
T H E

U N I V E R S I T A T O B E R T A D E C A T A L U N Y A

AUTHOR :

ANOMALY DETECTION
IN SMART CITY

WIRELESS SENSOR NETWORKS

V ICTOR GARCIA FONT

CARLES GARRIGUES
HELENA RIFÀ POUS

ADV ISORS :

PH .D . THES IS IN THE DOCTORAL PROGRAM IN
NETWORK AND INFORMAT ION TECHNOLOGIES

Universitat Oberta de Catalunya
Doctoral program in Network and Information Technologies

Anomaly detection in smart city wireless
sensor networks

Author:
Victor Garcia Font

Advisors:
Carles Garrigues, PhD
Helena Rifà Pous, PhD

Deposit authorization: December 22, 2016

Defense: February 8, 2017

http://www.uoc.edu

Abstract

Over the last few years, cities around the world have been building smart city systems in

order to improve their operational structure and to acquire a data-driven management

perspective. At an early stage, cities started deploying a few sensors of non-critical

services (e.g. atmospheric monitoring), which were considered innocuous from a global

security perspective. Nevertheless, nowadays, cities deploy sensors with a wide range of

purposes (e.g. parking, safety, lighting) and some areas have become densely populated

with wireless sensor networks (WSN). Thus, WSNs turn into an important data source

for many applications and, consequently, also become more attractive targets for attacks.

Aware of this issue, IT administrators are looking now for security solutions both for the

WSNs that are already spread throughout the city and for the ones that will be deployed

in the future.

Furthermore, WSNs are normally installed and operated by external providers. This

fact complicates security management from the global perspective of the smart city ad-

ministrators, because different providers implement different solutions using different

devices, configurations, protocols, etc., which results in a highly heterogeneous environ-

ment. Traditionally, WSN security has been approached as an independent problem

for each specific type of network and, therefore, no security solution exists that can be

applied in a generalizable manner to all the possible WSNs in a smart city. In this

context, security solutions implemented by the providers are currently the main barrier

to defend the networks. However, it is also of paramount importance to provide smart

city administrators with tools to verify that providers are indeed applying the necessary

security measures and also to check that data received from the WSNs are correct. In

this thesis, we take a first step in this direction and, taking the point of view of the smart

city administrators, we propose an intrusion detection platform to disclose attacks in the

WSNs.

In this dissertation, we identify the principal components of an architecture to handle

intrusion detection in the heterogeneous context of a smart city. The solution that we

propose is based on a centralized system that gathers all data from the WSNs. Then, a

rule-based and an anomaly-based detection engines are configured to trigger alarms in

the case of attack. This architecture does not add extra requirements for the already

deployed WSNs and it is, thereby, compatible with the existing infrastructure of the

providers.

Between the two aforementioned detection engines, we focus our analysis on the anomaly-

based engine, because it is more generalizable to different smart city configurations.

This detection engine generates mathematical models to identify deviations from the

i

ii

normal behavior of the WSN data in attack situations. In this thesis, we compare

several anomaly detection algorithms and we observe that, in this context, one-class

support vector machines results the most suitable technique.

Furthermore, we identify the various necessary steps from gathering WSN data until

running the detection techniques. We evaluate the whole procedure under the processing

requirements of this scenario and we attest that: (1) the proposed architecture is capable

of handling smart city data and (2) that the entire procedure is scalable.

Finally, by studying the effects of the most popular attacks in WSNs (these effects include

the malfunction traces and the anomalies that can be detected with the detection engines

of the proposed architecture) we derive seven different attack models. Then, we propose

a schema to help smart city administrators to classify the alarms received from the

detection engines into one of the attack models, thereby narrowing down the list of the

likely attacks and sources compromising the networks.

Acknowledgements

I would like to use this section to express my profound gratitude to the people who

supported and helped me during my Ph.D. studies and the creation of this dissertation.

First and foremost, I would like to thank my thesis supervisors Carles Garrigues and

Helena Rifà for their guidance and motivation. Thanks for your critical advice and for

helping me to overcome the difficulties during the research process. Your counsel has

always been valuable and has helped me to improve the quality of my research, my

articles and my dissertation.

Thanks to Joaquin Jimenez, Manel Garcia, Carlos Puga, Cast Info and openTrends for

starting this project and for their assistance during its development. Manel Mendoza

and Institut Municipal d’Informatica deserve particular thanks for sharing their knowl-

edge of smart cities. I also gratefully acknowledge the funding provided by the Ministry

of Economy and Competitiveness through the projects CO-PRIVACY (TIN2011-27076-

C03-02) and SMARTGLACIS (TIN2014-57364-C2-2-R), and the Government of Catalo-

nia through the industrial doctorate subsidy ECO/2497/2013.

Last, but not least, my colleagues and friends at UOC deserve a special mention for their

rewarding company. The last three years have been a period of intense learning in both

scientific and personal level. I am certain that without all of you, working on this thesis

would have not been such a great experience.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1
1.1 Smart city initiatives . 3
1.2 Generic smart city architecture . 5
1.3 Objectives . 7
1.4 Research methodology . 9
1.5 Contributions . 10
1.6 Thesis organization . 11

2 Background and related work 13
2.1 Big data and the smart city . 13

2.1.1 Big data management mechanisms 14
2.1.2 MapReduce . 15
2.1.3 Security information and event management 17

2.2 Wireless sensor networks . 18
2.2.1 General overview . 18
2.2.2 Physical layer . 21
2.2.3 Data link layer . 21
2.2.4 Network layer . 22
2.2.5 Application layer . 23

2.3 WSN security . 24
2.3.1 Attacks on WSNs . 24

2.3.1.1 Attacks against the physical layer 24
2.3.1.2 Attacks against the data link layer 25
2.3.1.3 Attacks against the network layer 25
2.3.1.4 Attacks against the transport layer 26
2.3.1.5 Attacks against the application layer 27

2.3.2 Basic countermeasures . 27

iv

Contents v

2.4 Intrusion detection . 30
2.4.1 Anomaly detection . 31

2.5 The role of standards . 34
2.6 Conclusions . 35

3 Architecture 36
3.1 Main architecture requirements . 38
3.2 Architecture overview . 38

3.2.1 Data types . 41
3.2.2 Rule-based detection engine . 42
3.2.3 Anomaly-based detection engine 44

3.3 Designing the anomaly-based detection engine 46
3.3.1 Maintenance of machine learning models 48

3.4 Intrusion analysis outline . 50
3.4.1 Preprocessing . 50
3.4.2 Filtering . 51
3.4.3 Clustering . 52
3.4.4 Aggregation . 52
3.4.5 Model computation . 52
3.4.6 Intrusion detection . 53
3.4.7 Alarm management . 53

3.5 Use case: attack on a parking WSN . 53
3.5.1 Scenarios . 54
3.5.2 Attack model . 55
3.5.3 Intrusion detection process . 56

3.5.3.1 Preprocessing, filtering, clustering and aggregation 56
3.5.3.2 Model computation . 56
3.5.3.3 Intrusion detection . 57
3.5.3.4 Alarm management . 58

3.5.4 Results and discussion . 59
3.6 Conclusions . 60

4 A comparative study of anomaly detection techniques 63
4.1 Description of anomaly detection techniques 64

4.1.1 Mahalanobis distance . 65
4.1.2 Local outlier factor . 65
4.1.3 Hierarchical clustering . 66
4.1.4 Support vector machines . 67

4.2 Simulation and anomaly detection analysis 68
4.2.1 Smart city security simulation challenges 68
4.2.2 Experimental procedure . 70
4.2.3 Data collection . 71
4.2.4 Simulation . 72
4.2.5 Feature selection . 74
4.2.6 Anomaly analysis . 76

4.2.6.1 Training phase . 76
4.2.6.2 Validation and test phase 78

Contents vi

4.3 Results and discussion . 80
4.4 Conclusions . 84

5 Intrusion detection pipeline viability 85
5.1 Principal subprocesses . 85

5.1.1 Preprocessing . 86
5.1.2 Filtering . 86
5.1.3 Clustering . 87
5.1.4 Aggregation . 87
5.1.5 Model computation . 88
5.1.6 Intrusion detection . 91
5.1.7 Alarm management . 91

5.2 Temporal constraints . 91
5.3 Temporal analysis . 94

5.3.1 Results and discussion . 95
5.4 Conclusions . 97

6 Attack Classification schema 98
6.1 Assumptions . 99
6.2 Alarms . 100

6.2.1 General alarm types . 100
6.2.2 Alarms triggered by correlation rules 102

6.3 Attack models . 103
6.4 Classification procedure . 107
6.5 Contingency plans . 110
6.6 Proof of concept . 111

6.6.1 Scenario description . 112
6.6.2 Analysis . 114

6.6.2.1 Basic detection analysis 114
6.6.2.2 Enhanced analysis with attack classification 116

6.7 Conclusions . 118

7 Conclusions 120
7.1 Conclusions . 121
7.2 Future work . 124

A Supplementary materials for Chapter 4 126

Bibliography 136

List of publications 146

List of Figures

1.1 Generic smart city architecture . 6
1.2 WSN data collection infrastructure . 7

2.1 MapReduce word count example . 16
2.2 Range and throughput comparison among wireless technologies 19
2.3 WSN communication topologies . 20
2.4 ZigBee communication stack . 23
2.5 6LoWPAN communication stack . 23

3.1 Architecture of the proposed solution . 39
3.2 Intrusion detection pipeline . 50
3.3 Training and test custom command examples 57
3.4 Examples of rules defining alarms . 58
3.5 Alarms in the alarm panel in Splunk . 59

4.1 OC-SVM models trained with different parameters 67
4.2 Pipeline of the simulation and the experimental process. 71
4.3 Schema of the simulated WSN . 72
4.4 Dataset partition size . 77
4.5 Comparative study results for the test datasets including all the attacks . 79

5.2 Examples of training models with Algorithm 1 90
5.3 Characteristics of the experimental environment 95

6.1 Graphical representation of the seven attack models 106
6.2 Attack classification procedure . 108
6.3 Sensor positions and division of the parking sensor nodes in clusters. . . . 113
6.4 Results of the demonstration of the attack classification schema 116
6.5 Detection rate comparison between 3 techniques 117
6.6 Location of the compromised devices in the proof of concept 118

vii

List of Tables

2.1 Information security principles compromised by WSN attacks 28

3.1 Metrics to asses anomaly detection algorithms 49
3.2 Summary use case scenarios . 54
3.3 Detection results of the anomaly-based analysis in the use case 60

4.1 Comparative study results sorted by TPR 80
4.2 Comparative study results for the cases exceeding the PFPR 81
4.3 Mean of the standard deviation of the features in the datasets used in the

comparative study . 83

A.1 Comparative study results for the FV1 dataset with a very restrictive PFPR.127
A.2 Comparative study results for the FV1 dataset with a restrictive PFPR. . 128
A.3 Comparative study results for the FV1 dataset with a permissive PFPR. . 129
A.4 Comparative study results for the FV2 dataset with a very restrictive PFPR.130
A.5 Comparative study results for the FV2 dataset with a restrictive PFPR. . 131
A.6 Comparative study results for the FV2 dataset with a permissive PFPR. . 132
A.7 Comparative study results for the FV3 dataset with a very restrictive PFPR.133
A.8 Comparative study results for the FV3 dataset with a restrictive PFPR. . 134
A.9 Comparative study results for the FV3 dataset with a permissive PFPR. . 135

viii

Abbreviations

6LoWPAN Low power Wireless Personal Area Networks

ACK Acknowledgement

AODV Ad hoc On-demand Distance Vector

API Application Programming Interface

ARIMA Autoregressive Integrated Moving Average

AT Alarm Type

BSI British Standards Institution

CCA Clear Channel Assessment

CoAP Constrained Application Protocol

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

CRC Cyclic Redundancy Check

CTP Collection Tree Protocol

CTS Clear To Send

DoS Denial o Service

DBMS Database Management Systems

FFD Full-Function Device

FPR False Positive Rate

FP False Positive

FV Feature Vector

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ICT Information and Communication Technologies

IDS Intrusion Detection System

IoT Internet of Things

ix

Abbreviations x

IP Internet Protocol

JSON JavaScript Object Notation

KNN K-Nearest Neighbor

LAN Local Area Network

LOF Local Outlier Factor

LPWAN Low-Power Wide-Area Network

M2M Machine-to-Machine

MAC Media Access Control

NoSQL Not only SQL

OC-SVM One-Class Support Vector Machines

OWD One-Way Delay

PFPR Permitted False Positive Rate

RBF Radial Basis Function

RECSI Reunión Española sobre Criptología y Seguridad de la Información

ReST Representational State Transfer

RFD Reduced-Function Device

RFID Radio-Frequency Identification

RSSI Received Signal Strength Indicator

RTS Ready To Send

SCADA Supervisory Control And Data Acquisition

SIEM Security Information and Event Management

SNR Signal-to-Noise Ratio

SOA Service Oriented Architecture

SSL Secure Sockets Layer

SVM Support Vector Machines

TDMA Time Division Multiple Access

TPR True Positive Rate

TSOD Temporal and Spatial real-data-based Outlier Detection

UDP User Datagram Protocol

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

WPAN Wireless Personal Area Network

WSAN Wireless Sensor and Actuator Network

Abbreviations xi

WSN Wireless Sensor Network

Chapter 1

Introduction

In the coming decades, cities are facing new challenges characteristic of contemporary

societies: population aging, reduction in energy consumption and carbon emissions, the

struggle for greater sustainability, economic growth, etc. In addition, migratory move-

ments are rapidly increasing the size of cities. Nowadays, 50% of the world’s population

lives in cities and it is foreseen that by 2050 this percentage will be around 70% [1].

To address these challenges, smart city initiatives have emerged proposing new ways of

looking at development and city management. Currently, an internationally accepted

definition of smart city does not exist. However, the authors of [2] have proposed a

definition that has become popular: We believe a city to be smart when investments in

human and social capital and traditional (transport) and modern (ICT) communication

infrastructure fuel sustainable economic growth and a high quality of life, with a wise

management of natural resources, through participatory governance.

Generally, smart city projects have the goal of improving metropolitan infrastructure

planning, automatizing urban operations, reducing costs, increasing city competitive-

ness, opening new business lines, creating employment and enhancing transparency and

openness [3]. Depending on specific needs, each city implements smart city initiatives

focusing on different sectors. The Smart City Project1, which aims at profiling and

benchmarking medium and large cities in Europe (it has covered almost 1,600 cities),
1"The Smart City Project",http : //www.smart− cities.eu

1

Chapter 1. Introduction 2

has proposed a smart city model including six key sectors: smart economy, smart mobil-

ity, smart environment, smart people, smart living and smart governance. From this list,

European cities are mainly implementing smart environment and smart mobility [4].

From a technological point of view, information systems are being deployed to transform

infrastructure management towards a data-driven approach following four basic building

blocks: data, analysis, feedback and adaptability [5]. In order to feed the information

systems, smart cities use elements of the Internet of things (IoT) as the main data source,

such as mobile phones, radio-frequency identification (RFID) cards and wireless sensor

networks (WSNs). The data collected by the latter are used in a plethora of applications.

For example, traffic monitoring sensors are used to control traffic lights [6] and wireless

meters are installed in pipes to monitor leaks and ruptures [7]. Moreover, these data give

city managers and other stakeholders the opportunity to plan future facilities based on

a better picture of citizens’ behavior and the real use of the current infrastructures.

The clear benefits provided by smart city technology have prompted many cities to devote

a considerable part of their innovation efforts to developing their concept of smart city.

This has caused a significant and rapid increase in the number of WSN deployments on

the streets, which has resulted in the emergence of new applications with many different

technologies, solutions, requirements, etc.

However, this accelerated deployment of smart city technology has often resulted in

putting security aside as a secondary issue. For instance, some studies [8, 9] have proven

that traffic control systems can be manipulated in real deployments in the United States

due to the lack of cryptographic and authentication systems in the sensors and, in general,

because of a systematic lack of security consciousness.

Moreover, in order to rapidly deploy WSNs and smart city technology, cities have taken

advantage of services procured from external providers. Nevertheless, outsourcing public

services has also raised security-related concerns [10].

The impact of these outsourcing policies on security can be attributed mainly to two

key factors: the loss of control over network devices and the lack of visibility over the

potential security problems affecting these devices. Indeed, public administrations usu-

ally outsource not only the implementation and deployment of their WSNs, but also

the administration thereof. In this way, security countermeasures and system logs are

Chapter 1. Introduction 3

exclusively operated by external providers. Although service providers are contractually

obliged to ensure certain levels of security, in practice, smart city administrators cannot

determine the extent to which received data are precise and accurate. In fact, the Royal

Academy of Engineering has identified data quality as one of the six major barriers to

effectively optimize smart infrastructures [5].

Therefore, this thesis aims to improve smart city WSN security from the centralized

point of view of smart city administrators. The thesis outlines the principal barriers

to achieve secure WSNs in this context, and it provides the schema for an architecture

that analyzes WSN data to detect intrusions in networks operated by external providers.

