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A B S T R A C T

Climate-related extended outbreaks and range shifts of destructive bark beetle species pose a serious threat to
urban boreal forests in North America and Fennoscandia. Recent developments in low-cost remote sensing
technologies offer an attractive means for early detection and management of environmental change. They are of
great interest to the actors responsible for monitoring and managing forest health. The objective of this in-
vestigation was to develop, assess, and compare automated remote sensing procedures based on novel, low-cost
hyperspectral imaging technology for the identification of bark beetle infestations at the individual tree level in
urban forests. A hyperspectral camera based on a tunable Fabry-Pérot interferometer was operated from a small,
unmanned airborne vehicle (UAV) platform and a small Cessna-type aircraft platform. This study compared
aspects of using UAV datasets with a spatial extent of a few hectares (ha) and a ground sample distance (GSD) of
10–12 cm to the aircraft data covering areas of several km2 and having a GSD of 50 cm. An empirical assessment
of the automated identification of mature Norway spruce (Picea abies L. Karst.) trees suffering from infestation
(representing different colonization phases) by the European spruce bark beetle (Ips typographus L.) was carried
out in the urban forests of Lahti, a city in southern Finland. Individual spruces were classified as healthy,
infested, or dead. For the entire test area, the best aircraft data results for overall accuracy were 79% (Cohen’s
kappa: 0.54) when using three crown color classes (green as healthy, yellow as infested, and gray as dead). For
two color classes (healthy, dead) in the same area, the best overall accuracy was 93% (kappa: 0.77). The finer
resolution UAV dataset provided better results, with an overall accuracy of 81% (kappa: 0.70), compared to the
aircraft results of 73% (kappa: 0.56) in a smaller sub-area. The results showed that novel, low-cost remote
sensing technologies based on individual tree analysis and calibrated remote sensing imagery offer great po-
tential for affordable and timely assessments of the health condition of vulnerable urban forests.

1. Introduction

Drivers of global climate change may affect urban woodlands more
rapidly than natural forest ecosystems. Stressors of urban forest eco-
systems include alterations in forest soils and to the diversity and
composition of the urban ecosystem, as well as higher temperatures and
increasing carbon dioxide content (Alvey, 2006; Tubby and Webber,
2010). Therefore, urban forests face many threats (e.g., insect pests and
diseases) that can affect the overall health of the forest and related
benefits. Insect pests can cause extensive ecological damage and eco-
nomic costs to urban woodlands, either through the direct or indirect

effects of climate change on insects (Lyytikäinen-Saarenmaa et al.,
2006; Aukema et al., 2011). Proactive management practices and a
focused novel monitoring methodology are needed to protect urban
forests against the threats posed by insect pests.

One of the most significant threats to boreal forests is climate-re-
lated extended outbreaks and range shifts of the destructive bark beetle
species (e.g., Safranyik et al., 2010; Kärvemo et al., 2016; Ghimire
et al., 2016). In Finland, the European spruce bark beetle (Ips typo-
graphus L.) (Coleoptera: Curculionidae) has been undergoing a pole-
ward range shift as a damage-causing agent due to elevated summer
temperatures and early springs since 2010 (P. Lyytikäinen-Saarenmaa,
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unpublished data). Climatic anomalies, such as more frequent and in-
tensive heavy winds and prolonged periods with low amounts of pre-
cipitation, have resulted in a multitude of windthrows and stressed
Norway spruces (Picea abies Karst.). These trees provide optimal
breeding material for bark beetles, facilitating the elevating population
levels. Consequently, expansive damage spots with visible crown
symptoms are present in southern and central parts of Finland, threa-
tening the sustainability of mature Norway spruce stands. It is im-
portant to identify colonized trees at an early phase and initiate man-
agement operations to protect healthy stands. Bark beetles can cause
dramatic, irreversible alterations both in natural and urban forest en-
vironments. Especially in urban forests, it is of great importance to
maintain safe pathways and aesthetic values, because forests in such
areas enjoy high levels of recreational use by citizens.

The vision for the future of precision forestry includes storing forest
information at the individual tree level in geographical information
systems (GIS) (Holopainen et al., 2014). Such systems are already
available or currently being created for urban areas in many Finnish
cities (Tanhuanpää et al., 2014). The database should include in-
formation about tree locations and various attributes, such as species,
height, and stem volume. Several efficient remote sensing technologies
are now available for providing this information, including airborne-,
mobile-, and terrestrial laser scanning (ALS, TLS, MLS) and stereo
imagery (White et al., 2016). Information on tree health and quality are
more demanding to measure and typically obtained using multi- or
hyperspectral technologies or field measurements (Hall et al., 2016;
Senf et al., 2017). Furthermore, since these parameters can change
rapidly, the methods affordable for frequent, annual monitoring are of
great interest, particularly in small-scale urban woodlands.

Recent developments in multi- and hyperspectral remote sensing
technologies are providing new solutions for vegetation health mapping
(Torresan et al., 2017). In particular, developments in miniaturized
sensor technologies have facilitated the production of low-cost and
lightweight multispectral and hyperspectral cameras that enable accu-
rate remote sensing measurements. Several light-weight hyperspectral
sensors have already been developed (Aasen et al., 2015). One type of
camera is based on the Fabry-Pérot interferometer (FPI) technique
(Mäkynen et al., 2011; Honkavaara et al., 2013; Oliveira et al., 2016)
and was used in this study. This technology has already shown potential
in close-range environmental mapping with unmanned aerial vehicles
(UAVs), such as monitoring the health of vegetation (Näsi et al., 2015;
Moriya et al., 2017) and classifying tree species (Nevalainen et al.,
2017). Important advantages of the FPI technology in comparison to the
conventionally used pushbroom technology include the possibility to
collect image blocks with stereoscopic multiple object views; the im-
portant consequences of which include more extensive datasets, a
simplified data processing phase, and reduced costs to the overall
system (Honkavaara et al., 2013).

