	MV.		I REV.	NV.
	AL 51			
	PAGE _	1		29
Division	DATE	11 Aı	igust	: 19

PERFORMANCE/DESIGN

R. MILEY BxA/MSC

t 197

PRODUCT CONFIGURATION REQUIREMENTS

AND

FOR

POWER CONDITIONING UNIT

FOR

APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE

ARRAY E

Prepared by: J. C. J. A. J. E. Staley

Approvals:

Staley, ALSEP

PCU Project Engineer

H. Fithian, ALSEP Design Integration

M. G. O'Mara, ALSEP Quality Assurance Manager

Warren, ALSEP Specification Engineering

R. J. Dallaire ALSEP Reliability

stem Support

8-12.71 2e K L. P. Deck, ALSEP

Configuration Manager

Douthat, ALSEP

7. Electrical Design

Aeroepa	
Systems	Division

FN 160			•••••
AL	5 1 0100		
PAGE	2	0F	29
DATE	on general second		

1.0 PURPOSE AND SCOPE

1.1 PURPOSE

The purpose of this document is to define the operating and storage characteristics and capabilities of the ALSEP Power Conditioning Unit, herein designated the PCU.

1.2 SCOPE

This document specifies the operating and storage environment to which the subject PCU can be subjected. Operating input and output parameters are defined and specified as applicable within the limits specified for operating environment and defined operational interfaces.

2.0 APPLICABLE DOCUMENTS

The following documents, of exact issue shown, form a part of this specification to the extent specified herein.

SPECIFICATIONS

NASA/MSC Exhibit "B" of Contract NAS 9-5829 ALSEP Technical Specification

MIL-E-5272C (1) (Section 3)	Environmental Testing, Aeronautical and Associated Equipment, General Specification
MIL-W-6858C	Welding, Resistance, Aluminum, Magnesium, Non-hardening Steels or Alloys, and Titanium Alloys, Spot and Seam
MIL-STD-826	Interference Control Requirements Aeronautical Equipment
LED 520-1	Design Criteria and Environments for the LM
LIS 360-22302	Environmental Conditions Induced by LM on Scientific Equipment in the Descent Stage

Aerospace Systems Division	Array E Power Conditioning Unit	NO. AL 510100 PAGE OF9 DATE				
ARD 50 3	Transmitter Specification					
AL 770000	Electromagnetic Interferen Requirements for ALSEP	Electromagnetic Interference Control Requirements for ALSEP				
NASA						
NHB-5300.4(3	A) Quality Requirements for H of Electrical Connections	land Soldering				
MSC-ASPO-EN 17 October 196		cation				
NASA/MSC CR	ERIA AND STANDARDS					
DS-1	System Accessibility for Maintenance					
DS-4	Separation of Redundant Paths					
DS- 5	Transistors - Selection of Types					
DS-12	Single Point Failure					
DS-13	Electrical and Electronic Devices Pro Reverse Polarity and/or Other Impro Connectors					
DS-21	Meteoroid Environment - Near Earth Lunar Surface	to				
DS-22	Flammability of Wire Bundles					
DS-25	Wire Bundles - Protective Coatings	ire Bundles - Protective Coatings				
PS- 5	Protection of Electrical/Electronics Assemblies from Moisture Damage					
PS-6	Ultrasonic Cleaning, Electrical and Electronic Assemblies					
PS-8	Application of Previous Qualification	lests				
PS-11	Direct Procurement of Parts					

(Copies of specifications, standards, drawings, bulletins, and publications required by suppliers in conjunction with specific procurement functions should be obtained from the procuring activity or as directed by

Aerospace Systems Division Array E Power Conditioning Unit

1	NO.		l se	iv. No.	
	AL	5101	00	der Miter auf volge verstattet best	10020030
	PAGE		OF	29	ananao animato
	DATE				

STANDARDS MIL-STD-130C	Identification of U.S. Military Property
MIL-STD-810B	Environmental Test Methods for Aerospace and Ground Equipment
MIL-STD-721	Reliability and Maintainability
MIL-STD-889	Metals, Definition of Dissimilar
OTHER PUBLICATIONS	
The Bendix Corporation, Aero	ospace Systems Division
ATM-241E	Acceptable Parts List
ATM-242E	Approved Materials List
AL 210100	Central Station Subsystem Specifica- tion
AL 310210	Power Distribution Unit Specification
AL 310810	Command Decoder Specification
AL 270000	Passive Seismic Experiment
IC 314103	Magnetometer Experiment
AL 280000	Heat Flow Experiment
AL 310910	Data Processor Specification
IC 314130	Lunar Ejecta and Meteorite Experiment
IC 314106	Lunar Passive Seismic Experiment
IC 314132	Mass Spectrometer Experiment
IC 314133	Lunar Surface Gravimeter Experiment
IC 314131	Lunar Seismic Profiling Experiment
	Tatanfana Cautani Grazifi ation for Electrical

IC 314119

Interface Control Specification for Electrical Power Subsystem (GFE Items) for ALSEP

