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ABSTRACT 

 

 

 

Secondary flow developed in the inner wall region within a turning diffuser will 

reduce its performance particularly in terms of both pressure recovery (Cp) and flow 

uniformity (σu). Introduction of baffle is effective in reducing separated flow in 

turning diffuser, hence enhance its performance. Therefore, flow structure in three-

dimensional turning diffuser with baffle was studied and the subsequent impacts 

towards turning diffuser performance was observed. A parametric study was also 

conducted on the preliminary design of airfoil in determining the most optimum 

baffle desig. An experiment was conducted with inflow Reynolds number (Rein) that 

was varied between 4.527E+04 and 1.263E+05. As measured by using pressure 

tapping that was connected to a digital Manometer, a pressure recovery of Cp=0.341 

was obtained when the system was operated at Reynolds number Rein=1.263E+05. 

This result had shown an improvement of up to 43% compared to the previous study 

with pressure recovery Cp=0.194. Similarly, the flow uniformity which was 

measured by using Particle Image Velocimetry (PIV) had improved up to 33% at 

Rein=9.950E+04 with σu=3.09 as compared to the previous study, where σu=4.64. A 

parametric study on the preliminary baffle design was also simulated using ANSYS 

Fluent, which had been verified and validated according to experimental data. The 

parametric study involved varying several parameters such as type of baffle, the 

angle of attack, AOA, thickness to chord ratio [t/c (%)], camber to chord ratio [f/c 

(%)], and chord length [c (cm)]. Simulations of various 23 designs with combination 

of several parameter changes had discovered an optimum design of airfoil with 

AOA=16°, t/c = 7.658%, f/c = 7% and chord length, c = 5 cm. In comparison to the 

preliminary airfoil design, that optimum design for the three-dimensional turning 

diffuser had achieved 7.202% and 6.164% performance improvement in terms of 

flow uniformity and pressure recovery, respectively.   
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ABSTRAK 

 

 

 

Aliran menengah yang terbentuk di rantau dinding dalam penyerap getaran akan 

menyebabkan prestasi menurun dari segi liputan tekanan (Cp) dan keseragaman 

aliran (σu). Pengenalan sesekat dapat membantu dalam mengurangkan aliran 

menengah dan memperbaiki prestasi penyerap getaran. Oleh itu, struktur aliran 

dalam penyerap getaran 3 dimensi dengan sesekat dikaji dan kesannya terhadap 

prestasi penyerap getaran dsiasat. Eksperimen ke atas sesekat bentuk aerofoil 

permulaan yang diuji dengan nombor alir masuk Reynolds (Rein) di antara 

4.527E+04 – 1.263E+05 telah dijalankan, menghasilkan liputan tekanan Cp=0.341, 

dimana ianya diukur dengan menggunakan tekanan menoreh yang disambung ke 

Manometer digital, dicatatkan apabila sistem beroperasi dengan nombor Reynolds 

paling tinggi yang iaitu Rein=1.263E+05. Keputusan ini menunjukkan peningkatan 

sehingga 43% daripada kajian lepas iaitu Cp=0.194 pada nombor Reynolds yang 

sama. Keseragaman aliran, yang diukur menggunakan Particle Image Velocimetry 

(PIV) juga menunjukkan peningkatan sebanyak 33% daripada kajian lepas pada 

Rein=9.950E+04 iaitu σu=3.09 jika dibandingkan dengan kajian lepas iaitu σu=4.64. 

Kajiam parametrik ke atas reka bentuk permulaan sesekat dilakukan menggunakan 

simulasi pada ANSYS Fluent, dimana keputusannya disahkan menggunakan nilai 

kajian dari eksperimen. Kajian parametrik merangkumi menukar jenis sesekat, sudut 

serang (AOA), nisbah tebal perentas, t/c(%), kamber nisbah perentas, f/c(%) dan 

panjang perentas, c(cm). Simulasi ke atas 23 rekaan dengan pelbagai perubahan 

parameter menghasilkan reka bentuk optimum iaitu AOA=16°, t/c=7.658%, f/c=7% 

dan panjang perentas, c=5 cm. Reka bentuk optimum menyebabkan peningkatan 

prestasi penyerap getaran 3 dimensi sebanyak 7.202% dari segi keseragaman aliran 

jika dibandingkan dengan aerofoil permulaan dan peningkatan sebanyak 6.164% dari 

segi liputan tekanan.   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

Investigation of flow patterns and flow characteristics for internal and external fluid 

flow has been of interest to researchers all around the world. The study of fluid 

mechanics deals with the action of forces on fluids, which in contrast to solids, can 

deform and flow under the action of shear stress. Such flows offer a lot of interesting 

topics to be discussed, especially when considering the vital role fluid mechanics 

plays in our everyday lives. 