Lightweight, low-cost hyperspectral sensors combined with cost-
efficient platforms, such as single-engine manned aircraft or UAVs, offer
a tool for the timely monitoring and identification of insect-induced
alterations in forest vegetation (Lehmann et al., 2015). Both platforms
have their pros and cons with respect to environmental remote sensing
tasks. UAVs typically have to be operated in the visible line-of-sight at
low flight altitudes due to legislative issues. As a result of these re-
quirements, multicopters are the most useful vehicles for such tasks
because they can be used for repeated high-resolution mapping tasks
within small areas (Siebert and Teizer, 2014). Small aircrafts are effi-
cient in covering larger areas; on the other hand, their initialization cost
is more expensive and they produce lower spatial resolution data than
UAVs. The low-cost methods can revolutionize the entire environ-
mental remote sensing process. The conventional high-end hyperspec-
tral sensors are typically expensive and rare, thus obtaining data from
these systems can be more difficult and costly. In contrast, these low-
cost systems can be owned and operated locally by small companies,
thus making it easier to organize remote sensing campaigns and also

multitemporal monitoring acquisitions.
A review by Senf et al. (2017) showed that recent research related to

the remote sensing of insect pest damage has focused on conifer bark
beetles and defoliators of deciduous trees. Among bark beetles, the
mountain pine beetle (Dendroctonus ponderosae Hopkins) in North
America and European spruce bark beetle (I. typographus) are the most
studied insect pests, especially in the last few years. Satellite images,
such as Landsat (Havasová et al., 2015; Foster et al., 2016; Long and
Lawrence, 2018), have been the most utilized, whereas hyperspectral
sensors have been used only in a few studies (Senf et al., 2017). Näsi
et al. (2015) were the first to utilize UAV-based hyperspectral image
data for identifying different infestation stages of the bark beetle. Their
results showed that different stages (i.e., healthy, infested, and dead
trees) could be identified by machine vision technologies based on
hyperspectral UAV imaging at the individual tree level; the results for
the overall accuracy were 76% when using three color classes (healthy,
infested, dead). For two color classes (healthy, dead), the best overall
accuracy was 90%. Their conclusions were that survey methodology
based on high-resolution hyperspectral imaging will be of great prac-
tical value for forest health management, capable for instance of in-
dicating the potential for a bark beetle outbreak at a particular time.

Studies using conventional pushbroom scanning-based hyperspec-
tral sensors from aircraft platforms for the mapping of bark beetle da-
mage using area-based methods have shown promising results.
Fassnacht et al. (2014) reported an overall accuracy rate of 76–85%
when three health classes of trees and two types of soil were classified.
Lausch et al. (2013) were able to classify three health classes with an
overall accuracy rate of 69%. Only a minor proportion of studies on
bark beetle damage have used high spatial resolution (ground sample
distance, GSD < 1m) data (Senf et al., 2017), which is a prerequisite
for individual tree-level approaches. Meddens et al. (2011) and Lausch
et al. (2013) have reported that enhancing the spatial resolution of
remote sensing images improves the classification results for bark
beetle damage. However, in both studies researchers performed their
analysis at the area or pixel level as opposed to adopting an individual
tree-level-based approach. Recent developments in sensors and UAV
technologies are enabling analysis at the individual tree level because
many pixels can be obtained from each tree due to the small GSD.
However, only a few studies have analyzed pest damage at the in-
dividual tree level. For example, Minařík and Langhammer (2016)
presented preliminary results using a UAV equipped with a multi-
spectral sensor to map bark beetle damage and Dash et al. (2017) used a
multispectral sensor to classify a disease outbreak in mature Pinus ra-
diata D. Don using a UAV as a platform. More information about state-
of-the-art remote sensing of forest insect damage can be found in the
extensive reviews provided by Hall et al. (2016) and Senf et al. (2017).
Furthermore, Lausch et al. (2016, 2017) have presented comprehensive
reviews of remote sensing methods used to assess forest health that
cover various types of damage, including insect damage, drought, in-
vasive species, air pollution, and land-use changes.

The fundamental motivations for this investigation were to assess
whether or not low-cost FPI camera technology can provide useful re-
mote sensing data on the health of spruce trees in urban forests via
aircraft or a UAV platform and to compare these two platforms. The
same camera was operated using aircraft over an area of several square
kilometers as well as a small UAV to identify symptoms in small areas.
Accordingly, our main goals were to i) develop and assess a novel, low-
cost, miniaturized, hyperspectral remote sensing technology for obser-
ving bark beetle infestation at the individual tree level in urban Norway
spruce stands, ii) compare automated remote sensing procedures when
operated from UAV and aircraft platforms.

The preliminary analyses of the UAV datasets were presented by
Näsi et al. (2015). The current work emphasizes the aircraft data ana-
lysis and comparison of the UAV and aircraft results as well as pro-
duction of spruce health maps. This study provides new information
about the applicability of novel remote sensing technologies for tree
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assessment in order to support decision-making regarding urban forest
management.

2. Materials and methods

2.1. Test area and ground truth

The field work was conducted in urban forests in the city of Lahti, in
southern Finland (60°59′N, 25°39′E), in 2013. These urban forests,
covering approximately 5000 ha, are dominated by mature Norway
spruce stands growing in fertile soils (Oxalis-Maianthemum, Oxalis-
Myrtillus and Myrtillus site types) (Cajander, 1926). The forests are used
quite often for recreational purposes by residents throughout the year.
Bark beetle (I. typographus) has been causing damage, including tree
mortality, both in the city area and in adjacent urban woodlands since
2010. This study was part of a larger field campaign carried out in the
city of Lahti, aiming to investigate shifts in the population density of I.
typographus in the city forests.

