Dual 90 Channel Multiplexer
No.
REV. NO. Reliability Prediction and Failure Mode, Effects \& Criticality Analysis

No. ATM-863	REV. no.
$\text { PAGE } 1$	
date May	8, 1970

This ATM documents the Reliability Prediction and Failure Modes and Effects analysis of the Bendix designed Dual 90 Channel Multiplexer. The analysis reflects the final flight configuration for the A2 ALSEP system.

Approved by:
S. J. Ellison

ALSEP Reliability Manager

Dual 90 Channel Multiplexer Reliability Prediction and Failure Mode, Effects, \& Criticality Analysis
(NO.
|REV. NO.
ATM-863

PAGE 2 OF 18
date May 28, 1970

INTR ODUCTION

The results of the reliability prediction and failure modes and effects analysis for the ALSEP A2 Dual 90 Channel Multiplexer are documented in this report. This multiplexer represents the Bendix designed unit which utilizes MOS-FET integrated circuits. The multiplexer was integrated with the Dynatronics A/D Converter. This design now provided complete redundancy for ALSEP Housekeeping engineering status data while retaining the interface design requirements specified for basic ALSEP.

The reliability prediction for the Dual 90 Channel Multiplexer and A/D Converter is calculated to be 0.9981 for one year of lunar operation, which exceeds the specified design goal of 0.9956 . All reliability objectives have been achieved or exceeded.

2.0 RELIABILITY PREDICTION

The reliability prediction for the Dual 90 Channel Multiplexer and A/D Converter, operating in the standby redundant configuration, is calculated to be 0.9981 for launch, deployment, and one year of lunar operation. The predicted reliability exceeds the specified goal of 0.9956 .

Figure 1 defines the reliability block diagram and mathematical model for the Multiplexer and A / D convert component. The standby elements are activated by earth command. Functionally, the system operates in conjunction with the redundant Data Processor. However, the Data Processor was not included as part of this analysis.

The failure rates for each functional component identified in Figure 1 are tabulated in Table I. The failure rates shown represent composite totals derived from the part application stress ratios of each electronic piece part. The application reflects the anticipated "use" environment.
nо.
Dual 90 Channel Mult ser Reliability Prediction and
Failure Mode, Effects, and Criticality Analysis

Dual 90 Channel Multiplexer
| REV. NO. Reliability Prediction and Failure Mode, Effects, and Criticality Analysis

no. ATM-863	REV. NO.
Page 4	OF 18
date May 28,	, 1970

TABLE I
FAILURE RATE SUMMARY
Failure
λ oi (\%/1000 Hrs.)
λ si (\%/1000 Hrs.) Rate

Assembly	λi	Operating	Standby	Source
90 Channel	1	0.1445	0.0001445	ATM-860A
MOS-FET's		0.387611	0.0003876	ATM-860A
Sequencer	2	0.08579	0.01349	ATM- 274 G
Buffer Amp.	3	0.05350	0.01501	ATM-274G
A/D Converter	4	0.01426	0.00402	ATM-274G
Output Buffer Circuit	5	0.685661	0.033052	
TOTALS	λi			

Reliability Calculation

$$
\begin{aligned}
R_{M U X} & =\epsilon^{-\left(0.532111 \times 10^{-5}\right)(8760.52)}=\epsilon^{-0.046616} \\
& =0.9544691 \\
R_{A / D} & =\epsilon^{-\left(0.15364 \times 10^{-5}\right)(8760.52)}=\epsilon^{-0.01346} \\
& =0.986591 \\
R_{S} & =R_{M U X} \cdot R_{A / D}=(0.9544691)(0.986591) \\
& =0.9416706 \text { (non-redundant System) } \\
R_{S} & =\frac{(0.685661)(0.033052)(0.0876052)^{2}-\frac{[(0.685661)(0.0876052)]^{2}}{2}}{2} \\
& =1-\frac{(0.00017388)}{2}-\frac{0.0036081}{2}=1-0.00008694-0.00180405
\end{aligned} \quad \begin{aligned}
2
\end{aligned}
$$