Aero**epace** System<mark>s Divisio</mark>r

Array	E	
Power	Conditioning	Unit

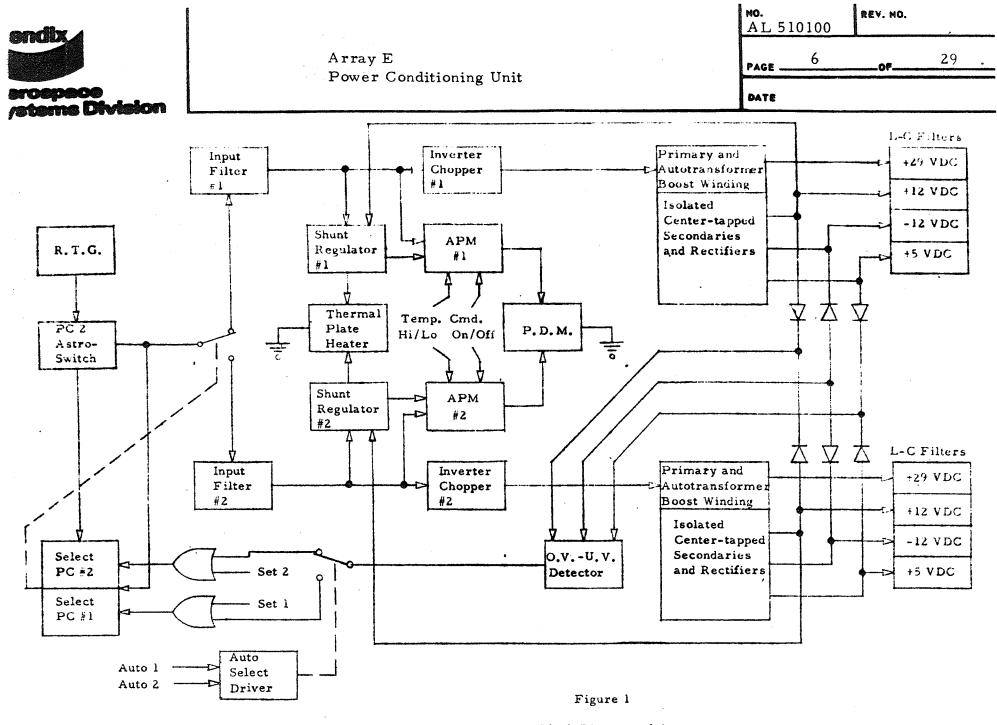
NÔ. AL !	51010		w. No.
PAGE	5	OF	29
DATE			

3.0 **REQUIREMENTS**

3.1 **PERFORMANCE**

The PCU shall consist of redundant units which are compatible with the designated power source (see specification IC 314119) in providing conditioned power to all electrical subsystems of the ALSEP system. The design goal shall be such that single point failure modes are eliminated. A functional block diagram of the PCU is illustrated in Figure 1.

- 3.1.1 Operational Characteristics
- 3.1.1.1 Source Characteristics


The PCU shall be capable of operating from an RTG source of the following characteristics:

Source Voltage, Instantaneou	s Open Circuit 32 VDC Minimum
	36 VDC Maximum
Source Impedance	3.2 ohms min.
Peak Power	68 to 80 watts @ 16.3+0.5V at PCU
	terminals

The above characteristics apply one hour after fuel capsule insertion and continuously thereafter for two years.

3.1.1.2 Input (RTG)

The PCU shunt regulator in conjunction with the APM, shall maintain the RTG output voltage between 15.8 and 16.8 VDC (measured at the input terminals of the PCU with an average responding meter) providing the source power capability does not exceed the maximum range of the regulator plus the minimum PCU load and losses. The maximum range of the regulator is determined by the external resistance affixed between the emitter of the regulator transistor and power return. A thermal plate heater resistance (measured at the appropriate pins of the PCU connector) of 3.70 ohms permits an active shunt regulator range of 65 watts.

Block Diagram of the

Array E

Power Conditioning Unit

		NO.	REV. NO.
Bendix		AL 510100	
Aerospace	Array E Power Conditioning Unit	PAGE OF	20
Aerospace Systems Division		DATE	and a second

3.1.1.3 Automatic Power Management (APM)

The APM shall be ground enabled, with local reserve power and temperature inputs. The APM shall distribute excess reserve power up to 25 watts, to an external dump resistor, when the thermal plate temperature exceeds 80 ± 5 degrees fahrenheit. The APM shall turn off when the thermal plate temperature drops below 60 ± 5 degrees fahrenheit. The maximum dissipation of the APM is determined by the P.D.M. resistance affixed to the emitter circuit of the APM transistor. The APM turn-on point shall not exceed 2.5 watts reserve power.

3.1.1.4 PCU Output(s) (Power)

3.1.1.4.1 Regulation

The PCU provides 4 output voltages regulated to the limits as specified in Table 1 when measured with an average responding meter and with the specified range of loads applied.

TABLE I

PCU OUTPUT VOLTAGE LIMITS (AVERAGE)

	Voltage R	ange (AVG)	Range of Loads	Nominal Loads	Max Ripple 0 to 100 kHz
Output #1	29.31 to	30.31 VDC	10.07 to 54.0 watts	48.0 watts	150 mv p-p
Output #2	12.64 to	12.74 VDC	1.45 to 2.04 watt	s 1.75 watts	100 mv p-p
Output #3	5.75 to	5.95 VDC	1.75 to 2.11 watt	s 1.93 watts	100 mv p-p
Output #4	-12.30 to	-13.10 VDC	0.40 to 0.64 watt	s 0.57 watts	100 mv p-p

3.1.1.4.2 Ripple

The total PCU output ripple to any load, including converter noise and the effect of all other loads working at their specification power noise feedback limits shall be as specified in Table 1.

