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A problem for the impact hypothesis for the Cretaceous-Tertiary (K-T) mass extinction is the apparent 
absence of an identifiable impact site. The Manson Impact Structure is a candidate impact site because 
it is large (the largest recognized in the U.S.); it is relatively close to the largest and most abundant shocked 
quartz grains found at the K-T boundary; and its age is indistinguishable from that of the K-T boundary 
based on paleontological evidence, fission track dates, and preliminary 40Arl39Ar measurements. The region 
of northwest central Iowa that contains the Manson Impact Strucrure is covered by Quaternary glacial 
deposits that are underlain by Phanerozoic sedimentary rocks (mostly flat-lying carbonates) and Proterozoic 
red clastic, metamorphic, volcanic, and plutonic rocks. In a circular area about 22 miles (35 km) in diameter 
around Manson, Iowa, this normal sequence is absent or "disturbed," and near the center of the "disturbed" 
area granitic basement rocks have been uplifted about 20,000 ft (6000 m). Attention was drawn to Manson 
initially by the unusual quality of the groundwater there. Within the structure three roughly concentric 
zones of rock associations have been identified: (1) displaced strata, (2) completely disrupted strata, and 
(3) igneous and metamorphic rocks. Manson was established as an impact structure based on its circular 
shape, its central uplift, and the presence of shocked quartz within the granitic central uplift. A gravity 
survey identified locations of low-density brecciated rocks and high-density uplifted crystalline rocks, but 
the outer boundary of the structure could not be established. Aeromagnetic and ground magnetic surveys 
indicated locations and depths. of shallowly buried crystalline rock and the locations of faults. A refraction 
seismic survey identified the crystalline central uplift, determined that the -average elevation of bedrock 
is 70 ft (20 m) higher outside the structure than within, and was used to map the bedrock topography 
within the structure. A connection between the Manson impact and the K-T boundary may be established 
or refuted through study of the impact energy, the impact time, and compositions of host rock, possible 
impactors, and impact melts. 

INTRODUCTION 

The end of the Mesozoic era is marked by the extinction of 
up to half of the species then on the Earth. Based on anomalously 
high iridium abundances in Mesozoic-Cenozoic (Cretaceous
Tertiary or K-T) boundary clay, Alvarez et ai. (1980) concluded 
that a large extraterrestrial object (about 10 km in diameter) 
had collided with the Earth and produced a thick, globally dispersed 
cloud of dust that blocked light from the sun and ultimately 
caused wholesale loss of life on the Earth. 

A problem for this impact or collision hypothesis is the apparent 
absence of a large crater, perhaps 200 km in diameter, to mark 
the site where the postulated impact occurred. The presence of 
larger and more abundant shocked quartz grains at North 
American K-T boundary sites indicates a North American 
continental impact site is more likely than one in an ocean basin 
or on another continent (French, 1984). While the absence of 
a known large crater associated with the K-T boundary does not 
disprove the impact hypothesis, the positive identification of such 
a crater would greatly strengthen it. Therefore, it is appropriate 
to study thoroughly all craters that may be related to the K-T 
boundary, especially those on the North American continent. 

It was known over 20 years ago that rocks underlying and 
surrounding the town of Manson, Iowa, had been affected by 
a large impact (Short, 1966; Bunch, 1968). But vigorous study 

of the structure was not undertaken because it is entirely covered 
by Pleistocene glacial deposits. However, nearly identical ages for 
the Manson Impact Structure and the K-T boundary have recently 
stimulated considerable interest in the structure. This interest 
has resulted in the formation of the Manson Impact Study Team 
(MIST) and the preparation of this report. 

The Manson Impact Structure is only 22 miles (35 km) in 
diameter and may be too small to account for all of the effects 
related to the K-T boundary, but it may account for some of 
them and remains the best candidate for an impact structure 
related to the K-T boundary for the following reasons: (1) It 
is the largest impact structure recognized in the U.S.; (2) it is 
relatively close to the largest and most abundant shocked quartz 
grains found at the K-T boundary; and (3) recent preliminary 
40Ar/39Ar age measurements have narrowed the time of the 
Manson impact to an interval of about 4 million years, which 
includes the time of the K-T boundary, about 66 million years 
ago. 

The objective of this report is to summarize what has been 
learned about the Manson impact up until the present time. The 
report consists of a summary of the pre-Pleistocene geology of 
northwest central Iowa, a description of the geology of the 
"disturbed" area surrounding Manson, Iowa, the results of 
geophysical studies that include the Manson structure, a 
presentation of age data for the Manson impact, and a discussion 
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Fig. 1. Geological map of the bedrock in the area of northwest central Iowa that includes the Manson Impact Structure (modified from Hershey, 
1969, and Munter et aL, 1983). Most of the region, and all of the Manson Impact Structure, is covered by Quaternary glacial deposits, so most 
of the information shown on the map was obtained through study of water well cuttings. 
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emphasizing the possible relationship between the Manson impact 
and the K~T boundary mass extinction. 

GEOLOGY OF NORTHWEST CENTRAL IOWA 

Stratigraphy 

The region of northwest central Iowa that contains the Manson 
Impact Structure is covered by a thick sequence of Quaternary 
sediments. Mesozoic, Paleozoic, and Middle Proterozoic sediments 
and sedimentary rocks overlie a basement of Proterozoic 
metamorphic and plutonic rocks (Figs. 1-3). The basement 
sequence includes garnetiferous oligoclase~biotite~quartz gneiss 
that was apparently part of an island arc sequence accreted to 
the Superior craton during the Penokean orogeny about 1850 Ma 
ago. This gneiss was invaded by migmatitic, intrusive pink~to~ 
leuco granite, sometimes displaying lit~par~lit structure, and 
magnetite metasomatism, which probably occurred during a 
continent~wide felsic igneous event about 1450 Ma ago. These 
rocks were cut by diabase dikes, probably intruded during 
Keweenawan rifting, about 1000 Ma ago. All of these basement 
lithologies can be observed in the central uplift of the Manson 
Impact Structure (Dryden, 1955). The general ages of the Penokean 
gneiss and subsequent granite plutonism in this area were 
determined by Z. Peterman (personal communication, 1987). 

With the waning of rifting and volcanism during formation 
of the Midcontinent Rift System about 1000 Ma ago, a period 
of regional subsidence led to the deposition of a thick sequence 
of fluvial sediments dominated by red shales, siltstones, and 
sandstones informally called "red clastics" in Iowa. The "red 
clastics" probably consist of an o~der sequence of immature 
sandstones, conglomerates, and shales equivalent to the Oronto 
group of the Great Lakes area overlain by a sequence of more 
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mature feldspathic sandstones and quartz arenites similar to the 
Bayfield group of Wisconsin. Gravity modeling suggests that the 
"red clastics" range from about 18,000 to 24,000 ft (5500-7400 m) 
in thickness in the area of the Manson Impact Structure (Anderson, 
1986a,b). Cores and cuttings from within the structure contain 
rocks tentatively identified as "red clastics." 

Above the "red clastics" a similar fluvial sequence, presently 
interpreted as Middle Cambrian, is preserved just beneath the 
rounded, frosted quartz arenites of the Mt. Simon formation, 
the first unit of a sequence of dozens of marine transgressive
regressive cycles that occurred in the central midcontinent during 
the Paleozoic. The rocks deposited during these cycles are 
dominated by marine carbonates, shales, siltstones, and sandstones, 
but include minor continental sandstones, siltstones, shales, and 
coals, which are especially thick in Middle Pennsylvanian strata. 

During the Mesozoic Jurassic shale, sandstone, and gypsum, 
called the Fort Dodge beds, were deposited and preserved in 
structures east of the Manson . structure. Cretaceous fluvial 
sediments of the sandstone~dominated Nishnabotna member and 
the more shaley Woodbury member of the Dakota formation 
are overlain by Graneros shale, Greenhorn lim·estone, and Carlile 
shale, which occur as rare, locally preserved outliers. A map of 
the bedrock geology around the Manson structure is shown in 
Fig. 1. Rocks of the Mississippian Kinderhookian and Osagean 
series and overlying Cretaceous Woodbury member are found 
north of the structure and Pennsylvanian Cherokee group rocks 
to the south. 

The bedrock is overlain by 100 to 300 ft (30-90 m) of 
Quaternary glacial deposits. The basal, pre-Illinoian Alburnett 
formation is probably Pleistocene and is overlain by pre-Illinoian 
Wolf Creek and Wisconsinan Sheldon and Dows formations. A 
summary of the stratigraphy in the area around the Manson Impact 
Structure is given in Fig. 2. 