The diffuser, for an example, is one of the steady flow engineering devices 

introduced in fluid flow systems, which has the simplest design of an expanding area 

in the flow direction. By slowing down the flow and consequently resulting in the 

recovery of static pressure (Ghose, Datta, & Mukhopadhyay, 2013), following the 

conservation of energy, the diffuser’s basic function is to convert kinetic energy into 

potential energy (Azad, 1996; Lee et al., 2013).   

To minimize the weight and size of the engine, aviation gas turbine, for 

example, uses dump diffusers in the combustor (Ghose et al., 2013). On the other 

hand, in circulating fluidized bed application, as the lower section has a smaller 

cross-section as compared to the upper section, the diffuser is mounted, acting as a 

connector for both parts as shown in Figure 1.1 (Schut et al., 2000).  
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Figure 1.1: Schematic diagram of experimental circulating fluidised bed including 

diffuser (Schut et al., 2000) 

 

 Turning diffuser was favourable when involved with space restrictions 

applications (Gopaliya & Chaudhary, 2010). Intake ducts for aircraft engines use an 

S-shaped diffuser which also function as an interconnector between components in 

gas turbine engines (Mohamed, Djebedjian, & Rayan, 2000). In the heating, 

ventilation and air conditioning (HVAC) duct, the free discharge diffuser was used at 

the duct outlet system in order to reduce the air velocity when discharged into the 

atmosphere (Gan & Riffat, 1996) as shown in Figure 1.2. With a proper design 

compatibility test, both the bend and diffuser can be combined into a turning diffuser, 

especially when compactness is desired in the system.  
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Figure 1.2: Test rig measurement of diffuser’s pressure loss coefficient in HVAC 

free discharge duct system (Gan & Riffat, 1996) 

 

The same concept was applied for the closed loop subsonic wind tunnel 

system. The diffuser in the closed loop wind tunnel was located downstream of the 

test section. In order to minimize loss of kinetic energy in the flow, the diffuser 

decelerates the flow after the test section (Calautit et al., 2014). As shown in Figure 

1.3, the area covered by the closed loop subsonic wind tunnel can be reduced if both 

the 90º downstream turn and diffuser were combined into a turning diffuser. 

 

 

Figure 1.3: Closed loop subsonic wind tunnel detailed computer-aided design CAD 

model (Calautit et al., 2014) 
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1.1 Research background 

 

There are two types of turning diffusers, namely the two-dimensional turning 

diffuser and the three-dimensional turning diffuser. Flow structure in the three-

dimensional turning diffuser has been proven to be more distorted as compared to the 

two-dimensional turning diffuser (Nordin et al., 2014a). Consequently, higher 

pressure loss occurs in the three-dimensional turning diffuser due to curvature effects 

and diffusing activities. Both types of turning diffusers used in the present study 

closely resemble the turning diffuser used in a previous study (Chong, Joseph, & 

Davies, 2008; Nordin et al., 2014a) 

The dimensions of the inlet surface area of a diffuser are denoted by W1 and 

X1 while the outlet dimensions are denoted by W2 and X2. The two-dimensional 

turning diffuser has expanding cross-section in y-z plane where the length of X1 and 

X2 remain the same. Figure 1.4 and Figure 1.5 show the design of the two-

dimensional turning diffuser and the three-dimensional turning diffuser.  

On the other hand, the three-dimensional turning diffuser has different lengths 

for all W1, W2, X1, and X2. It has expanding cross section in both x-y and y-z planes. 

Due to this, the flow structure for the three-dimensional turning diffuser is much 

more complex to be investigated. Other than pressure recovery coefficient Cp, 

turning diffuser performance can be measured by calculating standard deviation of 

the outlet flow, σout. As a square root of variance in probability distribution (Othman, 

Wahab, & Raghavan, 2012), standard deviation represents variation of local outlet 

velocity, Vo to the mean outlet velocity, Vout.  

