSC dataset, using molecular and 

genomic information available from gene expression, CNV and mutation 

data (27-29, 171-175). The NCI-DREAM Challenge found that the best 

performing machine learning model integrated information from various 

datatypes, such as genomic, proteomic and epigenomic profiles (169). The 

study also observed that gene expression data was the most predictive 

compared to all other data types (169). Likewise, Kim et al. developed a 

computational method based on mutual information metric to identify 

combinations of mutually exclusive genomic features that are associated 

with the gene dependency profiles as well as drug response profiles (176). 

These in silico prediction tools have been used to predict drug responses 

in cancer cells, and can potentially help the prioritization of promising 

drugs and targets for further research and clinical validation leading to 

significant reduction in experimental costs. 

However, a key challenge in building predictive machine learning models 

is the high dimensionality of genomic datasets and the low sample sizes, 

also called as the ‘small n, large p’ problem (177). This often leads to low 

power and makes robust inference problematic, and consequently the 

clinical translatability of these models is often limited. Also, the predictive 

models are built on a simplistic paradigm: learning a regression model 

between the predictors and outputs. With the availability of multiple data 

sources, it is advantageous to model the shared relationships between the 

variables to increase the predictive performance, using so-called multi-

task learning approaches. Another shortcoming of the existing modelling 

approaches is that they are heavily dependent on ‘statistical’ treatment of 

the data. Thus, there is a need to integrate the several layers of biological 

information in a systems modelling framework that takes into account the 

dynamic cross-talk and network properties of genes (178). 
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3 Aims of the study 
The primary aim of this thesis is to develop and apply novel computational 

methods to integrate the functional and genomic characteristics of cancer 

cell lines. The goal is to identify promising drug candidates and predictive 

biomarkers for targeted anticancer treatment strategies. The specific aims 

can be summarized as follows: 

1. Develop and assess computational approaches to increase 

reproducibility of gene dependencies identified in cancer cell lines 

based on genome-wide RNAi screens.  

2. Predict novel synthetic lethal interactions in cancer cell lines based on 

normalized RNAi screening datasets, sub-sequently confirmed with 

CRISPR/Cas9 assays. 

3. Develop computational approaches for predicting gene dependencies 

in cancer cell lines based on their integrated genomic and molecular 

profiles. 

4. Predict drug response of cancer cell lines to cancer stem cell inhibitors 

using novel transcriptional signatures. 
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4 Materials and Methods 
In this section, I will briefly describe the data sets used in this thesis, along 

with experimental procedures and cell lines, and the computational 

models and statistical analysis that were applied in the studies. A detailed 

description of the materials and methods can be found in the original 

publications (I-III). 

4.1 Datasets  
 

Publication Data set Data type Material 
Number of 

samples 

I 
Project Achilles 

2.0 (102) 
shRNA screen Cell lines 102 

I, II 
Project Achilles 

2.4 (32) 
shRNA screen Cell lines 215 

I 
COLT-Cancer 

(83)  
shRNA screen Cell lines 72 

I BFG (34) shRNA screen Cell lines 77 

I, II CCLE (27) Mutation Cell lines 1074 

II, III CCLE Expression Cell lines 1074 

II CCLE CNV Cell lines 1074 

III TCGA (179) Expression 
Patient 

tumors 
8226 

III ESTOOLs (180) Expression 

Embryonic 

stem cells 

and 

fibroblasts 

653 

 

Table 1: Data sets and datatypes used in each publication included in the thesis.  

4.2 Cell lines for profiling experiments 
MCF10A cell line harboring PIK3CA mutations and its corresponding 

wildtype isogenic controls were purchased from Horizon Discovery Group 

(city, country) for publication I. These cell lines along with 293 packaging 

cell line for lentiviral packaging was used for CRISPR/Cas9 knockout 



 

42 

screening. 15 cancer cell lines used for drug sensitivity testing in 

publication III were profiled by GenScript profiling services (Finland). 

4.3 CRISPR/Cas9 knockout assay 
For publication I, single guide RNAs (sgRNAs) against target genes were 

obtained from SigmaAldrich (Helsinki, Finland) and lentiviral particles 

were generated by transfection using lentiviral plasmids and packaging 

plasmids. Cas9 expression cell lines were generated and transfected with 

lentivirus particles packaged with the sgRNAs. 

4.4 Statistical analysis 
Rank-based Spearman correlation was used for assessing the concordance 

of essentiality phenotypes (publication I), for evaluating the agreement 

between predicted and observed gene essentiality scores (publication II), 
and for identifying co-expressed genes (publication III). Paired t-test and 

Wilcoxon rank sum tests were used for comparing normal and non-normal 

distributions, respectively, in publication I. Permutation-based statistical 

testing was carried out in publications I and II to assess the statistical 

significance of different types of observed quantities. The advantage of 

permutation tests is that it does not require any distributional 

assumptions, and hence useful when the actual distribution is unknown, 

or when the sample sizes are not large enough for large-sample 

assumption. 