3.1.1.4.3 Conversion Efficiency

The conversion efficiency of the PCU shall be equal to or greater than 85% with nominal loads applied as per Table I, section 3.1.1.4.1 and

Array	E	
Power	Conditioning	Unit

NÓ.	(Ri	iv. no.	
A1 5101	00	New Post State State	an a
PAGE8		29	iloloutisatie nikoannataje
DATE			

with the shunt regulator at cut-off. The input power shall be adjusted to achieve regulator and APM cut-off.

3.1.1.4.4 Output Impedances

The maximum output impedance of the +29 volt line at frequencies from 100 Hz to 100 KHz shall be as shown in Figure 1A.

3.1.1.4.5 Transient Characteristic

The transient characteristic shall be as shown in Figure 1B. This figure shows the worst-case output during PCU switch-over by command, at nominal loading. For power reset reference, outputs will fall to $50\% \pm 25\%$ of nominal within 5 msec.

3.1.1.4.6 Automatic Switchover Circuit

The Automatic Switchover Circuit shall provide the capability to automatically select the non-operating PCU should the operating PCU fail, providing the selector relay has been set in the proper position by previous command. Should the non-operating side be desired for reasons other than an operating side failure, the sequence of commands shall be AUTO 1 followed by SET 2 or AUTO 2 followed by SET 1, depending on which unit is desired. Elapsed time between these two commands shall be kept to a minimum.

3.1.1.4.7 Ripple-Off Logic

The ripple-off signal shall be logic 'l' when there is sufficient reserve power to operate the experiments and logic '0' when the reserve power falls below 1.8 watts. Logic 'l' and logic '0' are defined as follows:

Logic '1': 2.4V to 5.5V with a maximum source current of 5.1 mA

Logic '0': 0V to +0.4 with a maximum sink current of 3.1 mA

Aeroepace Systems Division

Array E Power Conditioning Unit ÷ . : l KHz 10 KHz $100 \, \mathrm{KHz}$ Frequency AL NÔ. DATE PAGE 510100 8 A Figure 1A - Output Impedance of PCU +29 Volt Supply Ő REV. NO. 29

2.0

1.5

0.5

0

100 Hz

Jutput

ohms)

pedance 1.0

Array E Power Conditioning Unit

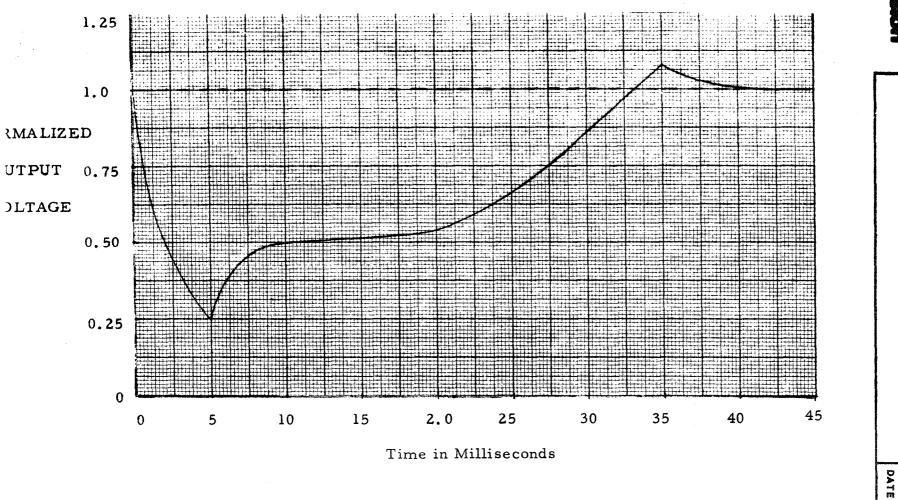
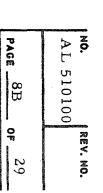



Figure 1B - PCU Switchover Characteristic

Aerospace System<mark>s Division</mark>

Array E Power Conditioning Unit

1	NO.		rev.	NO.	
	AL	51010	0	and the second secon	
	PAGE .	9	. 0f	29	
	DATE				

3.1.1.4.8 Signal Noise

The PCU objective shall be to keep reflected digital signal line noise less than 100 mV peak-to-peak and analog signal ripple less than 20 mV peak-to-peak during the sampling time of 135 µsec.

3.1.2 Operability

3.1.2.1 Reliability

Reliability shall be a prime consideration in design, development, and fabrication. Redundancy will be utilized to the greatest practical extent in achieving the reliability goal. As a design goal, the PCU shall have a 0.99908 probability of surviving launch, translunar flight, and lunar surface operation (including deployment) in the specified environment of paragraph 3.1.2.4 herein. The requirements of DS-4, DS-12, and DS-13 shall apply.

3.1.2.2 Commands

The PCU shall respond to commands with the following characteristics. The command pulse shall be Logic '0' lasting $20 \pm 2msec$. Normal no command condition shall be Logic '1'. Logic '1' and Logic '0' are defined as follows:

Logic 'l':	2.4V to 5.5V with a maximum source current of 75 uA
Logic '0':	0V to $0.4V$ with a maximum sink current of 1.5 mA

3.1.2.3 Useful Life

The PCU shall be capable of performing as specified for a period of two (2) years after a maximum earth storage period of three (3) years.

3.1.2.4 Environmental Requirements (Ref. Spec. MIL-E-5272C, MIL-STD-810B)

The worst case environmental conditions to which the PCU shall be subjected to in its operational and non-operational duty cycle are as specified in Figures 2 and 3. Additional detail on vibration, shock acceleration and EMI are provided in the following paragraphs.

The PCU shall operate according to its specification under all or any combination of these environmental conditions.