Flow structure in turning diffuser is strongly dependent on turning angle (), 

area ratio (AR), and inlet Reynolds number (Rein).To avoid severe flow separation 

for both types of turning diffuser, 90º turning angle with AR=2.16 were selected as 

the optimum parameters of both turning diffusers in the present study (Nordin et al., 

2012a, 2012b). As previous studies have proven the effects of varying inlet Reynolds 

number on turning diffuser performance in various applications (Djebedjian, 2001; 

Gopaliya & Chaudhary, 2010; Moonen et al., 2006), the present study on turning 

diffusers was operated within inlet Reynolds number range of 4.570E+04 to 

1.122E+05, suitable for low subsonic wind tunnel and HVAC duct system 

applications. 
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Figure 1.4: Design of the two-dimensional turning diffuser (Nordin et al., 2012) 

 

 

Figure 1.5: Design of the three-dimensional turning diffuser (Nordin et al., 2012) 
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1.2 Problem Statement 

 

Secondary flow (flow separation) occurs mostly in diffuser applications. In 

circulating fluidized bed riser for example, flow separation leads to recirculation of 

gas and solids in the diffusers and consequently increases reflux ratio (Schut et al., 

2000). In a dump diffuser, a recirculating vortex at the upper corner forms due to 

flow separation occurring at the outer wall (Ghose et al., 2013). Flow separation and 

reattachment in engineering situations are believed to contribute to pressure 

fluctuations, noise and also flow unsteadiness (Park & Sung, 1995). 

Flow separation in a diffuser itself is unavoidable due to an adverse pressure 

gradient in diffuser flow (El-Askary & Nasr, 2009; Moonen et al., 2006; Wang et al., 

2009). One of the approaches to reduce such losses in a diffuser is by installing guide 

vanes (baffles). In a closed loop wind tunnel, for example, in the upstream test 

section as shown in Figure 1.3 in Calautit et al. (2014), the diffuser was equipped 

with splitting plates and a 90º bend was installed with guide vanes. These are the 

approaches taken to reduce flow separation in both parts which can reduce the 

overall performance of the wind tunnel significantly.  

For the two-dimensional 90º turning diffuser with AR=2.16, the approach for 

installing the baffle has been successfully investigated in a previous study 

(Noh@seth et al., 2013). By measuring the overall performance of the turning 

diffuser in terms of pressure recovery, Cp, and flow uniformity, σout,, introduction of 

three units of flat plate baffles improved the overall performance by 50%.  The 

present study will continue this effort by implementing a numerical approach to the 

same design of turning diffuser with baffle. 

On the other hand, the three-dimensional turning diffuser can be more 

suitable for certain applications, even though it is proven to have a more complex 

and distorted flow as compared to the two-dimensional turning diffuser, which was 

highlighted in a previous study on the three-dimensional 90º turning diffuser with 

AR=2.16 conducted by Nordin et al. (2014a). The present study will continue the 

approach by installing the baffle to reduce flow separation, as well as improve the 

performance of the three-dimensional turning diffuser in terms of pressure recovery 

and flow uniformity.  
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It is essential to propose the optimum design of baffle for the three-

dimensional turning diffuser application in order to improve its performance in terms 

of both pressure recovery and flow uniformity. Reducing flow separation will 

simultaneously reduce pressure fluctuations, noise and flow unsteadiness, as 

mentioned earlier, especially at the upstream section of turning diffuser in the 

application of closed loop low speed wind tunnel and HVAC duct system. 

 

1.3 Objectives of study 

 

The objectives of this study are: 

1. To investigate the mechanism of flow structure in turning diffuser installed 

with baffle and studies the effects towards turning diffuser performance. 

2. To propose an optimal design of baffles and evaluate the effectiveness of the 

new baffle design to improve turning diffuser performance.  

 

1.4 Scope of study 

 

The scope of this study covers; 

1. A three-dimensional 90º turning diffuser with inlet dimension 13 cm × 5 cm 

and outlet dimension 19.5 cm × 7.2 cm, giving the area ratio of AR=2.16. The 

preliminary airfoil installed was optimized Wortmann FX60-100 taken from 

previous study (Sahlin et al., 1991). 

2. The turning diffuser is preceded by a settling chamber and multiple screens, a 

contraction cone and long duct upstream, which adheres to the turbulent 

hydrodynamic length, to provide a fully developed flow at the turning 

diffuser inlet. 
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3. Inlet operating parameters, Rein varied within the range of 4.527E+04 (10 

m/s) – 1.263E+05 (28 m/s). 

4. The turning diffuser performance is evaluated in terms of pressure recovery 

coefficient (Cp), which is measured through pressure tapping, and flow 

uniformity (σout), which is measured using Particle Image Velocimetry (PIV). 