We had two areas of interest: the “north area,” about three km north
of the city center, and the “south area,” about two km southeast of the
city center (Fig. 1). These areas suffered from I. typographus infestations,
stimulating the need to use UAVs. An aerial color-infrared imagery with
0.5 m spatial resolution (National Land Survey of Finland, Topographic
Database 06/2013) was utilized for a preliminary visual detection of
spots of dead Norway spruces prior to the field campaign in 2013. Based
on this inspection, the locations of the study plots (n= 45) were as-
signed to the I. typographus infestation spots. A total of 48 circular
sampling plots (radius= 10m) were inventoried and assessed within
the study areas in 2013. Three of the sampling plots had already been
established in 2012 during a pilot study. The center of each plot was

located with a Trimble Geo XT GPS device (Trimble Inc., Sunnyvale,
CA, USA), having a precision of 0.5 m with differential post-processing.
Each individual tree on our plots was located by measuring the azimuth
and distance from the center of the sampling plot.

Field inventory and visual assessments of the health of the Norway
spruce were conducted in August 2013. Bark beetle-induced symptoms
are typically most visible to the human eye late in the growing season.
In total, 330 mature Norway spruce trees were included in the analysis.
Tree-wise measurements included diameter at breast height (dbh) (cm)
for each tree and the tree height (m) from a median tree and every
seventh tree throughout the plots (Table 1). In addition to inventorying
dead spruces, we assessed crown symptoms of the living spruce trees,
both healthy and infested, on the plots. The spruce trees were assessed
relative to each other by two experienced observers, who calibrated
their eyes prior to the field campaign. The assessed symptoms were
crown discoloration and defoliation. These attributes are typical
symptoms indicating the infestation status of I. typographus. The trees
were classified based on the crown color into four classes: green

Fig. 1. Flight trajectories and locations of the reference trees in Lahti in the a) north area and b) south area. The background image is a radiometrically corrected reflectance mosaic
combination of FPI bands 23, 9 and 1.

Table 1
Class-wise number (n) of Norway spruce trees, diameter at breast height (d, cm) and
height (h, m) of the sampled trees measured in 2013 (mean= the average,
min=minimum, max=maximum and sd= standard deviation of measurements;
classes include: healthy such as green, class 1; infested such as yellowish, class 2; and
dead such as gray, class 4).

Class n dmean dmin dmax dsd hmean hmin hmax hsd

Healthy 246 36.9 25.1 61.0 7.2 30.2 22.1 39.0 3.5
Infested 20 36.4 26.2 48.5 6.0 30.2 26.2 34.8 3.8
Dead 64 37.5 26.0 51.8 7.0 30.7 27.8 34.8 2.5
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(healthy, class 1), yellowish (yellow attack, class 2), reddish (red attack,
class 3), and gray (dead tree, class 4). Both healthy trees and trees with
a potential early infestation stage (green attack) were treated as one
class in this study. Reddish crowns (class 3) represented a minor pro-
portion of the current data and were excluded from the analyses. We
also eliminated smaller trees (dbh < 25 cm) from the analyses. Such
suppressed trees are likely to remain in the shadows of dominant trees
and have very low reflectance values. Trees growing at lower canopy
cover layers are also more likely to be defoliated by factors other than
beetle infestation. Furthermore, I. typographus is known to prefer trees
with a large dbh (Göthlin et al., 2000), and most likely only a minor
proportion of these smaller trees where colonized by the beetle.

The previous study by Näsi et al. (2015) was carried out using UAV-
based remote sensing datasets, collected in small areas in “Mukkula”
(part of the north area) and “Kerinkallio” (part of the south area). These
subareas included a total of 78 reference trees and are referred to as set
1 in the analysis (Fig. 1). The reference trees outside the UAV study
areas form set 2 of the reference trees.

2.2. Remote sensing materials

The aircraft campaign using a Cessna 172 OH-CAH (operated by
Lentokuva Vallas Oy) was carried out on September 13, 2013 (Table 2).
The FPI hyperspectral camera (Mäkynen et al., 2011) was employed as
an imaging sensor. The areas covered were 1 km2 (north area) and
3.5 km2 (south area). Images were collected using a flying altitude of
500m (Table 2). In the resulting image blocks, the average forward
overlaps were 70%, the side overlaps were 75%, and the ground sample
distance (GSD) was approximately 0.50m. The weather conditions
were partly cloudy during the campaign.

The FPI camera was operated in the wavelength range of
500–900 nm (from visible green to near-infrared). The number of
spectral bands was originally 41, but after the laboratory calibration
correction (Mäkynen et al., 2011) only 24 bands remained (see details
in Section 2.3). The full width at half maximum (FWHM) of the bands
varied between 12 and 30 nm (Fig. 2). The exposure time was 6ms.

Two portable reflectance reference targets, 5 m×5m in size and
with a nominal reflectance of 0.10 and 0.25, were installed in the flight
area for the reflectance transformations. Furthermore, a grass field near
the targets was used as the reflectance reference.

The UAV flights were carried out in the Kerinkallio area and in the
Mukkula area using the FPI camera on August 23, 2013 (Näsi et al.,
2015); the spectral settings were similar to the settings used for the
aircraft data. The coverage of UAV flights were 4.2 ha and 3.6 ha in
Kerinkallio and Mukkula, respectively. Thus, the areas were sig-
nificantly smaller than the aircraft areas (Table 2, Fig. 1). The UAV
images with a nominal GSD of 0.10m were highly detailed and even
branch-level details were visible (Fig. 3) due to a low flying height of
90 m (Table 2). Individual trees could also be identified in the aircraft
images having a GSD of 0.50m, but the branch-level details were not
visible.