This thesis also focuses on analyzing the most convenient algorithms to detect certain

intrusions and it provides smart city administrators with guidelines to locate the source

of security problems on their WSNs.

In this chapter, Section 1.1 reviews the main smart city initiatives. Secondly, Section 1.2

describes common features in smart city architectures focusing on WSN data collection.

Thirdly, Section 1.3 presents the objectives of the thesis. Fourthly, Section 1.4 describes

the research methodology used in this thesis. Finally, Section 1.5 contains the main

contributions of the thesis and Section 1.6 outlines the rest of the chapters.

1.1 Smart city initiatives

Cities, private companies and other institutions are already involved in smart city projects

to provide solutions to the contemporary challenges that cities are facing. The following

pages describe some prominent initiatives.

The PlanIT Urban Operating System 2 is a multilayered operating system for urban en-

vironments. Its control layer is responsible for responding with low latency to incidents

in the sensor/actuator infrastructure. A supervisory layer offers an application program-

ming interfaces (API) and also modules of management, analytics, storage, simulation,

security, etc. PlaceApps is a layer to publish applications. All the layers are designed

following service-oriented architectures (SOA) in order to facilitate application creation,

platform service usage and third-party module integration.
2"Living PlanIT OS", http : //living − planit.com

Chapter 1. Introduction 4

Rio Operation Center 3 has been developed by IBM in Rio de Janeiro to integrate public

information from multiple governmental institutions. This center is aimed at improving

public safety and increasing incident response efficiency, mainly in the face of natural

disasters.

In [11], the authors describe a middleware implemented in Oulu (Finland). This mid-

dleware is a layer deployed on top of a series of communication networks (i.e. local

area network (LAN), Bluetooth, Wi-Fi), responsible for enabling connectivity with these

networks and giving access to data collected by city sensors. The ultimate goal of this

project is to build an actual testbed to improve communication between citizens and the

government.

Ubiquitous city (u-city)[12] is a South Korean non-intrusive, user-centered project to in-

terconnect urban services divided by area of interest (e.g. building automation, business,

governance).

In [13], the author proposes a four-layer architecture to integrate elements of the IoT into

smart cities. A key feature of this solution is the inclusion of instruments to stimulate

collaboration among elements of the system. For example, low power devices, such as

smartphones, send parts of complex processes to the cloud to be computed.

From a futuristic theoretical point of view, the authors of [14] present a framework based

on cloud computing middleware and a highly interconnected IoT network. Basically, the

authors claim that the IoT will be used to sense and interact with the environment with

applications from all kinds of areas (e.g. home automation, transport, community ser-

vices, operation of infrastructures, health care). The middleware will use paradigms such

as software-as-a-service, platform-as-a-service and infrastructure-as-a-service to bind the

applications and the IoT together.

SmartSantander4 is an initiative based in the city of Santander, in the north of Spain,

where IoT elements have been massively deployed as a test field for smart city projects.

As a result, researchers can experiment in an environment that takes into account real

smart city circumstances: large-scale deployment, device heterogeneity, static and mobile

sensors, real users, etc. In [15], the authors present more details about the architecture

of the system.
3"Rio Operation Center", http : //www − 03.ibm.com/press/us/en/pressrelease/33303.wss
4"SmartSantander",http : //www.smartsantander.eu/

Chapter 1. Introduction 5

Barcelona is taking a leadership role and has proposed CityOS 5, an operating system for

cities that aggregates modules of data processing, analytics, historical data management,

business intelligence, etc. A major objective of the smart city of Barcelona is to deploy

a system for the easy integration of third-party modules. For example, CityOS includes

the module City Service Development Kit 6 (CitySDK), which offers a set of open source

tools to aid cities in opening their data and to help developers to create digital services

for the city. Other remarkable projects included in the smart city of Barcelona are:

Sentilo7, a platform to gather urban sensor data; iCity8, a platform to incentivize third-

party projects using public information; and Open Cities9, which is a project to validate

user-centered methodologies to use open data in the public sector.

1.2 Generic smart city architecture

In general, analyzing the initiatives presented in the previous section, it can be seen that

the architecture of smart city information systems follows certain common patterns. This

section outlines these patterns, easily found in most smart cities.

First of all, ICT systems normally are deployed in a so-called silo perspective. This

means that an independent new system is designed for each infrastructure. Therefore,

cooperation and inter-connectivity among infrastructures remains very limited. Smart

city frameworks have sprung up with the goal of breaking these silos, easing applica-

tion development involving several stakeholders and providing a platform with common

services.

Secondly, smart city systems are normally designed as service oriented architectures di-

vided into three layers. The first layer includes the elements that collect information from

the city (e.g. sensors, surveillance cameras, social networks, citizen complaint applica-

tions, supervisory control and data acquisition (SCADA) systems). The second layer

acts as a middleware, which provides the city with an API to connect the elements of the

first layer to the services offered in this layer. Among others, these services include rela-

tional and non-relational storage, geographic information systems, data analysis, cloud
5"CityOS", http://ibarcelona.bcn.cat/ca/o-government/city-os
6"CitySDK", http://www.citysdk.eu
7"Sentilo", http://www.sentilo.io
8"iCity", http://www.icityproject.com
9"Open Cities", http://opencities.net

Chapter 1. Introduction 6

Figure 1.1: Generic smart city architecture

computing, natural language processing, business intelligence or open data. Finally, the

third layer is an application layer, in which the city council and third parties implement

applications based on data and services offered by the middle layer. A scheme of this

architecture is shown in Figure 1.1. In general, these architectures aim to maximize inter-

operability among modules with SOA, in order to encourage development of third-party

applications and to facilitate access to services and city data.

The communication channel between street sensors and smart city central servers is

represented in Figure 1.2. As shown in the figure, some WSNs are also equipped with

actuators, which can be operated from the central servers with a downlink transmission or

triggered by other first layer systems using machine-to-machine (M2M) communication.

For example, vehicle detection sensors embedded in the asphalt send information to traffic

controllers installed in traffic lights [16]. Nevertheless, principally, the infrastructure

shown in Figure 1.2 is designed to collect information generated by sensors and send

it to the city servers. The elements in this schema are part of the elements from the

first and second layers in Figure 1.1. The information flow in this schema begins in the

sensors, which gather data about their environment and then send them to a gateway.

Gateways finally deliver sensor data to the smart city premises.

Chapter 1. Introduction 7

Figure 1.2: WSN data collection infrastructure

1.3 Objectives

As mentioned above, the technology deployed in smart cities has great potential as a

means of improving their economic progress, social welfare and quality of life while

ensuring a more rational and efficient approach to the way services are operated and

delivered. However, the current architecture of the information systems poses some

security challenges due to the following facts:

• The city includes many systems from different services (e.g. street lighting, garbage

collection, water supply), each of which with specific needs and requirements. Con-

sequently, the WSNs from each system are implemented with different technology

and are deployed by different providers.

• As it will be seen in Chapter 2, security solutions in the field of WSNs are usually fo-

cused on protecting scenarios with very specific characteristics. Nowadays, security

solutions for WSNs are not capable of protecting a whole system as heterogeneous

as the smart city.

Chapter 1. Introduction 8

• From the point of view of the smart city administrators, outsourcing the deploy-

ment and maintenance of WSNs results in a loss of the visibility of actual effec-

tiveness of the security measures implemented in the providers’ networks.

• Due to computational power and battery constraints of sensor nodes, the WSNs

often avoid sending system status information, which hinders subsequent security

analysis.

Thus, it can be seen that the inherent characteristics of a smart city pose additional

security challenges that are not easily overcome with traditional solutions only. There-

fore, the main objective of this thesis is to contribute to the security of smart cities by

designing an intrusion detection platform for the urban WSNs. As far as we know, this

is the first research work approaching this problem in the context of smart cities, where

WSNs have become a major data source but are known to be vulnerable at the same

time. Below, details of the specific objectives of our work are given:

1. Definition of the architecture of an intrusion detection platform.

The first goal is to define the main modules of an intrusion detection platform that

is:

• capable of collecting, indexing and processing WSN data,

• scalable,

• capable of handling big data,

• transparent for the providers, and

• compatible with the existing infrastructure.

2. Definition of the pipeline of the subprocesses involved in attack detection.

Attack detection involves several subprocesses. These need to be defined and the

interactions between different subprocesses have to be identified and studied to

guarantee the sustainable and scalable execution of the pipeline.

3. Identification of suitable algorithms for an anomaly-based intrusion detection sys-

tem.

This thesis has to identify suitable algorithms for the anomaly-based intrusion

detection system, taking into account the requirements of the smart city context

and the characteristics of WSN technology.

Chapter 1. Introduction 9

4. Provision of a mechanism to identify attacks.

In the case of a security incident in the WSNs, it is essential not only to detect

that the network has been compromised, but also to identify the attack and the

compromised equipment. A mechanism must be provided to guide smart city

administrators in identifying the most likely attacks.

It is worth mentioning that the study of algorithms and techniques to solve security

problems for specific smart city business cases, attack types or network configurations is

beyond the scope of this thesis. For instance, it is important to identify thresholds for

some system status variables, beyond which smart city administrators are confident that

certain WSN protocols are not working properly. It is also important to find the best

algorithms to discover malfunctions for each of the services offered by the smart city. As

these algorithms may be very different depending on the specific service, they have not

been considered in our research.

Hence, this thesis aims to contribute with generalizable solutions applicable to diverse

smart cities, different services, technologies, etc.

1.4 Research methodology

To achieve the thesis objectives, a design and creation [17] research methodology have

been applied in an incremental process, where each contribution have been sequentially

proposed and validated. For each contribution of this thesis, the five steps that this

research methodology involves have been followed: awareness, suggestion, development,

evaluation and conclusion. The first stage of the research process included identifying

the research problems. Basically, meetings were held with smart city administrators and

providers from Barcelona, literature was reviewed and technological solutions related to

WSNs and smart cities were critically evaluated. Then, we sketched and proposed solu-

tions and we developed an ICT artefact. The artefact includes models and instantiations

that were evaluated with simulations and proofs of concept. In general, in order to make

this research comparable and the simulations coherent, wide-known metrics were used

to evaluate the results and real data were used in the simulations to the extent possible.

More than 10Gb of data were gathered for several months from different urban WSNs

from Barcelona for this purpose. Finally, for each solution, the process concluded by

Chapter 1. Introduction 10

identifying the main contributions to the state of the art and also pointing out future

research lines.

1.5 Contributions

This section summarizes the contributions of the thesis and the publications derived from

it.

The main contributions are:

• Identification of a research challenge relevant to smart city viability: the lack of

visibility over the WSN security issues from a holistic perspective such as the one

of the smart city administrators.

• A design of an architecture to detect intrusions in smart city WSNs that combines

two detection engines: a rule-based and an anomaly-based engines. The design

has taken into account the viability and scalability of the system in terms of data

volume and computational complexity of the subprocesses involved in the detection

pipeline.

• A comparative study of the most suitable anomaly detection techniques to discover

attacks in smart city WSNs. The study has considered the detection capabilities

of diverse algorithms and has also determined the minimum WSN data required to

obtain valid detection results.

• An attack classification schema and a procedure to analyze the security alarms

triggered by the proposed architecture to help smart city administrators to identify

attacks and compromised nodes.

The thesis contributions have been presented and published in conferences and journals.

In this introductory chapter and in the other chapters of this dissertation, we identify new

security concerns and barriers arising from smart city technological models and, more

specifically, from the adoption of WSNs as a key urban data collection system. The

analysis of these security problems was presented on 2014 at the XIII Reunión Española

Chapter 1. Introduction 11

sobre Criptología y Seguridad de la Información (RECSI) 10 and it was published in [121].

RECSI is a biannual Spanish scientific congress in the field of cryptology and security in

ICT.

The main schema of the proposed architecture was described in [122] and it was presented

on 2015 at the First IEEE International Smart City Conference 11.

The results of the comparative study of anomaly detection algorithms were published

in [124], in a Special Issue of the Sensors Journal 12 on the “Security and Privacy in Sensor

Networks”. Sensors is an international, peer-reviewed journal on science and technology

of sensors and biosensors. Moreover, the results of the study were extended and the need

of gathering system status and application layer data from the WSNs in order to cover

the detection of different types of attack was shown using the technique with the best

performance in the comparative study. This was presented on 2016 at the XIV RECSI 13

and it was published in [123].

The description of the attack classification schema has been described in [125], which is

currently under review.

1.6 Thesis organization

The thesis is organized as follows:

• Chapter 2 provides the background for the subsequent chapters of the thesis. The

main subjects reviewed in the chapter are: big data, WSNs and intrusion detection.

• In Chapter 3, an architecture with the necessary modules to handle the require-

ments of intrusion detection in the heterogeneous context of the smart city is pro-

posed. This chapter also contains a schema of a pipeline with the main steps needed

to disclose attacks from WSN data using the proposed architecture.

• Chapter 4 contains a comparative study of several anomaly detection algorithms

to uncover popular attacks in the WSNs of the smart cities. This study has been
10“XIII Reunión Española sobre Criptología y Seguridad de la Información”,https :

//web.ua.es/recsi2014
11"First IEEE International Smart City Conference",sites.ieee.org/isc2− 2015/
12“Sensors”,http : //www.mdpi.com/journal/sensors
13“XIV Reunión Española sobre Criptología y Seguridad de la Información”,http : //recsi16.uib.es/

Chapter 1. Introduction 12

carried out simulating different attacks affecting the main communication layers

and using common network metrics to perform the anomaly analysis. In this way,

the results can be generalized to other attacks affecting these same communication

layers and the techniques can be used with data from any WSN manufacturer.

• Chapter 5 contains a study of the computational complexity of the subprocesses

included in the intrusion detection pipeline presented in Chapter 3. The viability

of the proposed pipeline and the scalability of its subprocesses are analyzed. For

the most complex processes, a schema based on MapReduce is presented to prove

that the most critical components can be parallelized.

• In Chapter 6, an attack classification schema for smart city WSNs is proposed.

The schema should help smart city administrators to basically narrow down the

possible causes of the anomalies detected in the WSNs and identify compromised

network components.

• In Chapter 7, the dissertation is concluded and possible future research directions

are given.

Chapter 2

Background and related work

This chapter includes the background and related work required to frame the rest of

the chapters of this thesis. Firstly, Section 2.1 introduces big data in the context of

the smart city. Secondly, Section 2.2 gives an overview of WSNs, showing the most

typical protocols and configurations. Thirdly, Section 2.3 illustrates the most relevant

topics related to WSN security. Fourthly, Section 2.4 shows related work about intrusion

detection. Finally, Section 2.5 presents the role of the standardization organizations

related to smart cities and Section 2.6 concludes the chapter.

2.1 Big data and the smart city

Datasets of large volume, high velocity and wide variety that cannot be processed using

traditional methods have been pointed out as big data by the 3 Vs definition [18]. Al-

though the most advanced smart cities are still in their early stages, they already have

projects collecting datasets that can be considered big data.

For instance, the Oyster card is used to access public transport in London. This system

basically registers a user’s ID, the location and a timestamp every time a citizen enters

or exits the public transportation network. A six-month sample of this dataset contains

7 million records a day, 40 million a week, 160 million a month and almost 1,000 million

every half year [19].

Nowadays, some big data properties can also be seen in smart building projects. Many

of these projects are based on measuring electrical consumption of home appliances and

13

Chapter 2. Background and related work 14

send the measurements to a centralized location to gather aggregated information and

improve electrical system management. These projects deal with large volume and high

velocity datasets. For example, a house collecting data from 30 appliances every minute

would send 43,000 records a day. A small city of 25,000 houses would send more than 1

billion records a day [20].

Data variety is also present in smart city datasets. Smart cities involve projects that fall

under the scope of multiple areas, such as energy efficiency, transportation, environmental

protection, etc. Each project has different needs and requirements and, therefore, diverse

types of IoT elements are used to fulfill these needs and acquire the necessary data.

This creates large-scale and very heterogeneous systems, including devices deployed in a

distributed manner that generally collect unstructured or semi-structured data.

Furthermore, other characteristics of smart cities pose obstacles to data processing and

show big data properties [21]. For example: useful data are only a small portion of all

the gathered data; data are valuable in the long term, which requires historical data

management and storage; IoT data show strong temporal and spatial correlation; etc.

The next section reviews the most popular big data management mechanisms. After-

wards, it introduces MapReduce as a basic tool to process in parallel large volumes of

data. Finally, it describes the main characteristics of security information and event

management (SIEM) systems. As it will be seen in the following chapters, these are key

components for the architecture proposed in this thesis.

2.1.1 Big data management mechanisms

In order to process, store and manage big data, it is necessary to rely on mechanisms that

go beyond traditional database management systems (DBMS). The most popular mech-

anisms to store big data are NoSQL databases (not only SQL), which can be classified

in three basic classes [21]:

• Key-value systems use data structures to store single values indexed with a

unique key. Popular products are DynamoDB 1 or Redis 2.
1“Amazon DynamoDB”, https : //aws.amazon.com/documentation/dynamodb/
2“Redis”, http : //redis.io/

Chapter 2. Background and related work 15

• Document-oriented databases are similar to key-value systems, but they are

capable of storing more complex structures, such as semi-structured JSON or XML

documents. MongoDB 3, SimpleDB 4 and CouchDB 5 are popular examples of this

type of databases.