5. Simulations are done on both the two-dimensional and three-dimensional 

turning diffusers by using ANSYS Fluent. The K-Epsilon turbulence model 

and boundary conditions were verified and validated using experimental 

results. 

6. The parametric study on the baffle design includes changes on; type of baffle 

between flat plate and airfoil, angle of attack, AOA ranging from 23° to 11°, 

thickness-to-chord ratio, t/c ranging from 5.35% to 13.27%, camber-to-chord 

ratio, f/c ranging from 7% to 13% and chord length, c ranging from 5 cm to 9 

cm. Simulations on 23 designs of baffle include the performance comparison 

in terms of drag coefficient, Cd and airfoil pressure coefficient, Cpa profile. 

 

1.5 Significance of study 

 

The three-dimensional turning diffuser offers advantages in both applicability and 

compactness, especially in the HVAC duct system since many large buildings opt for 

centralized HVAC, which involves installation of the HVAC duct system. The 

current study focuses on designing new turning baffles to improve the performance 

of both the two-dimensional and three-dimensional turning diffuser with various inlet 

conditions. A number of previously available baffle designs are studied and 

evaluated in the attempt to propose a brand new baffle design with advantageous 

characteristics. Both experimental and numerical approaches are implemented for 

this purpose. An optimized baffle design will satisfy the need to achieve high-

pressure recovery with less distortion of the outlet flow condition. 
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1.6 Thesis outline 

 

The remainder of this thesis consists of another 8 chapters.  

Chapter 2 presents a review on available literature to date referred to involving 

diffuser applications and theoretical background as well as development of 

experimental rig used in present study. Documentations on previous design of baffle 

which uses similar experimental setup was reviewed in order to propose preliminary 

airfoil to be installed in three-dimensional turning diffuser. Since present work 

involve both experimental and numerical approach, instrumentations on PIV sensors 

and techniques together with turbulence model used to study flow parameters were 

also reviewed.  

Both Chapter 3 and Chapter 4 explain method and tools used in both experimental 

and numerical approach respectively. Chapter 3 starts with explanations on the 

overall experimental setup and later segregate each instrument in details. PIV 

measurement and instrumentation techniques were also discussed in details.  

Chapter 4 continues with discussion on CFD modelling techniques which include 

mathematical model, computational domain, meshing, boundary conditions, solver 

algorithm and convergence criteria. Summarize input in ANSYS Fluent was also 

included in this chapter. 

Chapter 5 laid out the experimental results from PIV, ranging from pressure recovery 

measurements data, flow structure from 2D and 3D PIV setup as well as 

measurement of turning diffuser outlet flow uniformity and efficiency. All data were 

compared to three-dimensional turning diffuser without baffle taken from previous 

study. 

Chapter 6 continues with numerical results on velocity contour and flow structure for 

both two-dimensional turning diffuser and three-dimensional turning diffuser taking 

from ANSYS Fluent. 

Chapter 7 focuses on validation and verification of the numerical analysis by using 

experimental data from Chapter 5. Verification of each CFD building block for both 

two-dimensional turning diffuser and three-dimensional turning diffuser numerical 
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analysis were discussed and the numerical results were validated with experimental 

results presented in Chapter 5. 

Chapter 8 presents parametric study conducted on optimized Wortmann FX60-100 

airfoil design including changes on design of baffle, AOA, t/c, f/c and chord length, 

c. After all parametric study conducted, the optimum design of baffle was proposed 

in this chapter. 

Conclusions are drawn on the present research and contributions towards research 

society were made. Recommendation on future work was also included in the end of 

this thesis.  

  



 
 

CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

In order to better comprehend most aspects in studying flow in both the two-

dimensional and three-dimensional turning diffuser with baffle, a review of some 

concept and theoretical background on the experimental setup and numerical 

approach is quite essential. Included in this chapter is review on the basic industrial 

application of diffuser followed by development of the experimental rig used in the 

present study. The present study focuses more on improving turning diffuser 

performance by installing baffles. Thus, a review on various baffle designs from 

previous studies, taken from different cases, is included in this chapter. As mentioned 

in the previous chapter, turning diffuser outlet flow uniformity, σout was measured 

using PIV. Procedures on conducting the experiment using PIV by referring to other 

studies were also reviewed. Following the experimental procedures is a review on the 

numerical approach including validation and verification method conducted 

previously. 
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2.1 Diffuser applications and turning diffuser theoretical background 

