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1.0 INTRODUCTION

The purpose of the work reported on herein was to demonstrate the
possibility of enhancing the subsurface feature detection probability by digital

processing and filtering.

This report describes a procedure developed which calculates the system
phase errors of the Apollo 17 Lunar Sounder hardware from the signal as
recorded on the signal film. It is important to determine these phase errors
because they give rise to system sidelobes. System sidelobes must be low so
that they will not mask subsurface echoes in close proximity to the strong
specular return coming from the surface reflection. Factors that cause these
system phase errors are hardware deficiencies that result in non-linear trans-
fer functions throughout the radar system, optical recorder, film characteris-

tics and the optical correlator.

The cost of detecting and correcting these deficiencies is beyond the scope

of the present hardware development program.

2.0 DESCRIPTION OF THE PROCEDURE

The signal film from the Lunar Sounder experiment contains information
from a large number of weaker echoes plus a strong specular return., After the
transmitted signal is reflected from the lunar surface and received by the
antenna, the radar signal is amplified by the receiver. At this point, the signal

waveform has the form

elt) = Z a_(t) exp [j (0o (6 =t ) + Kt - tn)Z)J

n

The signal, at this point, is mixed with a coherent oscillator waveform

for down conversion and upon filtering, the signal, assumes the form

e(t) = Zan(tn) exp[j ((wcl- w )t -t )+ K(t - tn)z)]

n
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where a, is the amplitude of each return, w is the frequency of the radar
carrier, w is the receiver coherent oscillator frequency and K is the system
dispersion constant resulting from the linear chirp and t) is the delay of the

return from the Nth reflector. The return signal may also be represented by

e(t) = j A(w) exp

where A(w) and ¢(w) are the amplitude and phase terms of the transform of the

J(cb(w) - wt)] dw

function characterizing e(t). Within the radar and recording media this signal
undergoes through a network whose transfer function is characterized by an
amplitude transfer function B(w) and a phase error ¢e(w) and consequently the

output signal now takes the form

oft) = f Alw) *B(w) exp[j (¢(w) - ¢e(w) - wt)] dw

The system characteristics B(w) and ¢>e(w) are those which introduce
errors to the spectral characteristics of the return and consequently give rise
to unwanted returns when excited by a strong input pulse. These undesirable
returns are known as the system sidelobes. These sidelobes may be calculated
by looking at the output of the system when the return signal entering the antenna
is frequency independent, for example, a specular echo. For this case A(w)
can be any constant value (unity) and the phase term zero. An impulse function
satisfies these criteria. Thus, when the system is excited by an impulse func-

tion, the output of the system has the form

o(t) = j B(w) exp[j (cbe(w) - wt)] dw

[ee]

If the frequency content of the device exciting the lunar surface and sys-
tem is limited to a given band of frequencies, the integration of the above

integral becomes bounded or
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2
o(t) = f B(w) exp[j(q:e(w) - wt)jl dw

|

This equation, then represents the impulse response of the unweighted system.,

Since the response of a perfect system to this function (A(w) =1.0 and ¢ (w) = O)
is
“2
op(t) = / exp (-jwt) dw
“1

it becomes desirable to pass the signal through a filter whose amplitude spectral
response C(w) is C(w) = 1/B(w) and its phase response d)c(oo) is ¢c(w) = -¢e(w).
Consequently, it becomes necessary to measure the system spectral character-
istics (B(w) and d>e(w)) to a high degree of precision in order to "construct" a
filter which can compensate for systematic errors. This filter would take the

form of a software frequency domain function.