4.5 Survival analysis 
TCGA datasets obtained from cancer patients also contain clinical 

information related to patient survival. Survival analysis related to given a 

biomarker or gene signature is a useful method for assessing its clinical 

relevance, in which a comparison of survival time is done between two 

patient groups, defined based on the biomarker or signature. Kaplan-

Meier survival analysis was performed in publications II and III to assess 

the effect of the identified gene expression signatures on patient survival 

in TCGA datasets. 

4.6 Clustering analysis 
Unsupervised hierarchical clustering was used in publication III for 

assessing the gene expression signature pattern in ESCs and fibroblasts, 
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and cancer cell lines. Clustering methods are useful in resolving patterns 

and identifying sub-groups in a complex dataset, and routinely used in 

analysing gene expression profling data. There are several agglomerative 

clustering approaches, in which the clustering process starts from the 

bottom. Specifically, each gene or sample is first considered as a singleton 

cluster, and sub-sequentially these clusters are merged together to form 

larger clusters, and eventually the entire dataset is part of a big cluster. 

The sequence of merging each node into larger clusters can be 

represented as a dendrogram. 

4.7 Machine-learning models 
In publication II, the Multi-Target Greedy Regularized Least-Squares (MT-

GRLS) algorithm based on linear modelling was used. MT-GRLS constructs 

a multi-target ridge regression models given a budget restriction on the 

number of common features to be selected for performing the multiple 

tasks i.e. gene essentiality predictions (181, 182). For selecting the 

genomic features, MT-GRLS performs step-wise greedy forward selection, 

starting with an empty feature set, and then in each iteration adds the 

feature whose addition results in the maximal accuracy gain, e.g, 

minimum sum of squared error in the leave-one-out cross-validation 

(LOO-CV). MT-GRLS optimizes the predictive performance subject to an 

explicit joint budget constraint on the number of features. The advantage 

of MT-GRLS algorithm is that it performs the feature selection 

computationally much more efficiently compared with a straightforward 

wrapper type of implementation. In a dataset with d features and m 

training samples, the time complexity of a standard wrapper approach 

using LOO-CV for forward selection of k common features for 

simultaneous prediction of t tasks with RLS would be 

R(S,O{UVS:-M, U:SV-M}). In contrast, the time complexity of MT-GRLS 

is only R(US-M).  

4.8 Broad-DREAM Gene Essentiality Prediction Challenge 
The DREAM Challenges are crowdsourcing challenges examining 

challenging questions in biology and medicine (183). The DREAM 

challenge organizers pre-test all data and predictions, and develop custom 

scoring methodologies to ensure high-quality data and rigorous 

performance evaluation. Such crowdsourcing competitions produce 

standardized data sets and benchmarked methods for future comparison, 



 

44 

analysis, and model development (184). Crowdsourcing competitons can 

be a useful approach to doing scientific research. It can reveal a variety of 

approaches towards solving the same task. It can also reveal biases in 

scientific conclusions that are based on subjective analytical approaches. 

Since each pariticipating team contributes to the competition with its own 

findings, a range of results are revealed which can be useful in guiding the 

research towards a fruitful direction (185). 

The goal of the Broad-DREAM Gene Essentiality Prediction Challenge was 

to use a crowd-based competition to develop predictive computational 

models that can infer gene dependencies of cancer cells using their 

molecular and genomic features. Participants were provided with gene 

essentiality datasets generated from genome-scale shRNA screen in a 

panel of cancer cell lines, to be used as response variables. Gene 

expression data, copy number data, and mutation data were provided to 

the participants to be used as predictor variables. A hold out set was used 

to score the prediction performance of each team. There were three 

major tasks defined: 

i. Sub-challenge 1: Build a model that best predicts the gene 

essentiality values of thousands of genes, using the molecular and 

genomic characteristics/features of the cancer cell lines. 

ii. Sub-challenge 2: Identify the most predictive features for each 

gene essentiality among a prioritized list of genes. For each 

prioritized gene, the aim was to select a small set of at most 10 

predictive features (gene expression, copy number, and mutation), 

and then predict gene essentiality using only these features. 

iii. Sub-challenge 3: Identify the most predictive features common for 

all gene essentiality values of a prioritized list of genes. For the set 

of all prioritized genes, the aim was to identify a single list of at 

most 100 shared predictive features, and then predict essentiality 

using only these features for all the prioritized genes. 
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5 Results 
In the following sections, I present the results that highlight my 

contributions to the development of computational approaches and their 

application to advancement of cancer biology in general, and precision 

oncology in particular.  

5.1 Consistency of genome-wide shRNA screens  
To assess the consistency of genome-wide RNAi screens, I made use of the 

publicly available datasets based on genome-wide shRNA screens in large 

panels of cancer cell lines from different research laboratories. Project 

Achilles is an initiative by the Broad institute, wherein 102 cell lines from 

various cancer types were screened in the first phase, Achilles 2.0 (186), 

and later extended to 216 cell lines in Achilles 2.4 (32). COLT-Cancer (187) 

and Breast Functional Genomics (BFG) (34) datasets were generated by 

the Moffat lab and Neele lab respectively at the University of Toronto 

(Canada). 