3. J. 2. 4. 1 Non Operational Vibration Shock and Acceleration

main	
10000000	. *
steins Divisi	

Array E Power Conditioning Unit

NO. AL 51	0100	REV. NO.		
PAGE	10	0#	29	*
DATE				

FIGURE 2

SYSTEM ENVIRONMENTS ALSEP MISSION PHASE

Environmental Parameter	Storage Packaged	Checkout	Movement to the Pad	Launch P ad Environment	Flight	Lunar Operations
Relative Humidity	15-90%	50% Max.	15-100% rel.	50% Max.	N/A	N/A
Sand & Dust	N/A	N/A	N/A	N/A	N/A	N/A
E. M. I.	N/A	AL770000	N/A	AL770000	N/A	AL770000
Acceleration	LED520-1	N/A	LED520-1	N/A	P ara. 3.1.2.4.1	N/A
Vibration	LED520-1	N/A	LED520-1	N/A	Para. 3.1.2.4.1	Para. 3.1.2.4.2
Shock	LED520-1	N/A	LED520-1	N/A	LIS-360- 22302	12 inch free fall onto a hard surface under lunar gravity
Temperature	-55°C to +85°C	+50°F +100°F	+50°F to +100°F	+50°F to +100°F	LED520-1	LED520-1
Nuclear Radiation	N/A	Negligible	N/A	Negligible	Less than lunar oper.	LED520-1

matix		NG. AL 510100	REV. NO.
	Array E Power Conditioning Unit	PAGE	<u>29</u>
recepteres Andre Division		DATE	

FIGURE 2 (CONT.)

Envi r onmental Parameter	Storage Packaged	Checkout	Movement to the Pad	Launch Pad Environment	Flight	Lunar Operations
Solar Radiation	N/A	N/A	N/A	N/A	N/A	LED520-1
Meteoroids	N/A	N/A	N/A	N/A	N/A	DS-21
Pressure	LED520-1	Ambient	Ambient	Ambient	1x10-8mm Hg	LED520-1
Acoustics	N/A	N/A	N/A	N/A	LED520-1	N/A

roopeoe stems Division			ray E wer Conditio	ning Unit		NO. AL Page Date	
Environment Considered	Storage Unpackaged	Storage Packaged	Movement to Pad	Factory & KSC Checkout	Launch Pad Environment	Flight	Lunar Operations
Humidity	3 Da ys	90 Days	l Day	180 Days	13 D ays	N/A	N/A
Acceleration	N/A	N/A	N/A	N/A	N/A	Approx* 25 min	N/A
Vibration	N/A	l Day	l Day	N/A	N/A	25 min*	N/A
Shock	Single Shock	Single Shock	N/A	N/A	N/A	One Shock	N/A
Temperature	3 Days	90 Days	l Day	180 Days	13 Days	3.5 Days	365 High Days 365 Low Days
Radiation	N/A	N/A	N/A	Negligible	Negligible	3.5 Days	730 Days
Sola r Radiation	6 hr/Day 3 Days	N/A	N/A	N/A	N/A	N/A	365 D ays
Meteroroids	N/A	N/A	N/A	N/A	N/A	N/A	730 Days
Pressure	90 Days		l Day	180 Days	13 Days	3.5 Days	730 Days
Acoustics	N/A	N/A	N/A	N/A	N/A	5 Min	N/A

*Includes lunar descent.

Figure 3 Environmental Duty Cycles

Aerospace Systems Division	Array E Power Conditio	oning Unit	NO. REV. NO. A1510100 PAGE 13 OF 29 DATE
Vibration - Sinuso	ida1	inde for the second	สมหนึ่งสมหรือหรือสมครรมได้สำนักสุดออกสีกลังสุดใจหรือได้สุดให้เสียหรือสองสองสองสองสองสองสองสองสองสองสองสองสอง
X-Axis:	5- 20 H z	0.20 in. d.a.	
	20-34	4.0 g-peak	
	34-50	0.07 in. d.a.	
	50-65	9.0 g-peak	
	65-100	4.0 g-peak	
Y & Z-Axes:	5-17 Hz	0.20 in. d.a.	
	17-54	3.0 g-peak	
	54-80	0.02 in. d.a.	
	80-100	6.5 g-peak	
Sweep:	5-100-5 Hz		
Sweep Rate:	3 oct/min		
Tolerances:	$\pm 10\%$ (g &d.a.)		
	± 5 Hz at step dis	continuities	
Launch & Boost Ra	andom		
X-Axis:	20-40 Hz	+6db/act	
	40-150	$0.08 \text{ g}^2/\text{Hz}$	
	150-270	-6 db/ogt	
	270-2000	$0.025 \text{ g}^2/\text{Hz}$	

+6 db/2ct 0.06 g /Hz -6 db/2ct 0.03 g /Hz Y-Axis: 20-60 Hz 60-200 200-285 285-2000 +9 db/ogt 0.035 g /Hz -3 db/ogt 0.025 g /Hz Z-Axis: 20-50 Hz 50-150 150-210 210-2000 Duration: 1.0 min/axis

Tolerances: **±**3 db (PSD) ±10% (G_{rms})