KUlZ] Manson Disturbed Area 

Carlile Shale 


Kgl~ Greenhorn Limestone 


Kc D 
Cretaceous 

Kgs r:J1 Graneros Shale~ 

Kdw I2J Woodbury Mbr. } Dakota 

Kdn~ Nishnabotna Mbr. Fm. 

Jfd [] Fort Dodge Beds - Jurassic 

Pch~ Cherokee Gp. Pennsylvanian 

Mm[J Meramec Series } Mississippian 

MkG Ki nderhook Series 

Du ~ Devonian Undifferentiated 

Om mMaquoketa Fm.} 
Ordovician 

Og E:]..Galena Gp. 

PCc EJ Proterozoic Undifferentiated Fig. 1. Legend 
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Fig. 2. Representative stratigraphic section in the area of northwest central Iowa that includes the Manson Impact Structure. 



5 

Structure 

An overall NE,SW structural grain in the basement rocks in 
the area of the Manson Impact Structure was produced by the 
accretion of a series of island arcs and associated rocks onto the 
northeast,trending margin of the Archean Superior Province, 
which lies about 60 miles northwest of the Manson structure. 
This grain is cut by the anomalous, north,trending Central Iowa 
Arch, apparently the product of a granitic pluton intruded about 
1450 Ma ago. High,angle, normal faults associated with the 
formation of the Midcontinent Rift System followed the older 
northeasterly structural trend. These faults formed the walls of 
high, relief grabens that filled with mafic volcanics,dominated 
Keweenawan rocks. Volcanism and graben subsidence then 
apparently ceased, but isostatic subsidence of the area continued, 
leading to the deposition of thousands of feet of fluvial "red 
clastics" sequence rocks. A major regional compressive event 
followed shortly and reversed the sense of throw on the graben, 
bounding faults by lifting the Keweenawan volcanic rocks and 
forming the Iowa Horst (Fig. 3) about 6 miles (10 km) southeast 
of the Manson structure. Clastic sediments shed from the rising 
horst are a major component of the upper portion of the "red 
clastics" in the area. The region was subsequently subjected to 
about 500 Ma of erosion, which removed most of the sediments 
from the Iowa Horst and produced a low relief, deeply weathered 
terrain. 

A map showing the relationships of the Precambrian rocks 
in the area of the Manson structure is given in Fig. 3. A map 
showing the elevation of the top of Precambrian crystalline rocks 
in the same area and one showing the elevation of the top of 
the "red clastic" sequence, or the top of the crystalline rocks 
where the "red clastics" are absent, are given in Figs. 4 and 5. 
The "difference" between the contours shown in these two maps 
is the thickness of the "red clastic" sequence. 

The stratigraphic and structural relationships described are 
summarized schematically in the cross,section shown in Fig. 6. 
The section trends NW,SE across the state of Iowa. Because of 
extreme vertical exaggeration, the Manson structure appears as 
a narrow "finger" extending from just below Pleistocene sediments 
down to a depth of more than 4000 ft (1300 m). The transient 
cavity that existed momentarily while the structure was developing 
is shown to penetrate to a depth of about 20,000 ft (6000 m). 
(A schematic view of the impact structure not distorted by vertical 
exaggeration is shown in Fig. 17.) 

Thinning of Lower Paleozoic marine shelf carbonates and 
clastics delineates a persistent, north,trending arch located at 
the northern end of a magnetic anomaly. Bunker (1981) named 
this structure the Central Iowa Arch. This thinning of sediments 
over the Central Iowa Arch is shown on isopach maps of Sloss 
(1963) Sauk sequence, Cambrian to ~wer Ordovician (Fig. 7), 
and Tippecanoe sequence, Middle Ordovician to Silurian (Fig. 
8). Bunker (1981) suggested that the Central Iowa Arch "stood 
in mild positive relief during the initial incursions of the Middle 
Devonian seas" as is suggested in his paleogeographic for the map 
pre,Kaskaskia sequence, pre~Devonian to Mississippian (Fig. 9). 
The Manson structure lies at the north end of the Central Iowa 
Arch (Figs. 7-9). 
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TABLE 1. Mineral content of water from Manson and other wells (parts 
per million; Norton et aL, 1912). 

Average of Nine Deep 
Element or Radical Wells Manson 

Silica (Si02) 16 10 
Calcium (Ca) 210 16 
Magnesium (Mg) 67 1 
Sodium and potassium 181 221 

(Na+K) 
Bicarbonate radical 373 4

(HC03) 
Sulfate radical (S04) 719 162 
Chlorine (Cl) 10 206 
Total solids t 1425 651 

-Carbonate radical (C03), 38 parts. 

tSum of the constituents minus one,half the bicarbonate radical. 


Mesozoic structural features are also present in the area. One 
preserves economic thicknesses of Jurassic evaporites along the 
northern.-boundary fault zone of the Iowa Horst. Another is the 
Manson Impact Structure itself. The limits of the Manson Impact 
Structure were delineated by Hershey (1969) primarily on the 
basis of thick, structurally preserved shale units and other 
anomalous rock sequences seen in samples of drill cuttings. 
Surrounding the delineated limits is a ring 6 to 10 miles wide 
that is largely devoid of Cretaceous rocks, which suggests uplift 
and erosion of rock strata around the. impact structure. This is 
illustrated by the isopach map for the Cretaceous Period shown 
in Fig. 10. 

GEOLOGY OF THE MANSON 

IMPACT STRUCTURE 


Early Work 

Geologic structure in the Manson area was first recognized 
to be unusual because of the character of the local groundwater. 
In 1912 it was reported that "the well at Manson is the only 
deep well in the state whose water was found to contain normal 
carbonates; the magnesium and calcium in it are very low, the 
solids being mostly alkaline chlorides and sulfates. It may be 
questioned whether its comparatively soft water and its alkalinity 
may not be due to contamination by surface water owing to 

faulty casing" (Nortonet ai., 1912, p. 174). The data that stimulated 
such skepticism are shown in Table 1. 

A driller's log of the Manson city well reported "granite,like 
rock" at a depth of 1250 ft (380 m). According to Norton et 
ai. (1912, p. 1017), "it is improbable that any deformation exists 
in this area sufficient to bring the floor of crystalline rocks so 
near the surface." We now know an improbable event did occur, 
and it did produce a central uplift or peak consisting of crystalline 
rock. 

Other deformation probably related to the Manson impact was 
recognized early. "In Gilmore this limestone surface was found 
to drop 80 ft (24 m) between two weUs 150 ft (46 m) apart, 
and other similar evidence suggests that in some localities there 
may be a buried limestone escarpment" (Norton et al.• 1912. 
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p. 1079). This "escarpment" is apparently a peripheral fault 
delineating the rim of the crater. 

On May 1, 1928, the Manson city well #2 was completed and 
a description of the rocks encountered based on cuttings was 
obtained (Norton, 1928, pp. 246-254). The geologic section of 
this well, as well as Manson city well # I, were recognized as 
unique. Deep wells surrounding the Manson structure in all 
directions penetrate flat or gently dipping Paleozoic strata 
consisting mostly of carbonate rocks. At Manson, beneath 
230 ft (70 m) of Pleistocene tills and gravel, is almost 800 ft 
(244 m) of material described as shale with occasional sandstone. 
The bottom 200 ft (61 m) was described as mostly arkose. Cuttings 
obtained while drilling through granite or granitic gneiss may have 
been thought to be derived from an arkose, because igneous and 
metamorphic rocks were not expected at this level. 

Norton (1928) interpreted the absence of strata normally found 
in northwest Iowa and the presence of a thick sequence of marine 
shales underlain by "arkose" as being due to a large erosion channel 
filled first by continental sediments, arkose derived from granitic 
rocks to the north, and later by marine shales. The inadequacy 
of cuttings as a basis for interpretation is illustrated by Norton's 
(1928) observation that "the large content of crystalline rock 
in the lower cuttings of the Manson well indeed give rise to 
the question of whether the drill was working in decayed gneiss 
or granite," which, in fact, it was. Norton rejected this possibility, 
however, because the cuttings contained quartz, sand, and 
limestone pebbles that could not have come from gneiss or granite. 
It is likely that the sandstone and limestone pebbles washed into 
the borehole from overlying strata. 