The Achilles projects used a genome-wide shRNA library of ~54k shRNAs, 

whereas the Toronto projects screened a library of ~78k shRNAs (Figure 

4). However, all screens used the common library obtained from the same 

resource, The RNAi consortium (TRC) database. While Achilles 2.0 and 

COLT-Cancer measured shRNA abundances by microarray hybridization, 

Achilles 2.4 and BFG used NGS for the same. All the screens are similar in 

terms of their experimental workflow for conducting a genome-wide 

shRNA screen, with differences in the number of population doublings 

before the final shRNA abundance measurement. A substantial number of 

identical cell lines were also screened in between the Achilles and Toronto 

projects (Figure 4), making it possible to perform a quantitative 

assessment of the consistency between studies in terms of the shRNA-

level phenotypes and gene-level dependencies in publication I. 
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Figure 4: Overlap in shRNAs and cancer cell lines screened in the Project Achilles, COLT-

Cancer and Breast Functional Genomics (BFG) screens. 

 

 
Figure 5: Heatmap of rank correlation of shRNA essentiality scores (shES) between 

Achilles 2.4 and COLT-Cancer projects for common set of shRNAs and cell lines.  

 

Correlation analysis of shRNA-level phenotypes, i.e. shRNA essentiality 

scores (shES) for the common set of shRNAs between the identically 

screened cell lines in Achilles 2.4 and COLT-Cancer, revealed a moderate 

consistency between the two studies (mean rank correlation = 0.57) 

(Figure 5). Moreover, the between-study correlations between identical 

cell lines was systematically higher than either the intra-study or inter-
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study correlations between the non-identical cell lines, suggesting that 

the phenotypic effects of shRNAs are significantly influenced by the 

genetic background of the screened cell line (Figure 5). In addition, the 

type of platform for measurement of shRNA abundance also influenced 

the consistency of the screens. Average correlation between screens using 

microarray hybridization, Achilles 2.0 and COLT-Cancer was much lower 

(mean rank correlation = 0.38), than between screens using NGS, Achilles 

2.4 and BFG (mean rank correlation = 0.53). 

While a quantitative estimate of the shRNA-level phenotypic effects on 

cell proliferation is the outcome of a genome-wide shRNA screen, 

quantifying the gene-level dependencies of cancer cells is desired for 

analytical purposes and for building predictive computational models. 

Since shRNAs are known to exhibit off-target effects, the methods for 

summarization of shES scores into gene essentiality scores (geneES) can 

influence the accuracy of inferred genetic dependencies of cancer cells, 

and consequently the consistency of genome-wide shRNA screens. 

Methods summarizing the intended on-target activity of shRNAs, such as, 

RIGER, ATARiS, RSA and average gene essentiality (AGE), led to a decrease 

in the consistency of the Achilles 2.4 and COLT-Cancer screens, in 

comparison to the shES-based rank correlation estimates (Figure 6A). In 

contrast, the correlation of GARP-based geneES for identical cell lines did 

not decrease significantly. Surprisingly, the consistency between the two 

screens increased significantly (mean rank correlation = 0.71, 

p = 8.6 × 10−08), when analysed based on seed essentiality (seedES) scores. 

seedES summarizes the off-target activity of shRNAs, by averaging the 

shES of all shRNAs having an identical nucleotide sequence at the seed 

region (position 2-8) of the guide strand.   
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Figure 6: (A) Boxplot of rank correlations between Achilles 2.4 and COLT-Cancer screens 

based on shES, geneES and seedES. Asterisks indicate statistically significant differences 

in correlations (p < 0.05, paired t-test). geneES scores are estimated by RIGER, GARP, AGE 

and ATARiS methods which summarize the intended on-target effect of shRNAs. Average 

Gene Essentiality (AGE)-based geneES were calculated by averaging the shES scores of all 

shRNAs targeting an intended gene. SeedES were calculated by averaging the shES of sets 

of shRNAs having the same seed sequence, with set size >= 5. Hepatmer12-18ES is the 

average shES of shRNAs having identical sequence from positions 12-18. (B) Boxplot of 

rank correlations based on shES for shRNAs categorized based on their biochemical seed 

sequence properties: seed pairing stability (SPS) and target abundance (TA). shRNAs were 

categorized into combinations of strong SPS or weaker SPS, and lower TA or higher TA. 

Asterisks denote statistically significant differences in correlation (p < 0.05, paired t-test). 

 

 

Further, it was found out that properties of seed sequences that are 

known to affect the off-targeting tendency of shRNAs alsoinfluenced the 

consistency of the screening results (Figure 6B). The sequence 

composition of seed region of a shRNA is known to affect its biochemical 

properties, such as how strongly it pairs with off-target mRNAs or many it 
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more stable and hence having a higher likelihood of off-target effects, and 
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the two screens was remarkably lower for shRNAs categorized as stronger 

SPS and lower TA or stronger SPS and higher TA (Figure 6B).  