	1	HÔ.	REV. NO.
Bendix	Array E Power Conditioning Unit	AL 510100	
Aeroepace Systems Division		PAGE <u>14</u> Date	6F 29

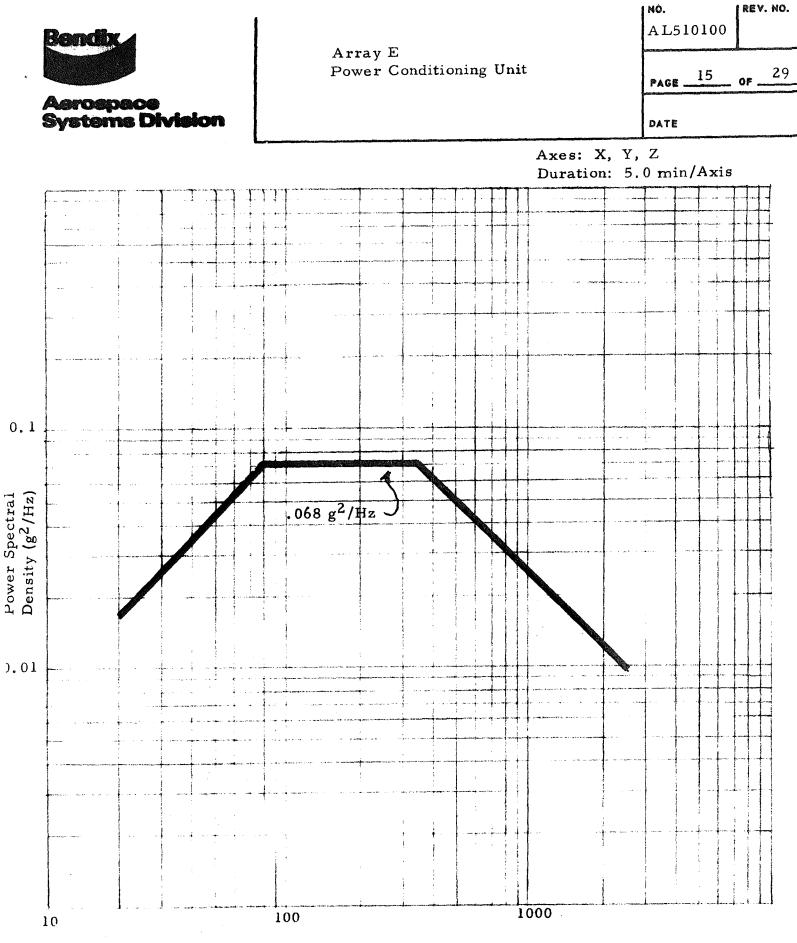
Vibration: Lunar Decent

X-Axis:	20-40 Hz	+6 db/gct
	40-60	$0.10 \text{ g}^{\prime}/\text{Hz}$
· · · · ·	60-135	-6 db/gct
	135-2000	$0.02 \text{ g}^2/\text{Hz}$
Y-Axis:	20-90 Hz	+3 db/9ct
-	90-100	$0.08 \text{ g}^{\prime}/\text{Hz}$
	100-175	-9 db/oct
	175-2000	$0.015 \text{ g}^2/\text{Hz}$
Z-Axis:	20-70 Hz	+3 db/gct
	70-120	$0.07 \text{ g}^2/\text{Hz}$
	120-380	-6 db/ogt
	380-2000	$0.007 \text{ g}^2/\text{Hz}$

Duration: 12-1/2 min/axis

Tolerances:

± 3 db (PSD) ± 10% (G_{rms})


Shock

20 g's for ll milliseconds saw tooth wave from Procedure I ($\pm X$, $\pm Y$, $\pm Z$ ALSEP axes)

3.1.2.4.2 Operating Vibration

Vibration

Random, 5.0 minute duration, X, Y, Z axes vibration spectrum per Figure 4.

Frequency (Hz)

Figure 4 - Operating Random Vibration Spectrum

Aero**space** System**s Division**

Array E Power Conditioning Unit

NO.	REV. NO.
AL510100	
and a standard and a	
PAGE 16	. of <u>29</u>
DATE	

3.1.2.5 Safety

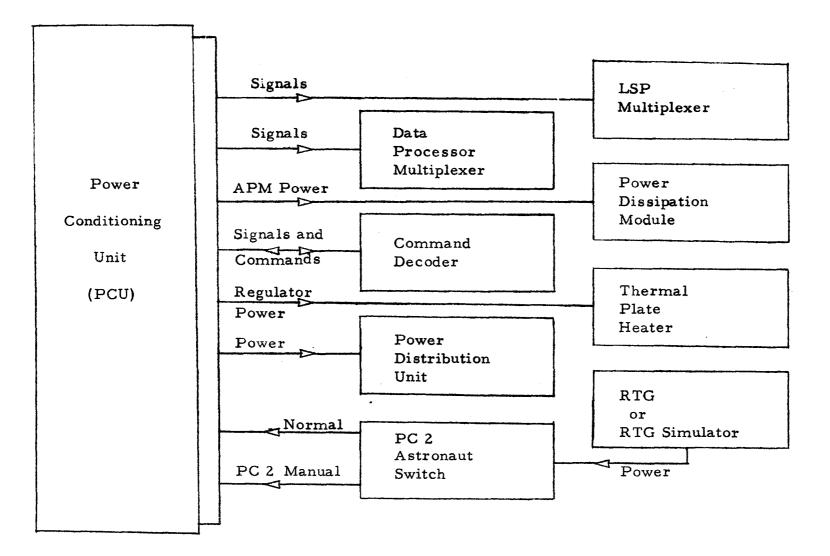
Safety requirements shall comply with the following:

3.1.2.5.1 Personnel Safety

The PCU shall be designed to avoid sharp edges, corners, and protuberances.