• Column-oriented databases optimize storage in columns rather than in rows like

traditional DBMS. In this way, these systems are capable of scaling horizontally.

A few examples are BigTable 6, Cassandra 7 and HBase 8.

Other prominent mechanisms to store big data are implemented as file systems, such as

Google’s GFS [22] or Hadoop Distributed File System (HDFS) [23].

2.1.2 MapReduce

Besides the storage capabilities described in the previous section, it is also necessary that

tools to manage smart city data be capable of executing processes within distributed

programming paradigms in order to make the execution scalable. The most popular

among these programming paradigms is MapReduce.

MapReduce [24] uses a divide and conquer strategy, where the programmer basically has

to implement two functions: map and reduce. In the map function, the programmer uses

input data to create an intermediate output dataset with a < key, value > structure.

The MapReduce framework sorts, groups by key and sends these intermediate datasets

to the reduce function. The programmer has to implement the reduce function to merge

data with the same key.

For instance, MapReduce can be applied to count the number of word occurrences in a

set of documents [24]. In this example, for each word in a document, map creates the

tuple < word, 1 >. The reduce function receives all the tuples grouped by key and sums

up all the values. Figure 2.1 shows a schema of this algorithm.
3“MongoDB”, https : //www.mongodb.com/
4“Amazon SimpleDB”, https : //aws.amazon.com/simpledb/
5“Apache CouchDB”, http : //couchdb.apache.org/
6“BigTable”, https : //cloud.google.com/bigtable/
7“Apache Cassandra”, http : //cassandra.apache.org/
8“Apache HBase”, https : //hbase.apache.org/

Chapter 2. Background and related work 16

Figure 2.1: MapReduce word count example [25].

In this way, map and reduce jobs can be parallelized using a large number of computer

clusters and, therefore, operations that can be divided into these two functions become

scalable for large datasets.

MapReduce has been used in this way in many applications. For example in [26], the

authors use this programming paradigm in three different contexts: in a movie recom-

mendation engine, in an earthquake simulator and in a large-scale processing task to

automatically georeference images.

In [20], the authors describe Scallop4SC, a hybrid architecture using HBase and MySQL 9

to store and process smart city household data with the primary purpose of performing

aggregated statistical queries in a scalable manner, such as amount of energy consumed

by air conditioning units. The authors use MapReduce for the implementation of the

data processing programs.

In [27], the authors use MapReduce as a data preprocessing method to index taxi routes

in MongoDB. Afterwards, they query MongoDB to obtain the most taken k routes in a

certain time interval.

[28] describes a big data platform deployed for Santander’s smart city project. The

platform can process semi-structured sensor data in real time with MapReduce using

CouchDB. Non-structured data from other sources, such as images or social network

posts, are processed with HDFS.

In addition, multiple new systems have emerged proposing layers of abstraction in order

to simplify programming tasks using the MapReduce programming paradigm as the
9“MySQL”, https : //www.mysql.com/

Chapter 2. Background and related work 17

basis. Generally, in these systems, users program in high-level languages and the code

gets processed and converted to MapReduce jobs. Examples of these layers are Pig 10

and Hive 11.

Furthermore, in order to facilitate enterprise-oriented data analysis with big data, some

business intelligence (BI) tools such as Pentaho 12 have developed connectors to the main

big data storage mechanisms. Along the same lines, SIEM systems are data analysis

platforms focused on information security. Logically, SIEMs are relevant tools in the

context of the present thesis, so the next section briefly reviews their most important

characteristics.

2.1.3 Security information and event management

Security information and event management systems are designed for log management,

IT regulatory compliance, event correlation, active response and endpoint security[29].

SIEMs contribute to the security administration of organizations by gathering and corre-

lating security information of several types, formats and sources into a single system. As

a result, administrators may leave behind traditional analysis using security mechanisms

in a silo perspective. With a SIEM, security practitioners carry out complex monitoring

and incident inquiries involving multiple devices and protection mechanisms. Popular

SIEM tools are: Splunk 13, AlientVault Open Source SIEM (OSSIM) 14, HPE Security

ArcSight 15 and IBM Security QRadar SIEM 16.

For this thesis, the most relevant capabilities of SIEMs are the storage of large datasets

and high-velocity data collection. In general, SIEM systems can index big data running

as standalone platforms or they can be configured as a top-layer data analysis tool

connected to one of the storage mechanisms described in Section 2.1.1. For instance,
10“Pig”, https : //pig.apache.org/
11“Hive”, https : //hive.apache.org/
12“Pentaho”, http : //www.pentaho.com/
13"Splunk", http : //www.splunk.com
14"AlientVault Open Source SIEM (OSSIM)", http : //www.alienvault.com/open − threat −

exchange/projects
15"HPE Security ArcSight", http : //www8.hp.com/us/en/software − solutions/siem − security −

information− event−management/
16"IBM Security QRadar SIEM", http : //www− 03.ibm.com/software/products/en/qradar− siem

Chapter 2. Background and related work 18

Splunk offers indexing and parallel processing capabilities to handle large datasets [30],

but it also offers connectors to big data mechanisms, for example Hadoop Connect 17.

Furthermore, SIEM systems provide tools to capture data from remote locations or

locally. These tools are commonly capable of parsing, compressing, securely processing

and sending data from the source to the server. For example, OSSIM offers Collectors

to classify and normalize events gathered in other external systems [31].

2.2 Wireless sensor networks

Now that the main characteristics of big data management systems and the suitability of

SIEMs for processing security-related data have been reviewed, this section sets the focus

on the WSN technology that is used to gather these data. This section first gives a general

overview of the different technologies enabling this type of network (Section 2.2.1). Then,

the subsequent sections briefly describe the most important layers in the communication

stack: the physical layer in Section 2.2.2, the data link layer in Section 2.2.3, the network

layer in Section 2.2.4 and the application layer in Section 2.2.5.

2.2.1 General overview

Wireless sensor networks are networks that communicate using wireless technology,

where nodes, also known as motes, are equipped with one or several sensors to capture

information about their environment. When the motes are also equipped with actuators

that enable them to perform a certain action, then these networks are known as wireless

sensor and actuator networks (WSAN).

In smart cities, it is common for motes to have autonomous cooperative communication to

send values read by their sensors to a device at the edge of the WSN known as the gateway

or base station. Gateways are equipped with several communication interfaces with the

aim of transmitting WSN data to the smart city data centers through a conventional

and reliable network (e.g. Internet).
17"Hadoop Connect",http : //www.splunk.com/enus/solutions/solution−areas/big−data/splunk−

hadoop− connect.html

Chapter 2. Background and related work 19

Figure 2.2: Range and throughput comparison among wireless technologies [32].

There are multiple types of wireless communication protocols that build different kinds

of wireless networks. Figure 2.2 compares the most important technologies according

to their range and throughput. Basically, the most relevant WSN technologies in smart

cities are:

• Wireless personal area networks (WPAN) are low-power, low-throughput, short-

range (up to few meters) wireless networks that are based on the standard IEEE

802.15. Relevant technologies included in this category are ZigBee, IPv6 over Low

power Wireless Personal Area Networks (6LoWPAN) and Bluetooth. There are

many use cases in smart cities using these protocols. For instance, ZigBee is used

in [33] to control street lighting.

• Wireless local area networks (WLAN), such as Wi-Fi, provide low-range but broad-

throughput wireless networks. Some cities, like San Jose in California [34], deploy

Wi-Fi connectivity on the streets not only to offer Internet to citizens, but also to

connect IoT elements that require larger bandwidth than the usual sensor applica-

tions, such as IP-based traffic cameras.

• Wireless metropolitan area networks (WMAN) follow IEEE 802.16 standards. Pro-

tocols following these family of standards are popularly known as WiMAX. This

technology is mainly used for applications requiring large deployments (up to 25

Chapter 2. Background and related work 20

Figure 2.3: WSN communication topologies

km) and non-restringed throughput (< 150 Mb/s). In [35], the authors propose

to use WiMAX for smart grid projects.

• Low-power wide-area networks (LPWAN) are low-power, long-range (up to 10 km),

low-throughput (<5 Kb/s) wireless networks [36]. SigFox 18 and LoRaWAN 19 are

the most popular technologies at the moment. Both technologies have been used

in many smart parking applications [37].

Among these types of network, WPAN are considered especially vulnerable. These are

made of low-power devices and short-range communication modules, which rely in many

cases on multi-hop capabilities to build an extensive network and deliver packets from the

most remote nodes to the base station. Besides, motes are frequently battery-powered

and, therefore, are designed also with restringed processing capacity to save power.

Therefore, this thesis focuses on this type of WSN to perform attacks and intrusion

analysis. However, results are generalizable to the other types of WSN.

As mentioned above, many WSNs rely on multi-hop capabilities to deliver packets from

one end of the network to the other end. This allows three basic topologies shown in

Figure 2.3: star, tree and mesh. These topologies can include three types of nodes:

gateways, motes with routing capabilities and leaf motes. Gateways and routing nodes

consume large amounts of energy-forwarding packets and, thereby, they are generally

plugged into the electrical grid. However, leaf nodes can be battery-powered, because

their sole responsibility is sensing the environment and sending their own packets towards

the gateway.
18“SigFox”,https : //www.sigfox.com/
19“LoRaWAN”,https : //www.lora− alliance.org/

Chapter 2. Background and related work 21

The following sections summarize the responsibilities of the most relevant layers in the

communication stack for WSNs. These are the physical, data link, network and applica-

tion layers.

2.2.2 Physical layer

The physical layer handles the way that bits are transmitted over the medium (the

air in WSNs). Thus, its main responsibilities include defining operating frequencies,

modulation, carrier sense, bit rate, etc. In ZigBee and 6LoWPAN this layer is defined

by the IEEE 802.15.4 standard [38].

2.2.3 Data link layer

The data link layer is responsible for transferring data between adjacent nodes in a

network. In WSNs, the media access control (MAC) sublayer is of particular importance.

This sublayer organizes the network nodes so that the transmission medium is accessed

in an ordered manner, which allows for correct communication. As with the physical

layer, the MAC layer is also defined by the IEEE 802.15.4 standard [38].

According to this standard, nodes can take the role of a full-function device (FFD), which

has routing capabilities, or the role of a reduced-function device (RFD), which limits the

nodes to just transmit their own data. In this way, two types of topologies are possible

in this layer: star and peer-to-peer. In a star topology, a single FFD receives messages

from several FFDs or RFDs. In a peer-to-peer topology, several FFDs can communicate

with each other. It is important to note that FFDs normally consume more energy than

RFDs and, therefore, generally, they cannot be battery-powered.

Regarding media access, protocols use two main types of strategies. On the one hand,

protocols based on time division multiple access (TDMA) divide time in slots and trans-

mitters reserve a slot before transmitting. This type of protocol requires beacons to

synchronize transmitters and receivers. In other types of protocols, however, nodes can-

not reserve slots, but they are provided with a mechanism to effectively transmit packets

without creating interference on communications from the other nodes in the network.

For example, carrier sense multiple access with collision avoidance (CSMA-CA) basically

specifies that, before transmitting, a node needs to sense the medium and simply start a

Chapter 2. Background and related work 22

transmission if the channel is free. In [39], authors analyze multiple MAC protocols for

WSNs.

Furthermore, IEEE 802.15.4 standard also defines data verification (i.e. cyclic redun-

dancy check (CRC)) and security mechanisms to ensure data confidentiality, authenticity

and replay protection in single link communications.

2.2.4 Network layer

The network layer enables multi-hop network topologies. Nodes implementing this layer

can become intermediaries, developing routing capabilities and forwarding packets from

other nodes. In WPAN, there are two main standards for embedded systems that include

the specification for a network layer: ZigBee (protocol stack shown in Figure 2.4) and

6LoWPAN (protocol stack shown in Figure 2.5).

As shown in the figures, these standards define all the necessary layers in the communi-

cation stack. Although it is not mandatory, both protocols are defined on top of IEEE

802.15.4. Both offer typical network services, such as neighbor discovery, route discovery,

addressing, routing, etc. ZigBee [40] has been proposed by the ZigBee Alliance 20 and

more information can be found in [40].

6LoWPAN has been defined by the IETF 21 in [41]. This protocol definition proposes an

interoperability layer to send IPv6 packets over low-power and lossy networks. Thus, this

protocol is easily integrable with conventional networks: gateways are simple; the same

network addressing space can be used; and protocols above IP, such as User Datagram

Protocol (UDP) or Internet Control Message Protocol (ICMP), are compatible.

The network layer contains multiple protocols to deal with the different responsibilities

of the layer. For example, Ad hoc On-Demand Distance Vector (AODV) [43] is a very

popular routing protocol that not only can be used in ZigBee and 6LoWPAN, but also

in other mobile networks.
20“ZigBee Alliance”, http : //www.zigbee.org/
21“IETF”, https : //www.ietf.org/

Chapter 2. Background and related work 23

Figure 2.4: ZigBee communication stack [40].

Figure 2.5: 6LoWPAN communication stack [42].

2.2.5 Application layer

The application layer is on top of the communication stack. In this layer, application-

specific operations are implemented. Furthermore, the Constrained Application Protocol

(CoAP) [44] has emerged as a protocol similar to Hypertext Transfer Protocol (HTTP)

for the conventional Internet. CoAP works over UDP, it supports the Representational

Chapter 2. Background and related work 24

State Transfer (ReST) methods of HTTP, and it provides subscription and push notifi-

cations. Thus, CoAP provides an interoperable constrained application protocol for the

IoT.

2.3 WSN security

This section reviews attacks on WSNs (Section 2.3.1) and it also provides basic counter-

measures that have been proposed against these attacks (Section 2.3.2).

2.3.1 Attacks on WSNs

The limited computational and energetic constraints of nodes are an obstacle to applying

conventional computer network security countermeasures in WSNs. Furthermore, in

these networks, nodes become more vulnerable when they are placed in unprotected

environments like streets. In these circumstances, attackers can easily capture nodes,

access confidential information in their memory (e.g. cryptographic keys) and reprogram

their behavior. It is also common that attackers benefit from the wireless nature of the

communications to intercept the messages or to obstruct frequency bands to impede

the proper reception of some packets. In [45, 46], the authors survey the most popular

attacks on WSNs. In the next sections, the most outstanding attacks affecting each of

the layers of the communication protocols are reviewed.

2.3.1.1 Attacks against the physical layer

• Data tampering: Data in transit between two nodes are modified.

• Node tampering: A node is captured in order to damage it or to extract infor-

mation from its memory.

• Node replication: New nodes are added to the network by copying nodes that

are already legitimate network members.

• Jamming: Attackers send a high-power signal in order to generate interference

and avoid correct reception of legitimate packets.

Chapter 2. Background and related work 25

2.3.1.2 Attacks against the data link layer

• Sybil: A node takes several identities to change the behavior of data link protocols.

This has consequences for communication protocols relying on data aggregation

(i.e. in order to forward fewer packets, intermediate nodes aggregate received data

from several nodes and send a new packet with the aggregated data) or on voting

(i.e. intermediate nodes make decisions, such as deciding the best link, according

to the votes casted by other nodes).

• Interrogation: Attackers exploit MAC protocols based on a two-way handshake

(e.g. protocols that send control packets, such as Ready To Send (RTS) and Clear

To Send (CTS)). Attackers send many RTS, so that listening nodes answer with a

CTS for each received RTS and, therefore, consume resources.

• Exhaustion: Attackers constantly occupy the communication channel. Thereby,

legitimate nodes using carrier sense protocols (which are used before transmitting

to check whether the transmission medium is free) get their transmissions delayed

or even canceled.

• Collision: Attackers create interference during legitimate transmissions. In this

way, checksum mechanisms discard received messages and transmitters have to

resend messages.

• Unfairness: Persistence on attacks such as exhaustion or collision in order to

highly decrease quality of service and create a total or partial Denial of Service

(DoS).

2.3.1.3 Attacks against the network layer

• Sleep deprivation: Attackers generate a lot of traffic by means of broadcast pack-

ets or by creating network loops in order to keep many nodes awake re-transmitting

packets.

• Internet smurf: Attackers impersonate a node and then they send multiple

ECHO requests in broadcast. ECHO replays saturate the impersonated victim.

• Misdirection: Attackers with routing capabilities forward packets towards links

where the final destination is not reachable.

Chapter 2. Background and related work 26

• Acknowledgement spoofing: Attackers impersonate a legitimate node and send

Acknowledgement (ACK) packets indicating reception of incorrectly received pack-

ets. This keeps transmitters from re-sending the packets.

• Spoofed, altered, or replayed routing information: Routing information

sent between legitimate nodes is captured, changed and re-sent in order to create

loops, attracting traffic to target nodes, segmenting the network, etc.

• Wormhole: A low-latency transmission channel is created between two far-apart

attackers. The attacker located at greater distance from the base station benefits

from better communications than its neighbors to obtain better routing metrics.

Therefore, this attacker becomes the best routing node in the area and attracts

traffic.