5.2 Prediction of novel synthetic lethal interactions 
Genome-wide RNAi screens can be used to identify the context-specific 

addictions of cancer cells, for instance, the addictions that are present in 

the cancer cells having a mutated driver gene while not in the wild type 

background. Such context-specific dependencies, also known as synthetic 

lethal interactions, serve as a useful principle for identifying non-direct 

approaches for targeted therapy. The Achilles 2.4 and COLT-Cancer 

studies have profiled large panels of cell lines from a wide background of 

lineages, which allowed us to perform statistical analyses to detect 

candidate genes that are robust synthetic lethal partners, i.e. differentially 

dependent, of frequently mutated cancer driver genes in publication I.  

Moreover, identification of robust synthetic lethal interactions is also 

dependent on the accuracy of gene dependency estimates and the genetic 

background in which the context-specific dependency relationships exist. 

The accuracy of gene dependency estimates can be improved by 

accounting for the off-target effects of shRNAs. It was found out that 

removing the shRNAs with higher propensity for off-target effects, based 

on their seed sequence properties, from the estimation of GARP-based 

geneES scores led to an improved consistency between the Achilles 2.4 

and COLT-Cancer screen in publication I. Likewise, we observed an 

improvement in the common number of synthetic lethal candidates 

identified between the two screens for several cancer driver genes (Figure 

7). In addition, similar improvement in identification of genetic interaction 

partners of the cancer driver genes was also observed. 

To test whether this approach was successful in predicting novel synthetic 

lethal partners, we further studied the synthetic lethal partner of PIK3CA 

driver oncogene that were identified only post-removal of shRNAs with 

higher propensity of off-target effects. Two putative synthetic lethal 

partners, PKN3 and HMX3, were identified as synthetic lethal hits of 

PIK3CA gene in both of the datasets. Knockout of these genes using 

CRISPR/Cas9 in isogenic MCF10A cell lines having two different PIK3CA 

driver mutations, E545K and H1074R, led to a systematic decrease in 

proliferation of the cells, hence confirming the robust synthetic lethal 

nature of these genes with PIK3CA.  

 



 

50 

 
 

Figure 7: Systematic increase in overlap of synthetic lethal candidate partners of several 

cancer driver genes after removing the shRNAs with higher propensity of off-target 

effects. P-value is calculated based on a Wilcoxon signed rank test. 

 

5.3 Predicting gene dependencies in cancer cell lines 
Predicting gene essentiality profiles of cancer cells using genetic and 

molecular profiles can provide biological insights into the systems-level 

genetic interactions and dependencies across cancer cells. The task in the 

Broad-DREAM essentiality prediction challenge (publication II) was to 

build machine learning models that can best predict the gene dependency 

profiles of cancer cells using their genomic and molecular profiles.  

For sub-challenge 2 and 3, in which the task was to predict gene 

essentialities of selected 2467 genes, the MT-GRLS model was 

implemented (Figure 8). MT-GRLS performs step-wise greedy forward 

selection by adding at each step the feature whose addition leads to the 

largest increase in leave-one-out cross-validation performance over all the 

target genes. The algorithm is highly scalable having a linear time training 

complexity, and it directly optimizes the predictive performance of the 

learned model subject to the budget constraints, making it ideal for these 

sub-challenges.  

 

O
ve

rla
pp

in
g 

SL
 p

ar
tn

er
s

0

100

200

300

400

TG
FB

R2
C
D
H
1

TA
F1

K
RA

S
N
PM

1
N
F1

A
PC

EP
H
B
6

PD
G
FR

A
N
SD

1
A
TR

X
FG

FR
3

SM
A
D
4

LR
RK

2
A
RI
D
1A

A
TM

TP
53

PT
EN

EP
30

0
A
K
T1

FG
FR

2
RA

D
21

N
A
V3

B
A
P1

PI
K
3C

A
SM

A
D
2

C
D
K
N
2A

M
A
P3

K
1

B
RC

A
1

B
RC

A
2

M
EC

O
M

M
LL
3

Before

After

p = 0.06
Co

m
m

on
 S

L p
ar

tn
er

s



 

51 

 

 

 
  

Figure 8: Schema for learning the MT-GRLS model for predicting gene dependencies of 

cancer cell lines. Training data for 105 cell lines were used in a nested cross-validation 

setting to select the best model parameters (λ) with maximum predictive performance in 

the training data. The final selected parameter was used in the test data of 44 cell lines. 

 

 

Before applying the MT-GRLS, we implemented data-preprocessing steps 

to reduce the number of redundant and non-informative genetic and 

molecular features. For the genes with identical CNV profile across all the 

cell lines, we used the first non-duplicate row to reduce the number of 

duplicate features (i.e. identical CNV profiles). Missing mutation status 

data  were treated as wild type and the genes with zero-variance in their 

mutation profiles across the cell lines were removed. Finally, all the 

features (i.e. gene expression, CNV and mutation data matrices), as well 

as the gene essentiality profiles (response variables) were normalized to 

zero-mean and unit variance. We evaluated the performance of MT-GRLS 

model internally, using a nested-cross validation (CV) approach (Figure 8). 

First, we applied the model over a range of regularization parameters with 

7-fold inner CV to select the most predictive regularization parameter. 

Then, the predictive accuracy of the model was evaluated using a 3-fold 

outer CV loop. The nested CV provided an accurate estimate of the 

prediction accuracy on the independent test set.  