In addition, the thick section of shale itself was observed to 
have unusual characteristics. "The source of the coarse material 
in these shales is not determined" (Norton, 1928). A wide variety 
in texture and color of limestone fragments exists in the so-called 
shale, most of which have no counterpart as layers anywhere 
in the overlying strata already penetrated. Therefore, "it proves 
that these fragments were not broken by the drill from limestone 
beds in place," but were native to the strata ("shale") in which 
the drill was working." The presence in the so-called "shale" 
of fragments of various rocks and minerals that were not 
encountered in overlying strata may indicate penetration of a 
polymict breccia or suevite-like rock. 

Drill Cores 

Alvina Luebke core. The first known core drilling project within 
the Manson Impact Structure was on the Alvina Luebke farm 
at a location described as the NE 114 of the NE 114 of the 
NW 114 of section 25 of T89N R31W (NE, NE, NW, section 
25, T89N, R31W) in Calhoun County. The well was drilled to 
a depth of 1223 ft (373 m) with a cable tool rig in late 1948 
and early 1949. The drilling encountered about 450 ft (137 m) 
of sandstone and red Proterozoic shales at the bottom of the 

, hole. In April 1950 the well was deepened. James Cooper, U.S. 
Geological Survey/Iowa Geological Survey geologist, was at the 
site, but the extent of federal government participation in the 
drilling project is not documented. A red Proterozoic shale was 
cored from 1223 to 1270 ft, then a poorly consolidated sandstone 
was drilled with a rock bit from 1270 to 1380 ft. Coring was 
resumed at a depth of 1380 ft and continued to 1428 ft through 
a Paleozoic dolomite. A fishtail bit was used to complete the 
drill hole, from 1418 to 1532 ft, penetrating Proterozoic red shales. 
The strata in this well are completely disrupted. Core and cutting 
samples are stored at the Iowa Department of Natural Resources, 
Geological Survey Bureau, however only about one-half of the 
core is preserved (the other half was apparently taken as souvenirs 
by local residents at the time of the drilling.) 

In late 1953 a core drilling project was undertaken to recover 
uplifted granitic rock (Manson 2-A core) and surrounding 
"disturbed" bedrock (Manson I-A core). The drilling was a 
cooperative effort between the Iowa Geological Survey (lGS) and 
the U.S. Geological Survey (USGS). According to Hoppin and 
Dryden (1958) , the reasons for drilling were that the crystalline 
mass was geologically anomalous and an unusually good source 
of soft water. 

Manson I-A core. The Manson I-A core was taken at NE, 
NW, NW section 30, T90N, R31W in Pocahontas County, Iowa. 
This location is about 4 miles (6.4 km) north and 3/4 of a mile 
(1.2 km) west of the center of Manson, Iowa. The drilling by 
C. L. Jennings and V. Balmer began on August 3, 1953, and 
was completed on September 18, 1953. The drill rig used is shown 
in Fig. 11. Only cuttings were obtained for the uppermost 187 ft 
(57 m). From that depth, which is just below the glacial drift, 
to the bottom of the hole [360 ft 4 in (109.8 m)], core was 

M. Proterozoic 

Mkc o Keweenawan Clastic Rocks 

aMkt Keweenawan Volcanic-dominated Rocks G 

Mp rlJ Plutons (ca. 1450 Ma) 


L. 	Proterozoic 


Lp ~ Penokean (ca. 1850 Ma) Island Arc and associated rocks 
 Fig. 3. Legend 
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Fig. 7. Isopach map of Sauk sequence rocks (Cambrian to Lower Ordovician) in the central midcontinent (modified from Bunker et al., in press, 
Fig. 2). The location of the Manson Impact Structure is indicated by M and the Central Iowa Arch by CIA. The contour interval is 50 m. 

obtained. The dominant lithology displayed in the core is shale, 
with minor limestone. Considerable evidence for deformation was 
also observed. An abbreviated description of that core is presented 
in Table 2. Although the I~A core "was drilled so as to penetrate 
the disturbed sedim~ntary rocks and the contact between these 
rocks and the crystalline mass, drilling difficulties caused 
abandonment of the operation before the contact was reached" 
(Hoppin and Dryden, 1958). 

Manson 2,A core. The Manson 2~A core was taken at SW, 
SW, SW, section 29, T90N, R31W, a point approximately 3 miles 
(4.8 km) north of the center of Manson, Iowa. Core was obtained 
beginning just below glacial drift, 93 ft (28 m) below the surface, 
and ending at the bottom of the hole, 479 ft (146 m) below 

the surface. The drilling began On September 23 and was completed 
On October 17, 1953. The entire core was described by J. E. 
Dryden, a graduate student at the University of Iowa, as a part 
of a master's thesis (Dryden, 1955, pp. 11-18). That description 
is summarized in Table 3. The core displays abundant evidence 
of extreme deformation, extensive hydrothermal alteration and 
weathering. Photographs of the more abundant rock types present 
in the core are shown in Figs. 12a-d. "A chloritized breccia is 
One of the more common rocks present. It appears to be confined 
to the upper 260 ft (79 m) of the core. Less important in the 
upper part, but increasingly important with depth, is dark gray 
gneiss, which is the oldest rock. Distributed irregularly throughout 
the core are coarse to medium~grained pink granite, pink gneissoid 
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Fig. 8. Isopach map of Tippecanoe sequence rocks (Middle Ordovician-to-Silurian) in the central midcontinent (modified from Bunker et ai., in 
press, Fig. 3). The location of the Manson Impact Structure is indicated by M, and the Central Iowa Arch by CIA. The contour interval is 
SOm. 

granite, and small amounts of phyllonite, syenite, and diabase. 
All of these rock types are found as fragments in the breccia" 
(Dryden, 1955). 

Detailed descriptions of the minerals that make up these rocks 
and their textural relationships are given by Dryden (1955) and 
Hoppin and Dryden (1958). Photographs of hand specimens and 
descriptions of 57 thin sections are given by Dryden (1955). (Note: 
Thin sections Dryden used and the cores described in this section 
are maintained in the laboratories of the Iowa Department of 
Natural Resources, Geological Survey Bureau, 123 North Capitol 
Street, Iowa City, Iowa 52242.) 

Borehole Cuttings 

Hale (1955) used several sets of well cuttings to define what 
was thought then to be a "volcanic basin" surrounding Manson. 
Control available at that time suggested a roughly elliptical basin 
whose length in a northeastward direction was about 25 miles 
(40 km) and whose width was about 18 miles (29 km). It was 
recognized that Manson was "possibly a cryptovolcanic structure." 
[The following acknowledgment is made by Hale in his report 
on the geology and groundwater resources of Webster County, 
Iowa (Hale, 1955). "The theory expressed as to the origin of 
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Fig. 9. Isopach and paleogeographic map of pre-Kaskaskia sequence rocks (pre-Devonian to Mississippian) in the central midcontinent (modified 
from Bunker et al., in press, Fig. 4). The location of the Manson Impact Structure is indicated by M and the Central Iowa Arch by CIA. The 
contour interval is 50 m. 

the structural features of the Manson area was developed by C. 
R. Murray of the U.S. Geological Survey and the description 
of it in this report is based on discussions with him." C. R. Murray 
was a geologist at the USGS Water Resources Division office 
in Iowa City in the early 1950s and was apparently responsible 
for obtaining the two Manson drill cores.] 

"Details of the structure have not been worked out because 
the area is covered by glacial drift. Well cuttings indicate that 
the regional structure is abruptly broken by faulting, which has 
produced a roughly circular structural basin. Outside the basin, 
the section penetrated by wells generally consists of Pleistocene 

drift and Paleozoic strata. Within the basin, wells penetrate the 
Pleistocene drift and then apparently continue in Cretaceous 
strata to about 600 ft (180 m). Below this the deeper wells penetrate 
about 900 ft (270 m) of red arkosic sandstone, siltstone, shale, 
and an occasional dolomite of undetermined age. Near the center 
of the structure, however, wells encounter igneous rock consisting 
largely of microcline feldspar or basic tuffaceous rock at a depth 
of a few hundred feet and in places less than 100 ft (30 m). 
That the crystalline rock continues to considerable depth is shown 
by a well. ... which entered it at 389 ft (119 m) and finished 
in it at 874 ft (266.4 m)" (Hale, 1955). 
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Fig. 10. Isopach map of Cretaceous rocks in the central midcontinent (modified from Bunker et al., 1988, Fig. 12). The location of the Manson 
Impact Structure is indicated by M. Cretaceous rocks have been uplifted and eroded around most of the Manson structure. The contour interval 
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Shown in Fig. 13 are the locations of water wells in the area 
of the Manson structure from Hale (1955). Filled circles correspond 
to wells that penetrate the normal Paleozoic section (mostly near 
flat,lying carbonates) in that part of Iowa. Open circles correspond 
to wells that lack the normal Paleozoic section. 