The transmitted waveform does not represent a perfect impulse function
but contains a built-in quadratic phase function as well as amplitude and phase
errors. Since it is not required to separate the transmitted waveform from the
system response but only the surface characteristics from the system response,
the errors (amplitude and phase) of the transmitted waveform may be lumped
into the system response. The quadratic phase function of the transmitted wave-
form is used to disperse the transmitted energy over a long period of time, con-
sequently lowering the peak transmitted power to 1/128 of the effective peak
power of the waveform. This technique is known as pulse compression. This

quadratic phase function is expected to take the form
b (w) = mw-w )5 +o_()
d o e

where m is a constant, W is the reference frequency and d)e(w) is a phase
error function describing all the higher and lower order terms than the quadratic.
Since it will not be possible to determine the constant m exactly, the above

equation may be expressed by
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dy(0) = N(w = w )% +6(w)

where N is the estimated value of m and d>f(w) contains a quadratic term as
well, to compensate for the error in the assumed value n for the constant m.

In summary, the amplitude as well as phase errors contributed by the trans-
mitted waveform may be lumped into the overall system transform function with-
out loss of generality provided the medium (space) is non-dispersive as well as

having a surface with frequency independent reflectivity.

The presence-of multiple reflectors will cause constructive and destruc=-
tive interference of the return waves dependent on the temporal spacing of these
reflectors. This interference of returns requires that the amplitude spectra of
the system be obtained only by analyzing the spectra from a large number of
returns from different locations in order to average out the effects of this ran-

dom interference on the amplitude spectra,

The detection of the phase error function of the system poses a more com-
plicated procedure than that for detecting the system amplitude spectral response
characteristics. Since the phase error spectrum corresponds to the phase of
the output waveform when the system is excited by a monochromatic waveform
of zero phase and the system is never excited in this manner, a more compli-
cated procedure is used. The procedure assumes that the return primarily
comes from a single strong reflector and added to it are returns from weaker
secondary reflectors as well as additive noise. Furthermore, the signal has
gone through slight nonlinear components prior to its analysis. The echo from
this signal return is expanded into Fourier series expansion so that it may be
represented by the summation of a large number of constant amplitude sinusoids,
each with a phase term. The source of the return is then located to an accuracy
consistent with the signal-to-noise of the return. The return is then translated
in time to the origin and the phase of these vectors (sinusoids) computed. The

resultant phase spectrum &é(w) is

$(0) = m(w-0_ )2 +o_(0) +o (o) +é_(w)
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where ¢m(w - wo) represents the ideal quadratic phase function (frequency
dispersion), ¢e(w) represents the system phase error function, d)r(w) the phase

shift due to secondary returns and d)re(w) the phase shift due to noise.

Since we may substitute for the quadratic phase function plus its error,

the above expression may be replaced by
. 2 v
9(w) = N{w=w )" +d.(w) +9 () +0 (w)+ (w)

Subtracting from this phase spectra the assumed quadratic phase function and

combining (i)f(w) and (be(w) we get
6 (@) = 6_(w) +6_(w) +6_(w)

where ¢S(w) is the phase function to be "stacked." We may combine the func-
tion qu(w) and ¢e(w) into a single function because they both represent phase

errors and we are only interested in their sum and not the individual functions.

If this procedure is repeated over an area where the phase of the second-
ary returns are not correlated with the phase of secondary returns from the
previous pulse analyzed, then when the phase spectra are added on an ensemble
basis, the phase error spectrum will add coherently as it is tied primarily to
the phase of the strong return while the phase of the secondary returns are not.
Basically, this implies that the secondary returns must move with respect to
the surface. Since the phase spectrum of noise is not correlated with the phase
of the surface return, when the various phase spectra are added on an ensemble
basis, the term arising from noise will add non-coherently. In summary, if
the phase of a sufficiently large number of echoes are ensemble averaged, the
residual phase spectrum will in the limit approach the system phase error

function.

3.0 PHASE ERROR DETECTION PROCEDURE

The procedure of taking a signal film, digitizing it and from the digital
numbers obtaining the system phase error function and the sidelobes associated
with that error is as follows:

1. The dispersion constant of the signals is first obtained.

5
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2. The signal is then Fourier transformed and its amplitude and phase

spectra obtained.
3. The phase spectrum is corrected for the effects of dispersion,

4, The phase spectrum (for each frequency) is rolled back to the center

of the strongest reflection.