Hundreds of small-format images (Table 2) were collected to cover
the areas of interest. A rigorous pre-processing workflow has been de-
veloped for the datasets in previous studies (Honkavaara et al., 2013).
The following sections describe the details of the processing phases,
including orthophoto mosaic generation and further steps taken for

feature extraction, classifier training, and producing a spruce health
map.

2.3. Mosaic generation

The mosaic generation phases included geometric processing,
radiometric correction, and mosaic calculation.

Geometric processing included determining the image orientations
and band-matching to align individual bands of the hyperspectral data
cubes. The latter process was necessary because of the time-sequential
imaging principle of the FPI camera. We chose one band for calculating
the orientations of the FPI data cubes (band 14: L0=626.3 nm).
Exterior orientations were determined by self-calibrating the bundle
block adjustment using Socet GXP (BAE Systems, San Diego, USA)
commercial software. The georeferencing was based on national open
topographic datasets (NLS, 2016), the orthophoto, and a national ALS-
based digital surface model (DSM). A total of 19 photogrammetric
control points for the south area and 17 control points for the north area
were identified from the datasets using manual measurements. The
adjustment results indicated good geometric accuracy of approximately
1m for the dataset. For the band alignment, band 14 was used as the
reference band. All bands were matched to the reference band using a
feature-based matching algorithm, and an affine transformation was
used to map the bands to the reference band (Honkavaara et al., 2013).

The radiometric correction process started with the radiometric
sensor corrections determined in a laboratory calibration, which in-
cluded the photon response nonuniformity correction (PRNU) and the
spectral smile correction (Mäkynen et al., 2011). Other correction steps
were carried out using in-house radiometric processing software
(Honkavaara et al., 2013). We used the empirical line method (Smith
and Milton, 1999) to calculate the transformation from DNs to re-
flectance with the aid of the calibrated reflectance reference targets.
Due to the variable weather conditions and other radiometric phe-
nomena, additional radiometric corrections were necessary in order to
make the image mosaics uniform. Both datasets included a few dark
images because of cloud shadows; those images were removed during
the processing phase (25 images in the north area and 12 images in the
south area). To compensate for further radiometric disturbances, a
radiometric block adjustment method was used to determine the model-
based radiometric correction. In this investigation, the relative radio-
metric differences between the images and the disturbances caused by
the object reflectance anisotropy (bidirectional reflectance distribution
function, BRDF) were modeled and resolved during the radiometric
modelling process in order to transform the datasets radiometrically to
the reflectance scale corresponding to the nadir view geometry (see
details in Honkavaara et al., 2013).

Orthorectified reflectance mosaics were calculated using the aircraft
images with a GSD of 0.50m by utilizing the DSMs, orientation in-
formation, and radiometric model. The DSMs were created using dense
digital image matching techniques from the RGB image data (GSD:
0.05m), which was collected on the same day as the hyperspectral data.
The resulting mosaics showed good radiometric uniformity, and the
geometric accuracy was on the level of 1m (Fig. 1).

The processing chain for the UAV image data was similar to the one
for the aircraft data, including making the sensor corrections, de-
termining the image exterior orientations, generating the DSM,

Table 2
Details of the FPI image blocks (GSD: ground sample distance; overlap f;s: forward and side overlaps of photogrammetric image block; N HC: number of hypercubes).

Area Platform GSD (cm) Flying altitude Time (UTC+3) Solar elevation Sun azimuth Expo-sure (ms) Overlap f;s (%) N HC

North aircraft 50 500 13:48–13:55 32.3 191.4 6 70, 75 40
South aircraft 50 500 13:57–14:14 31.80 195.8 6 70, 75 228
Mukkula UAV 9 90 10:29–10:35 31.88 130.06 6 55, 55 96
Kerinkallio UAV 9 90 13:48–13:55 40.01 190.27 8 55, 55 80
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calculating the radiometric model parameters, and calculating the or-
thophoto mosaic. In this case, the image orientations and DSMs were
determined using Agisoft PhotoScan professional commercial software
(AgiSoft LLC, St. Petersburg, Russia); the radiometric corrections were
carried out using the same approach as with the aircraft images. The
outputs were reflectance mosaics with a GSD of 0.10m in Kerinkallio
and a GSD of 0.12m in Mukkula. More details are given by Näsi et al.
(2015).

The result of the mosaic generation process were the hyperspectral
mosaics named North and South for the aircraft areas and Kerinkallio
and Mukkula in the UAV datasets. The UAV and aircraft datasets were
radiometrically and geometrically comparable because both datasets
were captured with the same sensor and with a nadir viewing geometry
using an airborne platform. Furthermore, rigorous methods and cali-
brated reflectance panels were used to calculate the georeferenced re-
flectance output products. However, due to different GSDs the pixel of
aircraft data included approximately 5×5 UAV pixels (Fig. 3), which
causes spectral mixing.

2.4. Spectrum and feature extraction

Spectral features were calculated based on the image mosaics
(Section 2.3) for each individual tree based on their coordinates. We
used the same features as Näsi et al. (2015):

1. The original 24-band spectra;
2. Three different normalized channel ratios (vegetation indices; VI)

were computed using the reflectance (R) of two bands:

= − +

= − +

= − +

VI (R R )/(R R ),
VI (R R )/(R R ),
VI (R R )/(R R ).

1 793.8 626.3 793.8 626.3

2 772.8 725.8 772.8 725.8

3 550.6 626.3 550.6 626.3 (1)

The bands were selected based on class separability analysis, which
was evaluated based on the differences between the full spectra of
various crown color classes; this was based in turn on the analysis of
variance (ANOVA) (Näsi et al., 2015).