Dual 90 Channel Multiplexer Reliability Prediction and Failure Mode, Effects, \& Criticality Analysis
Page $\frac{5}{2}$ of 18

3.0 FAILURE MODES, EFFECTS \& CRITICALITY ANALYSIS

The failure mode and effects analysis for the 90 Channel Multiplexer are documented in Tables II and III. Table II describes the functional failure modes and the resultant effects on the end item and system level. Table II delineates the failure modes at the piece part level. Each identified failure is numerically itemized for cross reference between Tables II and III. (Note: the cross reference must be correlated by Assembly).

The Failure probabilities reflect the identified line item. The criticality ranking lists, by order of magnitude, the highest down to the lowest failure probabilities. Subcategories of failures (e.g., 2.1 2.2 of 2.0) are not ranked.

The format of Tables II and III is designed to provide the reader with a narrative description of the varying types of failures that could occur, combined with the resultant performance characteristics. This information is useful to system support in performing fault isolation should an anomally occur.

There are no ALSEP single point failures in either the 90 Channel Multiplexer or the A/D converter. Careful parts selection and circuit design coupled with the switching of most supply voltages in the redundant units has enabled the Bendix design to have zero single point failures. Failure Mode l. l of Table II implies a loss of a single housekeeping data channel. This loss cannot be restored by switching the redundant unit. This is a single thread failure for one channel only, the other 89 channels are unaffected. Thus, only 1% of the total functional ability of the multiplexer is lost with this one and only single thread failure mode. Further discussion will be found under Reliability Assessment on Page 6 of this ATM.

The loss of both 90 Channel Multiplexers or A/D converters will not cause the loss of any science data except for the dust detector, since this is the only science data handled by the multiplexer. Other than the dust detector, the 90 Channel Multiplexer handles only housekeeping data.

The A/D converter is treated in the reliability prediction but since the design of the A / D converter has not been changed, the FMECA for the converter is not included in this ATM. The A/D converter FMECA may be found in ATM 501, the complete FMECA for The ALSEP System. Svstems Division

4.0 RELIABILITY ASSESSMENT

The purpose of performing a reliability prediction and failure modes analysis is to identify inherent design weaknesses. From the results of these analyses it has been concluded the reliability and design objectives have been fully satisfied.

With exception to one failure mode the multiplexer is mutually exclusive of its redundant counterpart. That is, full capability can be restored by switching to the redundant unit. The exception is item $1 . l$ of Table II. The failure mode is a loss of one (1) housekeeping data channel caused by an electrical short between the drain and substrate of a lst tier MOS-FET gate on the multiplexer gate assembly. What happens is the +12 V supply, which presently is not switched, will feed back into the analog source, thus offsetting the analog data signal being sampled by the redundant multiplexer. This failure mode was identified early in the design phase and prompted a reliability investigation. The results of the investigation disclosed that switching off the +12 V supply was feasible. However to implement this capability would necessitate a modification of the PCU mother board assembly. In addition, the central station interface requirement would have to be modified. This in turn would preclude the interchangeability between multiplexers of previous arrays as is presently required.

The system criticality of the subject failure mode is low, therefore, the reliability improvement that would have been derived if the switching capability was incorporated would not have offset the program impact relative to cost and schedule. Therefore, the decision was made not to incorporate the +12 V switching capability into the A2 system. However, in the event future ALSEP systems are built (Apollo 17 and subsequent) it is recommended the +12 V switching capability be incorporated.