As more wells have been drilled in the Manson area, the 
boundary of the structure has been established more accurately. 
Furthermore, Anderson and coworkers at the Iowa Geological 
Survey Bureau have identified four general stratigraphic 
associations using logs of wells in the Manson area. These 
associations are described below, and wells penetrating the 
different associations are located on the map in Fig. 14. 

1. Normal Phanerozoic strata. Rocks immediately underlying 
glacial till may be Cretaceous, Mississippian, or Pennsylvanian, 
depending on the location around the structure. In any case, 
the strata present beneath glacial till are easily correlated 
throughout the region. Wells that penetrate normal Phanerozoic 
strata are indicated on the map by filled circles. As an example, 
an abbreviated description of cuttings from a well in normal 
Phanerozoic strata is given in Table 4. 

2. Displaced strata. Includes Cretaceous shales preserved on 
down,dropped blocks and Keweenawan shales on uplifted blocks 
encountered at or near the bedrock surface. Strata are in their 
original depositional sequence, although evidence for faulting may 
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TABLE 2. Abbreviated description of the Manson I-A core. 

Depth in Feet 	 Rock Type 

0-170 Quaternary drift, medium grained, sand, gravel, and 
some till, poor quality 

170-187 Dark green laminated shale 
187-189 Brecciated dolomitic limestone 
198-220 Dark green, calcareous shale, some with embedded 

sand; green {probably Cretaceous} marine shale 
220-230 Black, waxy fissile shale 
230-250 Medium to dark green calcareous shale with fragments 

of brecciated limestone and steeply dipping fracture 
planes 

250-295 Medium to dark green calcareous shale with "carbo
naceous specks" 

295-315 	 Interbedded dark green shale, siltstone, and very fine
grained micaceous sandstone {probably upper Dakota 
formation} 

315-360.4 	 Dark green lumpy shale, contorted, 3-in calcareous 
sandstone at 352.6 ft {probably upper Dakota 
formation} 

360.4 T.D. 

IGS W-6133 {C-113}. Location: NE, NW, NW, section 30, T90N, R31N. 
Adapted from original description done in 1953 by D. Northup {an example 
of completely disrupted strata}. Appears to be section of Cretaceous rocks 
including marine shales and some upper Dakota formation (Woodbury 
member) lithologies. Possible admixture of some Paleozoic carbonates at 
187-189 ft. 

Fig. 11. Drill rig used to obtain Manson USGS #1-A.and #2-A cores 

between August 3 and October 17, 1953. 

be observed. Other Phanerozoic units may yet be discovered as 
displaced strata. Wells containing displaced strata are indicated 
on the map by open circles. As an example, an abbreviated 
description of cuttings from a well in displaced strata is given 
in Table 5. 

3. Completely disrupted strata. Exotic lithologies are present, 
units are not in the normal stratigraphic sequence, and evidence 
for severe deformation is present. These rocks are poorly bedded, 
if at all, and often include mixtures of sedimentary, igneous, and 
metamorphic rocks, and some display glassy material. Wells that 
penetrate completely disrupted strata are indicated on the map 
by open squares. The Manson I-A core penetrates completely 
disrupted strata dominated by Phanerozoic rocks. An abbreviated 
description of this core is given in Table 2. Other wells displaying 
especially unusual strata, described as tuff, are also considered 
in this category. 

4. Igneous and metamorphic rocks. Rocks are mainly granites 
and granitic gneisses, apparently uplifted from the Precambrian 
basement and commonly brecciated. Igneous and metamorphic 
rocks are indicated on the map by open triangles. The Manson 
2-A core penetrates igneous and metamorphic rocks and is 
described in detail by Dryden (1955). His description is summarized 
in Table 3. 

Also shown in Fig. 14 are the locations of the Alvina Luebke 
and Manson I-A and 2-A core holes. 

The abnormal strata underlying the area around Manson were 
"known to crop out only in the NE 114 of the NE 114 of the 
SE 114 of section 11, T89N, R30W," along the right bank of 
the Lizard Creek immediately upstream from the bridge over the 
stream. The outcrop was "a few feet of gray micaceous (marine) 
shale" exposed at low-water level (Hale, 1955). (The authors have 
attempted, without success, to rediscover this outcrop. It may 
have been destroyed by road and bridge construction c.ompleted 
in the intervening years.) 

Impact Hypothesis 

By the early 1950s the area around Manson was recognized, 
based mainly on well cuttings, to be anomalous for several reasons: 
(1) granitic rocks are about 20,000 ft (6000 m) too high in the 
section near Manson; (2) the sedimentary rocks near Manson 
range from being somewhat out of place stratigraphically to being 
t'otally disrupted and mixed, in contrast to orderly sequences of 
rocks found 20 miles away in all directions; (3) well water from 
Manson is remarkably soft; and (4) both granitic and nearby 
sedimentary rocks show evidence of violent d~formation. 

The first publication to deal exclusively with the Manson 
structure was a note by Hoppin and Dryden (1958). They considered 
the available information about the rocks in the Manson area 
and presented a map similar to the one shown in Fig. 13 and 



16 A Compilation of Information and Data on the Manson Impact Structure 

b 
a 

bi 


d c 

Fig. 12. Samples of Manson 2-A core. Core diameters are 1.6 inches (4 cm). From Dryden (1955). (a) Chloritized microbreccia. Depth, 195 ft 
(59 m); di - diabase, gr - granite, bi - biotite schist, and gngr = gneissoid granite. (b) Dark gray gneiss. Depth, 335 ft (l08 m). Note small 
fault perpendicular to foliation. (c) Depth 235.5 ft (72 m). Brecciated granite. (d) Depth, 352 ft (107 m). Granite and gneissoid granite with 
biotite schist. 
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TABLE 3. Abbreviated description of the Manson 2,A core. 

Depth in Feet Rock Types 

0-93.5 
93.5-102 

102-103 
103-107 
107-113 
113-116 
116-117 
117-122 
122-124 
124-129 
129-135 
135-136 
136-140 
140-142.5 
142.5-144 
144-150 
150-154 
154-156 
156-157 
157-159 
159-162 
162-165 
165-184 

184-191 
191-195 
195-203 
203-225 
225-228 
228-232 
232-242 
242-252 
252-252.5 
252.5-253 
253-254 
254-280 

280-298 
326-352 
352-365 
365-377 
377-390 

390-402 

402-404 
404-410.5 
410.5-411 
411-427 
427-435 
435-439 
439-442 
442-449 
449-461 
461-462 
462-470 
470-479 
479 T.O. 

Glacial drift, undescribed 
Deeply weathered mixture of granite, phyllite, diabase, and polymictic microbreccia, 
with intense staining by ferric oxid~ 
No recovery 
Phyllite w!th fractures filled by micro breccia 
No recovery 
Granite, medium grained, weathered 
Granitic gneiSli, medium grained 
No recovfry 
Graniric gneiss, medium grained 
PipL:; medium,grained granite 
No recovery 
Pink, mediunl.'gfained granite 
light gray, fine,grained biotite,oligoclase,quartz gneiss 
No recovery 
Granitic gneiss, medium grained 
As in 136-140 
Granitic gneiss, medium grained 

No recovery 

Granitic gneiss, medium grained 

Dark gray gneiss 

Pink, medium,grained granitic gneiss 

No recovery 

Microbreccia with chloritic matrix, fragments of granite, light gray gneiss, diabase, 

coarse'gfained biotite schist, and coarse pink syenite 

Gray quartz,oligoclase,biotite gneiss, cut by veins of micro breccia 

Microbreccia with fragments of gneiss, solution cavities with calcite crystals 

Pink, medium'gfained granite 

Microbreccia with fragments of granite, biotite schist, gneiss, and diabase 

Pink, medium,grained granite 

Pink, medium'gfained granitic gneiss 

Breccia with solution cavities lined with chlorite and calcite 

Brecciated granite, with large masses of biotite and chlorite 

Dark green weathered diabase 

Microbreccia 

Phyllite with cavity fillings of zeolite (?) minerals 

Microbreccia with fragments of coarse,grained granite and biotite schist, solution cavi, 

ties filled by calcite 

Light gray gneiss cut by veins of microbreccia 

Dark gray, fine'gfained gneiss, cut by small,scale faults and veins of microbreccia 