5. If the resultant spectrum has good characteristics, it is saved for an

ensemble average operation.

3.1 Dispersion Constant Measurements

One of the critical areas in the development of a technique to detect and
roll back the phase of each return is that of determination of the dispersion con-
stant of the system. The dispersion constaht is defined as follows. The signal
on film as recorded by the optical recorder is a summation of signals of the

form:

elx) = b_ +Z anRe{exp [ijX + KXZ]}

n

where bo is the film bias, a the amplitude of the returns, w the initial fre-

quency of the dispersed signal and K is the dispersion constant.

Each of these signals represents the return from a reflection facet or
scatterer. Because there are a large number of such signals, it can be diffi-
cult to obtain an accurate value for the dispersion constant K from the data.
The accuracy required is of the order of 0.5 percent. Because this accuracy
requirement exceeds by a large margin the hardware calibration requirements,

the only recourse is to use the original signal film for its determination.

3.1.1 Procedure

The procedure used to determine the dispersion constant consists of the

following:
1. Using an assumed dispersion constant, obtain a complex filter function.
2. Convolve the signal with the assumed filter junction.

6
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3. DMeasure the largest value of the filter response.
4, Iterate with a different filter function until the filter response is
maximized.

When this is achieved, the dispersion constant which maximizes the output is
obtained. This is analogous to locating the focal point of a signal film using
coherent light by observing the brightest point. However, because the signal
consists of a summation of dispersed signals, this point is not necessarily that
which corresponds to the correct dispersion constant. Consequently, a number
of different echoes must be observed and their effective dispersion constants

measured.

3.1.2 Accuracy Requirements

The dispersed pulse is dispersed by approximately 402 radians over the
bandwidth used independently of the system. Since the detection of phase errors
is to be accomplished by first correcting for the dispersion constant, the cor-
rected phase must lie within 2w radians. This corrected phase is the sum of
the error in dispersion constant over the bandwidth plus the variation of the
phase spectrum about the least squares error fit by a first degree polimonial to
the corrected phase spectrum. For most echoes observed this implies an error
of 2 or 3 radians over the bandwidth., Thus, an error in the estimation of the

dispersion constant of 0.5 percent is tolerable.

3.1.3 Measurement Accuracies

A total of 40 echoes were analyzed for their effective dispersion constant.
The results have shown a mean value of 5.24 percent below the theoretical per-
fect system and is well within the system calibration accuracies. The standard
deviation of these measurements was 1.1 percent of the mean value. The impli-
cations of these measurements is that in order to obtain a value of the disper-
sion constant sufficiently accurate (0.5 percent) with a low probability of error
outside these bounds, a number of echoes should be examined. The practice of
evaluating 20 echoes was adopted and a more exact criteria will be obtained
later if required. A typical response of an echo to various filters derived of

various dispersion constants is shown in Figure 1.
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3.2 Phase Detection and Roll Back

The data consists of a signal film which contains recorded temporal

domain data. This data is presented at the input of the optical recorder and

has the form

' 2
i(w (t-t,) + K(t-t,)
e(t) = E Aa(t) Re eJ( = d o )
d

where Aa is the amplitude of each return and td the delay of each return.

Since the optical recorder records the information on film through a beam

deflection which sweeps with some velocity v, the information on film takes the

form

iRt + Ty )?)