TABLE II
FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

TABLE II
FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

$\begin{aligned} & \text { SYSTEM } \\ & \text { ALSEP (AZ) } \end{aligned}$	PPFPARED EY J. Mansour	$\mathrm{AC}_{\mathrm{ATM}-863} \mathrm{REV}^{R E}$
$\begin{aligned} & \text { END TIEM } \\ & 90 \text { CH. Multiplexer } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DWG NO. } \\ & 2338900 \\ & \hline \end{aligned}$	PAGE 8 of 18
Assex Gate Brd. $1 \& 2$	OKGNOO3/8906	CATE ${ }^{\text {May 28, }} 1970$

CIRCUIT			FFFEECT C	F FAILURE		CRITK-
FUNCTION	ASSUMED FAILURE MODE	CAUSE OF FAILURE.	END ITEM	SYSTEM	$Q \times 1 C^{-5}$	ALITY
3.0 MOS-FET Multiplexer Gate	3. 0 Loss of twelve (12) Housekeeping Data Channels 3.1 Failure of a lst Tier MO:FET part. 3.2 Failure of a 2 nd Tier MOS Fet part (one channel only)	3.0 Failure of a six channel MOSFE'T part in one of the identified modes.	3.0 One lst Tier data bank (12 HK channels) will be lost Multiplexer remains operational but at degraded performance level.	3. 0 Good Housekeeping data reduced to 78 channels using the failed multiplexer. Full data can be restored via redundant multiplexer.	44.39	2
		3. 2 Electrical short cet from Drain to Substrate 3. 2. 1 Electrical short cct from	3. 1 An error signal (12v max) will be continuously present on the out put of the affected data bank. This voltage will sum with the data channel being sampled.	3. I The digital data for the affected 12 channels will reflect the sum of the error voltage and the analog signal.	20.78	-
		Drain to Gate or Gate to Substrate. Open circuit on input terminal of Drain or Gate of one MOS-FET channel. An increase in threshold voltage which precludes turn-on of the MOS-FET.	$3.2+12 \mathrm{v}$ error voltage will be summed with the sampled analog signal. 3.2.1 The second Tier analog channel will not turn on.	3.2 The affected HK Data Bank appears as all "ls".	17.82 57.9	-
4. 0 Second Tier MOS-FET Gates on Assy Board No. 2	4. 0 ioss of Forty-two (42) Housekeeping Data Channels.	4.0 Failure of the 2nd Tier multichannel MOS-FET that controls HH channels 49 thru 90. 4. I Open circuit on the Source or Substrate Output/Input Terminal	4. 0 Approximately 47% of the multiplexer becomes inoperative. 4. 1 Loss of substrate voltage precludes turn-on of any FET gate An open source terminal prevents data transfer the A / D converter.	3.2.1 Twelve HK channels of the affected bank will appear as all "0י" 4. 0 Housekeeping data information significantly degraded. Full data restored via redundant multiplexer 4. 1 HK channels 49 thru 90 will read all '0s'.	5.94	6
				4. 1 HK channels 49 thru 90 will read all "0s'.	5.94	-