Our approach was to use a single spectral feature for each individual
tree (instead of using spectral features of each pixel in the tree crown
area). In the case of the aircraft data, the GSD was 0.50m, and each tree
consisted of 3–25 pixels depending on the size of the tree crown. We
used a 3× 3 pixel window for calculating the spectral features. We
likewise used the average of the pixels and the average of the three
brightest pixels in the window to derive the spectral features. In the
case of the UAV data, there were more pixels related to each tree than
in the aircraft data due to small GSD of 0.10–0.12m (Fig. 2). Thus the
spectral feature extraction was done using a circular window with a 1m
radius; either the average over the entire area or six brightest pixels
were used. The approach using the brightest pixels was of interest, since
the arithmetic mean might not be the ideal feature due to the shadow
pixels in the window. A similar approach was also used by Campbell
et al. (2004).

For the methods based on individual tree analysis, it is crucial that
the coordinates of the reference trees correspond to the correct trees in
the images. Our visual assessment indicated that there was a minor
positional discrepancy between the orthophoto mosaics and the co-
ordinates of the reference trees measured in field. We aligned the da-
tasets interactively; small systematic shifts of 1–10m for the entire

Fig. 2. Spectral settings of the FPI camera showing
the central wavelengths and the FWHM for each
band. Colors show in which part of the spectrum the
band is located. Pink is used for the bands in the near
infra-red region that are not visible to the human
eye.

Fig. 3. Examples of images captured by the UAV (a)
with a GSD of 10 cm and the aircraft (b) with a GSD
of 50 cm.
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group of treetops in each sample plot were necessary. The potential
reasons for the mismatches could be inaccuracy in the GPS measure-
ments for the centers of the sample plots during the field survey, dif-
ferent positioning of the tree trunk on the ground level and from the air,
or geometric errors in the image mosaics. All reference plots were
checked interactively to ensure that after the alignment process, the
reference trees corresponded correctly to the trees in the remote sensing
datasets.

It was necessary to investigate whether the tree size had an impact
on the spectra. We divided the trees into four groups based on their dbh
(< 30 cm, 30–40 cm, 40–50 cm,>50 cm) and calculated the average
and standard deviation of the spectra in each group. The numbers of
samples in each group were 60, 167, 87, and 16, respectively. These
four groups resulted in a total of six 2-pair combinations. The spectral
similarity was tested using a t-test, with two samples assuming equal
variances. The P-values were over 0.05 for every comparison, except for
five bands in the comparison of groups with 30–40 cm and 40–50 cm of
dbh. This result indicated that the tree size did not significantly affect
the spectra used in this study; thus, it was not necessary to account for
the tree size in the analysis.

2.5. Training and assessing the classifier employing the reference plots

A support vector machine (SVM) classifier was used for the classi-
fication phase. SVM has yielded good classification results for hyper-
spectral data compared to other classifiers (Cracknell and Anya, 2014).
We used the LIBSVM tool and its C-SVM version, as proposed by Chang
and Chih-Jen (2011). First, it was necessary to scale the features to the
same scale, between 0 and 1, to avoid numerical problems. We applied
the Radial Basis Function (RBF) as the kernel, as suggested by Hsu et al.
(2010). For optimizing the RBF parameters C (complexity) and γ
(kernel width), we used a 2D grid-based, cross-validation search.

The reference data was imbalanced: the majority of the training
samples were from the healthy and dead classes, whereas only a few
samples were from the infested class (Table 1). Imbalance can reduce
the overall accuracy unless accounted for in the classifier (Sun et al.,
2009). The SVM classifier attempts to maximize the overall accuracy
and gives the same cost for every sample in the basic mode, similar to
many other classifiers (Cao et al., 2013). Possible approaches to com-
pensate for the problem of imbalance include using different mini-
mization cost functions for each class or weighting the cost value for the
classes in a different way. For SVM, special class-imbalanced classifiers
or resampling methods have been proposed (Cao et al., 2013). We used
the method suggested by Ben-Hur and Weston (2010) to assign different
costs for misclassification (weighting) to each class such that the total
cost for each class is equal.

The spectral reflectance features were in the range of [0,1], and the
VI-features (equation 1) were in the range of [−1,1]. We also tested
scaling the VI-features individually to the range of [0,1] to study their
impacts on the classification results.We used three different reference

data combinations to train and validate the classifier:

• Combination 1. The features of all the reference trees in the aircraft
area (set 1+ set 2, 330 trees) were used to train and validate the
classifier.

• Combination 2. The features from the Mukkula and Kerinkallio UAV
and aircraft datasets (set 1, 78 trees) were used to train and test the
classifier, and the aircraft data (set 2, 252 trees) was used for vali-
dating it.

• Combination 3. The third combination was similar to the second
combination, except the aircraft features of set 1 were used for va-
lidating purposes.

The leave-one-out cross validation method was applied for each
combination to assess the classifier’s performance; the hold-out method
was applied for combinations 2 and 3 to assess the performance of the
SVM classifier in the full area. Based on the validation data, we cal-
culated the confusion matrix and Cohen’s kappa value as well as the
producer’s accuracies and overall accuracies of the classifier.

2.6. Production of spruce health maps

An individual tree-based approach was used to calculate spruce
health maps for the entire area using the aircraft data. The steps in this
procedure included detecting individual trees, classifying tree health,
and generating a map.

We used the remote sensing dataset to detect trees because an in-
dividual tree-based GIS was not available for the area. This approach
had its limitations because the campaign was not designed for in-
dividual tree detection and tree species classification. In this study, we
assumed that all detected trees were Norway spruces. This was a quite
feasible assumption because the vast majority of the trees in the study
area were Norway spruce (85% of the analyzed trees); furthermore,
users of the maps are asked to be careful when interpreting the results.
In the future, the existing individual tree-based GIS will replace this
step.