• Sybil: Attackers take diverse identities from legitimate nodes. Then, attackers

can mislead other routing nodes to change the routing path towards or away from

the impersonated nodes.

• Selective forwarding and blackhole: Attackers in a routing position discard

some (selective forwarding) or all (blackhole) packets from certain nodes.

• Hello flood: Attackers use a powerful transmitter to send HELLO messages to

join the network to a large amount of nodes. Listener nodes reply to this fake

request with futile messages.

• Sinkhole: Some nodes in an area are misled to believe that either a target node

or an attacker is the best routing link. In the first case, the target node has to

consume extra resources forwarding packets. In the second case, the attacker starts

forwarding packets from many nodes and, therefore, can perform other attacks,

such as selective forwarding.

• Homing: Traffic and network analysis is performed in order to determine key

network nodes. These nodes become the best candidates for other attacks.

2.3.1.4 Attacks against the transport layer

• De-synchronization: First, attackers impersonate a legitimate node. Then, they

request retransmission of properly transmitted packets in a legitimate connection

Chapter 2. Background and related work 27

established with another node in the network. In this way, legitimate nodes misuse

their resources in futile re-transmissions.

• Flooding: Attackers repeatedly send connection requests to other nodes, so that

these reserve and exhaust their resources.

2.3.1.5 Attacks against the application layer

• Deluge: Attackers take advantage of over-the-air systems to remotely reprogram

nodes.

• Path-based DoS:Duplicated application packets are injected in leaf nodes. Thereby,

packets are forwarded up to the base station, where they are discarded. This is

resource-consuming and prevents other nodes from sending their packets.

• Overwhelm: Over-stimulation of sensors in leaf nodes to generate large amounts

of packets traversing and saturating multiple paths.

• Eavesdropping: Attackers read packets transmitted between two legitimate nodes.

• Re-play: Attackers re-transmit already sent legitimate packets.

2.3.2 Basic countermeasures

As Table 2.1 shows, the attacks mentioned in the previous section can be used to compro-

mise data confidentiality, integrity, availability and non-repudiation. In order to protect

networks against these attacks, researchers have proposed many countermeasures [45,

46]. This section discusses the main protection mechanisms found in the literature.

Basically, confidentiality attacks have two main origins: physically accessing node mem-

ory or eavesdropping on wireless transmissions. In smart city WSNs, physical access is

easy in many cases since sensor nodes are deployed unprotected in the streets. Tamper-

resistant hardware is a strong countermeasure in this case. However, for most smart city

services it is too expensive to be implemented in all the nodes. Other more economical

alternatives have been proposed: code obfuscation and code attestation [47]. In code

obfuscation, some techniques are used to make code and data more difficult to read,

increasing, thereby, the amount of time required to perform an attack. Code attestation

is used to check if running code has been altered.

Chapter 2. Background and related work 28

Table 2.1: Information security principles compromised by WSN attacks

Physical layer
Attack Compromised principles
Data tampering Integrity
Node tampering Confidentiality, integrity, availability
Node replication Integrity
Jamming Availability

Data link layer
Attack Compromised principles
Sybil Integrity, availability
Interrogation Availability
Exhaustion Availability
Collision Availability
Unfairness Availability

Network layer
Attack Compromised principles
Sleep deprivation Availability
Internet smurf Integrity, availability
Misdirection Availability
Acknowledgement spoofing Integrity, availability
Spoofed, altered, or
replayed routing information Integrity, availability

Wormhole Availability
Sybil Integrity, availability
Selective forwarding
and blackhole Availability

Hello flood Availability
Sinkhole Availability
Homing Confidentiality

Transport layer
Attack Compromised principles
De-synchronization Integrity, availability
Flooding Availability

Application layer
Attack Compromised principles
Deluge Integrity
Path-based DoS Availability
Overwhelm Availability
Eavesdropping Confidentiality
Re-play Non-repudiation

Confidentiality problems due to the wireless nature of WSNs are normally tackled with

cryptographic solutions. Since the first WSN nodes were designed with minimum pro-

cessing power, legacy systems based on these networks are incapable of running any

cryptographic algorithm. However, in the last few years, manufacturers have developed

Chapter 2. Background and related work 29

more powerful nodes and new protocols have been designed to take into account crypto-

graphic requirements. For example, the specification of the most popular communication

protocols for WSN, e.g. IEEE 802.15.4 standard [38] and ZigBee [40], include different

security modes based on symmetric cryptography. Asymmetric cryptography has also

been proposed for some situations. In [48], the authors propose to implement asymmet-

ric cryptography through a Secure Sockets Layer (SSL) protocol for WSNs. Libelium 22

proposes using symmetric cryptography for data exchange, and then regularly renewing

the cryptographic keys using asymmetric cryptography with RSA 1024 [49].

Cryptography is also a mechanism to avoid integrity and non-repudiation attacks. Check-

sums and message authentication codes are the usual countermeasures to impede unno-

ticed modifications of packets in transit. The destination node of an altered packet

discards it if the received packet and the code generated by the message integrity mecha-

nism do not match. However, integrity attacks are hardly noticed by city administrators,

since most WSNs do not send information to the base station indicating the reasons why

packets are dropped. Thereby, from the centralized point of view of smart city admin-

istrators, the traces of this type of attack can be assimilated to the traces of attacks

against data availability.

Availability attacks normally focus on breaking communication in certain areas and de-

pleting node batteries. Although there are solutions in the literature to avoid this type

of attacks, they are not always effective or applicable. For instance, frequency hopping

spread spectrum [50] is used to avoid certain types of jamming attacks by constantly

changing the transmission channel within the frequency band of the protocol. However,

jammer devices currently available on the market can jam all the channels used by several

protocols at the same time.

Hence, it can be seen that attacks can succeed and impact data confidentiality, integrity,

availability and non-repudiation. Although there are countermeasures to stop or at least

slow down the attacks, in this context security barriers are often penetrable. Therefore,

the best mitigation approach is a good detection strategy. Even though much infor-

mation to identify attacks is already lost when it reaches the smart city data centers,

it is important at the very least to detect that the networks are under attack in order

to increase the strength of the applied security measures and push WSN providers to
22“Libelium”,http : //www.libelium.com/

Chapter 2. Background and related work 30

improve their network security. Indeed, in a smart city context, discovering that certain

WSN components are under attack is notably important, since many of the components

are shared among different networks (e.g. gateways). Thus, some attacks do not stay

isolated in a single system and can have consequences for several services and providers.

Next section describes intrusion detection techniques that can be used from the smart

city centralized point of view to analyze WSN data and point out attacks.

2.4 Intrusion detection

Within the research field of intrusion detection, two types of techniques can be distin-

guished: misuse detection and anomaly detection. Whereas the former looks for traces

left by the attackers in the security data (e.g. system logs), the latter analyzes the normal

behavior of the system and points out unusual changes.

Intrusion detection techniques looking for misuses rely on an extensive database of attack

signatures. An attack signature is a sequence of typical actions that can be recorded

in a security log. The signature can be used to identify an attacker’s attempt to ex-

ploit a known network, operating system or application vulnerability. Alarms are raised

when the detection system discovers a sequence of events that matches any of the signa-

tures [51]. The main advantage of this type of detection is the low rate of false positives.

In the context of WSNs in smart cities, signature-based detection is useful in identifying

attacks targeting networks with regular behavior (e.g. environmental sensors sending

readings every day at the same hour) or highly reliable services. Simple rules can be

created in these two cases to trigger alerts when the expected readings are not received

or when a certain number of packets are lost. Nonetheless, many smart city services do

not follow a regular pattern and WSN is an unreliable technology, where some packets

are occasionally not delivered.

Alternatively, intrusion detection techniques looking for anomalies are able to identify

changes in the system that do not match the normal behavior. Given the significance of

this type of intrusion detection for this thesis, next section provides more details about

it.

Chapter 2. Background and related work 31

2.4.1 Anomaly detection

Anomaly detection has been widely used in many application domains (see a survey on

anomaly detection techniques in [52]). The most common techniques fall into the scope of

statistics, clustering and machine learning. Depending on the types of samples necessary

to process the data, these techniques are divided into supervised, semi-supervised or

unsupervised.

Supervised techniques require a training dataset with labels indicating the category of

each sample (e.g. "no attack", "jamming" or "selective forwarding"). Then, a model

is generated to classify new unlabeled samples into one of the defined categories. Semi-

supervised techniques require a training dataset with samples of a single category in

order to create a model that classifies new samples as belonging to that category or not.

Finally, unsupervised techniques do not require labeled training data and are capable of

dividing a dataset into various subsets without a previously learnt model.

Furthermore, anomaly detection algorithms are also clearly separable between univariate

algorithms (only one variable is used in the analysis) and multivariate algorithms (several

variables are used in the analysis). In univariate algorithms, computing a higher and a

lower bound beyond which data are considered anomalous is common. As an example,

Tukey’s method [53] is popular for computing these boundaries from a numeric dataset.

In this method, two types of boundaries are defined: the inner fences and the outer

fences. The former are computed by subtracting and adding 1.5 times the interquartile

distance of the dataset (i.e. distance between the first and the third quartile) to the first

and the third quartiles respectively. This defines very strict thresholds, which implies a

high probability of identifying some normal instances as outliers. Outer fences represent

a more loose way to define the boundaries. The outer fences are computed by subtracting

and adding 3 times the interquartile distance to the first and the third quartiles respec-

tively. In order to compute the boundaries with this method, it is recommended that

the large datasets not be highly skewed.

Another way to compute thresholds with univariate algorithms is using autoregressive

models [54], such as autoregressive integrated moving average (ARIMA). These models

are based upon the assumption that each value is somehow correlated with the previous

recorded values. In this way, autoregressive models use previous values to predict future

values within a confidence interval. The lower and higher boundary in the interval can

Chapter 2. Background and related work 32

be used as thresholds to point out anomalies. Autoregressive models are very common

in time series analysis.

Multivariate anomaly detection is generally handled by machine learning and clustering

techniques. Widely used algorithms are support vector machines [55], nearest neigh-

bor [56] and local outlier factor [57].

Depending on the characteristics of the specific scenario and on the requirements of the

application, some algorithms perform better than others. For instance, the authors of [58]

compare several unsupervised approaches based on local outlier factor, near neighbors,

Mahalanobis distance and support vector machines to detect intrusions in conventional

computer networks. Their experiments show that the local outlier factor approach is the

most adequate in this context.

Anomaly detection has been also used in intrusion detection systems (IDS) for WSNs.

In [59], the authors survey the most popular techniques. Generally, the nodes that con-

tain IDS components gather and/or analyze network status data concerning anomalous

operation activities of their neighbors. When this occurs, the nodes trigger an alarm at

the base station.

Anomaly detection techniques have been applied in multiple applications related to

WSNs. As an example, the authors of [60] use geostatistics and time series analysis

to detect outliers in readings of meteorological sensors. The authors select temporal and

spatial real-data-based outlier detection (TSOD) as the most appropriate technique in

this context. In their experiments, the authors claim that TSOD has a high performance

and it is able to identify all the outliers with a low false positive rate, around 3%. How-

ever, these techniques are only applicable to certain scenarios in which there exists a

spatio-temporal correlation and the WSN is dense enough.

Other studies focus on anomaly detection applied to single sensors. By way of example, in

[61], the authors propose a two-phased algorithm. In the first phase, the algorithm seeks

temporal anomalies with one-class support vector machines (OC-SVM) and, in the second

phase, the algorithm reduces false positives and classifies the anomalies with a supervised

K-Nearest Neighbor (KNN) approach. For the first phase, the authors compare OC-

SVM with other techniques (i.e. logistic regression, random forest, linear support vector

classification, complexity invariant distance-based KNN and Euclidean distance-based

Chapter 2. Background and related work 33

KNN). The authors conclude that OC-SVM outperforms the other techniques, achieving

a 96% detection rate in their experiments.

In [62], Mahalanobis distance is used to detect insider attacks with high detection ac-

curacy and robustness (i.e. the false positive rate stays low even though the number of

outlying sensors increases). Some authors claim that anomaly detection techniques based

on the distance to the neighbors should not be used in WSN due to high computational

complexity [63]. Nevertheless, from the point of view of smart city administrators, these

techniques can be considered because anomaly analysis can be computed in data centers

using powerful computers.

In [64], the authors use one-class quarter-sphere support vector machines in two new

anomaly detection algorithms: lightweight anomaly detection algorithm using sort and

lightweight anomaly detection algorithm using quick select. These algorithms are suitable

to run in constrained nodes due to their low computational complexity. Moreover, their

experiments show a high performance, e.g. a 95% true positive rate and a false positive

rate of below 10%.

The authors of [65] use an improved ARIMA model to predict anomalies in WSN through

network traffic analysis in the nodes. The experiments in the article show an accuracy

of over 96% and a false positive rate of less than 3%.

Although some of the previously mentioned anomaly detection techniques and IDS per-

form well in detecting attacks, they are not a generalizable solution in an heterogeneous

context such as the smart city. This is due to the fact that, on the one hand, some

techniques excessively depend on the context of the WSN. On the other hand, IDS are

normally designed ad-hoc to be embedded in some or all of the nodes of specific WSNs.

Therefore, IDS can only be considered as a first protection mechanism to be imple-

mented by WSN providers for their specific networks. From the centralized perspective

of smart city administration, the solution must not require access to the WSN nodes nor

knowledge of the specific technology used by each external provider.

Chapter 2. Background and related work 34

2.5 The role of standards

With the aim of contributing to smart city construction in a progressive, incremental and

scalable manner, leading standardization corporations have started to write guides and

regulations. These documents are generally written based on principles of consensus,

openness, transparency and non-discrimination. Taking these into account, standards

about smart cities are written with the main purposes of improving interoperability

among components, promoting secure ways of sharing data, easing entrance to new ap-

plication development players, removing commercial monopolies, reducing costs, etc. [66]

Although, nowadays, the drafting of such texts is immature and it does still not cover all

areas, there are already some relevant documents related to the smart city. For instance,

ISO 37120 [67] describes a suite of indicators to measure and compare different city

services in a verifiable manner. ITU-T Y.4400 series [68] offers a terminological guide

about ICT for sustainable smart cities and ITU-T L.1600 series [69] is similar to ISO

37120 and lists ICT key performance indicators.

Local standardization organizations are also contributing with documentation. The

British Standards Institution (BSI)23 has published guides to facilitate data interop-

erability[70] and to improve planning and smart city development[71]. In the Spanish

sphere, AEN/CTN 178 an AENOR24 working group has published a set of standards

about smart cities. Among them are some related to ICT: UNE 178102-1:2015 [72]

on multiservice city networks; UNE 178104:2015 [73] on integrated systems for smart

city management; UNE 178107-4:2015 IN [74] on access and transport in WSNs; UNE

178301:2015 [75] on open data.

Beyond traditional standardization organizations, it is also important to highlight some

of the initiatives and contributions of other entities. For example, the City Protocol

Society 25 is a community of cities, companies, academia and nonprofit organizations

with the aim of offering recommendations, technical information and use cases as a model

for other cities. The Open & Agile Smart Cities initiative 26 involves 89 cities from 19

countries in Europe, Latin America and Asia-Pacific. This initiative recommends the

adoption of: a driven-by-implementation approach, where communities and developers
23"British Standards Institution", http://www.bsigroup.com
24"AENOR", http://www.aenor.es/
25"City Protocol Society", http : //cityprotocol.org
26"Open & Agile Smart Cities initiative", http : //oascities.org

Chapter 2. Background and related work 35

work together creating services; a technical API; a data model set; and an open data

platform.

In general, it can be seen that the standards published to date do not deal with security

in depth, since none provide a solution to the above mentioned problems derived from

the heterogeneous context, externalized services, and so on.

2.6 Conclusions

This chapter has shown that traditional security protocols are necessary to protect smart

city subsystems from different types of attacks. These solutions are generally designed by

embedding in the WSNs some countermeasures based on cryptography, code obfuscation

and frequency hopping, among others. However, existing solutions cannot holistically

cover highly heterogeneous environments with multiple and diverse network technologies

and communication protocols. To respond to the needs of this type of system, this thesis

proposes to use intrusion detection techniques based on signatures and also on anomaly

analysis. In the following chapters, a schema of the architecture will be defined to

integrate these detection techniques, and a study of the most suitable anomaly detection

algorithms for smart city WSNs will be performed. Finally, a classification system will

also be proposed to assist smart city administrators in recognizing the specific attacks

in the case of a network compromise.

Chapter 3

Architecture

The previous chapters have shown how smart city systems increase interconnectivity

among infrastructures, and create new ways to spread vulnerabilities and to exploit

infrastructure dependencies, causing damage to third parties. We have also seen that

WSNs are basic components for gathering urban data, but, at the same time, they use

technology which is less reliable and easier to attack than conventional networks. In

order to achieve rapid deployment of WSNs and smart city technology, cities have taken

advantage of services procured from external providers; this outsourcing of public services

has, however, raised security-related concerns. Basically, we have observed that smart

city administrators have lost control over the network devices, and the visibility over the

WSNs to identify potential security issues has decreased.