Pink medium'gfained granite 

Garnetiferous oligoclase,biotite,quartz gneiss, dark gray 

Alternating bands of pink, medium,grained granite, microbreccia, and dark gray fine' 

grained gneiss 

Dark green,white, fine,grained augen gneiss, augen up to 3 mm with magnetite at 

center 

Pink, medium,grained granite 

Augen gneiss as above 

Brecciated granite 

Augen gneiss, cut by small,scale faults 

Pink, medium,grained granite 

Dark gray fine'gfained gneiss 

Pink medium'gfained brecciated granite 

Alternating bands of granitic gneiss and augen gneiss 

Dark gray, fine,grained <;lugen gneiss 

Pink, medium,grained granitic gneiss 

Pink, medium'gfained granitic gneiss 

Alternating granitic gneiss and dark green gneiss 


IGS,W,27Pl. Location: SW, SW, SW, section 29, T90N, R31W. Adapted from original description done 
by Dryden, 1955, pp. 11-18 (an example of granite and granitic gneiss rocks). 
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Fig. 13. Map of the area around Manson, Iowa, showing the locations of weUs that penetrated a normal Paleozoic section (e) and those that 
did not (0) (from Hale, '1955). The dashed line indicates Hales' estimate of the boundary of the Manson "disturbed" area. 

a cross-section similar to the one shown in Fig. 15. They noted 
the similarity of Manson to other large circular structures with 
central uplifts' and evidence for explosive deformation and 
concluded that "the mechanism of intrusion is believed to be 
the same as that which caused the formation of the cryptovolcanic 
structures described by Bucher" (1933). 

During the following year R. Dietz gave a lecture at the 
University of Iowa and suggested to Hoppin, who raised no 
objection, that "cryptoexplosion" might better describe the 
Manson structure, thereby allowing an impact origin for Manson. 
In the 1960s several investigators visited the Iowa Geological 
Survey and acquired samples from core loA. Ted Bunch and 
A. Cohen (R. A. Hoppin, personal communication, 1987) 

attempted unsuccessfully to identify coesite or stishovite in quartz 
grains. Short (1966) first reported the presence of planar features 
in quartz grains from Manson core samples. A photograph of 
such a quartz grain from the Manson l-A core is shown in Fig. 
16. The multiple sets of planar features were judged to have 
been produced during a shock event. Their presence strengthened 
the case for an impact origin for Manson. These findings were 
confirmed by Bunch (1968), Short and Bunch (1968), and Canigy 
and Short (1968). During this period one of the authors a.H.) 
and Fred Horz also tried unsuccessfully to identify coesite and 
stishovite. 

Samples from cores and cuttings from nearby water wells were 
examined by Yoho (1967), who ~oted the abundance of cataclastic 
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Fig. 14. Map of the area around Manson, Iowa, showing the locations of wells that penetrate a normal Phanerozoic section (e), displaced strata 
(0), completely disrupted strata (0), and igneous and metamorphic rocks (bo). Data were collected by Anderson and coworkers. Locations where 
cores have been obtained are also indicated (*). The symbols (+) are township comers and are 6 miles (10 km) apart. The dashed line is from 
Hershey (1969) and is for reference only. It reflects the limits of the structure based on data available in 1969. The data shown are those available 
in 1987. 
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TABLE 4. Abbreviated description of the Rockwell city well #3. 

Unit Depth in Feet Rock Type 

Pennsylvanian 0-180 Dark gray carbonaceous shales, 
pyritic, with interbedded thin sand
stones and variegated mudstones 

Mississippian 360-640 Interbedded limestones and cherty 
dolomites 

"Sheffield" shale 640-665 Green dolomitic shale 
Devonian 665-1165 Dolomites with interbedded thin 

shales, siltstones, and sandstones 
U pper-Middle Ordovician 1135-1365 Cherty dolomites 
Decorah 1365-1385 ' Green pyritic shale 

Platteville 1385-1400 Dolomite 
Interval 1400-1485 Interbedded dolomites with phos

phate nodules and green shales 
St. Peter sandstone 1485-1530 White sandstone, medium grained 
Shakopee formation 1530-1700 Interbedded sandy dolomite and 

sandstone 
Oneota formation 1700-1800 Sandy dolomite with thin inter-

bedded shale and chert 
Jordan formation 
St. Lawrence formation 

. 1800-1865 
1865-1960 

Sandstone, fine grained 
Silty dolomite, glauconite at base 

IGS-W-4094. Locations: NW, SE, NE, section 36, T88N, R33W. Adapted from original description done 
in 1950 by M. Parker (an example of normal Phanerozoic strata). 

·Probably older Cambrian units as well. 

TABLE 5. Abbreviated description of the Erling Malmin well, Clare, Iowa. 

Depth in Feet Rock Type 

0-80 Quaternary, till (granite at 80-85 ft probably from tills) 
80-155 Probably Cretaceous shale (pierre?), inoceramid at 85-90 ft (contains till and 

till-derived 
igneous caving to 175 ft) 

155-205 Shale with some sandy limestone, needs restudy, might be Niobrara facies(?) 
205-255 Shale, some ironstone (probably Cretaceous) 
255-385 Shale, calcareous, with "white specks" (forams), fish material, common Inoceramus 

(Cretaceous marine shale, probably Niobrara and/or Carlile) 
385-420 Shale as above and Inoceramus-rich limestone (probably Greenhorn) 
420-500 Shale as above With Inoceramus, marine shale (probably Greenhorn and Graneros) 
500-680 Mixed gray shale (noncalcareous), siltstone-sandstone, ironstone, carbonaceous shale + 

lignite, common siderite-probably disturbed) 
680-710 Sand, sounds like Lower Dakota sand, probably disturbed 

Probable Stratigraphy 

Unit Depth in Feet 

Quaternary 
Pierre? 
Niobrara? 
Carlile 
Greenhorn 
Graneros 
Dakota 
Woodbury 
Nishnabotna 

0-80 
80-155 
155--250 

-250-385 
385-420 
420-495 

495-680 
680-710 

IGS-W-3270. location: SW, SW, SE, section 35, T90N, R30W (an example of disturbed strata). 
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Fig. 16. ' Shocked quartz grain from granitic rock from Manson 2-A core. 


Three sets of decorated planar features are present. Grain is approximately 

100 IJm across. 



22 A Compilation of Information and Data on the Manson Impact Structure 

Paleozoic 
sedimentary 

rocks 

Shocked and 
fractured 

/I.11 

surface 

Pre and post impact positions Center of 
MILES of points initially 6 km below structure 

o 2 3 ground surface (axis of symmetry) 

I I 
I 
I , I 

o 2 3 4 
KM 

Fig. 17. Interpretive cross-section of the Manson Impact Structure. The structure is considered to be symmetric about its center, so only one 
half is shown. The position of the transient cavity present during formation of the structure is indicated by the curved d~shed line. Rough estimates 
of the movement of material required to fill the transient cavity and produce the central peak are indicated by the arrows. Arrows extending 
above the ground surface suggest some material in the rising central peak may have been "airborne" for a short time before crashing back to 
Earth and producing an impact breccia. An estimate of the present level of erosion is indicated by the straight dashed line. 