 

Copy number 
variation

Gene 
Expression

Gene
essentiality

Mutation

Outer CV (3-fold)

Inner CV (7-fold)

Test Train

TrainTest

Optimal 
parameter ( λ)

MT-GRLS

Performance evaluation

MT-GRLS

35 70

10 60
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Figure 9: Rank correlation between predicted and observed gene essentiality scores in 

sub-challenge 3. (A) Density distributions of the rank correlations. Red line indicates the 

correlation between the identical genes, and the gray line indicates the correlation 

between the non-identical genes, which is used as a baseline prediction performance 

measure. P values are obtained from a Wilcoxon rank-sum test. (B) Scatterplot of rank 

correlation between predicted gene essentialities and their standard deviations. Genes 

with higher standard deviations had higher prediction accuracy. 

 

 

The final prediction model was based on the best regularization 

parameter learned from the complete training dataset using 7-fold CV.  It 

was found out that the prediction performance of the MT-GRLS did not 

benefit from any prior filtering of the features, perhaps due to its efficient 

feature selection procedure. We evaluated the predictive performance of 

the trained models by rank correlation between the predicted and 

observed gene essentiality profiles. Our MT-GRLS model was the top-

peforming method in the sub-challenge 3, where its average correlation 

for predicted gene essentialities was 0.23, which was significantly higher 

than the baseline correlation observed between the non-identical genes, 

suggesting that genetic datasets have substantial predictive power (Figure 

9A). Further, we observed that individual genes whose essentiality scores 

were more variable across the cell lines were the ones for which predictive 

accuracy was also high, suggesting that each genes feature contributes 

substantially to the overall predictive performance of the models (Figure 

9B). Gene set enrichment analysis revealed that the highly predictable 

genes were enriched for basic cellular processes and functions (Table 2), 

such as proteasome, spliceosome, DNA damage and repair, cell cycle, 
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oxidative phosphorylation and targets of the transcription factors E2F and 

MYC. 

 

 

Gene Set  FDR q-value 

Hallmark Myc targets V1 1.79 ´ 10-20 

KEGG Spliceosome 2.00 ´ 10-17 

KEGG Proteasome 2.98 ´ 10-16 

Hallmark E2F targets 5.44 ´ 10-15 

Hallmark G2M checkpoint 6.13 ´ 10-14 

Hallmark DNA repair 8.82 ´ 10-13 

KEGG Cell cycle 2.16 ´ 10-10 

Hallmark Oxidative phosphorylation 6.71 ´ 10-10 

KEGG Ubiquitin mediated proteolysis 5.58 ´ 10-09 

Hallmark Mitotic spindle 5.58 ´ 10-09 

KEGG Ribosome 5.58 ´ 10-09 

Hallmark MTORC1 signalling 4.22 ´ 10-07 

KEGG Focal adhesion 4.22 ´ 10-07 

KEGG Oocyte meiosis 9.35 ´ 10-07 

Hallmark PI3K-ATK-MTOR signalling 4.69 ´ 10-06 

 

Table 2: Gene set enrichment analysis of the highly predictable genes (rank correlation ³ 

0.4) with MSigDB gene sets from KEGG and Hallmark collection.  

 

 

Moreover, we observed that out of the top 100 features selected for sub-

challenge 3, there were no mutation features and only two features from 

the CNV data, suggesting that gene expression has higher information 

content for gene essentiality prediction, and that CNV and mutation 

profiles may provide partly redundant information. Analysis of the top 100 

features for the sub-challenge 3 provided by the other teams revealed 

that EIF2C2 gene was frequently selected by several prediction models. 

Since EIF2C2 gene is a part of the RNAi machinery, this suggests that the 

expression levels of the components of RNAi machinery can influence the 

phenotypic outcomes of a RNAi screen. Gene set enrichment analysis of 

the top 100 selected features revealed also enrichment for genes involved 

in epithelial-mesenchymal transition, suggesting that cell state 

phenotypic information is predictive of gene essentialities. 
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5.4 Predicting drug response of cancer stem cells using gene 
signatures 
Cancer stem cells are known to exhibit exquisite sensitivity to the small 

molecule inhibitor, salinomycin, however there is a lack of mechanistic 

understanding of its precise mode of action. We reasoned that molecular 

insights gained from experimental studies can be used to derive a gene 

expression signature to predict the response of cancer cells to 

salinomycin, and further aid in identifying groups of patients or tumor 

types that would benefit the most from salinomycin therapy.  

We observed that salinomycin treatment of cells was associated with 

disruption of the KRAS nanoscale membrane organization by altering the 

distribution of phosphatidyl serine (PS), eventually leading to decreased 

signalling output from KRAS nanoclusters due to reduced effector 

recruitment. Moreover, overexpression of caveolin decreased the 

sensitivity of cells to salinomycin by affecting the membrane organization 

(see publication III for details). This suggests that gene expression state of 

known modulators of KRAS nanoscale membrane organization can 

influence the drug response. To gain further insights into the gene 

expression signature associated with KRAS nanoscale membrane 

organization, we utilized the ESTOOLS database (180) to find genes that 

are correlated with its known modulators. Based on the 13 genes that 

were identified, the gene expression signature classified embryonic stem 

cells separately from the fibroblasts, suggesting that the signature was 

also associated with stemness property (Figure 10).  
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Figure 10: Clustering of embryonic stem cells (ESCs) and fibroblasts based on the gene 

expression of known modulators and correlated genes (VIM, ITGA5 and CAV2). Gene 

expression data of Metaset 1 from ESTOOLS database is presented as heatmap. 