Moreover, it is not feasible to design security strategies and countermeasures applicable

to all types of WSNs that can be deployed in a city. Although smart cities are still in their

inception, their rapid growth has led to the deployment of state of the art technology in

a new field (i.e. the city), in a manner that makes it hard to apply universal security

solutions to the WSNs. The following characteristics of smart cities are the three main

impediments to deploy generalizable solutions:

• Heterogeneity: Multiple providers implement different technological solutions,

under diverse security requirements. Traditional security measures cannot be ap-

plied to WSNs, and WSN countermeasures do not cover all circumstances.

36

Chapter 3. Architecture 37

• Limited access: Providers usually restrain public administrations from accessing

their equipment. Accordingly, thorough security analysis in the WSNs can only be

performed by the providers. Nevertheless, smart city managers are the only actors

with information from all the providers and services. Therefore, incidents involving

multiple providers or provoking cascading effects can only be studied by the smart

city managers.

• Difficulty to update: System updates become very costly and sometimes even

impossible in WSNs, because some networks do not offer a downlink communica-

tion channel from the data centers to the sensors and, therefore, sensors have to

be physically access in order to update their software. Hence, newly discovered

vulnerabilities in WSNs frequently go unpatched once they have been deployed.

Therefore, there are currently no security solutions that smart city administrators can

use to successfully manage WSN security in a holistic manner. Thus, the main security

barriers are implemented and controlled only by the providers. In this thesis, we propose

to improve WSN security in smart cities with an intrusion detection platform for the

smart city administrators. In this way, WSN data sent by the providers can be analyzed

looking for attacks and other failures and, therefore, smart city administrators can push

providers to implement the most adequate security countermeasures in their networks.

This chapter presents an architecture for this platform. The proposed architecture is en-

visaged as an additional layer in the smart city architecture above the elements deployed

by the providers. Thereby, the architecture is transparent for the providers, it does not

add extra requirements for the WSN nodes, which are very limited in terms of processing

power and battery, and it is compatible with the WSNs that are already deployed on the

streets.

This chapter presents the main requirements for the architecture in Section 3.1. Then,

Section 3.2 gives an overview of the proposed architecture. Section 3.3 discusses the

major considerations of designing an anomaly-based detection engine, which is one of

the principal components of the proposed architecture. Section 3.4 provides a schema

with the most relevant subprocesses involved in the intrusion detection pipeline, from

data reception at the central server to the generation of alarms due to detected anomalies.

Finally, Section 3.5 presents a use case based on a public car park as proof of concept of

the architecture.

Chapter 3. Architecture 38

3.1 Main architecture requirements

A generic platform to detect intrusions in smart city WSNs has to be designed from the

point of view of the smart city administrators. Firstly, this means taking into account

that smart city administrators have a centralized perspective. Hence, the architecture

has to be capable of collecting and processing a large amount of unstructured and semi-

structured data sent by urban WSNs. Secondly, it entails avoiding the barriers related

with the high heterogeneity and the limited access of the systems and the difficulties

in updating them. Finally, the architecture has to be transparent for external WSN

providers. This makes it compatible with already deployed networks and with the low

processing capabilities of some sensor nodes.

Regarding data processing requirements, this can be considered in a big data context.

The architecture has to be ready to collect, index, and process a large volume of data

with high velocity and variety. We assume that smart cities have, in their central servers,

high computational power, a large amount of storage space, and the other hardware and

network requirements necessary to deploy big data solutions.

As seen in Section 2.1, a principal characteristic of smart cities is that their data are highly

heterogeneous and distributed. The proposed architecture has to take into account these

characteristics and it has to be able to acquire data from diverse source types.

3.2 Architecture overview

This section takes into account the requirements presented in the previous section and

outlines a centralized architecture to collect WSN data and to process them with a

hybrid detection engine combining a rule-based and an anomaly-based engine to disclose

incidents in the third-party WSNs.

The proposed solution, shown in Figure 3.1, is based on an enhanced SIEM system (See

Section 2.1.3) contained within the city council facilities in order to make use of the

collection, storage, processing and big data services offered by the smart city. The main

components and the data flow represented in the figure are:

Chapter 3. Architecture 39

Figure 3.1: Architecture of the proposed solution

1. Data originate from several sources in different data types. Generally, appli-

cation data come from the sensor readings and network status data come from

gateways, watchdogs[76] or other devices with enough capacity to monitor WSNs.

In certain cases, in order to get a precise picture of the network, WSN nodes log

system status information, which is sent regularly or on request[77, 78]. These

data, then, are gathered, parsed and normalized by remote data collectors dis-

tributed near the sources, or by centralized data collectors installed near the

processing engines.

2. Normalized data are the input of the two detection engines. On the one hand, there

is the rule-based detection engine, the objective of which is to detect known

attacks and to correlate data from different sources, and, on the other hand, the

anomaly-based detection engine, which uses machine learning and statistical

techniques for the detection of anomalies and unknown attacks.

3. The detection engines independently analyze the input data and trigger alarms

that are stored in a common alarm database.

4. Alarms from the database are correlated by the rule-based detection engine gen-

erating new alarms, which are more reliable, have higher priority and become

candidates for correlation in future iterations.

5. The administration and visualization tools offer interfaces (e.g. dashboards,

SMS alerts) and subscription mechanisms to provide information about the alarms

and to manage the system.

Chapter 3. Architecture 40

Our solution deploys a new layer in the servers of smart city administrators. This layer

is conceptually above the devices used by the different providers. Therefore, it is not

affected by the heterogeneity of the different configurations, it does not require special

permissions over third-party devices and it is easily accessible and updatable.

Moreover, a SIEM is the core of the architecture and, as seen in Section 2.1.3, this

type of system is capable of processing big data as required and it offers mechanisms

to collect data from local and remote locations suitable for deployment in a smart city

context. Concerning WSNs, data can be found stored in smart city servers or in remote

devices on the streets. Sensor readings, for example, are normally of value to specific city

departments. These data, therefore, are generally stored in a conventional server and

they can be accessed within the smart city premises. However, system status data (e.g.

device logs), which may not be relevant to any other smart city department, have to

be directly gathered from the WSNs. Therefore, the proposed SIEM-based architecture

is capable of gathering remote and local data using different data collectors, and it

offers a centralized single platform on which to process and correlate all the information

together. Furthermore, data correlation and historical data management, which are

generally very relevant in intrusion detection analysis, are especially efficient on this

type of platform. Finally, parallel programming paradigms, such as MapReduce, are

a normal characteristic of SIEM systems. In Chapter 5, we take advantage of these

paradigms to deal with complex intrusion detection algorithms managing large amounts

of data in a scalable manner.

Regarding the intrusion detection characteristics of the proposed architecture, two situ-

ations are covered. Firstly, the rule-based detection engine is capable of finding patterns

in the data to identify attacks that have already been reported in the literature and that

are known to information security researchers. Secondly, the anomaly-based detection

engine is capable of warning administrators in the case of situations that do not follow

normal system behavior, although there are no patterns matching known attacks. In

this way, popular attacks can be easily identified and prevented, and new attacks, ex-

ploiting unknown vulnerabilities, trigger alarms that give smart city administrators the

first warning signs in order to start more in-depth inquiries. Additionally, at the time

of creating an alarm, administrators can associate a severity level to the alarm and also

assign an action to execute as soon as the alarm is triggered.

Chapter 3. Architecture 41

The following sections describe the basic WSN data available at the central servers that

can be used by the detection engines to disclose security incidents. Then, more details

about the two detection engines are given.

3.2.1 Data types

The following are the most relevant types of data that are received from the WSN at the

smart city data centers. Some examples of how they can be used to detect intrusions are

provided:

• Basic information about the nodes: ID, latitude, longitude, etc. The ge-

ographical position is a basic parameter to determine the area affected by the

attacks.

• Basic information about the WSN: service purpose (e.g. parking, environ-

mental monitoring), communication protocol (e.g. ZigBee, LoRa), etc. From this

information, other information about the WSN can be extracted. For example,

ZigBee has two possible topologies (i.e. tree and star) and its frequency bands in

Europe are either 868 MHz or 2.4 GHz. This information can be used to discard

possible attacks against a service and to cluster data.

• Basic information about the packets: packet number, gateway ID, times-

tamps, etc. Additional fields can be computed from this basic information, such

as the one-way delay (OWD), which indicates the time taken by the packets from

the sensor nodes to the server. This is an important field for the detection of some

attacks, such as DoS, since these attacks tend to slow down packet reception.

• Basic information about system status: received signal strength indicator

(RSSI), signal-to-noise ratio (SNR), etc. Some attacks have a direct impact on

some of these variables. For instance, attacks generating interference impact RSSI.

• Information about the services: sensor readings, service data aggregated in

time intervals, etc. These data are sent either in scheduled regular time intervals

(e.g. environmental data) or when sensors have reacted to an environmental condi-

tion (e.g. parking activity). Anomalies in these data can indicate badly calibrated

sensors and data integrity attacks.

Chapter 3. Architecture 42

• Battery status: The objective of many WSN attacks is to exhaust sensor bat-

teries. Therefore, this information is very useful for the detection of this type of

attack.

3.2.2 Rule-based detection engine

The rule-based detection engine provides the system with an alarm module capable of

identifying attacks that are recorded as signatures in a database. The rules that define

the signatures in the database specify the traces that have to appear in the data in order

to trigger an alarm. Additionally, alarms are implemented setting up a schedule, a level

of severity and the actions to execute (e.g. administrator warning, execution of certain

processes).

Rules are built with two purposes; firstly, to find evidence of undesirable situations (e.g.

traces of refused connections, parameters surpassing a threshold). Secondly, rules are

also built to correlate multiple pieces of evidence found in different network components

and/or moments in time. The correlation rules take advantage of the fact that some

attacks leave traces in several parts of the system within a limited time window. These

traces are normally a consequence of the several steps required to perform an attack or

the persistence of the attacker after failing. The following are high-level descriptions of

some example alarms:

• This alarm is triggered by a rule that looks for the string “Authentication failed”

in a log in real time. The alarm is set with low severity and runs a script.

IF ∃ Event E

FROM Log L ON Real-time

WHERE Field F

CONTAINS "Authentication failed"

THEN Alarm(Severity: Low,

Action: Run Script S)

• This alarm is triggered by a rule that checks if a certain field in a log goes over

a threshold in real time. The alarm is set with medium severity and warns the

administrator with a message in the alarm panel.

Chapter 3. Architecture 43

IF ∃ Event E

FROM Log L ON Real-time

WHERE Field F > Threshold

THEN Alarm(Severity: Medium,

Action: Show in alarm panel)

• This alarm is triggered by a rule that correlates events from two logs. The rule

looks for situations where the first log does not contain events for the last two hours

and the second log contains at least one event in the last hour. The alarm is set

as highly severe and sends an SMS to system administrators.

IF 6 ∃ Event E1 FROM Log L1 Last 2 Hours

AND ∃ Event E2 FROM Log L2 Last Hour

THEN Alarm(Severity: High,

Action: Send SMS)

The proposed architecture gathers all the evidence of suspicious behavior in the WSNs

of the smart city in a single system. Both detection engines trigger alarms in the case of

theoretical undesirable events. However, a large number of these alarms can be classified

as false alarms, or they are due to unimportant or transient situations. Therefore, the

real challenge is not only to write effective alarms, but also to warn administrators only

when the reliability and the severity of the alarms are high enough. This can be achieved

by creating alarms based on correlation rules, as Figure 3.1 shows. In this figure, 4 in the

data flow schema implies that alarms, which have already been triggered, are used again

in the rule-based detection engine. In this way, alarms affecting the same components,

area, bandwidth, etc., are correlated, triggering a more reliable alarm. In Chapter 6

a framework is defined to assist administrators in creating correlation rules to increase

alarm reliability and to be able to classify security incidents into attack types.

To simplify the definition of rules for an entire smart city, system administrators can use

publicly available signature databases. For instance, Snort1 is a popular IDS that offers

regularly updated signature databases for the most common protocols. Quickdraw2 of-

fers signatures for SCADA. As far as we know, however, there are no signature databases
1"Snort", https://www.snort.org/
2"Quickdraw", http://www.digitalbond.com/tools/quickdraw/

Chapter 3. Architecture 44

specifically designed for WSNs or for smart city applications (e.g. parking, environmen-

tal monitoring). This complicates the management and the detection of anomalies in

contexts with a vast number of incident types.

Moreover, a smart city is a very mutable scenario. Public databases can help admin-

istrators maintaining an updated collection of signatures including recently discovered

vulnerabilities, new components, network configurations, etc. However, it is still an open

problem to find an adequate manner to manage signature databases in large and highly

heterogeneous systems like smart cities. The next section presents the anomaly-based de-

tection engine, which can detect unknown attacks and, therefore, can aid administrators

in discovering that some signatures are missing or out of date.

3.2.3 Anomaly-based detection engine

The rule-based detection engine provides administrators with a handy tool to identify

attacks, looking for the traces that the attacks leave on data. However, this engine

has several limitations, which preclude reliance solely on this intrusion detection mecha-

nism for effective attack detection in the context described in this thesis. The principal

limitations are:

• The rule-based detection engine is especially useful against attacks that are clearly

identifiable through thresholds and which are considered stable in the long term.

However, in a changing environment such as the smart city, static thresholds are

usually hard to define because the environment is dynamic and changes according

to the time of day, the season of the year, the weather conditions, etc.

• Unknown attacks, for which no rules are defined, remain undetected.

• Rules that involve many variables become too complex and are difficult to maintain.

• Finding predefined thresholds for certain variables is sometimes not possible.

• The set of rules defined ad hoc by the administrators requires manual maintenance,

which is costly and does not scale well.

In order to overcome these problems, it is essential to complement the rule-based detec-

tion engine with other mechanisms. For this purpose, the proposed architecture includes

Chapter 3. Architecture 45

an anomaly-based detection engine. This engine has the responsibility of computing

thresholds automatically and training complex machine learning models capable of iden-

tifying anomalous data instances due to attacks or failures in the WSNs of the smart

city. As seen in Section 3.2.1, data analyzed with this engine include sensor readings,

network status logs, etc. Henceforth, the fields in a dataset that can be used for the

anomaly analysis are referred as variables.

Section 2.4.1 has shown that, in the literature, there are multiple anomaly detection

techniques capable of performing analysis on data to disclose these types of situation.

Generally, these techniques require a dataset of samples to train models. The models are

subsequently used to predict whether new samples are normal or not. Taking this into

account, the main characteristics of the projected detection engine can be summarized

in the following four points:

1. It uses unsupervised or semi-supervised algorithms.

2. The vast majority of the samples in the training datasets are captured during

normal non-attack situations.

3. Training datasets are sampled including observations from most of the different

states that can occur in the monitored service.

4. Training datasets are large.

Regarding the first point, as seen in Section 2.4.1, supervised machine learning algorithms

require the labeling of each training sample with the class that it belongs to. For these

algorithms, in the intrusion detection context, an additional field should be included in

the samples indicating whether the sample is normal or anomalous or, in the case of

computing a model with one class for each type of anomalous situation, the label should

be more specific and indicate the type of situation (e.g. "jamming attack", "selective

forwarding attack"). In the smart city context, it is very difficult to gather a large amount

of labeled data. Administrators could perform some attack simulations on a testbed or

even against the real WSN infrastructure; however, it is unrealistic to systematically

gather comprehensive datasets, including many samples from all attacks reported in

the literature every time that new models have to be trained. Moreover, attacks that

are as yet undiscovered, or that exploit unknown vulnerabilities, would go unnoticed.

Chapter 3. Architecture 46

Accordingly, the anomaly-based detection engine mainly has to use semi-supervised or

unsupervised algorithms.

Regarding the second point, training datasets have to contain a very large proportion of

normal samples, because anomaly detection models are normally computed by finding a

boundary that encloses most of the samples in the training dataset. If a training dataset

contains an excessive proportion of abnormal samples, then it is likely that some of these

samples will be included within the boundaries of normality.

Regarding the third point, training datasets have to contain a comprehensive representa-

tion of samples from the various possible normal states and situations in the monitored

service. Otherwise normal situations not represented in the training dataset can fall

outside the computed normality boundaries.

Finally, with regard to the fourth point, training datasets have to be large for the reasons

noted in the previous two points. Using only a few samples can result in models trained

with too many samples from transient network states or unimportant transitory errors

that do not capture the normal behavior of the system. Furthermore, with small training

datasets, the proportion of variables relative to the number of samples increases and,

therefore, overfitting is more likely to occur [79].

3.3 Designing the anomaly-based detection engine

Taking into account the complexity behind intrusion detection based on disclosing anoma-

lies in the data, this section describes the major considerations to bear in mind when

designing the anomaly-based detection engine.

With the purpose of performing a complete and effective anomaly analysis in a smart

city, it is necessary to deploy at least two types of algorithms:

• Univariate algorithms. With this type of algorithm, administrators can monitor

the behavior of a single numeric variable and detect anomalous values falling outside

its normal range. For example, detecting an anomalous reading of −50°C in a

temperature sensor located in a city with a mild climate.