3.1.2.5.2 Hazard Proofing

The design of the PCU shall minimize the hazard of fire, explosion and toxicity to the crew, launch area personnel and facilities. The hazards to be avoided include accumulation or leakage of combustible gases, the hazard of spark or ignition sources including static electricity discharge, and toxicity due to inhalation or spillage of volatile or poisonous expendables. The requirements of DS-22 shall apply.


- 3. 2 INTERFACE REQUIREMENTS
- 3.2.1 Electrical Interfaces

The PCU electrical interface is illustrated in Figure 5.

3.2.1.1 Power Distribution Unit Interface (Ref. Spec. AL 310210)

The interface between the PDU and PCU involves 16 wires, external to the PCU/PDU case, which route the power outputs of the PCU to the PDU. The following table provides the pin functions:

		NO. AL 510100 REV. NO.
	Array E Power Conditioning Unit	PAGE 17 0F 29
tams Division		DATE

PCU Electrical Interface Block Diagram

Aerospace	Array E	Array E		REV. NO.
Systems Division	Power Conditioning	Power Conditioning Unit		
From PCU JP12 Pin #	To PDU JP13 Pin #	Function		

Power 29 VDC (1)

Power 29 VDC (1)

11	32	H.	1	Power 29 VDC (1)
11	48	11	4	Power 12 VDC (1)
11	49	11	5	Power -12 VDC (1)
11	64	11	8	Power 5 VDC (1)
11	65	11	7	Power 5 VDC (1)
11	66	11	6	Power 5 VDC (1)
11	34	11	25	Power 29 VDC (2)
11	35	11	24	Power 29 VDC (2)
11	36	11	23	Power 29 VDC (2)
11	51	11	26	Power 12 VDC (2)
T.F	52		27	Power -12 VDC (2)
11	68		30	Power 5 VDC (2)
	69		29	Power 5 VDC (2)
11	70	11	28	Power 5 VDC (2)

11

11

3 2

3.2.1.1.1 Power Return Interface

30

31

11

11

The power return shall be thru the PCU/PDU chassis. Chassis ground pins shall be provided to prevent damage during test. The following table provides the PCU connector pin numbers.

Function	To TB2 Pin #	From PCU JP12 Pin #
Chassis Ground	182	" 28
Chassis Ground	55B	¹¹ 3

		1 NO.	rev. no.
Bendby		AL 510100	
Aerospace Systems Division	Array E Power Conditioning Unit	PAGE <u>19</u>	of
Systems Division		DATE	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

3.2.1.2 Power Source Interface

The electrical interface between the PCU and the RTG Central Station connector JP22 is tabulated below:

	om PCU Pin #	To F JP22	P/J22 (RTG) Pin #	Function
11	5	**	(see fig. 6 - par. 3.2.1.8)	RTG Power Input (+)
11	6	11	11	RTG Power Input (+)
11	7		11	RTG Power Input (+)
f t	23	11	н	RTG Power Input (+)
11	24		11	RTG Power Input (+)
11	25		11	RTG Power Input (+)
11	71	11	24	Set 1 Sense
11	80	11	25	Set 2 Sense

3.2.1.3 Test Connector Interface

The following table provides the list of sense lines connecting to the test connector J27.

From PCU JP12 Pin #	To J27 Pin #	Function
" 58	2	+12 VDC (1) Sense
'' 78	3	+12 VDC (2) Sense
" 21	1	Reserve Power B Sense

Bendix		NO. Al 510100	REV. NO.
Aeroepace	Array E Power Conditioning Unit	PAGE	of <u>29</u>
Aerospace Systems Division		DATE	

3.2.1.4 Special Test Connections

The following is a tabulation of JP12 pins function which are used for test purposes only:

From JP12	PCU Pin	Function
11	75	RTG + Sense
11	57	29 VDC Sense (1)
	61	Return Sense
• •	58	12 VDC Sense (1)
11	60	-12 VDC Sense (1)
11	59	5 VDC Sense (1)
11	79	+29 VDC Sense (2)
11	78	+12 VDC Sense (2)
11	77	+5 VDC Sense (2)
11	76	-12 VDC Sense (2)
11	71	Set 1 Sense
11	80	Set 2 Sense
11	21	Reserve Power B TM Sense

Aerospace Systems Div]	WATTE CONTRACTOR AND CONTRACTOR OF CONTRACTOR	ditioning Unit	NO. AL 510100 PAGE 21 OF 29 DATE
3.2.1.	5	Central Station	Heater Int	erface	
From J JP12	PCU Pin	Fu	inction		
	4 6	Sh	unt REG #	l Resistor(s) (+)	
	47	Sh	unt REG #	l Resistor(s) (+)	
	62	Sh	unt REG #2	2 Resistor(s) (+)	
	81	Sh	unt REG #3	2 Resistor(s) (+)	
3.2.1.6 From H JP12		Command Decod (Ref. Spec. AL To Command	310810)	ce Function	
**	83		85	Select Power Conve	rter #1 060
11	82	11	86	Select Power Conve	rter #2 062
11	63	11	34	APM 1 On orl	
11	17	н	4	APM 2 On	
11	84	11	33	APM 1 OFF 031	
11	18	1 f	5	APM 2 OFF	
11	11 .	. 11	3	Auto 1	
11	10	11	2	Auto 2	
11	12	11	116	Ripple-Off Logic Sig	gnal (RESZP)

•

Bendir	Array E	Array E		
Aerospace Systems Division	Power Condition	ing Unit	PAGE OF	9
3.2.1.7	Power Dissipation Module Int	erface		20100490903939
From PCU JP12 Pin #	To PDM J24 Pin #	Function		
***************************************	····· 4	APM (1)		
		APM (1)		

APM (2)

11	86	11	5	APM (2)

11

6

3.2.1.8 Astronaut Switch Interface

11

85

The RTG Power Input Pins (5, 6, 7, 23, 24, 25) and Pin 14 are connected to the PC 2 Astronaut Switch which provides manual selection of PC 2 should PC 1 fail to start. Upon PC 1 failure to start, operation is to switch the arm to PCU contact 14, which causes switchover to PC 2, and then return the switch arm to the normal position to apply power.