Image brightness information from the reflectance mosaics was used
to detect the trees. The approach is based on the assumption that image
brightness in the upper parts of the tree tops is greater than in the lower
parts, which obtain less illumination or are in shadow, and individual
bright treetops can thus be identified. The GSD of 0.5m provided ap-
proximately 10 pixels in mature trees, which was sufficient for identi-
fying trees (Fig. 4a). The algorithm included the following steps:

1. Classify the reflectance mosaics into 25 classes based on the pixel
brightness information using the unsupervised k-means classifier
(Kotsiantis et al., 2007) (Fig. 4b). In the classified image, the
brightest treetops belong to class 25 and the darkest shadows to
class 1, while other brightness levels are assigned to classes in be-
tween these two.

Fig. 4. (a) Part of the reflectance mosaic with color-infrared bands. (b) Results of classification into 25 classes using the unsupervised k-means classifier. Red pixels show the areas where
the local maxima were identified. (c) Central coordinates of the maxima were labelled as treetops. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

R. Näsi et al. Urban Forestry & Urban Greening 30 (2018) 72–83

77



2. Filter the image based on the 25 classes (created in step 1) using a 2-
D Gaussian smoothing kernel (Babaud et al., 1986) with a standard
deviation of 1.0.

3. Find each local maximum in 8-connected neighborhoods based on
the classified image using the Matlab™ function imregionalmax
(Fig. 4b, red).

4. Take the central coordinates of the local maxima as treetops
(Fig. 4c).

In the classification step, the spectral and index features were ex-
tracted for the detected trees in the same way as for the reference trees
(Section 2.4). Then, the identified trees were classified with the SVM
classifier using combination 1 (all 330 reference trees, aircraft) for
training. Finally, the spruce health maps were produced for the north
and south areas using three (healthy, infested, dead) and two (healthy,
dead) different health classes.

3. Results and discussion

3.1. Spectral data of the reference trees

The average spectra for each tree color class for the aircraft data
were calculated in the image window of 3×3 pixels and using the
average of the three brightest pixels (Fig. 5). The strategy of using an
average of the three brightest pixels (Fig. 5a) provided better separation
of the crown color classes in comparison to the averaged spectra for the
entire dataset (Fig. 5b), as also noted by Näsi et al. (2015) with re-
ference to UAV data (Fig. 5c,d). We thus used the features with an
average of the three brightest pixels for the next analysis steps. In
comparison to the results from UAV images with 0.10 and 0.12m GSDs

(Näsi et al., 2015), the separation of healthy and infested classes were
similar to the results from the UAV data when using the average for an
image window with a 1m diameter. This is a consistent result because
the area of three pixels in the aircraft data (0.75m2; Fig. 5a) corre-
sponds to the UAV window size (0.79m2; Fig. 5d).

3.2. Classification results for the reference plots

The classification results for the reference plots are presented in
following sections (Tables 3–5) for individually scaled data (scaling),
for weighted cost based on the number of samples (weighting), and
when using both scaling and weighting (both). The results are discussed
below with respect to the separability of different tree health classes,
the impact of the spatial resolution, and the impact on the number of
reference trees.

3.2.1. Separability of different classes
When using only the two classes healthy and dead (combination 1),

we obtained a good classification result with an overall accuracy of
93% (kappa: 0.77) with weighted misclassification costs and spectrum
features (Table 3). The classification accuracy was almost as good using
scaled indices as features (overall accuracy of 92%, kappa: 0.75).

With three infestation classes, the classification accuracy was poorer
than the result obtained from the two-class classification. Our assess-
ment of the spectra indicated that the separation of the infested and
healthy trees was quite poor (Fig. 5), thus affecting the accuracy. The
best overall accuracy, 87% (kappa: 0.61), was gained with scaled in-
dices features. However, the class of infested trees remained uni-
dentified. For this reason, we consider the classification system with
weighted spectrum features, which provided an accuracy of 35% for the

Fig. 5. Average spectra with standard deviation bars of the
healthy, infested, and dead reference trees. Aircraft spectra
based on an image window of size of 3× 3 pixels: (a) average
of the three brightest pixels and (b) average of all the pixels.
UAV spectra from Kerinkallio: (c) average of the six brightest
pixels (d) and average of all the pixels (original source of
images c and d: Näsi et al., 2015).
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infested trees and an overall accuracy of 79% (kappa: 0.54), the most
successful of the three class-based analyses (Table 3).

3.2.2. Effect of spatial resolution
A comparison of the results from combinations 2 and 3 made it

possible for us to consider the effects of spatial resolution on the clas-
sification results. We used reference tree set 1 for these combinations;
the difference was that the UAV data with a 0.10m GSD was used in
combination 2, while the aircraft data with a 0.50m GSD was used in
combination 3. The best classification result from combination 2 pro-
vided an overall accuracy of 81% (kappa: 0.70). The best result from
combination 3 was 73% (kappa: 0.56, Table 4). Producer’s accuracies
for the infested and dead trees were better with combination 2 (67%

and 81%) than with combination 3 (40% and 74%). For the healthy
trees, the accuracy was the same (86%) in both combinations. The
classification accuracy for the infested trees was better in almost every
case with the UAV data (combination 2). This result indicates that the
use of higher spatial resolution data may provide higher classification
accuracy. Previous studies have yielded similar results. For example,
Lausch et al. (2013) investigated the effects of spatial resolution on the
accuracy in bark beetle damage classification with much larger GSDs
(4m and 7m). The smaller GSD (4m) provided better classification
accuracy. This is a logical result; better results with higher resolutions
are likely to be due to the lower level of mixing of spectra from adjacent
objects.

Table 3
SVM Classification results for combination 1, where aircraft features of the reference trees (set 1+ set 2) were used as training data (the results are shown for 2 classes (healthy and dead)
and for 3 classes (healthy infested and dead); weighting: use of cost functions based on the number of samples in the three classes; scaling: every feature scaled individually to a range of
0–1; leave-one-out technique was used for validation, with the best results presented in bold).