Chapter 3. Architecture 47

• Multivariate algorithms. With this type of algorithm, administrators can point

out anomalies taking into account several variables at the same time, even when

each of the analyzed variables stays within its normal boundaries. For example, a

reading of 0°C in a temperature sensor can be considered normal in the winter, but

it can also be considered as anomalous in the summer if the detection algorithm

also takes into account the season of the year, the readings of other temperature

sensors, etc.

These are simple examples of typical anomaly analysis. However, we must bear in mind

that anomaly analysis in smart cities can be very complex. Anomalies detected by

univariate algorithms studying a single variable can provide valuable information for

disclosing the source of an incident. For instance, it is widely known that abnormal

values in the RSSI can be due to interference [80]. Also, univariate analysis in sensor

readings enables the identification of extreme values coming from integrity attacks or

sensors that are not properly calibrated. However, there are many attacks against WSN

that cannot be directly detected with univariate algorithms, because the attacks have

a reduced impact on just one of the received variables. Using multivariate algorithms

is more adequate for considering the impact on several variables at the same time, but

an alarm triggered by one of these algorithms is generally more difficult to link with

the specific causes of the problem. Therefore, intrusion detection in smart city WSNs

is not a straightforward task, and cannot be fully automatized and treated like a black-

box in which the set of anomaly detection algorithms provided can be used for any

context. Administrators have to select the variables to monitor, draw conclusions in the

case of alarms, create correlation rules to trigger meaningful alarms that deserve the

administrator’s attention, etc.

Another difficulty in deploying a system like this is choosing specific algorithms for the

different analyses. Regarding multivariate analysis, as it will be seen in Chapter 4, smart

city administrators should consider implementing detection based on OC-SVM. This is a

semi-supervised algorithm, which gives good detection results in this context. Chapter 4

provides more information about the application of this algorithm and it compares it

with other multivariate algorithms.

Regarding univariate algorithms, two types of situations have to be covered depending

on the monitored variable:

Chapter 3. Architecture 48

• Situations where the distribution of the variable is relatively stable in time. In

this way, thresholds can be computed from large amounts of relevant values and

they can be used to predict anomalies in many samples in the future. In this

type of situation, smart city administrators should consider using Tukey’s method

to define thresholds. Numerous studies in the literature have successfully used

algorithms based on Tukey’s method to find outliers with good results [81, 82, 83].

This statistical method is adequate in this context because it is simple, has a low

level of computational complexity and it does not make assumptions about the

statistical distribution of the variable.

• Situations where new values of the variable show strong correlation with immedi-

ately previous values. In this type of situation, smart city administrators should

consider using autoregressive algorithms, such as ARIMA. Autoregressive algo-

rithms have been widely used to detect outliers in WSN data [60, 65]. These

models require very small training datasets, but they have to be recomputed every

time a new value is received.

All these types of models, to varying degrees, are not perennial and eventually have to

be recomputed to adapt to system changes. The next section provides some indications

on how to carry out model maintenance.

3.3.1 Maintenance of machine learning models

The dynamic behavior of cities needs to be taken into account when it comes to keeping

models up-to-date. Therefore, it is necessary to recompute the models when these cease

to capture the normal behavior of the system.

On the one hand, some types of model are already designed to be transient. For instance,

autoregressive models are recomputed after each new observation. On the other hand,

other types of model are more durable and suitable for less mutable data. In order to

know when these models become out-of-date, it is necessary to compute certain metrics

regularly to assess the performance of each model.

Any set of metrics selected for the purpose of evaluating anomaly detection models has to

take into account four situations: cases where attacks are not detected (false negatives),

Chapter 3. Architecture 49

Table 3.1: Metrics to asses anomaly detection algorithms

True positive rate (TPR)
true positives

true positives+ false negatives

False positive rate (FPR)
false positives

false positives+ true negatives

F-score
true positives

true positives+ (false negatives+ false positives)/2

cases where the algorithms incorrectly point out attacks that have not occurred (false

positives), cases where the attacks are correctly detected (true positives) and cases that

are correctly identified as not being under attack (true negatives). Taking these into

account, the metrics shown in Table 3.1 have been widely used to assess IDSs and machine

learning algorithms [58]. The true positive rate (also known as detection rate, sensitivity,

or recall) measures the percentage of attacks that have been properly detected. The false

positive rate (also known as the false alarm rate) indicates the percentage of normal

samples misclassified as attacks. Finally, the f-score is used as a general overview of

the performance of the algorithm. This metric takes into account the number of true

positives over the arithmetic average of predicted positives and real positives.

Using these metrics, administrators can establish limits, beyond which the models have

to be considered out-of-date and must be recomputed. In order to compute these metrics

and establish the limits, it is important to have labeled test datasets. The predictions

for each sample in a test dataset have to be compared with the labels indicating the

actual class of the sample, resulting in one of the four cases mentioned above: false

negative, false positive, true negative or true positive. The purpose of these labels must

not be confused with the labels required to train models with supervised algorithms,

which require much larger datasets. To compute these metrics, shorter datasets can be

used. The following are examples of methods that can be used to label a small dataset:

• Perform attacks against real smart city WSNs under supervised situations, against

testbeds or in simulators.

• Deploy honeypots to entice attackers to attack the system and monitor their ac-

tivity.

• Use a system to manage alarms in which administrators can mark alarms as false

positives or true positives.

Chapter 3. Architecture 50

Figure 3.2: Pipeline describing the general process to detect intrusions from smart
city WSN data.

As seen in these sections, intrusion analysis involves several steps, such as training models

or predicting anomalies in new observations. The next section presents a pipeline with

the necessary steps and the subprocesses involved in the intrusion analysis with the

proposed architecture.

3.4 Intrusion analysis outline

Figure 3.2 shows a pipeline including the necessary subprocesses to process smart city

WSN data from their arrival at the servers until an alarm can be triggered. First, when

data reach the servers they have to be preprocessed in real time. Afterwards, data can

be filtered and aggregated. Data aggregation can be performed by several criteria. A

usual criterion is according to some previously defined clusters. Preprocessed, filtered,

and aggregated data are used to compute models, which will later be used to detect

anomalies in order to disclose attacks and other failures in an intrusion detection

subprocess. The alarms triggered by the anomaly detection analysis are processed by an

alarm management subprocess in order to correlate them, to reduce the amount of

false positives and to warn administrators only in the case of relevant situations. Below

each of these subprocesses will be briefly described.

3.4.1 Preprocessing

As a first step before performing any type of analysis, it is necessary to conduct some

kind of data transformation in order to ease subsequent operations:

Chapter 3. Architecture 51

• Parsing: messages enter the system with multiple formats (e.g. string containing

several variables separated by #). These data need to be parsed and transformed

into at least a semi-structured data type (e.g. JavaScript object notation (JSON))

linked with some metadata to give context to the different fields.

• Indexing: messages enter the system in a disorderly way, but they contain a field

with its creation timestamp. In order to ease some other preprocessing operations

that require previously received messages and also to ease subsequent subprocesses,

messages have to be indexed according to a temporal component. WSN data do

not arrive perfectly in order because:

– Some sensors store several readings in the memory, which are sent jointly after

a certain amount of time has elapsed.

– Providers have several alternatives for sending data from WSN to smart city

central servers (e.g. via municipal telecommunication networks or via private

infrastructure through servers owned by the providers). The different alter-

natives generate different delays between the initial data transmission and its

reception at the final destination.

– Within a single multi-hop WSN, packets can take different routes, which re-

sults in different delays.

– Transmission errors necessitate the resending of packets, which increases mes-

sage delays.

• Simple variable creation: new variables are created applying simple functions

to aggregate or transform one or more fields from the current message (e.g. unit

conversion).

• Complex variable creation: new variables are created applying complex func-

tions to aggregate or transform one or more fields from the current message or from

a previous message (e.g. computing battery consumed since last received message).

3.4.2 Filtering

In this subprocess, data are selected by standard filtering operations, such as comparing

variables with user defined values or with other variables. In this way, administrators can

Chapter 3. Architecture 52

extract just the important samples from the plethora of data that arrive to the system.

For example, administrators can set filters to get data only from certain sensors, from a

certain area, etc.

3.4.3 Clustering

The principal purpose of this subprocess is to create certain divisions in data in order

to draw meaningful conclusions after anomaly analysis. The divisions can be created

ad-hoc by system administrators, or using clustering algorithms. The purpose of this

subprocess is twofold. Firstly, using clusters, nodes that can be affected by the same

attacks can be grouped and analyzed together (e.g. neighboring nodes transmitting in

the same frequency band). Secondly, search space gets reduced, which simplifies finding

the root cause of security incidents.

3.4.4 Aggregation

This subprocess is responsible for combining data extracted in the filtering subprocess, in

such a way that data stay grouped according to a certain criterion, such as time intervals,

clusters, etc. Typical data aggregation operations are: the minimum, the maximum, the

sum, the mean, the median, the mode, etc. For instance, summarized information from

an environmental WSN can be periodically obtained by computing the minimum, the

maximum and the mean of the sensor readings.

3.4.5 Model computation

As previously seen, anomaly detection is based on using previously computed models

to predict whether an observation is normal or not. These models can be very simple,

such as thresholds, or complex, such as machine learning models. In both cases, the cost

of computing models is normally not insignificant. Therefore, models must already be

computed prior to their usage in real-time applications.

Chapter 3. Architecture 53

3.4.6 Intrusion detection

Intrusion detection is performed on preprocessed, filtered, clustered and/or aggregated

data using either the rule-based detection engine or the anomaly-based detection engine.

As previously seen, the former uses attack signatures to look for traces of attacks, and

the latter uses the models computed beforehand to predict whether new data has to be

considered abnormal.

3.4.7 Alarm management

The intrusion predictions reported in the previous step are used by an alarm management

subprocess to create alarms and warn administrators. This subprocess can use variables

such as WSN criticality or a degree of abnormality extracted from certain anomaly

detection algorithms to sort alarms by importance. Furthermore, administrators can

correlate alarms with the rule-based detection engine in order to concentrate several

alarms into a single and more relevant alarm, to look for faults in various networks at

the same time, etc.

3.5 Use case: attack on a parking WSN

This section shows how the proposed architecture can be applied to a smart city scenario

using a use case based on a public car park. To build this use case, we used Castalia

3.33 to implement typical WSN configurations and to simulate several parking scenarios.

We also implemented popular attacks against these network configurations. In this way,

we used the resulting simulated data in a prototype of an intrusion detection platform

following the architecture described in this chapter. The SIEM Splunk was the core of

the prototype: its indexing tools were used to store the data, its alarm module was used

as the rule-based detection engine, and two new modules to train and test OC-SVM were

developed, within the SIEM Splunk, as the anomaly-based detection engine.

This use case shows the usage of the proposed architecture following the main steps in the

pipeline described in Section 3.4. In this way, this use case provides a proof of concept of

the architecture, it shows the feasibility of implementing and using it to detect attacks in
3"Castalia", http://castalia.npc.nicta.com.au/

Chapter 3. Architecture 54

Table 3.2: Summary use case scenarios

Scenario parking
sensors

Other sensors MAC Topology

1 9 2 CO2, 3 light,
1 mass, 2 humidity

802.15.4 Star

2 9 2 CO2, 3 light,
1 mass, 2 humidity

TMAC Star

3 30 2 CO2, 3 light,
1 mass, 2 humidity

802.15.4 Star

4 30 2 CO2, 3 light,
1 mass, 2 humidity

TMAC Star

5 100 None 802.15.4 Star
6 100 None TMAC Star
7 100 None 802.15.4 Tree

typical WSNs, such as the car park, and it shows how data from all the communication

layers can be combined for effective detection of different types of attack in WSNs.

3.5.1 Scenarios

In order to build our scenario, first we studied the dynamics of the data sent by the

sensors of different services in Barcelona and also the information fields included in

the packets by the providers. Additionally, the most common WSN configurations and

protocols were taken into account. As a result, we configured seven different parking

WSNs. Table 3.2 shows a summary of the scenarios. As it can be seen, to capture the

variability of layouts and the diversity of technologies in the smart city, the networks

were designed relying on two types of data link protocol (802.15.4 and TMAC) and

two types of topology (star and tree). The number of parking sensors varies in each

configuration between 9 and 100 sensors. In addition, in scenarios 1 - 4, sensors from

a miscellany of applications (environmental monitoring, light, and mass in a container)

shared a single WSN with different sending behaviors. While parking, light and mass

sensors were reactive, CO2 and humidity sensors were programmed to send readings at

regularly scheduled intervals.

These scenarios were implemented in the WSN simulator, Castalia. As a result of the

simulations, a dataset was generated containing data aggregated in 2-hour intervals. The

resulting dataset included application data (e.g. amount of times that each parking slot

Chapter 3. Architecture 55

was used within each time interval) and also variables from the other communication

protocol layers (e.g. number of packets not received due to interference).

3.5.2 Attack model

We used Castalia to simulate various scenarios under normal circumstances. We then

also used this WSN simulator to implement and simulate several attacks against the

networks. In this way, test datasets were generated to evaluate the performance of the

proposed detection algorithms.

In this simulation, we assumed that attackers intend to gain advantage over other users

of the public parking spaces. To this end, attackers try to disrupt communication be-

tween several nodes during high occupancy hours. Thus, parking applications cannot

receive updates when parking slots become free and, therefore, attackers have a higher

probability of finding available slots in certain areas.

In order to disrupt communication, we conducted three different attacks aiming at the

three first layers of the communication stack (i.e. physical, data link and network).

In WSNs, these layers are the most vulnerable ones, specially in smart cities, where

the sensor nodes lay unprotected on public places and, therefore, the nodes and the

communication medium are easily accessible. The conducted attacks are:

• Jamming. This attack at the physical layer consisted of sending a high-power

signal to the gateway in order to corrupt legitimate packets.

• Unfairness. At the data link layer, the attackers exploited the channel access

protocols to prevent transmissions from legitimate nodes. In 802.15.4 configura-

tions, legitimate nodes use clear channel assessment (CCA) to check whether the

channel is free before transmitting. The attackers continuously occupied the com-

munication channel impeding other transmissions. In TMAC configurations, the

attackers corrupted reference control packets used by legitimate nodes to initiate

transmission.

• Selective forwarding and blackhole. In these attacks at the network layer, the

attackers captured a node that stopped retransmitting certain packets from some

nodes (selective forwarding), or from all of them (blackhole).

Chapter 3. Architecture 56

3.5.3 Intrusion detection process

The following sections briefly describe how the steps in the pipeline presented in Sec-

tion 3.4 were taken to process the data.

3.5.3.1 Preprocessing, filtering, clustering and aggregation

In this use case, the preprocessing, the filtering, the clustering, and the aggregation

subprocesses were done in an ad hoc and simplified manner. Firstly, it must be taken

into account that the results of a Castalia simulation are variables related to the com-

munication status aggregated during a time interval of 2 hours in this case. Therefore,

preprocessing and aggregation are carried out by the simulator automatically. Secondly,

the simulation was designed including only the relevant nodes from a small area sharing

the 2.4 GHz bandwidth. Therefore, the scenario was already designed creating a single

cluster by area and bandwidth. Filtering was also simple in this case, since for each

computed model, filters consisted of sub-selecting the required variables.

3.5.3.2 Model computation

An anomaly-based detection engine was implemented using OC-SVM from the scikit-

learn 0.15.2[84] library. In order to train models, we implemented a new custom command

in Splunk: svmtrain. A subset of samples from the attack-free dataset was used to train

the models. Figure 3.3a shows the usage of this command to train a model using training

data from Scenario 7. For each of the scenarios we trained an OC-SVM model with a

radial basis function (RBF) kernel, which we stored within the Splunk server.

When available, the selected variables from the training dataset included: the time of

day; the number of state changes (free/occupied) per sensor; the percentage of lost

application packets per sensor; the number of ACK, CTS and RTS packets sent by

the gateway; and the number of packets received with and without interference. These

system status variables were received and recorded in the base station using current

protocols implemented in Castalia. Therefore, these variables can easily be accessed and

sent to the smart city servers without having to redesign and deploy new protocols in

the sensor nodes.

Chapter 3. Architecture 57

index=20150325-100nodes802154-multihop sim_type=train
| fields - _* | fields + "hour", *_appsend, *_applossrate
| svmtrain file_name=scenario7 nu=0.01 gamma=0.01

(a) Example of svmtrain command to compute an OC-SVM model. The training dataset corre-
sponds to Scenario 7 in Table 3.2 including variables: hour of the day, number of sent application

packets and loss rate for each node.
index=20150325-100nodes802154-multihop sim_type=test
| fields - _* | fields + "hour", *_appsend, *_applossrate
| svmtest file_name=scenario7

(b) Example of svmtest command to predict if each sample in a test dataset is anomalous. The
test dataset contains samples from Scenario 7 in Table 3.2 including variables: hour of the day,

number of sent application packets and loss rate for each node.

Figure 3.3: Training and test custom command examples

3.5.3.3 Intrusion detection

This section explains how we used the two detection engines to disclose intrusions.