 

In general definition, diffusers are chambers that expand in flow direction, resulting 

in the decrease of fluid velocities along with increase of fluid pressure (Cermak, 

1981). Industrial application, which uses the diffuser is either preceded by a bend or 

followed by a bend, includes a circulating fluidized bed riser, HVAC duct system as 

well as closed loop wind tunnel. Schematic experimental diagram of the circulating 

fluidized bed riser conducted by Schut et al.(2000) as shown in Figure 1.1 in the 

previous chapter is a clear example of diffuser application in duct system. The 

location of diffuser within the riser was varied as shown in Figure 2.1 and the effects 

on reflux ratio concludes that diffuser located 1050 cm below the exit provide better 

reflux ratio. Reflux ratio in parallel duct is higher when distance below the exit 

increases. Thus, proposing the use of turning diffuser in this case is rather 

inappropriate.  

 

 

Figure 2.1: Two different positions of diffuser in the riser; (a) 550 cm below the exit 

and (b) 1050 cm below the exit (Schut et al., 2000) 
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In HVAC ductwork, free-discharge diffuser preceded by a bend was installed 

at the duct outlet to reduce the air velocity when discharge to atmosphere as part of 

room air distribution system. Gan and Riffat (1996) concluded in their study that a 

divergence angle smaller than 10º of pyramidal diffuser should be used to achieve 

flow regularity and stability discharged air, with the exception of spacer length of 

twice the hydraulic diameter, Dh (2Dh) should be introduced. El-Askary & Nasr 

(2009) concluded the same issue, where spacer length should be introduced between 

bend and diffuser which will contribute to loss reduction of the system. However, as 

shown in Figure 2.2, a highly distorted flow was still recorded. The turning diffuser 

could be proposed, together with installation of baffle to improve such flaws. 

 

 

Figure 2.2: Bend-diffuser combination with short spacer shows highly distorted flow 

at diffuser exit for both studies by; (a) Gan & Riffat (1996), (b) El-Askary & Nasr 

(2009) 

 

Diffusers are also commonly used in the wind tunnel system. Studies on 

subsonic close loop wind tunnel installed with principle components including the 

contraction cone, test section and diffuser has been conducted previously (Calautit et 

al., 2014; Gordon & Imbabi, 1998; Moonen, Blocken, & Carmeliet, 2007; Moonen et 

al., 2006) According to Moonen et al. (2006), flow separation will occur in several 

sections; entrance and exit of test section, 180º turn and sudden change in cross-

sectional area. For the wind tunnel, the main aerodynamic objective is to make sure 

the flow is steady throughout the test section and has uniform speed (Calautit et al., 
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2014). A closed loop wind tunnel has four 90º turn as shown in Figure 1.3 in 

previous chapter.  

For the 90º upstream turn (Section 4), guide vanes were installed to reduce 

flow separation, whereas for 90º lower upstream turn (Section 8), guide vanes were 

mounted to direct the flow to be parallel to test section centre line. At the same time, 

it helped improved flow uniformity just before entering contraction cone. Both 90º 

turn downstream and upstream of the diffuser’s outlet were also installed with guide 

vanes, with the same objective to reduce flow separation occurring in the turn 

(Calautit et al., 2014). As shown in Figure 2.3, significant improvement on velocity 

contour in closed loop wind tunnel concluded that guide vanes installed in diffuser 

and 90º turn helps reduce flow separation and improve flow uniformity entering the 

test section. 

However, when space limitations were the factor to be considered in building 

a closed loop wind tunnel, diffusing and turning activities could be combined as a 

turning diffuser. Other terms for turning diffuser used in previous studies were 

expanding corner, diffusing bend and curved diffuser. Studies on turning diffusers 

were previously conducted, and they highlighted a few subjects to be brought up for 

discussion (Chong et al., 2008; Djebedjian, 2001; McMillan, 1982; Majumdar et al., 

1996, 1998, 1999; Sinha et al., 2010, 2011, 2012). 

Flow structure in a curved diffuser depends greatly on centreline length to 

inlet width ratio (Lm/W1), area ratio (AR), inlet condition (Rein) and turning angle 

(). Furthermore, higher shear strains near convex curved wall flow structure were 

initiated when higher inlet Reynolds numbers were introduced (Djebedjian, 2001). 