~ rocks and suggested the possibility of an impact ongm for the c:r: 
«Manson structure. Yoho also identified a sample of "chloritized 
i=

devitrified basaltic glass" in one well. Yaghubpur (1979) identified c:r: 
.-UJdeformed biotite and possible silica glass with recrystallized quartz 

among samples related to the Manson structure. "itr~ 

Our present interpretation of the geology and structures within 
the Manson Impact Structure is indicated schematically by the 
cross,section in Fig. 17. The major zone of disruption due to en 

0 
~ 

the impact is contained generally within the limits of a nearly 
circular feature 22 miles (35 km) in diameter centered at the w 

.-
() 
«location of the Manson 2,A core hole (see Figs. 12a-d). An area 

6 to 10 miles (10 to 16 km) wide surrounding this limit has w 
a::apparently been slightly uplifted. An area up to about 4 miles () 

(6 km) wide within this limit is dominated by displaced or disturbed 
strata. The major stratigraphic units present in this zone are thick 
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Cretaceous marine shales. These units have been preserved on PALEOZOIC 
down,faulted blocks within the structure, but are erosionally Fig. 18. Late Cretaceous and early Tertiary formations involved with 
removed outside the structure. Today those units are found only the Manson Impact Structure (MIS). Lowermost late Cretaceous units 
up to several hundred miles- west of the structure. Preliminary are preserved generally in northwest Iowa and within the Manson 

structure. The overlying Pierre and Niobrara formations are preservedexamination by B. Witzke,Iowa Geological Survey Bureau, suggests 
only within the Manson structure. Uppermost Cretaceous units may yet

the presence of the Cretaceous Niobrara Formation and Pierre be found in the structure, as well as lowermost Tertiary units, such as 
Shale strata inside the structure (Fig. 2); these units are not post-impact lake or basin sediments. 
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Fig. 19. Map showing Bouguer gravity contours for the area around Manson, Iowa. Data are from Holttman (1970). The figure is from Smith 
(1971). The dashed lines indicate the boundaries of the "disturbed" area and the central "peak" of granitic bedrock, from Hershey (1969). The 
contour interval is 1 mgal. 

preserved elsewhere in Iowa. The Cretaceous section possibly 
preserved in the Manson Impact Structure is shown in Fig. 18. 
These strata appear to be intact stratigraphically, but may show 
fault displacement. Several wells also in this zone have encountered 
what appears to be Proterozoic "red clastics" immediately 
underlying Quaternary glacial deposits. 

Inside the zone of displaced or disturbed strata is a zone of 
completely disrupted strata possibly 5 miles (8 km) wide. This 
zone includes rocks such as those penetrated by the Manson 1,A 
core (Table 2) and mixtures of Proterozoic, Paleozoic, and Mesozoic 
rocks, which probably represent fall, back or slump breccias and 
fanglomerates that immediately began to fill the crater after its 
formation. Some of this material is highly deformed and fractured. 
Glass, tuff, and rhyolite reported in several wells in this area 
may represent impact melt. 

The central area of the Manson Impact Structure is a zone 
of brecciated and altered gneiss, granite, and diabase uplifted 
shortly after the impact from a depth estimated to be over 20,000 ft 
(6000 m) below the surface. This lithology was encountered in 
the Manson 2,A core and a number of water ~ells near the 
center of the structure. 

The interpretive cross,section shown in Fig. 17 has no vertical 
exaggeration. The structure is shown as it would appear soon 
after its formation. The rim is uplifted and stands about 0.6 miles 
(1 km) above the floor of the crater. The central peak is shoWn 
to have been uplifted at least 4 miles (6 km). The arrows indicate 
rough estimates of pre, and post,event positions of material 
originally about 4 miles (6 km) beneath the ground surface. 
Material beneath the center of the transient cavity may have 
been lofted above the ground surface as the structure developed. 
The location of the maximum limit of the transient cavity is 
indicated by the dashed line. A lake is shown to fill the crater, 
although no direct evidence for such a lake has been found. We 
estimate that about 1500 ft (460 m) of erosion has removed all 
lake sediments and fallback breccia, although it is possible that 
cuttings from water wells may contain material not yet recognized 
to be from these units. The expected location of impact melt 
rock, a little less than half way from the center to the rim, is 
also indicated. See Stofjler (1981) for a more complete description 
of impact crater formation and post,impact modification ofcraters. 
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Fig. 20. Map for the area around Manson, Iowa, showing contours of the difference between a 6th degree surface fit to gravity data and the 
Bouguer gravity intensities, from Holtzman (1970). The roughly concentric dotted lines indicate the boundaries of the "disturbed" area and the 
central "peak" of granitic bedrock, from Hershey (1969). The contour interval is 0.5 mgal. 

GEOPHYSICAL STUDIES OF THE 

MANSON IMPACT STRUCTURE 


Gravity Surveys 

Woollard. Between 1949 and 1955, O. P. Woollard (University 
ofWisconsin) supervised the acquisition ofgravity data throughout 
the upper Midwest. This included the state of Iowa, where a 
relatively complete data set of township,centered stations was 
acquired. A map of this data published by Coons et al. (1967), 
with a 10 mgal contour interval, did not display an anomaly in 
the area of the Manson Impact Structure. 
Holtzman. During the summer of 1968 A. Holtzman, a graduate 
student at the University of Iowa, made a detailed gravity survey 

to more precisely delineate the concealed outer boundary of the 
disturbed area. In an area of about 620 square miles, a network 
of 725 field stations was occupied. The network extended at least 
3 miles beyond the postulated limits of the structure. Bouguer 
gravity and 2nd, 4th, and 6th degree residual gravity maps were 
obtained. Maps showing Bouguer gravity contours and residuals 
from the 6th degree surface and Bouguer contours are shown 
in Figs. 19 and 20. 

Holtzman (1970) drew the following conclusions from his survey 
of the Manson area. 

1. The prominent midcontinent gravity high partially masks 
the gravity expression of the Manson structure. 

2. The outer boundary of the structure cannot be established 
based on the gravity data obtained. 
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Fig. 21. Geologic interpretation of gravity data over the area of the Manson Impact Structure, from Holtzman (1970). 

3. A lar ge negative gravity anomaly within the disturbed area 
is interpreted to correspond to brecciated sedimentary rocks, and 
a subcentral "positive" is attributed to the uplifted crystalline 
core of the structure. 

4. Other positive and negative features are attributed to 
differences in basement lithology or to the presence of faults 
confined t o basement rocks. 

5. The origin of the Manson structure cannot be clarified using 
the gravity data obtained. 

An interpretation of some structures within the Manson Impact 
Structure based on gravity data is given in Fig. 21. An inner 
arcuate fault and a peripheral graben is suggested. 

IGS Bouguer gravity anomaly map. The Iowa Geological Survey 
published a Bouguer gravity anomaly map of Iowa (Anderson, 1981) 
that included Woollard's gravity data and additional data, but 
still with a general 6,mile (10 km) station spacing. This map has 
a 5 mgal contour interval and shows some disturbances in the 
area of the Manson Impact Structure, but the crater cannot be 
resolved. 

Magnetic Surveys 

IGS/USGS. According to Holtzman (1970), in an effort to 
learn more about the basement complex underlying the Manson 
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Fig. 22. Portion of aeromagnetic map GP(476) showing contours of equal magnetic intensity in the area around Manson, Iowa. Data are from 
Henderson and Vargo (1965), the figure from Smith (1971). The dashed line indicates the boundary of the "disturbed" area from Hershey (1969). 

disturbed area, the U.S. Geological Survey, in cooperation with 
the Iowa Geological Survey, flew an analog aeromagnetic survey 
over a 600 square mile (1550 square km) area centered on the 
town of Manson. The survey was flown on two days in September 
and one day in November of 1953 at an altitude of 1000 ft 
(300 m) above ground level using a [X>3 aircraft equipped with 
an AN/ASQ,3A fluxgate magnetometer. Flight lines were east, 
west and spaced one mile (1.6 km) apart, with several north, 
south tie lines (Henderson et al., 1963). The survey was flown 
in conjunction with the IGS/USGS coring program on the 
structure that produced the Manson 1,A and 2,A cores. A 
preliminary map of the magnetic anomaly in the survey area was 
prepared by J. L. Meuschke, L. A. Anderson, R. W. Bromery 
to aid groundwater geologists in their study of the Manson region 
(Henderson et al., 1963). These data were incorporated into a 
more extensive aeromagnetic map of the Midcontinent Rift and 
published by the U.S. Geological Survey (HerU1erson and Vargo, 
1965). The area of this map that includes the Manson Impact 
Structure is reproduced in Fig. 22. 

The results of the survey showed an aeromagnetic high some 
4 miles north of Manson. Positive anomalies northwest of this 

community, 2 112 miles to the south, and others a few miles 
to the east and west, were also noted. As interpreted by Henderson 
et al. (1963, p. 23), the outer margins of these closures marked 
the approximate perimeter of a nearly circular area of shallowly 
buried crystalline rocks, some 8 miles in diameter and centered 
about 1 mile northeast of Manson. 

Warriner. According to Holtzman (1970), in an attempt to 
determine the depths to, and magnetic susceptibilities of, bodies 
within the basement complex that could be responsible for the 
positive aeromagnetic anomalies near Manson, two ground 
magnetic traverses were undertaken across the disturbed area in 
October of 1969 by J. Warriner of Iowa State University. These 
were oriented north,south [21 miles (34 km)] and east,west 
[24 miles (39 km)] and intersected at a point approximately 1 
mile (1.6 km) north and 1 mile (1.6 km) west of the center of 
Manson. Measurements were made at intervals of half a mile 
(0.8 km) with a Schmidt Vertical Magnetic Force Variometer 
(T. Smith, written communication, 1969). 