Rule-based detection engine

In this use case, we implemented rules in Splunk’s alarm mechanism to look for traces of

missing received data from the sensors that regularly send their readings. For instance,

Figure 3.4a shows a rule that checks whether the environmental sensor reading data

programmed at 19:00 was properly received. If this reading was not received, then a

medium-severity alarm was triggered.

Anomaly-based detection engine

As previously mentioned, a major problem of a rule-based detection engine is the infea-

sibility of detecting unknown attacks. Therefore, we used the models trained with the

custom command svmtrain to detect attacks that, unlike the examples from the previous

section, do not leave clear or easily identifiable traces in the data.

In order to make predictions with the trained models, we implemented another custom

command: svmtest. The datasets used to test the models included an equal proportion

of instances from the attack-free data that were not used to train the models and in-

stances from the simulation with attacks. Figure 3.3b shows the usage of svmtest. With

this command, we first load the model previously computed with svmtrain, then, for

each sample in the test dataset from Scenario 7, we predict if the sample is normal or

anomalous.

Chapter 3. Architecture 58

index="parking_simulation" host=20150113-9sensors802154-2h
| eval count_co2_sent = ’10_appsend’ + ’11_appsend’ + ’12_appsend’ | search count_co2_sent<3

(a) CO2 not received: Medium-severity alarm scheduled at 20:00 to verify that the regular
CO2 readings from 19:00 have been received.
index="parking_simulation" host=20150113-9sensors802154-2h | fields - _*
| fields + "hour", "0_radiopckfailedNoInt",
"0_radiopckfailedInt", "0_radiopckfailedBelowSens", "0_radiopckfailedNonRX",
"0_radiopckreceivedWithInt", "0_radiopckreceivedWithoutInt", *_appsend
| svmtest file_name=20150113-9sensors802154-2h | search test=-1

(b) SVM outlier: Medium-severity alarm to identify outliers in real time using a trained
OC-SVM within a two-hour window.
index=_audit action=alert_fired | eval ttl=expiration-now() | search ttl>0
| eval is_not_co2=if(ss_name=="Scenario 1 - CO2 Not Received",1,0)
| eval is_svm=if(ss_name=="Scenario 1 - SVM outlier",1,0)
| stats sum(is_not_co2) as sum_alert1 sum(is_svm) as sum_alert2
| eval num_alerts=sum_alert1+sum_alert2 | search num_alerts>1

(c) Multiple alerts within an hour: High-severity alarm to detect that several pieces of
evidence are affecting the network within a one-hour window.

Figure 3.4: Examples of rules defining alarms

In this use case, for each of the 7 scenarios, we trained an OC-SVM model and we also im-

plemented a medium-severity alarm triggered when the anomaly-based detection engine

discovers an anomaly using the trained model. Figure 3.4b shows the rule implementing

the alarm for Scenario 1.

3.5.3.4 Alarm management

As seen in the previous section, the rule-based and the anomaly-based detection engines

trigger alerts when certain conditions are met. In order to warn administrators only in

reliable situations, we created correlation rules to join the alerts from the two engines.

In Figure 3.4c, we defined a correlation rule that triggers a high severity alarm when

multiple alarms are triggered within a 1 hour window. Figure 3.5 shows Splunk’s alarm

panel after triggering several alarms using the test dataset from Scenario 1. As the figure

shows, first the anomaly-based detection engine detected an anomalous circumstance in

real time and triggered an alarm. Next, a rule looking for missing data triggered an alarm

when the CO2 readings were not received in their scheduled time. Finally, a correlation

rule that regularly checks if there are several alarms in the last hour triggered a highly

severe alarm.

Chapter 3. Architecture 59

Figure 3.5: Alarms in the alarm panel in Splunk

3.5.4 Results and discussion

This section discusses the benefits of the proposed architecture, which combines rule-

based and anomaly-based detection. Firstly, detection results of the anomaly detection

process with OC-SVM will be analyzed. Then, the positive effects of bringing together

the alarms from the two detection engines with correlation rules will be evaluated.

To evaluate the detection results of the anomaly-based detection engine, we calculated

the three standard metrics shown in Table 3.1 on the test dataset containing instances

with and without attacks. As Table 3.3 shows, this evaluation yielded high detection

rates in all the scenarios.

It is worth noticing that all available variables were included in the detection models.

This is important because the impact on the variables is different depending on the

type of attack. For example, the jamming attack has a clear impact on physical layer

variables and the blackhole attack has no impact on them. Implementing feature selection

methods that systematically reduce the number of variables included in the models can

have a negative impact on the detection of certain attacks that are unknown at the time

of designing the feature selection methods. Therefore, this shows that OC-SVM can

be used, including variables from all communication layers and that detection results for

different types of attack, network configuration and communication protocol are generally

good.

However, the false alarm rate in the scenarios with more nodes is slightly high. As it

can be seen in the tree topology, the lack of information about widely separated nodes

at the base station reduces the detection rate when a small percentage of the nodes are

affected by the attacker (i.e. selective forwarding), and it increases the false alarm rate.

In order to reduce the number of false alarms, correlation rules can be implemented

to look for multiple alarms affecting the same area or the same components. Since

Chapter 3. Architecture 60

Table 3.3: Detection results of the anomaly-based analysis in the use case

Scenario Attack Detection rate (%) False alarm rate(%) F-score (%)

1 Jamming 98 2 97.51
1 Unfairness 97.5 2 97.26
2 Jamming 98.5 3.33 96.81
2 Unfairness 99 3.33 97.06
3 Jamming 99 3.67 96.82
3 Unfairness 99 3.67 96.82
4 Jamming 100 3.67 97.32
4 Unfairness 99.5 3.67 97.07
5 Jamming 100 4.91 93.14
5 Unfairness 95.56 4.91 90.89
6 Jamming 100 13.43 83.24
6 Unfairness 90.84 13.43 78.61
7 Blackhole 100 14.54 82.29
7 Sel.forward. 82.78 14.54 73.31

WSNs share the radio spectrum and sometimes they even share network devices, signs

of abnormal behavior in various networks in the same area can be caused by a single

attack. In this use case, we correlated the alarms from a rule that was regularly checking

for missing data from the CO2 WSN with the alarms triggered by the anomaly-based

detection engine analyzing the other nodes. An alarm from this correlation rule can be set

as highly severe. Although CO2 sensor nodes sometimes transiently fail to communicate

with the base station, this can be considered normal in WSN and it is not enough

reason to warn administrators; similarly, the anomaly-based detection engine triggers a

certain amount of false alarms. However, the chance of these two circumstances occurring

together, in a short time interval, becomes unlikely.

3.6 Conclusions

In this chapter, we have proposed an architecture, which provides tools to ease the

complex problem of disclosing intrusions in a large and heterogeneous environment such

as the smart city.

We have seen that traditional security needs to be enhanced in order to detect anoma-

lies in smart city WSNs operated by third parties. The reduced access to the service

Chapter 3. Architecture 61

provider network devices limits the visibility of the WSNs to smart city administrators,

and prevents a conventional security analysis. To overcome this, we have proposed a

non-intrusive architecture that combines a rule-based and an anomaly-based detection

engine. This architecture deploys a new security layer in the central servers above the

miscellaneous equipment of the providers. Thus, problems due to the heterogeneity,

limited access, or updating difficulties of certain devices are avoided. The proposed ar-

chitecture is compatible with the already deployed infrastructure, as it does not add

any requirements to the existing infrastructure. Additionally, we described a pipeline

with the necessary subprocesses to process WSN data and disclose intrusions using the

proposed architecture with conventional anomaly detection techniques.

Furthermore, we have implemented a prototype of the architecture on top of Splunk

and we have presented a use case structured around a public car park that shows the

benefits of combining the two types of detection engine. On the one hand, the anomaly-

based detection engine (implemented with OC-SVM) is capable of detecting unknown

attacks and its unsupervised learning nature provides it with flexibility in a changing

environment like the smart city. In the use case presented in this chapter, OC-SVM

included variables from several communication layers and showed good detection results

for various attacks aimed at different vulnerabilities affecting the most important layers.

Nevertheless, in some situations, anomaly-based detection triggers excessive false alarms.

On the other hand, the rule-based detection engine does not have as much flexibility

as the anomaly-based detection engine, but it triggers highly reliable alarms. In the

use case, we implemented several rules verifying the correct arrival of WSN data with a

regular behavior. Additionally, we created correlation rules joining the alarms generated

by both detection engines. This increased the reliability of the anomaly-based alarms

and allowed system administrators to be warned in the case of more important situations.

We have seen that intrusion detection in the smart city is a very complex problem. A

black-box solution with a multipurpose detection algorithm that covers most of the at-

tacks for most of the configurations is not feasible. To tackle intrusion detection in this

context, it is first necessary to select the most adequate algorithms. In this chapter,

we have indicated some suitable algorithms for implementing anomaly analysis in the

context of the smart city. With these indications, this thesis contributes to simplifying

the system administrator’s task at the time of setting up the anomaly-based detection

Chapter 3. Architecture 62

engine. Chapter 4 extends the study of some of these algorithms by comparing several

multivariate anomaly detection techniques. Secondly, it is necessary to select the vari-

ables that will be used with each algorithm and that will trigger the first alarms pointing

to possible security problems. Thirdly, it is necessary to create correlation rules in order

to group alarms to identify those that are meaningful and therefore require the attention

of system administrators. Chapter 6 provides more details about correlation rules.

Chapter 4

A comparative study of anomaly

detection techniques

One of the most important components of the architecture proposed in the previous

chapters is the anomaly-based detection engine. Section 3.3 has shown that this engine

can be implemented using several types of algorithms, being multivariate anomaly de-

tection an essential technique to disclose intrusions by taking into account the behavior

of several variables at the same time. Although there are many studies analyzing the

behavior of multivariate techniques in other contexts, as far as we know, there is no

study analyzing these techniques with WSN data in a smart city scenario from the point

of view of smart city administrators.

Hence, the study presented in this chapter has the main goal of comparing four semi-

supervised multivariate anomaly detection techniques under the point of view of smart

city administrators. This study evaluates the techniques taking into account scenarios

with different available network status variables. It is also a main objective of this study

to find the minimum amount of network status variables that providers have to send

to the smart city data centers in order to be capable to perform a proper centralized

anomaly detection analysis.

The rest of this chapter is structured as follows: Section 4.1 introduces the techniques

used in this comparative study. Section 4.2 explains the simulation and the experimental

procedure. Section 4.3 contains the results of the study. Finally, Section 4.4 concludes

the chapter.

63

Chapter 4. A comparative study of anomaly detection techniques 64

4.1 Description of anomaly detection techniques

This section describes the anomaly detection techniques that will be used in this com-

parative study. The compared techniques are the most frequently used methods in the

literature for this purpose, and they are based on Mahalanobis distance, local outlier

factor, hierarchical clustering and OC-SVM.

In the smart city context, it is not possible to assume that data from all the possible

attack categories are available to create comprehensive training datasets (e.g. some

attacks are unknown until new vulnerabilities are disclosed). Accordingly, supervised

techniques are not suitable in this context. Regarding semi-supervised and unsupervised

techniques, it is also necessary not to base the attack detection on the previous knowledge

of the problem. For instance, some statistical techniques assume specific distributions

of the data. However, this is unknown in many smart city services and sometimes data

behavior is variable depending on the time of day, the season of the year, the weather

conditions, etc.

Apart from the aforementioned techniques, we have considered other more recent meth-

ods from the area of machine learning. For example, algorithms based on random

forests [85] have been used successfully in many scenarios of different domains, but their

current popularity has not reached the levels of support vector machines. Another family

of algorithms that is certainly worth considering is deep learning. In this regard, recent

advances show that this is a very promising field. As an example, algorithms based

on deep belief networks [86] convolutional neural networks [87] or recursive neural net-

works [88] have been used successfully in several scenarios to improve the performance

obtained with previous techniques. In the area of anomaly detection, additionally, the

authors of [89] have used deep learning in combination with other techniques to identify

outliers, and they have obtained promising detection results.

However, the use of deep learning for anomaly detection is a research field still in its

infancy. Deep learning techniques, in general, require costly training processes, which

is something easily attainable in fields such as computer vision, speech recognition, etc.

However, in the case of smart city WSNs, obtaining large training datasets is much

more complex due to their dynamic nature. This dynamic behavior involves frequently

retraining the models generated by the machine learning algorithms, thus making it

Chapter 4. A comparative study of anomaly detection techniques 65

difficult to work with huge training datasets and apply the deep learning techniques

successfully. Therefore, for these reasons, the study of deep learning techniques in this

scenario is beyond the scope of this thesis.

4.1.1 Mahalanobis distance

Mahalanobis distance measures the number of standard deviations that an observation

is from the mean of a distribution. This measure can be used to detect outliers in

multivariate data, because outlier observations do not have normal values in one or more

dimensions. [90] surveys outlier detection methodologies and compares Mahalanobis

distances with other proximity-based outlier detection techniques.

4.1.2 Local outlier factor

Local outlier factor (LOF) is a degree measuring the isolation of a point in a vector

space with respect to its neighbors [57]. In order to compute this degree of isolation,

LOF is based on the concepts of reachability distance and local reachability density (lrd).

The reachability distance (Equation 4.1) between two points p and o is the maximum

value between the distance between p and o and the farthest distance between o and

its k nearest neighbors (k-distance). The lrd for point p is the inverse of the average

reachability distance between p and itsMinPts neighbors, whereMinPts is a parameter

of the algorithm. Equation 4.2 shows the lrd formula, where NMinPts(p) is the k −

distance neighborhood of p with k = MinPts, which is a set including the points that

have a distance to p equal or lower than k − distance. Finally, the LOF (Equation 4.3)

computes the average ratio of the lrd of p with the lrd of its k neighbors. LOF values

smaller than 1 indicate high densities, LOF values greater than 1 indicate low densities

and LOF values close to 1 indicate average density spaces. Outliers are considered to be

in low density regions.

reach_distk(p, o) = max{k_distance(o), distance(p, o)} (4.1)

Chapter 4. A comparative study of anomaly detection techniques 66

lrdMinPts(p) =
1∑

oεNMinPts(p)

reach_distk(p, o)/|NMinPts(p)|
(4.2)

LOFMinPts(p) =

∑
oεNMinPts(p)

lrdMinPts(o)/lrdMinPts(p)

|NMinPts(p)|
(4.3)

In [57], the authors of LOF suggest a lower and an upper bound for the k value. The

lower bound for k can be considered as the minimum amount of nearby points that can

mark out a more isolated nearby point as an outlier. It is considered good practice to

select a k higher than 10 to remove unwanted statistical fluctuations. Conversely, the

upper bound for k indicates the maximum number of nearby points that can potentially

be considered outliers. A group of k− 1 or less nearby points require other points in the

vector space to have k points to compute the LOF. This implies that the LOF values

for the points in the group increases and becomes similar to the LOF of the isolated

points. Therefore, either some isolated points are considered normal or the points in the

group are considered outliers. In their experiments, the authors of LOF indicate that

the algorithm performs well selecting values of k between 10 and 20.

4.1.3 Hierarchical clustering

Hierarchical clustering is a type of analysis that aims to partition a dataset in groups of

data (i.e. clusters) according to a similarity measure and creating a tree-based structure

that eases the anomaly analysis. This clustering analysis is performed using two types

of approaches: top-down or bottom-up [91]. In this thesis we focus on agglomerative

hierarchical clustering, which is a bottom-up approach, where initially each sample of

the dataset falls in a different cluster and, in each step of the algorithm, two clusters are

selected according to a similarity measure and combined in a new cluster. This process

ends when there is only one cluster that includes all the samples. A common similarity

measure can be computed using the Euclidean distance in Ward’s method [92]. With

this method, two clusters with the minimum average distance from any sample in one

cluster to any sample in the other cluster are merged in each step.

Chapter 4. A comparative study of anomaly detection techniques 67

(a) ν = 0.01 , γ = 0.2 (b) ν = 0.01, γ = 0.8 (c) ν = 0.01, γ = 2

Figure 4.1: RBF kernel OC-SVM trained with different parameters. In a, the influ-
ence area of the support vectors is wide, so many outliers are incorrectly classified as
normal. In b, the frontier is very near the support vectors, so there is a reduced number
of misclassified outliers and all the normal test samples are properly classified. In c,
the model is overfitting the training data, so many normal test samples are classified

as outliers.

Agglomerative hierarchical clustering can be used to compute outlier ranking factors for

the samples in the dataset. Outliers are theoretically more dissimilar to other observa-

tions and they should be more resistant to be merged in a new cluster. Thereby, various

methods have been proposed to obtain the outlier factors with this type of clustering,

such as linear, sigmoid or sizeDiff [93].

4.1.4 Support vector machines

Classification techniques based on support vector machines (SVM) have proven to be

effective in several contexts related to intrusion detection [94, 95]. Basically, classification

techniques based on machine learning require two steps. First, a dataset is used to train

a learning model. Then, the trained model is used to classify new data samples. Several

features define each sample of the datasets. The SVM classification process represents

the training dataset in a n-dimensional vector space, n being the number of features of

the training data. Then, it defines a hyperplane (i.e. a n − 1 dimensional plane) that

separates (with a maximum margin) the samples from the different classes. The support

vectors are the subset of training samples that are near the hyperplane and that define

it. Finally, the hyperplane acts as a frontier to classify other samples.