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& FAILURE MODE, EFFE \& CT \& CRITICALITY AN \& ALYSIS \& MUX Gate Brd. 182 \& \multicolumn{2}{|l|}{DAYE May 28, 1970} \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CIRCUTT } \\
\text { CUNCTION } \\
\hline
\end{gathered}
\]} \& \multirow[b]{2}{*}{ASSUMED FALLURE MODE} \& \multirow[b]{2}{*}{CAUSE OF FALLURE} \& \multicolumn{2}{|l|}{EFFECT CF FAILURE} \& FAILURE \& Critic- \\
\hline \& \& \& END ITEM \& SYSTEM \& Q \(\times 1 C^{-5}\) \& \\
\hline 5.0 Second Tier MOS-FET Gate on Assy Board No. 1 \& 5.0 Loss of Forty-eight (48) Housekeeping data channels. \& \begin{tabular}{l}
5. 0 Failure of 2nd Tier multichannel MOS-FET that controls HK channels 1-48 \\
5.1 Open circuit on the Source or Substrate Output/Input terminal
\end{tabular} \& \begin{tabular}{l}
\(5.053 \%\) of the multiplexer become inoperative. \\
5. 1 Loss of substrate voltage precludes turn-on of any FET gate. An open source terminal prevents data transfer the A/D converter.
\end{tabular} \& \begin{tabular}{l}
5. 0 Housekeeping data information significantly degraded. Full data restored via redundant multiplexer. \\
5.1 HK channels \(1-48\) will read all "0"s.
\end{tabular} \& 5.94
5.94 \& \(\begin{array}{r}6 \\ \hline\end{array}\) \\
\hline 6.0 Second Tier MOS-FET Gate on Assy Board No. 1 or 2 \& 6.0 Loss of 78 or 84 HK Data channels. \& \begin{tabular}{l}
6.0 Failure of either 2nd Tier 6 channel MOS-FET. \\
6. 1 Electrical short circuit from the Source to Drain
\end{tabular} \& \begin{tabular}{l}
6.0 The multiplexer becomes effectively inoperative. The number of channels lost is contingent on which MOS-FET part that failed \\
6.1 The failed channel controls the analog signal of 12 lst gates. The eighth 2nd Tier switch controls only 6 lst Tier gate. An elect. short would result in the summation of two analog data channels. The resultant analog data would be in error.
\end{tabular} \& \begin{tabular}{l}
6.0 All Housekeeping data is effectively lost. Full HK data can be restored via redundant multiplexer. \\
6. 1 The 12 (or 6) analog signals controlled by the failed FET switch would be the only valid data. However, practically speak ing it would be difficult to determine which data channels were correct unless a known analog signal was sampled in each lst Tier Data Bank.
\end{tabular} \& 17.82

17.82 \& 4

\hline 7.0 Same as 6.0 \& 7. 0 Loss of all HK Data Channels. \& | 7.0 Failure of either 2nd Tier 6 channel MOS-FET. |
| :--- |
| 7. 1 Electrical short cct from Source to Substrate or Gate. | \& | 7.0 The multiplexer becomes inoperative. |
| :--- |
| 7. $1 \mathrm{~A}+12 \mathrm{v}$ signal will be continuously transmitted to the A/D converter as an analog signal. |
| 7. 1. 1 When failed FET gate signal is at -12 v the -12 v level (for source to gate short) will be summed with analog data. | \& | 7.0 All HK data is lost. Redundant switch over is required. |
| :--- |
| 7.1 All HK Data will read all "I's. |
| 7. 1. 1 Twelve HK channels will read all "0"s. The remaining 78 will be all "l"s. | \& | 11.88 |
| :--- |
| 5.94 5.94 | \& 5