Warriner's analysis of the data, using Peters' (1948) half,slope 
method and the method of least squares, indicated an average 
depth of between 1250 and 1400 ft (381-427 m) to the postulated 
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Fig. 23. Seismic wave propagation velocities in layers 1 and 2 averaged for 11 east,west lines and map of the area around Manson, Iowa, showing 
locations of geophone lines and contours of equal seismic velocity from Smith (1971), roughly concentric dashed lines indicate boundaries of "disturbed" 
area and the central "peak" of granitic bedrock, from Hershey (1969). 

narrow and isolated sources of the sharp, central magnetic 
anomalies. Associated susceptibilities, computed using equations 
presented by Nettleton and Peters averaged 25 X 1O-3c.g.s. units 
(5% magnetite by volume). Surrounding anomalies were generally 
found to be deeper and with lower susceptibilities (on the order 
of 4 X 10-3c.g.s. units), suggesting to Warriner that basic or 
ultrabasic rocks were "emplaced within" those of granitic lithology. 

Normal basement faults, inferred to be dipping steeply inward 
toward the center for the structure, were interpreted from three 
small asymmetrical anomalies approximately 4 1/2 miles (7.2 km) 
south, 6 112 miles (10.5 km) south, and 6 112 miles (10.5 km) 
east of the point of traverse intersection (T. Smith, written 
communication, 1969). Throws associated with the displacements 
to the south were estimated to be on the order of 100 ft (30 m). 
An east,west magnetic lineament was noted to underlie the 
disturbed area. 

Seismic Refraction Survey 

In 1971 a seismic refraction study was completed by T. Smith, 
a graduate student at Iowa State University. The purpose of the 
study was to determine the topographic relief of the bedrock 
surface, where bedrock refers to rocks that underlie glacial deposits 
(Smith and Sendlein, 1971). 

Data were collected at 107 sites loosely fitting a 2 X 2 mile 
(3.2 X 3.2 km) grid using a truck,mounted, 24~hannel, analog, 
seismic recorder. Single 14 Hz geophones were spaced 105 ft (30 m) 
apart along two 23,channel seismic lines. Five, to six,pound 
(2.3-2.7 kg) charges of 40% strength stick dynamite were buried 
about 10 ft (3 m) in the glacial drift and from 65 to 200 ft 
(20-60 m) from the nearest geophone along the seismic line and 
from 10 to 50 ft (3-15 m) perpendicular to the line. First arrival 
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Fig. 24. Map of area around Manson, Iowa, showing the topography of bedrock inferred from seismic refraction data, from Smith (1971). 

times and time breaks were picked using a 3x power microscope 
with a precision of ±0.002 sec (Smith, 1971). 

Time..distance data were obtained and analyzed statistically to 
yield wave propagation velocities, usually for two layers of rocks. 
One layer corresponded to glacial till, which is about 100 ft (30 m) 
thick throughout the area, and the second layer was whatever 
was below the till. Average seismic velocities for these two layers 
for each traverse of the structure are given in Fig. 23. Also shown 
in Fig. 23 are contours of constant velocity in the second, or 
bedrock, layer. The area in the center of the figure bounded 
by the 12,000 ft/sec (3500 m/sec) contour roughly coincides with 
the area where crystalline rock immediately underlies glacial till, 
based on borehole cuttings. Another area of high bedrock velocity 
is located 10 km due west of the center of the structure. It may 
be that crystalline rock also subcrops in this area. Carbonates, 
which comprise the bedrock east of the disturbed area, are 
delineated quite well by the 13,000 ft/sec (4000 m/sec) contour 
(Smith, 1971). 

Based on seismically determined depth values and bedrock 
elevations from boreholes, the bedrock topography was determined 
and is shown in Fig. 24. Observations by Smith (1971) based on 
these results are as follows. 

1. The irregular surface within the Manson disturbed area 
contrasts sharply with the gentle slopes outside the area. 

2. The average elevation of the bedrock is about 980 ft (300 m) 
inside the disturbed area and 1050 ft (320 m) just outside that 
area. 

3. The central crystalline bedrock is a topographic high. 
4. Hills of shale are present in the northeast and southwest 

parts of the disturbed area. 

5. The drainage ways in the disturbed area are not well 
developed. Several valleys outside the disturbed area terminate 
in depressions inside the area, thus indicating the structure may · 
be relatively young. 

6. Two bedrock valleys in the southern portion trend 
northwest~southeast and their gradient is toward the southeast, 
away from the disturbed area. 

7. The western bedrock valley follows the edge of the disturbed 
area for some distance. The zone between the disturbed and 
undisturbed bedrock must have been less resistant to erosion than 
either the disturbed or undisturbed bedrock. The shape of the 
western bedrock valley suggests that the disturbed bedrock was 
comparatively more erosionally resistant than the undisturbed 
Pennsylvanian shales to the southwest. 



8. Mississippian carbonates to the northeast of the structure 
are more resistant to erosion than the Pe~ylvanianshales and 
sandstones beyond the southwest rim. 
The following are other results from this study. 

1. Apparently, there is no mappable seismic refractor below 
the drift-shale interface, to a depth of 820 ft (250 m). 

2. The rim structure is very complex. No model could be made 
of the geometric arrangement of the bedrock layers. 

3. The seismic wave propagation velocity through the granite, 
gneiss, and diabase of the central crystalline mass averages near 
13,000 ft/sec (4000 m/sec). Such an unusually low velocity for 
this rock type may indicate that it has an abnormally high porosity, 
which may be a result of the brecciation during the emplacement 
event. 

Seismic Reflection Survey 

In September 1984, Western Geophysical (Englewood, 
Colorado) acquired about 350 miles (563 km) ofspeculative seismic 
reflection data over the Midcontinent Rift in Iowa in anticipation 
of petroleum industry activity in the area. Their line 3A is 23 miles 
(37 km) long and crosses the Manson Impact Structure in a north
south direction. They collected 20-fold, 120-channel data with 
20 sec of recording time. (The results of this survey are available 
from Western Geophysical) 

AGES OF SAMPLES FROM THE 

MANSON IMPACI' STRUC1URE 


Precambrian Basement Metamorphism 

Using biotites from gneiss at 367 ft (112 m) and 485 ft (140 m) 
in the Manson 2-A core Udiak et ai. (1966) obtained Rb-Sr ages 
of 1130 and 1070 Ma and K-Ar ages for the same samples of 
970 and 720 Ma, respectively. They also reported a Rb-Sr age 
for a muscovite from a gneiss from cuttings from a nearby well 
of 1090 Ma. These ages represent regional metamorphic events 
that occurred during the Precambrian. Some mobilization of argon 
may have occurred as a result of the Manson impact, thereby 
producing ~mewhat lower ages. 

Manson Impact Event 

The age of the Manson Impact Structure is particularly 
important. The stratigraphic age of the upper part of the disturbed 
section was judged to be Cretaceous based on Inoceramus .fragments 
found in limestone and shale cuttings and lignite and siderite 
pellets, which have been observed in Cretaceous sections 
elsewhere. Fish scales, no older than Mesozoic, and poorly 
preserved cephalopods suggestive of the Cretaceous were found 
at the single outcrop described previously (Hale, 1955, pp. 35 
and 143), These rocks were deformed or disturbed by the impact 
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Fig. 25. The 40Ar/39Ar age spectrum for a microcline sample from the 
Manson 2-A core, 231 ft from the ground surface, from Hartung et aI. 
(l986). The first 60-70% of 39Ar released indicates an upper limit for 
the time of post-impact cooling of 70 Ma. 

event, therefore the impact must have occurred after middle to 
late Cretaceous time. 

A fission track age of 61 ± 9 Ma (uncertainty I (J) was reported 
by Hartung et ai. (1986) for apatite grains separated from Manson 
2-A core material. This age corresponds to the time of cooling 
to below about l00OC, presumably subsequent to uplift with other 
rocks of the central region during crater formation. 