 

 

 

Figure 11: Unsupervised clustering of selected cancer cell lines identified as ESC-like and 

fibroblast-like based on correlation with the KRAS nanoclustering associated gene 

expression signature. Gene expression data from CCLE and ESTOOLs were quantile-

normalized and scaled. 

 

To study the stemness property associated with KRAS nanoclustering in 

cancer cells, we further identified cancer cell lines that were correlated 

with gene expression signature of the 13 genes in ESCs and fibroblasts. As 

expected, we observed that the ESC-like cell lines clustered with the ESCs 

and the fibroblast-like cell lines clustered with the fibroblasts (Figure 11). 

Drug sensitivity profiling revealed that the ESC-like cell lines were more 

sensitive to salinomycin whereas less responsive to staurosporine 

compared to fibroblast-like cell lines, suggesting that the gene-expression 
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signature is capable of predicting the stemness property of cancer cell 

lines and also its response to a CSC inhibitor (Figure 12). 

  

 

 
 

Figure 12: Drug response levels of ESC-like and fibroblast-like cancer cell lines to 

salinomycin and staurosporine. Logarithm of IC50 values were obtained from a drug dose 

response curve. p values were obtained by one-side Wilcoxon rank sum test. 

 

 

We further hypothesized that patient tumor samples exhibiting the gene 

expression signature associated with stemness property should present 

differences in their clinical characteristics. To assess that, we performed 

correlation analysis to identify the patient tumor samples in The Cancer 

Genome Atlas (TCGA) dataset that were displaying ESC-like and fibroblast-

like gene expression signature. Interestingly, we found that ESC-like 

patient samples were associated with lower survival probability, when 

compared to non-ESC like samples. As expected, fibroblast-like samples 

did not show the same difference (Figure 13), suggesting that patient 

tumors that are more cancer stem cell like are more aggressive. 
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Figure 13: Survival analysis of patient tumor samples from TCGA, defined as ESC-like (rank 

correlation >= 0.6) and Non ESC-like (rank correlation <= 0.2) and Fibroblast-like like (rank 

correlation >= 0.6) and Non fibroblast-like (rank correlation <= 0.2) based on correlation 

with gene expression signature with ESCs and fibroblasts. 
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6 Discussion  
The rapid advancements in high-throughput techniques have now made 

it possible to molecularly characterize large number of patient tumors, 

and large-scale genomic and functional profiles are routinely being 

generated. Such datasets hold immense potential to reveal novel genes 

driving cancer, biomarkers with prognostic value, and also identify 

promising targets for drug treatment. But the ‘big data’ nature of these 

highly complex datasets require concurrent development of 

computational models and data analysis strategies to be able to mine 

useful knowledge and unlock the potential of the information content that 

is latent in such datasets. This thesis presents computational and 

analytical approaches to extract potentially useful information by 

integrating genomic and functional profiles of cancer cells. 

Publication I demonstrates how in-depth information on the mechanistic 

properties of shRNAs can be utilized to remove noise from genome-wide 

shRNAs screen datasets in post-screening analysis scenario. The study 

particularly aimed to explore means to increase the consistency between 

genome-wide shRNA screens, so that these lessons can be incorporated 

in the designing of future genome wide shRNA screens. Reassuringly, the 

study found moderate consistency between the genome-wide shRNA 

screens, suggesting that although there is a considerable amount of noise 

in the data, it still has the potential to yield promising results. The study 

demonstrated that consistency between shRNA screens is significantly 

higher for the seed mediated off target effects. As observed in a previous 

study [29], we also find that the consistency between datasets increases 

significantly based on seed essentiality scores.  

While it is expected that the specific phenotypic effects of each shRNA 

within a shRNA family might differ in terms of the target profile of down-

regulated off-target genes, averaging overall the constituent shRNAs 

members in a family was found to be indicative of the phenotypic effects 

of the shared off-target profile of genes. This could explain the observed 

increase in consistency between the screens. From the observations 

based on our study, we propose that saturating the seed sequence space 

by sampling over multiple shRNAs having the same seed sequence while 

designing genome wide shRNA libraries is a good approach to accurately 

estimate seed level essentiality scores. This in turn can be used to model 

the off-target genes based on seed sequence complementarity which may 

allow us to derive more accurate gene essentiality scores. Computational 
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methods modelling the seed-mediated effects that have been 

implemented previously to discern the off-target genes in RNAi screens 

(188-191), however their shortcoming is that they are unable to provide 

gene essentiality scores for all genes screened. By focussing on methods 

that can be implemented easily for derivation of gene essentiality 

estimates, this study adopted a simplistic approach by enriching the 

shRNAs with on-target activity.  