-
-

\hline
\end{tabular}

TABLE II
FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

	URE NOUE, EFFE	I \& CRITICALITY A	ALYSIS		May 28	1970
$\begin{gathered} \text { CIRCUIT } \\ \text { OR } \\ \text { FUNCTION } \\ \hline \end{gathered}$	ASSUMED FAILURE MODE	CAUSE OF FAILURE	EFFECT CF FAlLURE		FAILURE PROBABULITY$Q \times 1 C^{-5}$	$\begin{aligned} & \text { CRITIC- } \\ & \text { ALITY } \end{aligned}$
			END ITEM	SYSTEM		
1.0 DTL-MOS Interface circuit	1.0 The DTL-MOS interface circuit becomes inoperative. 1. 1 Voltage level shifter fails in th logic "0" state. 1.2 Voltage level shifter fails in the logic "l" state	1.0 Discrete component part failure. ${ }^{\text {e }} 1.1$ The output transistor either failed or is slaved in the off state. 1.2 The output transistor stage either shorted collector to emitter or is slaved in the ON state.	1.0 Sequencer shift register will not advance. Multiplexer will be slaved to the last analog data	1.0 Only one (1) Housekeeping Data Channel will be transmitted. Switchover to redundant multi-	371.045	2
			channel sampled.	plexer will restore all Housekeepi Data.		
			1.1 A -6v is continuously applied to the input of the $\$ 2$ clock gener ator. The multiplexer advance pulse is inhibited.		150.145	-
			$1.2 \mathrm{~A}+12 \mathrm{v}$ is continuously applied to the input of the $\emptyset 2$ clock generator. The multiplexer advance pulse is inhibited		220.90	-
2.0 Phase Two (02) Clock Generator	2.0 The $\emptyset 2$ clock generator circuit becomes inoperative. 2. 1 Loss of $\emptyset 2$ clock pulse $2.2 \$ 2$ clock pulse overlaps ϕ_{1} clock pulse.	2.0 Failure of discrete part(s) or MOS logic. 2. 1 Output of clock generator remains in continuous state (either + or -12 v) 2.2 Degradation of input coupling capacitor causing RC time constant to decrease by a factor greater than 10.	2.0 The shift register can not be sequenced. Multiplexer will remain in the last analog channel sampled.	2. 0 Only one housekeeping data channel will be transmitted. Switc over to the redundant multiplexer will restore full Housekeeping Data.	17.474	6
			2.1 @l clock pulse cannot be generated. Loss of both clock pulses disables the shift register. 2.2 The shift register will not sequence properly if the $\emptyset 1 \& \emptyset 2$ clock pulses overlap.		15.149 2.325	-
3. 0 Phase One (11) Clock Generator	3. 0 The 01 clock generator circui becomes inoperative. 3.2 The $\emptyset 1$ clock pulse remains at a continuous logic "0". 3. 3 The \emptyset clock pulse remains at a continuous logic "l".	3. 0 Failure of discrete part(s) or MOS logic. 3.1 Output of clock generator fails in continuous state at +12 v . 3.2 Output of clock generator fails in continuous state at -12 v .	3. 0 The shift register cannot be sequenced.	3. 0 Multiplexer becomes inoperative. Backup redundant unit avail able.	71.752	4
			3.1 The shift register remains in last state. 3.2 The shift register bit outputs	3.1 One HK data channel will be continuously sampled.	28.90	-
			will shift to all logic "0" (e.g. , at +12 v).	3.2 All HK data channels will be off. HK telemetry data reads all "0"s.	7.419	-

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& FAllURE MODE, EFFE \& T \& CRITICALITY A \& LYSIS \& \& DATE May \& 1970 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CIRCUIT } \\
\text { FUNCTION } \\
\hline
\end{gathered}
\]} \& \multirow[b]{2}{*}{ASSUMED FALLURE MODE} \& \multirow[b]{2}{*}{CAUSE OF FAILURE} \& \multicolumn{2}{|c|}{EFFECT CF FAILURE} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { FAILUUE } \\
\text { PROBABMITYY } \\
Q \times 10^{-5} \\
\hline
\end{gathered}
\]} \& \multirow[t]{2}{*}{CRITKALITY} \\
\hline \& \& \& END ITEM \& SYSTEM \& \& \\
\hline \multirow{8}{*}{4.0 The 1 st and 2nd Tier Shift Register(s)} \& \begin{tabular}{l}
3.4 the 01 clock pulse or logic for 2nd Tier Gating function becomes inoperative. \\
3.4.1 Function fails in the logic "0" state. \\
3.4.2 Function fails in the logic "1" state.
\end{tabular} \& \begin{tabular}{l}
3.3 MOS logic fails as indicated. \\
3.3.1 \(\emptyset 1\) clock pulse to 2 nd shift resigter is at continuous +12 v . \\
3.3.2 0 clock pulse to 2 nd shift register is at continuous -12 v .
\end{tabular} \& \begin{tabular}{l}
3. 3 The sequencer operation becomes erratic. \\
3.3.1 2nd shift register will hang up in the last state. This will preclude sequencing of the 2 nd Tier multiplexer gate. \\
3.3.2 All 2nd Tier multiplexer gates will eventually turn on.
\end{tabular} \& \begin{tabular}{l}
3.3 A minimum of 78 HK data channels will be lost. \\
3.3.1 The 12 HK channels corres ponding to the selected 2nd Tier FET will be telemetered in the data stream. \\
3.3.2 All HK data will become erratic.
\end{tabular} \& 35.876
17.938