An 40Ar/39Ar analysis of material thought to be shocked 
microcline, a mineral known to have a low blocking temperature, 
from a depth of 231 ft (70 m) along the Manson 2-A core produced 
an age less than, but not much less than, 70 Ma for a reheating 
event probably related to the Manson impact (Hartung et ai., 
1986). The corresponding age spectrum is shown in Fig. 25. 
Subsequently, two additional 40Ar/39Ar age spectra for K-feldspar 
(probably microcline) separates from different levels within the 
same core were obtained. These spectra were similar to the first 
one and indicated a time of uplift of about 66 Ma ago, a time 
indistinguishable from the numerical age of the K-T boundary 
(Kunk et ai., 1987). 

Paleomagnetic studies have been made using samples taken from 
the Manson 2-A core at depths of 317, 426, and 465 ft (97, 
130, and 142 m). It is known that magnetization produced by 
a shock event is readily removed by alternating field demagneti
zation experiments. Such experiments on Manson rocks removed 
only positive or normal magnetization, thus indicating that the 
Manson impact occurred during a time when the Earth's magnetic 
field had a normal polarity. However, "if the K-T boundary is 
a global isochron occurring within Polarity zone 29R," a time 
of reversed polarity, then the Manson impact cannot have been 
synchronous with the Cretaceous-Tertiary boundary (Cisowski, 
1988). It must be noted that the basement rocks sampled in the 
Manson 2-A core had been violently uplifted over 20,000 ft from 
their original positions subsequent to the impact, and because 
there is no guarantee that they have not been rotated, this test 
may not be valid. 



30 A Compilation of Information and Data on the Manson Impact Structure 

THE MANSON IMPACT STRUCTURE AND 

THE K-T BOUNDARY 


The most important question related to the study of the Manson 
Impact Structure is whether or not it is related to the mass 
extinction that marks the K-T boundary. Properties of the Manson 
impact that may support, or refute, a link with K-T boundary 
mass extinctions are the following: (1) impact energy (impactor 
mass and velocity) or crater size; (2) impact time; and 
(3) compositions (mineral, chemical, and isotopic) of impactor, 
host rock, and impactite. 

. Impact Energy or Crater Size 

As a first approximation, the kinetic energy of an impacting 
object is directly related to the size of the resulting crater. Based 
on extrapolations from impact experiments and nuclear explosions, 
the following relationship was obtained by Den.ce et al. (1977), 
for the impact energy, E, in joules, required to form a crater 
with a rim diameter, D, in km. 

(1) 

Using this relationship and a diameter of 35 km for the Manson 
crater, an impacting energy for the Manson impactor would be 

10212 X joules. Perhaps more important is the distribution of 
that energy among its various sinks, such as heat, which produces 
ionization, vaporization, and melting of material, as well as an 
increase in its temperature, shock, and seismic waves, the motion 
of ejecta, and fracturing of target rock. Simplifying assumptions 
made to establish the amount of energy available and its 
partitioning relate to impactor and target densities, volatiles 
present, impact geometry, and extrapolation over orders of 
magnitude. Each assumption carries with it increased uncertainty 
in the final result. For example, an impact at a low angle of 
incidence will deposit disproportionately more energy into high 
velocity ejecta and less energy into low velocity ejecta, thus 
producing a smaller crater with more high-velocity ejecta (Gault 
and Wedekind, 1978). While a vertical impact producing a 
35-km-diameter crater may not generate enough high-speed ejecta 
to cause a global dust cloud, it may be argued that a low angle 
impact could produce much larger amounts of high-speed ejecta 
for the same impact energy, so it may not be possible to rule 
out the Manson impact as the source of a globally dispersed dust 
cloud capable of causing a mass extinction (H. A. Zook, personal 
communication, 1987). 

Based on initial estimates, to account for the worldwide 
abundance of iridium at the K-T boundary requires a carbonaceous 
chondrite composition impactor of about 10 km in diameter. Such 
an object would produce a crater about 200 km across. Therefore, 
to the first approximation, the Manson impact could not have 
been solely responsible for all of the events for which evidence 
exists at the K-T boundary. Thisleaves open the possibilities 
that (1) the Manson impact was responsible for some K-T boundary 
events (other unobserved properties of the impactor, such as an 
accompanying dust cloud, may have been the source of large 
amounts of iridium), or (2) the impact was partially responsible 

for all K-T boundary events [there may have been other similar 
iI?-pacts at nearly the same time (Sharpton and Burke, 1987)]. 

The two examples just cited illustrate the need for more · 
comprehensive laboratory impact experiments and . computer 
modeling, as well as more geological study of the structure itself. 

Impact Time 

A crucial test of the hypothesis that the Manson impact is 
related to K-T boundary extinctions is that the crater and the 
K-T boundary must have exactly the same ages. Three analyses 
of potassium feldspar, probably shocked microclines, a mineral 
known to have a low blocking temperature, from the Manson 

2-A core yielded 40Ar/39Ar age spectra that do not possess good 
plateaux. The first spectrum can be interpreted to show that 
the maximum time for the crater formation was less than, but 
not much less than, 70 Ma ago (Hartung et al., 1986). The other 
two spectra indicate a severe argon loss occurred about 66 Ma 
ago, an age that is indistinguishable from the age of the K-T 
boundary (Kunk et al., 1987). These preliminary results show that 
the Manson impact and the K-T boundary could have the same 
age. 

A more quantitative statement is that if an average production 
rate of known craters larger than 35 km in diameter, R35, is 
given and a combined uncertainty in the ages of the K-T boundary 

and the Manson impact, .1t, is assumed, then the expression 
for the probability of the impact and boundary being coincident 
by chance is approximately 

(2) 

If the average production rate of known 35-km-diameter-and
larger craters on the North American continent is 2 X 1O-8yr-l 

(Shoemaker, 1977), and the combined uncertainty in the times 
of the Manson impact and the K-T boundary is assumed to be 
2 Ma, then the probability of the two events being coincident 
by chance is approximately 0.03. If either the crater production 
rat~ or the analytical uncertainties in the age measurements were 
lower, this probability would be reduced. Because the production 
rate is a fact of nature, i.e., it is not subject to external control; 

no amount of effort can change its contribution to the probability 
of coincidence. However, the uncertainties related to the age 

measurements can be reduced by better sample selection and 
improved analytical procedures. Efforts made in this direction 
will have the effect of reducing the probability of coincidence 
by chance. 

Three major efforts need to be undertaken in this connection. 
First, times of occurrence should be measured for all large 
terrestrial impact structures, the objectives being to establish a 
crater production rate with a minimum of uncertainty. Second, 

the absolute age of the K-T boundary should be determined as 
accurately and as precisely as possible. Finally, the time of the 

Manson impact should also be 4etermined as accurately and 
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precisely as possible. To accomplish this ~ objective probably 

will require acquisition of samples that were melted during the 

impact and subsequently retained argon quantitatively. This, in 

tum, will probably require drilling to recover such samples that 

remain within the structure as part of a melt sheet. No melt 

sheet of any kind has been definitively identified at Manson as 

a result of fairly shallow water well drilling in the area. 

Establishing a low probability of coincidence by chance, 

unfortunately, cannot prove a relationship exists between the 

Manson impact and the K~T boundary. However, it is reasonable 

to expect that improved analyses will result in a probability of 

coincidence by chance of 0.01, which would be a strong argument 

. for a Manson/K-T boundary connection. 

Compositions 

It may be possible to establish, or refute, a link between the 
Manson crater and the K~T boundary by studying the mineral, 
chemical, and isotopic content of crater host rocks, possible 
impacting objects, and impactites. Impactites may contain a 
mixture of impactor and host rocks. 

Among the minerals found at the K~T boundary are quartz 
grains that have been shocked, presumably at the site of a large 
impact, and transported to distant locations. Shocked quartz grains 
have also been found in granitic rocks at Manson, but it has 
not yet been shown that the K~T boundary shocked quartz 
originated near Manson, Iowa. However, it has been shown that 
the largest shocked quartz grains have been found at North 
American K~T boundary sites, thus suggesting a North American 
source for these grains (French, 1984). 

Iridium and other siderophile trace elements enriched in K~T 
boundary clays were apparently derived from extraterrestrial 
material, at least some of which could have produced the Manson 
Impact Structure. If so, then it is reasonable to expect that 
somewhere within or around the structure some of this material 
has survived, in glassy melt bombs, in a melt sheet, or in fallback 
breccia. Although some glassy material and "tuff" has been 
described among water well cuttings, no systematic study of this 
material in search of anomalously abundant siderophile trace 
elements has been made. 

Once again, the search for such material at Manson will probably 
require drilling to recover melt rocks that have been shown at 
some other craters to contain a component derived from the 
impacting object. 
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