According to Chong et al. (2008), centrifugal forces were introduced in curved ducts, 

which cause deflected core flow to the outer wall and consequently due to adverse 

pressure gradient reduce the velocity at the outer wall.  
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Figure 2.3: (a) Contours of velocity magnitude for wind tunnel before and (b) after 

installation of guide vanes (Calautit et al., 2014) 

 

Majumdar et al. (1996, 1998, and 1999) in all their studies experimentally 

investigated 90º curved diffuser as well as 180º curved diffuser flow characteristics. 

Severe flow distortion was observed due to centrifugal force created by the curvature 

wall. Efforts were done to improve flow characteristic in the curved diffuser was by 

installing vanes.  Other than 90º and 180º curved diffuser, small divergence angle 

curved diffuser such as 30º, 37.5º and 42º curved annular diffuser were previously 

studied (Sinha et al., 2010, 2011 and 2012) all resulting in high velocity flow 
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accumulated and shifted towards the outer (concave) wall especially at the outlet of 

curved diffuser. 

All these studies highlighted critical flow separation due to curvature effects 

as well as diffusing activities in curved diffuser. Secondary flow cannot be neglected 

since it contributes to losses in the system. Efforts can be done in improving flow 

characteristics in curved diffuser, since it offers wide industrial applications 

especially in restricted space cases. Next section will outline a review on previous 

research focusing on the two-dimensional and three-dimensional rectangular cross 

section turning diffuser together with development of experimental rig used in 

present study.  

 

2.2 Experimental rig development on low subsonic wind tunnel feature 

 

Nordin et al. (2011) started research on performance of a bend-diffuser with baffles 

installed which was measured and compared to a bend-diffuser without baffles. The 

tested diffuser has an area ratio (AR) of 7.2 with 13 cm × 13 cm square inlet and 

axial length of 49 cm. Three locations were chosen to be measured, i.e., before bend 

(S1), before diffuser (S2) and after diffuser (S3) with two planes (A and B) each 

using Pitot static probe and digital manometer with accuracy of ±0.1Pa. Macbain’s 

(MacBain, 2003) patent was selected as baffle design to be adopted in the 

experiment. Details are shown in Figure 2.4 and Figure 2.5. It was proven that with 

the installation of baffles in bend-diffuser system, the overall performance improved 

in terms of pressure loss reduction. As shown in Table 2.1, loss coefficient (K) was 

reduced for almost all cases except inside the diffuser. This is due to excessive 

separation in the diffuser itself.   

After seeing a promising improvement in overall losses for bend-diffuser, 

Nordin et al. (2012a) proceed by adopting a turning diffuser in replace of bend-

diffuser. A numerical approach was conducted by varying turning diffuser geometric 

conditions (AR=1.6, 2.0 and 3.0) and operating parameters (Rein ranging from 23 to 

2.123E+05). Simulations on each case were conducted using 3 different turbulence 
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models, which was Standard K-Epsilon turbulence model (SKE), the Shear Stress 

Transport model (SST K-Omega) and the Reynolds Stress Model (RSM). 

 

 

Figure 2.4: Location chosen for measurement; S1, S2, S3 (Nordin et al., 2011) 

 

 

 

 

 

 

Figure 2.5: Two planes selected for each location measurement (Nordin et al., 2011) 

 

 

 

 

13 cm 

49 cm 

35 cm Plane 

(b) 

Plane 

(a) 
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Table 2.1: Pressure loss coefficient (K) (Nordin et al., 2011) 

Part 
Loss Coefficient (K) 

Without baffles With Baffles 

Bend (a) 1.249 0.227 

Bend (b) 1.145 -0.351 

Diffuser (a) 1.290 2.899 

Diffuser (b) 0.578 1.275 

System (a) 1.306 0.573 

System (b) 1.746 -0.134 

 

Turning diffuser performances were measured in terms of pressure recovery 

(Cp) and outlet’s flow uniformity (σout). Higher value of Cp represents high pressure 

recovery, whereas lower value of σout represents high flow uniformity. From the 

simulation at specific Rein, pressure recovery increases with increasing AR. 

Conversely, flow uniformity decreases with increasing Rein. On the other hand, at 

specific AR, while pressure recovery increase with increasing Rein, flow uniformity 

decrease with increasing Rein. After all, the increase of AR yields smaller effects on 

the flow uniformity as compared to the effects by increasing Rein. 