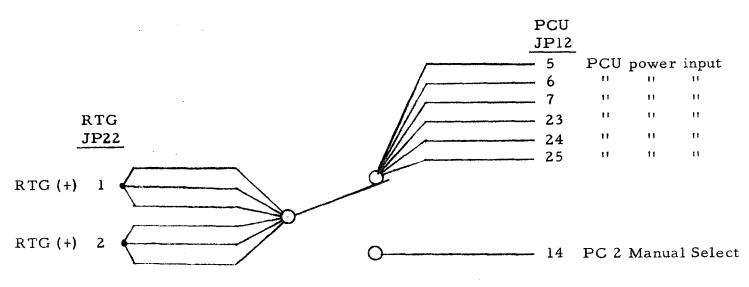


Figure 6

Astronaut Switch Connections (Shown for Normal Conditions)

			1		NO. REV. NO.
Ben				Array E	AL 510100
			Power Cond	litioning Unit PAGE 23 of 29	
-zen Syst	tems Di	viela	n	una martina anti anti anti anti anti anti anti	DATE
	3.2.1	.9		essor (Analog Mul . AL 310910)	tiplexer) Interface
	From	PCU	To Anal	og Multiplexer	Function
	JP12	Pin	JP16	Pin	
	* *	42	11	49	Regulator (1) Temperature $A^{T} - 38$
	11	53	11	17	Regulator (2) Temperature AT-39
		9	11	45 [°]	PCU Input Voltage (1) PE-3
		40	17	51	PCU Input Voltage (2) RE-23
	11	27	. 11	46	RTG Current A AE-4
	U.	41	11	50	Reserve Power A (DA-08 or AE-24)
	11	38	11	53	APM (1) Power De-21
	11	37	• • • • • •	54	APM (2) Power AE-22
	11	43	11	48	APM 1 Temperature AT-41
	5 7	39	11	52	APM 2 Temperature AT-42
	н	44	11	47	APM Status - AB-13
	11	74	· n	83	Auto Switch Status - AB-16

3.2.1.10

Lunar Seismic Profile Experiment Interface (Ref. Spec. AL 900131)

Provisions shall be made within the PCU such that the LSP Data Processor can be utilized to monitor certain critical PCU functions. The following table lists functions and pin connections of the PCU connector to be used for this purpose.

JP12	Pin	Function
11	55	RTG V 1B
11	56	Reserve Power B
11	54	RTG Current B

Reas	inter a
K as	a support

Aerospa	C0
Systems	Division

Array E Power Conditioning Unit

NO.		leev	/. NO.
AL 5	10100)	
		ender and a second	, and the second se
PAGE .	24	_ OF _	29
		id Gynanistic Spenicipalitae	****
DATE			

3.2.2 Mechanical Interface

The PCU shall mount to a flat, thermally conductive surface. Thermal Control shall be in its entirety maintained by thermal conduction to the mounting surface.

3.2.3 Thermal Interface

The PCU shall be constructed such that internal heat rise within the PCU is less than 30° C when mounted to a thermal plate maintained between -30° C and $+70^{\circ}$ C.

3.3 DESIGN AND CONSTRUCTION

The PCU shall be designed and constructed such as to meet all the requirements of this specification and yet be of minimum size and weight.

3.3.1 Size

The PCU shall be packaged within a volume not exceeding 120 cubic inches. The total height above the thermal plate shall be less than 3 inches including PDU, electrical connector and cable routing.

3.3.2 Weight

The PCU/PDU combined weight shall be 8.0 pounds or less.

3.3.3 Form Factor

The form factor of the PCU/PDU combination shall be a maximum of 2.98'' H x 6.98'' x 10.40'' including connector.

3. 3. 4 Parts and Materials

Materials shall be selected from the ALSEP Approved Materials List - ATM-241. Parts shall be selected from the Acceptable Parts List - ATM-242. All parts and materials shall be compatible with the intended use and environment requirements specified in 3.1.2.4 herein.

	1	NÓ.	REV. NO.
Bendix	Annost F	AL 510100	
	Array E Power Conditioning Unit	PAGE25	or 29
Aerospace Systems Division			
Systems Livision		DATE	

3. 3. 4. 1 Materials

Materials used in the fabrication of all components shall be of the highest quality compatible with design requirements specified herein. In general, the following types of materials shall not be used without prior written approval of NASA:

- a. Flammable materials
- b. Toxic materials
- c. Unstable materials
- d. Plastic (only epoxy resin-based compounds, teflon, and mylar shall be used).
- e. Dissimilar metals in direct contact which tend toward active electrolytic or galvanic corrosion.
- 3. 3. 4. 2 Standard Processes

3. 3. 4. 2. 1 Protective Treatment

All materials used which are not inherently corrosive-resistant shall be treated to resist any corrosive effects resulting from environmental conditions specified herein. Protective coatings shall not crack, chip, peel, or scale with age when subject to the environmental extremes specified. The requirements of PS-5 shall apply to protective treatment. DS-25 shall apply.