17.938 \& -

\hline \& 4. 0 The 12 Bit Serial to Parallel Shift Register (s) become inoperative. \& \multirow[t]{2}{*}{| 4. 0 Failure of any stage |
| :--- |
| 4. l Shift register remains in the reset state. lst stage fails in reset state. MOS logic (internal) will not accept the initial Vin puls |} \& | 4.0 The shift register controls th gating sequence of the 90 channel multiplexer. |
| :--- |
| 4. 1 All multiplexer MOS-FET e.gates will be turned OFF. | \& 4. 0 Housekeeping data becomes degraded or erratic. Switchover to redundant unit restores all HK data. \& 1954.547 \& 1

\hline \& logic "0" state. \& \& e.gates will be turned OFF. \& 4. 1 No HK data. HK telemetry will appear as all "0"s. \& 149.813 \& -

\hline \& | 4. 2 All output stages fail in the logic " 1 " state. |
| :--- |
| 4. 3 Shift register fails to se- | \& 4. 2 Set output of the 1 st stage fails in the logic "0" level. Vin function remains at -12 v . \& 4. 2 All multiplexer gates will be turned ON simultaneously. \& 4. 2 HK telemetry data will be erroneous, for all 90 channels. \& 492.623 \& -

\hline \& | quence. |
| :--- |
| 4. 4 Bit output of shift register | \& 4. 3 Failure of any shift register Flip-Flop stage such that it will not toggle. The failed stage is in the " 0 " logic state. \& 4. 3 The shift register will not transfer a logic " 1 " through the failed state. \& 4.3 Only one HK telemetry channel will be transmitted. \& 434.159 \& -

\hline \& fails in the logic "0" state. \& | in the "0" logic state. |
| :--- |
| 4. 4 The logic " 0 " Bit output FET | \& \multirow[t]{3}{*}{| 4. 4 Loss of multiplexer FET gate drive pulse. |
| :--- |
| 4.4.1 Loss of every 12th data channels in the lst Tier. |
| 4.4.2 Loss of a bank of 121 st Tier HK channels controlling 2nd Tier FET will not turn ON. |} \& \multirow[t]{3}{*}{| 4. 4 Loss of 8 or 12 HK Data channels. |
| :--- |
| 4. 4. 1 Loss of 8 HK Data channels. |
| 4.4.2 Loss of a group of 12 HK Data measurements. |} \& \multirow{3}{*}{\[

$$
\begin{aligned}
& 385.661 \\
& 166.754
\end{aligned}
$$
\]} \& \multirow[b]{2}{*}{-}

\hline \& \& fails in the ON mode. \& \& \& \&

\hline \& \& | 4.4.1 Failed FET is for lst Tier gate drive signal. |
| :--- |
| 4.4.2 Failed FET is for 2nd Tier gate drive signal. | \& \& \& \& -