Weighting/ N of Producer's accuracies (%) Overall
Features Scaling classes Healthy Infested Dead accuracy (%) Kappa

Spectrum Both 2 92 73 88 0.65
Indices 89 80 87 0.64
Spectrum Scaling 94 72 89 0.67
Indices 98 72 92 0.75
Spectrum Weighting 96 80 93 0.77
Indices 87 75 85 0.57
Spectrum Both 3 92 10 67 82 0.52
Indices 80 45 70 76 0.50
Spectrum Scaling 92 15 67 83 0.55
Indices 98 0 72 87 0.61
Spectrum Weighting 83 35 78 79 0.54
Indices 74 30 70 71 0.40

Table 4
Results of reference data set 1 (the leave-one-out method was used for validation, with the best results presented in bold).

Dataset Features Weighting/ Producer's accuracies (%) Overall accuracy (%) Kappa
Description Scaling Healthy Infested Dead

Training: UAV, Leave-one-out, Combination 2 Spectrum Both 75 40 89 73 0.57
Indices 86 67 81 81 0.70
Spectrum Scaling 72 40 89 72 0.55
Indices 86 47 81 77 0.63
Spectrum Weighting 75 60 89 77 0.64
Indices 83 60 81 78 0.66

Training: aircraft, Leave-one-out, Combination 3 Spectrum Both 78 40 78 71 0.53
Indices 54 73 65 57 0.27
Spectrum Scaling 86 40 74 73 0.56
Indices 94 00 81 72 0.51
Spectrum Weighting 83 00 44 54 0.19
Indices 67 00 85 60 0.36

Table 5
Results of reference data set 1 and set 2 (training was performed using features from set 1 and assessed using features from set 2 with the hold-out validation method, with the best results
presented in bold).

Dataset Features Weighting/ Producer's accuracies (%) Overall accuracy (%) Kappa
Description Scaling Healthy Infested Dead

Training: UAV, Testing: aircraft, Hold-out, Combination 2 Spectrum Both 50 0 83 52 0.16
Indices 89 47 58 81 0.51
Spectrum Scaling 54 0 85 56 0.21
Indices 95 20 45 82 0.53
Spectrum Weighting 23 73 83 36 0.15
Indices 64 60 75 36 0.37

Training: aircraft, Testing: aircraft, Hold-out, Combination 3 Spectrum Both 67 7 85 66 0.31
Indices 58 20 85 60 0.38
Spectrum Scaling 64 0 98 63 0.32
Indices 99 0 00 77 0.01
Spectrum Weighting 98 0 43 83 0.38
Indices 87 33 68 80 0.51
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3.2.3. Effect of number of reference trees and training data
In combination 1, we used all of the reference plots (set 1+ set 2)

for training the classifier. The best overall accuracy was 79% (kappa:
0.54) (Table 3). When comparing these results to combination 3, where
set 1 was used for training and set 2 for validation (features from air-
craft data), we found that the accuracy of the classification was at the
same level (overall accuracy 80%, kappa: 0.51), indicating that the
smaller training sample was sufficient (Table 5). The hold-out-estima-
tion results from combination 2 (training using features derived from
the UAV data and validation using the aircraft features) provided an
overall accuracy of 81% (kappa: 0.51; Table 5), which was at the same
level as with combination 3, even though the classifier training was
based on spectral data captured from a different platform at a different
time. We obtained the best accuracies in combination 2 using scaling
and indices, which was the expected result because they eliminated the
effects of different spectrum levels and only the shape of the spectrum
had an impact.

This result suggests that with an individual tree-based approach, the
training of the classifier for a large area could be performed using
training data from a smaller, representative area. This is a logical and
favorable result for individual tree-based remote sensing. When spectra
are collected from the tree crown area, only the spectral information on
spruce trees needs to be considered. Thus, we did not need to account
for the background effects caused by different soils and understory,
which is typically required when using area or pixel-based approaches
(Fassnacht et al., 2014). Furthermore, the phenological variations must
be accounted for. For example, if we are capturing data annually at the
end of the growing season, the phenological variations will have only a
minor contribution. A further requirement for reliable results is good
calibration of the remote sensing data. The utilization of spectral li-
braries could also be feasible with the individual tree-based approach.

3.3. Production of spruce health maps

The objective of this section is to demonstrate tree health mapping
of the entire studied area. The classification accuracies reported in
Section 3.2 are not valid for these maps, which were composed by
classifying the trees detected during the image analysis. The detected
trees therefore include species other than spruces (15% of species were
other than spruces), whereas not all of the spruces may have been de-
tected by our algorithm. The following results can thus only be con-
sidered as a demonstration of how to generate health maps over larger
areas.

We detected a total of 30,944 trees within the entire research area
when using the procedure described in Section 2.6. Our visual assess-
ment of the health maps indicated that the large and separable trees,
such as most of the Norway spruces (Fig. 4) could be detected quite
successfully with the method. However, identification of small trees in
the suppressed canopy cover layer was poor. We also noticed that
identification of deciduous trees forming a continuous canopy surface
was not accurate either. We conducted a numerical evaluation of the
identification rate by comparing the coordinates of the reference trees
with the detected trees. We found 65% of the reference trees when
using a 3m search radius.

We classified all of the detected trees using combination 1 indices
without scaling features and with the weighting based on the number of
samples. These feature selections provided relatively good classification
accuracy for all classes (Table 3). For the three-class case, 65.1% of the
trees were classified as healthy, 26.5% as infested, and 8.4% as dead
(Fig. 6a,c). When only two classes were used, 82.4% of trees were
classified as healthy and 17.6% as dead. It could be expected that
broadleaved trees were classified into the class of healthy spruce trees.
Their spectra were closer to that of healthy spruces than to other
classes. There were also a few Scots pines (Pinus sylvestris L.) in the
research area. These trees were mostly classified as healthy as well.
Visual evaluation of the results confirmed these considerations.