From a practical point of view, Publication I provides a straightforward 

approach that can be incorporated in the analysis of existing genome wide 

RNAi screening datasets to extract the most accurate biological 

information out of them. The study identified ‘bad quality’ shRNAs with 

higher propensity of off-target effects based on determinants of targeting 

proficiency of miRNAs, i.e. SPS and TA. Reporter activity studies have 

previously shown that a strong pairing leads to stronger repression of 

bound target and hence proficient down-regulation of off-target 

transcripts [25]. SPS is a measure of the thermodynamic stability [24], a 

proxy for standard free energy change (ΔG) for the formation of the seed 

duplex. Predicted SPS has been calculated after taking into account 

several biochemical parameters and base composition [27]. More 

negative values of free energy change, i.e. stronger SPS, suggests that 

seed duplex is more stable, whereas higher values, i.e. weaker SPS, 

suggest less stable pairing. Further, this study demonstrated the 

quantitative effect of these bad quality shRNAs on the loss of consistency 

of genome-wide shRNA screens. We were able to show that removing the 

bad quality shRNAs from post-processing led to better estimates of gene 

dependency scores using conventional methods for summarizing shRNA 

level scores to gene level essentiality scores. In the future, computational 

models incorporating the biochemical properties of seed sequences 

should be developed to derive more accurate estimates of gene 

essentiality. 

We also demonstrated that performing such post-processing can help in 

identifying novel synthetic lethal partners of cancer driver genes, which 

we also validated using a complementary CRISPR/Cas9 knockout screen. 

One of the important areas of applications of genome-wide RNAi screens 

is to identify dependencies of cancer cells in a certain genetic background 

that can provide interesting targets for anticancer treatment. In 

publication I, we showed how one can extract information on robust 

synthetic lethal interactions partners from noisy genome-wide shRNA 

screens. Moreover, analysing multiple datasets on a large panel of cell 
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lines from diverse lineages and cell types is a useful way to account for the 

genetic heterogeneity known to exist in tumors and identify ‘pan-cancer’ 

synthetic lethal interactions.  

While our approach to identifying synthetic lethal partners is based on the 

conventional viewpoint of differential dependencies in the mutated and 

wild type cell lines, other paradigms for defining synthetic lethal 

interactions also exist. For instance, synthetic dosage lethality is a type of 

genetic interaction in which the upregulation in mRNA or protein levels of 

one partner gene and the loss-of-function of the other partner gene 

results in a lethal phenotype (161). Synthetic lethal interactions are also 

known to be condition-specific, such as being dependent on the cellular 

state, metabolic state, genetic background or tumor microenvironment 

(161). Hence, synthetic lethal interactions observed under laboratory 

conditions in cancer cell lines may not be relevant in the context of overall 

human physiology, and thus clinical responses may not be observed. 

The CRISPR/Cas9 system has recently emerged as an alternative to RNAi 

technology for high-throughput loss-of-function genetic screening. Similar 

to genome-wide RNAi libraries, several genome-wide CRISPR/Cas9 single 

guide RNA (sgRNA) libraries are nowadays available for functional genetic 

screening (192-195). A better understanding of the relative strengths and 

limitations of the two technologies would be of prominent interest to the 

biomedical research community. Evers et al. (196) and Morgens et al. 

(197) recently conducted a systematic comparison by targeting a 

reference set of known essential and non-essential genes to assess the 

relative efficiency of the two approaches; however, the two studies differ 

in their conclusions. The current perspective is shaping up in favor of 

CRISPR-based screens, as these are expected to produce more robust and 

sensitive phenotypes; this view was also supported by the two 

comparative studies, although the Evers study (196) was more positive 

about the superiority of the CRISPR technology, whereas the Morgens 

study (197) concluded that both technologies have their respective 

strengths and limitations. Understanding the factors affecting sgRNA 

activity will be crucial in assessing the relative performance of CRISPR and 

RNAi screens, with the aim at defining the best practices for loss-of-

function screening and designing the most efficient genome-wide sgRNA 

and shRNA libraries. Off-target effects have also been shown in 

CRISPR/Cas9 screens (198), and  several extrinsic factors, such as the 

expression of Cas9 (199), sgRNA sequence properties (200), targeted 

region of protein domains, DNA accessibility and local architecture of the 
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genomic region of the target locus, may also affect the performance of 

CRISPR screens.  

Publication II demonstrated how genomic features of cancer cell lines can 

be used to predict their functional gene essentiality profiles by using 

machine learning models. With the availability of high-throughput 

technologies, it has become easier to profile larger number of tumors and 

generate copious amounts of data representing their molecular 

characteristics. To make sense of these datasets, computational models 

are needed to integrate the multiple layers of information for identifying 

novel ways of treating cancer. The Broad-DREAM gene essentiality 

prediction challenge demonstrated a novel approach in which a 

community effort is leveraged for solving important biomedical questions, 

by establishing benchmark models for prediction tasks. We developed 

MT-GRLS model in sub-challenge 3, demonstrating that the best 

performing method selects sparse panel of genomic features that are 

predictive of gene essentialities of multiple genes. MT-GRLS exploits 

multitask learning, which leverages information that is shared across 

multiple variables, and therefore increases the statistical power of the 

inference problem.  