3.3.4.2.2 Soldering

NASA Publication NHB-5300.4(3A) shall apply for hand soldering of all electrical connections.

3.3.4.2.3 Welding

Resistance welding (spot and seam) shall conform to Specification MIL-W-6858C.

	1	NÓ.	rev. No.
ndby	Array E	AL 510100	
	Power Conditioning Unit	PAGE	of <u>29</u>
rospace stems Division		DATE	n yn de fan yn

3. 3. 4. 2. 4 Ultrasonic Cleaning

The requirements of PS-6 shall apply.

3.3.5 Standard Parts

NASA Standard Parts, Air-Force-Navy (AN) or Military Standards (MS) or joint Air Force-Navy (JAN) shall be used where applicable.

3.3.5.1 Standardization

Maximum economic standardization of parts and components shall be provided. Where identical or similar functions are performed in more than one application within the system, effort shall be made to use only one item design for all system applications.

3. 3. 5. 2 Parts Procurement

The requirements of PS-8 and PS-11 (excluding part C) shall apply. Bendix shall be capable of identifying at any time the manufacturers lot from which parts have been procured.

3.3.5.3 Transistors

The requirements of DS-5 shall apply.

3.3.6 Moisture and Fungus Resistance

Materials which are not nutrients for fungus shall be used whenever possible. The use of materials which are nutrients for fungus shall not be prohibited in hermetically sealed assemblies and in other accepted and qualified uses such as paper capacitors and treated transformers. If it is necessary to use fungus nutrient materials in other than such qualified application, these materials shall be treated with a process which will render the resulting exposed surface fungus resistant.

*	1	[NÓ.	REV. NO.
Bendix	Array E	AL 510100	
Asrospace	Power Conditioning Unit	PAGE	of
Aerospace Systems Division		DATE	

3.3.7 Corrosion of Metal Parts

Metals shall be corrosion-resistant type or suitably treated to resist corrosive conditions likely to be met in storage or normal service. Unless suitably protected against electrolytic corrosion, dissimilar metals as defined in MIL-STD-889, shall not be used in direct physical contact.

3.3.8 Workmanship

The PCU shall be constructed, finished, and assembled in accordance with highest standards.

3. 3. 9 Electromagnetic Interference (EMI)

All items furnished shall have as a design goal the intent of meeting the requirements of electromagnetic interference. (See Spec. AL 770000).

3.3.9.1 Operation

Electrical and electronic equipment shall perform as specified herein when operating either independently or in conjunction with other equipment with which there are electrical connections, or which may be installed nearby. This requires that the operation of such equipment shall not be adversely affected by interference voltages and fields reaching it from external sources and also requires that such equipment shall not, in itself, be a source of interference which might adversely affect the operation of other equipments. These general criteria ensure that the system will meet the requirements of the overall system acceptance criteria, and electromagnetic compatibility as specified in the performance specifications. In addition to these general requirements, the system shall satisfy the requirements of paragraph 3. 1. 2. 4 and Specification MIL-I-26600, and NASA Addendum MSC-ASPO-EMI-10A.

3. 3. 9. 2 Transient Interference

Transient or short duration interference resulting from the operation of electrical or electromechanical devices shall not compromise the performance requirements as specified herein.

		NÓ.	REV. NO.
Bendly	Array E	AL 510100	
	Power Conditioning Unit	PAGE	of <u>29</u>
Aerospace Systems Division		DATE	
3.3.9.3	Interference-Free Design		an a

Interference-Free Design (Ref. Spec. MIL-STD-826)

Interference control shall be considered in the basic design of all subsystem electronic and electrical equipment and specialized equipment such as simulation sources and GSE. The design shall be such that before interference control components are applied, the amount of interference internally generated and propagated shall be the minimum achievable. The application of interference control components (e.g., filtering, shielding, bonding) shall conform to good engineering practice and, wherever practical, shall be an integral part of the subsystem or component.

3.3.9.4 Filtering

Filters shall be provided at each component or subsystem, as required, to prevent internally generated electrical interference signals being conducted out of the component or subsystem.

3.3.10 Identification and Marking

The PCU shall be marked for identification in accordance with Standard MIL-STD-130.

3. 3. 10. 1 Identification and Marking Data

The identification and marking shall include but not be limited to the following data.

- a. Item nomenclature
- b. Item part number
- c. Item serial number
- d. Item identification number

3.3.11 Storage

The PCU shall have a shelf life of 3 years. Shelf life is defined as a storage period in a controlled environment of 50° F to 80° F and a relative humidity of no more than 50 percent following acceptance and prior to installation in the LM for flight.

	1	NÔ.	REV. NO.
Bendby		AL 510100)
	Array E Power Conditioning Unit	PAGE	of <u>29</u>
Aero space System s Division		DATE	

3.3.12 Maintainability

Component arrangement, and accessibility features shall be incorporated into the design, to allow efficient maintenance. The requirements of DS-1 and MIL-STD-721 shall apply.

3.3.13 Bendix Performance and Interface Specifications

The following specifications are listed as a guide for additional information on the experiments and contract items for ALSEP: ARD-503, AL 210100, AL 310810, AL 270000, IC 314131, AL 280000, IC 314103, IC 314130, IC 314106, IC 314132, and IC 314133. In the event of conflict between documents referenced in this specification and the detail content of Sections 3, 4, and 5, the detail requirement of NASA/MSC Exhibit 'B' shall be considered a superseding requirement.