Visual assessment of the spruce health maps revealed hotspot areas
of infestation, that is to say, areas with a large number of infested and
dead trees. In the best cases, the identified infested or dead trees mat-
ched well with the ground-truth data. However, in the western part of
the south area (Fig. 6c,d), a major portion of the trees classified as in-
fested in the three-class case were classified as dead in the two-class
case. An overestimation of dead spruces is, however, more preferable
than an underestimation of dead spruces. The maps may give a quick
overall view of the infestation situation for forest management pur-
poses.

4. Summary and outlook

We investigated the potential of novel remote sensing technologies
to evaluate tree health at the individual tree level in urban areas. We
classified spruces and received the best overall accuracy of 93% (kappa:
0.77) for two color classes (healthy, dead) in the entire study area
covered by the aircraft dataset. When using the classes healthy, in-
fested, and dead in a smaller sub-area, the finer spatial resolution UAV
dataset provided better results, with an overall accuracy of 81% (kappa:
0.70), than did the aircraft dataset, which provided an overall accuracy
of 73% (kappa 0.56). Identifying the infested class was the most trou-
blesome aspect of the investigation. Furthermore, we showed that the
method was quite insensitive to the number and distribution of training
data; in this sense, the individual tree-based approach had the ad-
vantage of minimizing background influences when focusing the spec-
tral analysis on the tree crowns. These results are very promising; thus,
the method developed in this study can be seen as an efficient tool for
timely updating and monitoring the health status of an urban forest at
the individual tree level.

Most recent studies have used lower spatial resolution data or an
area-based approach (Lausch et al., 2013; Fassnacht et al., 2014;
Lehmann et al., 2015; Foster et al., 2016). The advantage of the in-
dividual tree-based approach is that, ultimately, it provides a new level
of precision and efficiency for forest health management practices. In
sensitive urban forests, precision forestry is a highly attractive ap-
proach. The basis for such an approach is GIS with individual tree in-
formation, such as the tree positions and species, which have been
produced based on a multisource inventory (Holopainen et al., 2014).
Then, low-cost remote sensing tools can be used to assess and monitor
tree health. If individual tree-level information is not available, the
remote sensing campaign should be designed to support individual tree
detection, tree species classification, and tree health assessment at a
sufficient level of quality.

There are still many options for further developing the method used
in this study. With the low-cost technologies now available, multi-
temporal monitoring can be done in a cost-effective manner. In the case
of continuous multi-temporal forest health monitoring, methods de-
tecting changes can reveal new infestations (Senf et al., 2017). Other
spectral ranges, particularly short-wave-infrared (SWIR) (Foster et al.,
2016; Abdullah et al., 2018) or thermal (Junttila et al., 2016), can
provide additional information on the health status of a forest.

It is worth noting that our remote sensing datasets were demanding.
The UAV and aircraft datasets were collected on different dates, which
could have caused some differences in the spectral values. However, the
spectra of mature spruces could be expected to be relatively stable
because the data capture was carried out in the end of the growing
season. We used an advanced and rigorous radiometric processing ap-
proach (Honkavaara et al., 2013), but even still disturbances might
have reduced the accuracy of the results. Furthermore, uncertainties
related to the fieldwork might also have impacted the results and
quality assessment. The classification of Norway spruces in the field
was conducted over a span of four weeks in August. Weather and light
conditions varied from clear and sunny to gentle rain during the field
data capture. The visual crown color assessment can be affected by such
conditions, even though the observers were highly experienced.
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Additionally, the time gap between the first field assessments and the
aircraft data may already show a gradual deterioration of a tree crown
between those two dates. Despite the uncertainties, these results can be
considered very promising.

We expect that in the near future, the major part of the laborious
and costly fieldwork process could be replaced with cost-efficient, re-
mote sensing-based tools. The low-cost UAV tools could even be oper-
able by the managers of urban forests themselves. These results indicate
that in the future, such remote sensing tools will allow for rapid and

well-honed methods for planning and decision-making in cases of forest
disturbances and ultimately digitalization of the forest health man-
agement practices. Precise and rapid management operations are im-
portant particularly in the early phases of I. typographus colonization to
prevent a widespread outbreak.

5. Conclusion

This investigation developed an affordable remote sensing-based

Fig. 6. Individual spruce health maps are shown for the north area (a, b) and the south area (c, d) using three classes (a, c) and two classes (b, d) for classification.
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method for monitoring tree health to support the forest management
needs of small-scale areas, such as urban forests. Our method utilized
photogrammetry and hyperspectral imaging to identify the status of
bark beetle infestation of Norway spruce at the individual tree level. A
novel, low-cost hyperspectral camera was used as the predominant
sensing method from UAV and aircraft platforms. Data from both sys-
tems was suitable for detecting the health status of spruce trees, but the
UAV-based results were more accurate, which is likely because of the
finer spatial resolution and lower level of spectral mixing. The results of
the aircraft based data showed that using a small subset of features for
training provided almost as good results as using the full dataset.
Furthermore, training the classifier using the higher spatial resolution,
UAV-based spectral features provided similar classification results as
the use of lower spatial resolution, aircraft-based features. These results
suggest that when combining calibrated spectral information about
different infestation levels based on close-range UAV or laboratory
measurements with well-calibrated remote sensing hyperspectral ima-
gery and individual tree-based analysis, cost-efficient remote sensing
tools requiring a minimal amount of field work can be developed.
Reducing the need for expensive and time-consuming fieldwork and
using low-cost remote sensing tools enables affordable and rapid en-
vironmental monitoring and corresponds to the increasing forest health
management needs of urban areas.
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