Thus, Nordin et al. (2012a) carried out more intensive studies on varying Rein 

to find its effects on the flow uniformity. Consequently, an optimum geometric 

configuration of turning diffuser was proposed; AR=1.6 running at Rein=2.653E+04, 

which corresponded to performance value of Cp=0.320 and σout=1.620. However, 

results between simulation and experimental data deviates up to 34.1%, concluding 

that further improvement on the existing rig need to be implemented. 

Nordin et al. (2013) then developed a low subsonic wind tunnel for turning 

diffuser application to ensure flow at the inlet of turning diffuser need to be steady, 

uniform and fully developed. Even sufficient hydrodynamic entrance length was 

introduced, poor joining of duct and abrupt change of cross sectional area between 

the blower and the duct might be the cause of 34.1% deviation between the 

numerical and experimental results in previous study (Nordin et al., 2012a). Several 

improvements were done to the system as shown in Figure 2.6. 
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Figure 2.6: Rig development of low subsonic wind tunnel. All dimensions in cm. 

(Nordin et al., 2013) 

 

To develop steady flow, a centrifugal blower with 3-phase inverter controller 

was used. Settling chamber and multiple screens made of metal wire interwoven 

were installed to improve the mean flow uniformity and reduce oncoming 

turbulence.  The contraction cone will help to accelerate flow from the settling 

chamber, and it is expected to have steady, uniform and free separation out-going 

flow. Hydrodynamic length was introduced earlier on before connected to the turning 

diffuser’s inlet. Thus, at the turning diffuser’s inlet, the flow is believed to be steady, 

uniform and fully developed. 

Nordin et al. (2014b) then verified the fully developed flow entering turning 

diffuser using Pitot static probe at 5 different points. Flow entering the turning 

diffuser was proved to be fully developed based on the velocity profile which 

resembles the boundary layer of a turbulent fully developed flow as shown in Figure 

2.7. The outlet local velocity was also obtained using Particle Image Velocimetry 

(PIV) at 5 different points. Small average differences of 0.8%-1.2% between PIV 

result and Pitot static probe offered promising PIV measurement and rig 

implementation.  
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Figure 2.7: (a) Five points location at inlet for measurements of fully developed flow 

and (b) velocity profile measured using Pitot static probe (Nordin et al., 2014b) 

 

After a strong verification of the rig and the whole system, Nordin et al. 

(2014a) continues the experimental investigation on two-dimensional turning 

diffuser by varying inflow Reynolds number. Pressure recovery was measured using 

pressure tapping at both inlet and outlet of the turning diffuser connected via triple-T 

piezometer and measured using a digital Manometer, whereas the outlet flow 

uniformity was measured using PIV. 

5 different values of outlet flow velocity were measured. Verification of PIV 

result was obtained by comparing manual measurement of the local outlet velocity, 

Vo using Pitot static probe with PIV measurement. Table 2.2 shows the deviation 

between both approaches. These outputs were used by Noh@Seth et al. (2013) as 

reference in the study of improving flow uniformity and pressure recovery of the 

two-dimensional turning diffuser by means of installing baffles. 

 

Table 2.2: Cp measured for each Rein tested and verification of PIV results for two-

dimensional turning diffuser (Nordin et al., 2014a) 

Rein Cp 
Vo 

Pitot 

Vo 

PIV 
Deviation (%) 

5.786E+04 0.191 4.98 4.92 1.2 

6.382E+04 0.209 5.92 5.87 0.8 

1.027E+05 0.216 11.05 10.64 3.7 

1.397E+05 0.221 15.45 15.34 0.7 

1.775E+05 0.239 19.75 19.05 3.5 
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Noh@Seth et al. (2013) continued the effort to improve flow uniformity and 

pressure recovery by installing flat plate baffles. 3 units of flat plate baffles were 

designed, acting as a small turning diffuser in the existing turning diffuser in order to 

avoid flow abruption. Figure 2.8 shows the design of flat plate baffles in two-

dimensional turning diffuser. 

Using the same experimental rig, an improvement of 54.6% on pressure 

recovery was proven after installing the two-dimensional turning diffuser with 

baffles. Best produced pressure recovery of Cp=0.526 was recorded as compared to 

Cp=0.239 for two-dimensional turning diffuser without baffle at the highest Reynolds 

number tested. As for the flow uniformity, the best σout was σout=3.235 at the highest 

Reynolds number tested, with an improvement of 47.1%. Table 2.3 shows the 

resulting output from the experiment done by Noh@Seth et al. (2013). 