\hline
\end{tabular}

TABLEII
FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CIRCUIT } \\
\text { FUNCTION } \\
\hline
\end{gathered}
\]} \& \multirow[b]{2}{*}{ASSUMED FALLURE MODE} \& \multirow[b]{2}{*}{CAUSE OF FAILURE} \& \multicolumn{2}{|l|}{EFFECT CF FAlLURE} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { FALLURE } \\
\text { PROBABLIITY } \\
\mathbf{Q} \times 1 C^{-5} \\
\hline
\end{gathered}
\]} \& \multirow[t]{2}{*}{CRITICAllity} \\
\hline \& \& \& END ITEM \& SYSTEM \& \& \\
\hline \& 4. 5 Bit Output of shift register fails in the logic "l" state. \& \begin{tabular}{l}
4.5 Either the Logic "0" FET faild in the off mode or the Logic "l" FET fails in the ON mode. \\
4.5.1 Failure is for a lst Tier FE gate drive signal. \\
4.5.2 Failure is for a 2nd Tier FE Gate drive signal.
\end{tabular} \& \begin{tabular}{l}
4. 5 Sequencer will provide multiple FET gate drive pulses. \\
4.5.1 Two channels for each Ist Tier bank of 12 FETS will be on simultaneously. (exception-when failed channel should be ON.) 1 \\
4.5.2 Two 2nd Tier FET gates wil be continuously ON. (Exceptionwhen remaining seven 2nd Tier FETS are turned OFF).
\end{tabular} \& \begin{tabular}{l}
4. 5 Either 78 or 82 HK data measurements are erroneous. The multiplexer becomes effectively inoperative. \\
4.5.1 All but eight HK Data measurements will be erroneous. \\
4.5.2 All but 12 HK Data measure ments will be erroneous.
\end{tabular} \& 325.537
196.651
128.886 \& -
-
-
- \\
\hline 5.0 Reset Logic \& \begin{tabular}{l}
5.0 The reset logic becomes inoperative. \\
5. 1 Reset logic output fails in the logic "0" state. \\
5.2 Reset logic output fails in the logic " 1 " state.
\end{tabular} \& \begin{tabular}{l}
5. 0 MOS Logic fails to generate the necessary timing functions. \\
5.1 Output MOS FET either fails or is slaved to the on mode, thus providing a +12 v to the reset input of each shift register. \\
5. 2 Output MOS-FET either fails or is slaved to the OFF mode, thu providing a \(-12 v\) to the reset input of each shift register.
\end{tabular} \& \begin{tabular}{l}
5.0 Sequencer becomes inoperativ \\
5.1 Sequencer will clock out to HK channel \#l and remain there. However, 90th Erame pulse will not be generated. \\
5.2 Sequencer will eventually turn all HK channels on simultaneously
\end{tabular} \& \begin{tabular}{l}
5. 0 Loss of all HK Telemetry Los of 90 th Frame pulse to the Data Proc. \\
5. 1 Loss of 89 HK data measurements. No 90th Frame pulse signal will be sent to the Data Processor. \\
5.2 All HK Data will be erroneous. A 90th Frame pulse signal will be sent to the Data Processor once every 0.6 sec .
\end{tabular} \& 35.876
17.938

17.938 \& 5

\hline 6.0 The 90th Frame Pulse Circuit \& | 6.0 The 90th Frame Pulse circuit becomes inoperative. |
| :--- |
| 6. 1 The 90th Frame puise is not generated. |
| 6.2 The 90th Frame pulse is continuously present. | \& | 6.0 Failure of the MOS Logic or MOS to DTL interface circuit. |
| :--- |
| 6.1 The circuit output transistor either fails in the ON mode, or is slaved to the ON mode. |
| 6.2 The cct output xstr opens or is slaved to the off condition. | \& | 6.0 The analog multiplexer will continue to function properly. |
| :--- |
| 6.1 Same as 6.0 |
| 6.2 Same as 6.0 | \& | 6. 0 Loss of HK channel reference. Data Proc. Frame counter becomes inoperative. |
| :--- |
| 6. 1 HK data stream will have to be synchronized on known data channels. |
| 6.2 Data Proc. Frame counter is slaved to the reset state. The D/P even frame mark \& heat flow 90th F. mark become erroneous. | \& 297.302

141.177
156.125 \& 3

\hline
\end{tabular}

FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

TABLE III
FAILURE MODE, EFFECT \& CRITICALITY ANALYSIS WORKSHEET