\'
e(x) = Bo +Bn(x) + E Cn(x) Re<e
n

The constant Bo implies a recording above a bias and Bn(x) a noise corre-
sponding to the film grain and recorder noise. The data is recorded in the opti-
cal recorder film on an ensemble basis and prior to imaging of this data on the
image dissector tube; it may be azimuth matched filtered or simply bandpass
filtered depending on the azimuth processing desired. However, the signal
imaged on the dissector still has this form since no processing is done in the

range dimension,

The record which is digitized then has the form shown in the previous
equation and is sampled at a rate sufficiently high to preserve the highest
desired spatial frequencies without fold over. A spatial filter in the transform
plane of the correlator prevents noise outside the desired band of frequencies
from folding over and entering at a frequency within the signal pass-band.
Figure 2 shows a typical signal film trace of a doppler matched filtered set of
echoes but unprocessed in range. The assymmetry in the record shows

presence of a nonlinearity in the film or optical recorder or analog to digital
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converter. In Figure 3, another signal film trace where this nonlinearity is not

present is shown.,

A Fourier Series expansion of this record is then performed and the ampli-
tude and phase spectra obtained. The square of the amplitude spectrum is the
power spectrum and a typical power spectrum is shown in Figure 4. The phase
spectrum represents the phase of the sinusoid synthesized by performing the
Fourier Series expansion with respect to a cosine wave of that frequency. A
typical phase spectrum of a signal record is shown in Figure 5. At this point,

the signal is now represented by a Fourier Series expansion and has the form

n
jd ) jnw t
e(t) = Z Cne ol 9

m=-n

where Cn is the amplitude of a vector rotating at a frequency nw, with a phase
angle ¢(n). The power spectrum is a plot of Cz(nwo) Vs new_ . The value nw is
the frequency of the sinusoid. The phase spectrum is a plot of the phase ¢(nwo)
of the signal vector with respect to the reference vector vs frequency. Since
these spectra constitute only a set of discrete values, they are line spectra and
frequencies between the lines have no meaning. The spectra of Figures 4 and 5
are shown as continuous spectra which they are not and are shown this way only
for presentation purposes. Even though the spectra shown are line spectra, for
frequencies below the Nyquist point, they constitute an exact representation of
the input digital signal with the exception of grain noise at high spatial frequen-
cies which is folded over to the signal part of the spectrum by the sampling
process., However, this is minimized by the spatial filtering process in the

transform phase of the optical correlator.

After the phase spectrum is obtained for an individual record, the phase
spectrum is corrected for the system frequency dispersion which is, by design,
a quadratic function of frequency. The phase spectrum of Figure 5, after the
quadratic phase correction, now looks as that shown in Figure 6, The trans-
form of this phase spectrum and the amplitude spectrum represents a digitally
compressed signal record as shown in Figure 7. Before the phase spectrum
can be rolled back to the reference plane, the range to the reference plane must

be estimated and this is done by synthesizing the new signal from the new

11
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Fourier Series expansion and locating its peak. When the peak has been located,
each sinusoid of the frequency series expansion is advanced in phase an amount
corresponding to this shift in temporal location. The result is a phase spectrum
as shown in Figure 8. The amplitude spectrum is, of course, unchanged as the
operations that we are performing are purely those corresponding to shifts in
location, At this point, a rotation in the reference plane is made to center the
spectrum about the zero phase line and a final shift in location of reference
plane is made by filtering the phase spectrum to a least squares error fit to a
first degree polynomial, and taking the difference between the phase line spec-
trum and the fitted line. In effect, we have precisely located the center of the
reflection point with respect to the initial digitized point on the film. The accu-
racy which we have been able to accomplish this on lunar data for HF'1 is

0.7 microns, which corresponds to 3 degrees of the center frequency. This

corrected spectrum now looks like that shown in Figure 9.