 

 

Figure 2.8: Flat plate baffle designed by Noh@Seth et al. (2013). All dimensions in 

cm. 
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Table 2.3: Result comparison between Noh@Seth et al. (2013) and Nordin et al. 

(2014a) for both Cp and σout 

Rein 

σout  

(Noh@seth et al., 

2013)  

σout  

 (Nordin et al., 

2014a)  

Improvement 

(%) 

5.786E+04 0.719 1.755 58.864 

6.382E+04 0.683  1.852 63.032 

1.027E+05 2.437  2.910  16.240 

1.397E+05 2.621 4.947 46.492 

1.775E+05 3.235 6.128 47.127 

 

Rein 

Cp  

 (Noh@seth et al., 

2013) 

Cp  

(Nordin et al., 

2014a) 

Improvement 

(%) 

5.786E+04 0.413 0.191 53.849 

6.382E+04 0.418  0.209 50.100 

1.027E+05 0.433  0.216  50.225 

1.397E+05 0.491 0.221 55.035 

1.775E+05 0.526 0.239 54.625 

 

Other than flow uniformity (σout), velocity contour at the outlet produced by 

PIV was also compared. Noh@Seth et al. (2013) successfully improve and direct the 

deflected flow more towards the inner wall as compared to Nordin et al. (2014a). For 

reference, Figure 2.9 shows velocity contour with flow vector comparison for the 

highest Rein tested in both experiments. In other words, flow separation at the inner 

wall region has been successfully reduced by installing baffle which correlate with 

smaller value of σout measured.  
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Figure 2.9: Outlet velocity contour and vector comparison between (a) Nordin et al. 

(2014a) and (b) Noh@Seth et al. (2013). Red box indicates inner wall region. 

 

Study on turning diffuser can be widely enhanced to various dimensions of 

turning diffuser. Since the two-dimensional turning diffuser offered extensive 

improvement on replacing bend-diffuser, especially with the installation of baffle, 

Nordin et al. (2012b) extended their studies by varying the area ratios of the three-

dimensional turning diffuser. Generally, the three-dimensional turning diffuser has 

more complex flow as compared to the two-dimensional turning diffuser as 

prescribed in previous chapter; hence offer wider discussion on flow characteristics 

and turning diffuser performance. 

Nordin et al. (2012b) investigated three different cases; the two-dimensional 

turning diffuser (Case A), three-dimensional turning diffuser with AR=2.0 (Case B) 

(a) 

(b) 

Outer wall 

Inner wall 

Outer wall 

Inner wall 
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and three-dimensional turning diffuser with AR=4.0 (Case C). All cases were 

compared and concluded that pressure recovery and flow uniformity for Case B is 

lower than Case A, due to more complex flow and diffusing activities for three-

dimensional turning diffuser. 

Latest research done by Nordin et al. (2014a) was on the performance of the 

three-dimensional turning diffuser at various inlet conditions as compared to the two-

dimensional turning diffuser by using similar experimental setup and rig. Table 2.4 

and 2.5 shows the comparison of both experiments. The research proposed for inflow 

Rein=1.027E+05-1.775E+05, the three-dimensional turning diffuser is more reliable 

and as for Rein=5.786E+04-6.382E+04, the two-dimensional turning diffuser is much 

more favourable. This is only if flow uniformity is of interest to subject. On the other 

hand, if pressure recovery is becoming the concern, the three-dimensional turning 

diffuser performed better within Rein=5.786E+04-6.382E+04 and Rein=1.027E+05-

1.775E+05 for the two-dimensional turning diffuser.  

 

Table 2.4: Mean outlet velocity, Vout and flow uniformity comparison, σout (Nordin et 

al., 2014a) 

Rein 
2-D Turning Diffuser 3-D Turning Diffuser 

Vout (m/s) σout (m/s) Vout (m/s) σout (m/s) 

5.786E+04 1.57 1.75 2.07 1.82 

6.382E+04 1.61 1.85 2.62 2.25 

1.027E+05 2.31 2.91 3.03 2.7 

1.397E+05 4.85 4.90 5.68 4.64 

1.775E+05 5.75 6.12 5.95 5.05 

 

Table 2.5: Pressure recovery, Cp comparison (Nordin et al., 2014a) 

Rein 
2-D Turning Diffuser 3-D Turning Diffuser 

Cp Cp 

5.786E+04 0.191 0.210 

6.382E+04 0.209 0.217 

1.027E+05 0.216 0.203 

1.397E+05 0.221 0.219 

1.775E+05 0.239 0.194 
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