A consistent finding in publication II was that gene expression data contain 

more predictive information compared to other molecular datasets, as 

has been observed also in other DREAM challenges (169, 201-203). Gene 

expression features were also the most prominently selected top 100 

features in sub-challenge 3. This may reflect the fact that most of the 

predictive models are well suited to incorporate continuous variables, 

whereas extracting predictive information from categorical datatypes, 

such as mutations and copy number variations, has proved more 

challenging for the current models. Analysis of the frequently selected 

gene expression features revealed that expression levels of EIF2C2 has 

significant predictive power of the gene essentiality scores. This suggests 

that the functional state of the RNAi machinery influences the efficiency 

of knockdown and thus the inferred dependency scores. Future predictive 

models should take this into account, and moreover consider that 

genome-wide RNAi screens based phenotypes need to be interpreted 

cautiously. More importantly, this information should be used in post-

processing of genome-wide RNAi screens to estimate accurate gene 

dependency scores. Moreover, the most predictive gene expression 

signatures were enriched for genes involved in epithelial-mesenchymal 
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transition genes indicating that the phenotypic cell state are highly 

informative of the gene essentialities. Perhaps this reflects the previous 

observation that cell lines cluster into two major groups based on gene 

expression data that correspond to the epithelial and mesenchymal 

states.  

The sub-challenge 3 prediction task was restricted to the use of genomic 

and molecular information only, namely mutation, CNV and gene 

expression, which might explain the modest average performance of the 

prediction models. Combining information from multiple other datatypes, 

such as epigenome, proteome, metabolome and other molecular 

portraits of cancer cell lines, could potentially contribute to enhanced 

prediction performance. Also, addition of prior biological knowledge such 

as biological pathways and processes can improve the prediction 

performance, as has been observed previously (169, 174). Moreover, 

systems biology based integrative models that take into account the 

different types of molecular information, and the network and signalling 

properties of genes, can further bring in additional information that are 

predictive of gene essentialities.  

Publication III explored the link between stemness property and 

nanoscale membrane organization of KRAS. Cancer stems cells have been 

linked to EMT transition, and it is likely that KRAS signalling also 

contributes to EMT via Wnt pathway. Additionally, the study 

demonstrates how the mechanistic understanding of affectors of KRAS 

nanoclustering can be coupled with computational analysis of gene 

expression data to build an expression signature predictive of response to 

CSC inhibitors. Importantly, the gene expression signature can also be 

applied in stratifying patients that are more likely to respond to 

salinomycin or other CSC inhibitors. The enrichment of breast cancer 

subtypes in the tumor-types that were ESC-like is in agreement with 

previous studies which identified salinomycin as a CSC inhibitor (142). 

Acute myeloid leukemia cancer-type was also enriched in the ESC-like 

group, corroborating previous results indicating link between stem cell 

expression signature and survival outcomes (204). 

In conclusion, this thesis demonstrates that computational approaches to 

integrate functional and genomic datasets of cancer cell lines can be 

useful in understanding cancer biology and guide further translational 

efforts. Prudent implementation of relevant biological information to the 

analysis of genome-wide RNAi screen datasets can be useful in reducing 
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the noise inherent in these datasets. Ultimately this leads to more 

accurate dependency maps of cancer cells, and therefore may reveal 

potential therapeutic targets for cancer treatment. The study also 

demonstrates that predictive models can be built for gene dependency 

profiling of cancer cell lines. Predictive modelling basd on integrated 

genomic and functional datasets can yield insightful knowledge on the 

molecular characteristics of cancer cells, such as the predictive value of 

EMT phenotype and the biological processes whose dependencies can be 

predicted more accurately. Additionally, the study indicates that the 

transcriptomic landscape has high predictive power for the functional 

landscape of cancer cells. The thesis also demonstrates the power of 

coupling computational approaches with biological hypotheses in 

predicting drug response phenotypes and identifying clinically relevant 

information about patient tumors. 

As a future development, genome-wide loss-of-function screens based on 

complementary CRISPR/Cas9 knockouts will be likely useful in estimating 

more accurate genetic dependencies of cancer cell lines. Computational 

methods to reduce noise in loss-of-function screens, similar to those 

developed in this thesis, should lead to further improvements in accuracy 

of predictive models of gene dependency scores based on genomic 

datasets. Also, incorporating information of proteomic and epigenomic 

landscapes of cancer cell lines could lead to improvement in the predictive 

accuracy of genetic dependencies. Loss-of-function and molecular 

profiling in more advanced cancer cell line models, such as those based on 

3D organoids that recapitulate the tumour features more realistically, may 

further provide better ways to find novel targets. In addition, there is a 

need to develop computational methods that are able to quantitatively 

account for the mechanistic details and several levels of biological 

organization; such as the signalling and pathway level interactions and 

network-level properties of genes and proteins. A holistic systems-biology 

based modelling approach may lead to a better understanding of the 

biology of cancer and will be useful in identifying promising targets for 

cancer treatment.  
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