This procedure is repeated for a number of signal records., Some records
will contain either too much noise, too much clutter (multiple returns) or too
much higher order harmonics. Records whose referenced phase spectra meet
the selected criteria are then preserved for stacking. After stacking a number
of these spectra, the resultant spectrum begins to integrate in towards the sys-
tem phase error since noise and clutter do not have frequency and time invariant
phase spectra. The result then is as shown in Figure 10. The weighted trans-
form of this phase spectrum is then the time invariant system sidelobe function

and is as shown in Figure 11,

4.0 CONCLUSIONS

A section of ALSE signal film was digitized and analyzed in order to
investigate the feasibility of this technique. The section digitized was the
40 seconds of HF'1 data following the start of FT0l. The digitizer character-
istics were set at a 10 micron spacing in range, and an aperture of 20 by
320 microns in range and azimuth, respectively. The resultant processing
parameters are tabulated in Figure 12. After digitization, each record was run
through the previously mentioned program to obtain the Fourier transforms of
the individual records as well as the "stacked" amplitude and phase spectra.
The resulting stacked phase spectrum is shown in Figure 10 and the stacked

amplitude spectrum in Figure 13, Since the amplitude spectrum thus obtained

17
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RADAR CATA PARAMETERS

HF1 SYSTEM

DIGITIZER CHARACTERISTICS

SAMPLE SFACINGC = 10.CL MICRONS
X APERTURE = 2C0.,0C M ICRONS
Y APERTURE =22G.0C MICRONS

EQUIVALENT PROCESSING PARAMETERS
SAMPLE TIME INCREMENT =Z.2427-08 SECONDS
SWEEP VELOCITY 41 23 METERS/SEC

FREGUENCY INCREMENT 2011.2 CPS
LOWER LIMIT 231

UPPER LIMIT 761

NUMBER CF FREQUENCIES 2€6
DISPERSICN CONSTANT « 4112407

FILM WIDTH
SWEEF DURATION

«025 METERS
€06« 73U4MICROSECCNDS

U N T R O T A N A O T R R R T

BANODWIDTH «533 MHZ

LOW FREGUENCY «231 MHZ

HIGH FREQUENCY e 765 MHZ

WIDTH DICITIZED 20.48C MMe

RADAR SPACE COVERED T4.555 KILOMETERS
SAMPLE POINTS = 2048

LOW SPATTIAL FREQUENCYZ= 562 CYCLES/MM
HI SFATIAL FREQUENCY = 18.55 CYCLES/MM

X APERTURE CUTOFF

Y APERTURE CUTUFF
RANGE NYQUIST FREQ
32 DB HALF BEAMWIDTH

5C.02 CYCLES/MM
3el3 CYCLES/MM

5003 CYCLES/ MM
T+.3SDEGREES

oy gy

Figure 12, Radar Data Parameter Tabulation

consists of the overall system amplitude spectrum convolved with the digitizer
window characteristics, the system amplitude spectrum may be obtained by
deconvolving these functions. The resultant system amplitude spectrum is
shown in Figure 14, The effects of the Fresnel ripples may be seen as well as
the distinct fall off due to probably the recorder MTF. From this amplitude

and phase spectra, the system sidelobe response may be calculated and a printer
plot of this response is shown in Figure 15. After performing a sinc squared
weighting operation, the sidelobe response is shown in Figure 16, This may be
compared with the "perfect" system response shown in Figure 17 after the

same sinc squared weighting.
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If a single record is deconvolved with the system response function and
the compressed, weighted time response examined, the resultant positive time
plot is as shown in Figure 18, As can be seen, the response at times corre-
sponding to depths greater than the system resolution is significantly greater
than the system sidelobe response due to excess positive time returns (clutter
or subsurface features). Thus, for a coarse analysis without coherent azimuth
stacking, it is not necessary to perform a digital correction to the system
response, However, as the number of echoes stacked increases, this clutter or
noise comes down, depending on the number of stacked pulses. The stacked
returns after 64 stacks is shown in Figure 19 and, after 512 stacks, in Fig-
ure 20, It can be seen that the system dynamic range greatly increases (as
would be expected) after coherently stacking these returns and that this tech-
nique becomes necessary if the returns to be examined are greater than 45 to
50 db below the surface return. The process used after obtaining the system
amplitude and phase spectra may have to be further refined to optimally process
for different geologic models. However, for processing for parallel layers to

the surface, this technique is necessary to look for very weak returns,

28
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