In this thesis, we use OC-SVM, which are a special case of semi-supervised SVM that

do not require attack labeled data. OC-SVM build a frontier to classify new samples

as normal or outlier. In SVM, different types of kernel functions are available to build

the most adequate hyperplane for each application. In this work, we use a RBF kernel,

which can learn complex regions [52]. In order to build the frontier, RBF kernel OC-SVM

Chapter 4. A comparative study of anomaly detection techniques 68

use basically two parameters[84]. On the one hand, ν defines the maximum fraction of

outliers present in the training data. On the other hand, γ establishes the influence area

of the support vectors on the classification. Figure 4.1 exemplifies the impact on the

learned frontier that γ has for a fixed value of ν. As shown in Figure 4.1b, increasing

the value of γ implies adjusting the frontier closer to the training samples. This reduces

the number of misclassified outliers as normal samples. However, Figure 4.1c shows that

increasing γ too much causes the training data to be overfitted. A usual approach to

select optimum parameters is grid search [96]. This method uses a grid with parameter

values that is exhaustively explored in order to select the values that give the best

performance of the SVM over a set of samples.

4.2 Simulation and anomaly detection analysis

This section contains the core steps of this comparative study. First, the challenges of

gathering the necessary data to perform security studies in smart cities are reviewed.

Section 4.2.1 discusses the main challenges and, Section 4.2.2 explains how we overcome

them in this study, besides providing a brief description of the entire procedure taken to

evaluate the different anomaly detection techniques. The other sections contain infor-

mation about the different steps in the analysis: the data collection (Section 4.2.3), the

simulation (Section 4.2.4), the feature selection (Section 4.2.5) and the anomaly analysis

(Section 4.2.6).

4.2.1 Smart city security simulation challenges

As previously seen, smart cities can be considered to be very heterogeneous scenarios,

where many technologies, applications and different suppliers coexist. Thus, the imple-

mentation of software simulators that realistically reflect the complexity of smart city

WSNs is very complicated. In recent years, simulators have been used to test new pro-

tocols and to assess the security techniques that protect simple WSNs in very specific

contexts [97, 98]. OMNET++ [99], Castalia [100], Cooja [101] and NS-2 [102] are among

the most popular WSN simulators.

From a technological perspective, replicatingWSN configurations from different providers

to simulate several smart city scenarios is a very arduous task. This is motivated by the

Chapter 4. A comparative study of anomaly detection techniques 69

extensive variety of existing hardware on the market and the wide availability of commu-

nication protocols for WSNs. Furthermore, although some of the previously mentioned

simulators implement realistic signal propagation algorithms, none does so with a model

that can take into account complex urban components, such as walls, traffic, etc. More-

over, simulators also lack realistic event generation engines to reproduce the dynamics

of the citizens and the other elements interacting with the urban WSN. For example,

Castalia offers multiple distribution functions to simulate the events sensed by the sen-

sors. Nonetheless, selecting the appropriate distribution and modeling the appropriate

behavior for the different applications is complex and can lead to unrealistic conclusions.

Recently, the authors of CupCarbon [103] proposed a simulator for an easy integration

of WSNs and elements of the IoT in smart cities. However, this simulator, which is in-

tended as a supplement to other simulators, is still immature and it does not implement

all the layers of the communication stack.

Performing simulations to test security components poses additional difficulties. On the

one hand, reproducing computer attacks requires a high technological expertise and a

high level of investment in manpower. On the other hand, many attacks exploit unknown

vulnerabilities and, therefore, they are not a priory replicable in controlled simulated

environments.

Moreover, the testing of security issues in controlled contexts using real hardware is

complicated in a smart city. For example, many WSN applications in the cities cannot

be easily deployed at a similar scale in a realistic testbed because they would require an

infrastructure as big and dynamic as a city. In addition, attack tests in operational WSN

are generally incompatible with some application requirements (e.g. 24/7 availability)

and can be detrimental to third parties (e.g. jamming attacks to ZigBee can also provoke

interferences to Wi-Fi users).

Therefore, it is necessary to combine the large amount of data that is already gathered

by smart city providers on the streets with the use of existing simulators to evaluate

the consequences of computer attacks and to determine the most appropriate intrusion

detection techniques and the appropriate security procedures to resolve these issues.

Chapter 4. A comparative study of anomaly detection techniques 70

4.2.2 Experimental procedure

In order to overcome the barriers discussed in the previous section, we use real data from

deployed services in Barcelona to feed a WSN simulator that will generate data following

realistic patterns. Running experiments in the simulator provides the flexibility necessary

to test different communication protocols and network configurations, and it is also a

safe way to execute computer attacks. This section presents how we use this mechanism

to collect a smart city WSN dataset with and without attacks, and how we compare four

anomaly detection techniques to detect intrusions based on Mahalanobis distance, local

outlier factor, hierarchical clustering and OC-SVM. We also compare the performance of

these techniques under different amounts of available network status information, taking

into account three different levels of permitted false positive rates.

The pipeline in Figure 4.2 shows a general picture of the complete process of the analysis.

This process consists of the following steps:

1. Data collection: raw sound data are gathered over a period of 14 days from the

streets of Barcelona (Section 4.2.3).

2. Simulation (Section 4.2.4):

(a) Raw data are used in a simulator to generate WSN data with comprehensive

information about all the communication layers. The simulation is executed

multiple times (one time without including any attack and one time for each

of the attacks), resulting in a dataset containing samples with and without

attacks.

(b) The simulation data are aggregated in time intervals.

3. Feature selection: the features of the dataset are filtered according to those available

at the simulated WSN (Section 4.2.5). As previously stated, the main goal of this

comparative study includes minimizing the amount of network status information

required to detect anomalies. Thus, the features are selected taking into account

the simulated availability of network status information.

4. Anomaly analysis (Section 4.2.6). One of the available detection techniques is

selected and we proceed with the following sub-steps:

Chapter 4. A comparative study of anomaly detection techniques 71

Figure 4.2: Pipeline of the simulation and the experimental process.

(a) Training phase: a model is trained or the parameters required by the detection

technique are setup.

(b) Validation/Test phase: the performance of the technique to distinguish be-

tween the samples that were generated with and without attacks is tested. At

this stage, the metrics to compare the different techniques are computed.

We repeat steps three and four with three different feature sets for each of the four

detection techniques compared in this study. The results taking into account the different

situations are discussed in Section 4.3.

4.2.3 Data collection

The first step in this study is the collection of real urban data. The scenario for this

simulation is based on data gathered during 14 days from sound meters deployed in the

city of Barcelona. The sound meters, which are installed on the streets by a service

provider, send their readings to the smart city central servers. The layout of the sensor

nodes is represented in Figure 4.3. The outcome of this first step is a dataset with raw

sound data.

As Figure 4.3 shows, the WSN contains a reduced number of sensors belonging to a

single provider, even though networks gathering data from a city service can be much

more complex, involving many more nodes and several providers. In case of anomalies,

Chapter 4. A comparative study of anomaly detection techniques 72

Figure 4.3: Schema and topology of the simulated WSN. The layout of the sensor
nodes (i.e. nodes 1-10) reproduces the layout of real sound meters deployed in Barcelona
over a 140m x 140m terrain. The topology and the base station (i.e. node 0) location

are setup ad-hoc for the simulation.

however, the network should be divided into smaller sections, because this allows admin-

istrators to reduce the search for the specific compromised equipment to a smaller area

with fewer nodes and less providers.

4.2.4 Simulation

The raw data from the sound readings obtained in the previous step are used in the

second step to build a realistic simulated scenario of a smart city service with Castalia

3.3 simulator [100]. Castalia is an appropriate simulator for these experiments because it

has a highly accurate radio physical model [104], it is specialized in WSNs and, therefore,

it includes the most popular MAC and routing protocols for this type of networks, it

is widely used and it offers a moderate complexity. This simulator can aggregate infor-

mation from all the layers involved in the communication between the sensors and the

base station using different configurations in a WSN. In the studied real WSN imple-

mentations, most of this network status information is currently not disclosed by service

providers and, therefore, it is unavailable at the smart city data centers. Thus, this study

analyzes the effects of including this information to detect attacks.

In order to use the real sound readings in the simulations, we implemented an application

module [105] in Castalia that replays the exact sending behavior of the real sound devices.

Chapter 4. A comparative study of anomaly detection techniques 73

In this way, the simulated sensors acquire the same sending patterns as the real sensors

deployed on the streets.

The simulation also takes into account that WSNs are unreliable networks in which

packets can be lost even in non-attack circumstances. To mimic this behavior, Castalia’s

physical and communication layers lose some packets. This circumstance is paramount in

order to evaluate the detection techniques in a realistic scenario, where communications

are not always perfect. Moreover, we also include two nodes from which no messages are

received because of failed communication and inactivity. The simulated WSN uses the

CC2420 [106] communication module, configured in TMAC [107] and follows a multihop

tree topology, as it can be seen in Figure 4.3.

In step 2, the simulation runs to generate data with and without attacks. The imple-

mented attacks exemplify two easy ways to attack WSNs, which can also be disruptive

for third-party WSNs in smart cities. Moreover, the attacks cover different levels of af-

fectation in terms of the number of compromised nodes in the network and in terms of

disrupted packets. The following are the implemented attacks:

• Constant jamming. Attack at the physical and link layers, where the attackers

send a high power signal to a legitimate node in order to avoid the correct reception

of legitimate packets from other nodes. Besides disrupting application packets, this

attack also has an effect on MAC protocols, because the attacker also jams control

packets and occupies the channel for a long time, which disrupts the coordination

among nodes and impedes other nodes from starting their transmission. We im-

plemented this attack in three situations: near node 4 (affecting 4 nodes in the

lower area of the network), near node 9 (affecting 3 nodes in the higher area of the

network) and near the base station (affecting all the nodes in the network).

• Selective forwarding. Attack at the network layer, where the attackers have

captured the base station and they drop a percentage of random packets before

re-transmitting them to the smart city control center. We implemented this attack

in four levels: a selective forwarding dropping 30%, 50%, 70% and 90% of the

packets.

Besides simulating the WSN events in step 2, Castalia aggregates the outcome in time

intervals. This outcome is mainly a set of variables containing network status information

Chapter 4. A comparative study of anomaly detection techniques 74

about the communication protocol for each node. For instance, the number of radio

packets received with interferences during a certain period of time.

The size of the time window is a paramount parameter in the detection process of attacks

concerning data availability. On the one hand, short attacks can get obscured among

a plethora of data in large time windows. On the other hand, datasets in small time

windows sometimes do not contain enough variability to be able to distinguish between

normal and attack situations.

Having a too large or too small time window also depends on the type of monitored ser-

vice. For instance, during the 14 days of the sound data gathering process, we measured

in Barcelona an average of 30.85 messages per hour, per sensor from a parking service

and 1,000.57 messages per hour, per sensor from an electrical meter service. This implies

that an attack against the electrical meters lasting a few minutes drops several messages

and becomes easily visible, whereas the same attack against the parking sensors does not

always leave traces in the data since a lack of messages from the parking sensors can be

normal for several minutes. In the simulation for this study, we divide the 14-day sound

data in 30-minute time windows. As a result, the dataset contains 5,344 samples of eight

classes (i.e. one class for the 668 samples with no attack and one class for each of the

seven attacks). Each sample contains information like the number of received application

packets and the battery used during the interval.

4.2.5 Feature selection

As previously stated, the main goal of this study is to evaluate the performance of

several semi-supervised and unsupervised techniques in different situations considering

different degrees of network status information availability. To achieve this goal, this

status information is converted into features in a vector space, which is then explored by

the anomaly detection algorithms to identify the attacks. The feature vectors extracted

from the WSN data determine the set of variables included in the learning models of

these algorithms. These variables are the basic knowledge with which to decide if each

sample in the dataset contains anomalies.

In other machine learning applications, a large number of features are gathered and a

feature extraction transformation is executed prior to classification in order to reduce the

Chapter 4. A comparative study of anomaly detection techniques 75

dimensionality of the vector space. However, in our context, the necessary features have

to be chosen from the inception of the process. This is due to the fact that adding extra

features requires computing, sending and forwarding more information from the WSN

nodes, therefore having a negative impact on the network performance and the sensors

battery life. Therefore, this study compares the performance of the detection algorithms,

taking into account three different situations related with the available features:

• Feature Vector 1 (FV1). This includes data aggregated from the minimum

information that any WSN always sends (i.e. the sensor readings and the times-

tamp). The aggregated features are: the number of application packets received at

the central server and the hour of the day.

• Feature Vector 2 (FV2). This includes FV1 fields plus the data extracted and

aggregated from supplementary fields included in the packets (i.e. the sequence

number of the application packet and the battery level). The aggregated features

are: the ones in FV1 and also the number of lost application packets and the

consumed energy.

• Feature Vector 3 (FV3). This includes FV2 fields plus data aggregated from the

principal components of the WSN communication protocol in the physical, link,

network and application layers. The additional features included in this feature

vector per node are: the number of proper radio transmissions with and without

interferences; the number of failed radio transmissions due to interference, the low

sensitivity and incorrect reception state; the number of received MAC ACK and

CTS.

The necessary information to build FV1 and FV2 is already available in some real WSN

implementations in Barcelona, whereas the extra information required to aggregate the

data to build FV3 is currently not available in any implementation. In fact, with FV3, we

are evaluating the case where administrators use all the available features to train and test

the models. Even though not all the features are necessarily relevant to disclose attacks,

we are testing the resistance of the algorithms to increasing the vector dimensionality

with non-relevant features.

The outcome of the feature selection step is the dataset from the previous step filtered

according to one of the feature vector descriptions.

Chapter 4. A comparative study of anomaly detection techniques 76

4.2.6 Anomaly analysis

The anomaly analysis [105] step compares four different techniques using the program-

ming language R [108]. The first technique is implemented with the stats [108] package

and it is based on Mahalanobis distance (See Section 4.1.1 for more information). The

second technique computes the LOF score with DMwR [93] (See Section 4.1.2 for more

information). For the third technique, we compute an outlier score using agglomer-

ative hierarchical clustering analysis according to Ward’s clustering method [92] (See

Section 4.1.3 for more information). This score is obtained with the sizeDiff method

through the function outliers.ranking in stats. Finally, we use the e1071 [109] package

for the fourth technique: a one-class classification with OC-SVM (See Section 4.1.4 for

more information).

The anomaly analysis comprises three basic sub-steps for each of the compared tech-

niques: the training, the validation and the test phases. In order to perform these

sub-steps, first of all, our study takes the filtered dataset obtained in the feature selec-

tion step and divides it as shown in Figure 4.4. As this figure shows, the attack samples

are not included in training dataset (a), because the detection techniques used in this

comparative study are semi-supervised or unsupervised. Regarding the validation and

test datasets, each of them is divided into 8 additional datasets ((b) to (i) in the figure),

resulting in a total of 17 datasets (16 + 1 training dataset). As will be described in the

next section, these datasets are used to run 72 experiments to evaluate the four anomaly

detection techniques described in Section 4.1.

Once these dataset partitions are obtained, basically, we will use the training dataset

to tune the parameters required by the algorithms. We will use the validation dataset

internally during the development of the experiments to estimate the performance of the

algorithms. Finally, we will use the test dataset just once to obtain the final results of this

study. The following sections include more details about these datasets and the actions

taken in the training (Section 4.2.6.1), validation and test phases (Section 4.2.6.2).

4.2.6.1 Training phase

The main responsibility of the training phase is to find the best parameters for the

algorithms and to fit the models. We use the training dataset, which contains only

Chapter 4. A comparative study of anomaly detection techniques 77

Figure 4.4: Size of the dataset partitions. The validation and test (val/test) datasets
are partitioned in the same manner and contain the same number of samples of each

attack type.

samples without attacks, to perform these two tasks.

Before training the models and selecting the parameters, we first normalize and stan-

dardize the features in all the datasets (i.e. subtracting the mean and dividing by the

standard deviation for each feature) and then we identify the features that have a zero

variance in the training dataset. These features are removed from the three datasets (i.e.

training, validation and test). Thereby, the features that do not provide any information

for the detection process are eliminated. We use the remaining features in the training

dataset to train the models and to find the best parameters for the algorithms consid-

ering three different levels of false positive rate: permissive (false positive rate < 15%),

restrictive (false positive rate < 10%) and very restrictive (false positive rate < 5%).

From now on, we will refer to these levels as the permitted false positive rate (PFPR).

We consider that a rate of more than 15% overwhelms administrators with an excessive

number of false alarms.

In order to select the optimum parameters for the OC-SVM, we use grid search [96]. In

this method, a grid with parameter values is exhaustively explored in order to select the

values that give the best performance using the training dataset. OC-SVM requires the

set up of two parameters: ν and γ. We fix the value of ν to the PFPR, since the training

dataset does not contain any samples with attacks and the ν value is a higher limit

on the fraction of outliers in the training dataset [110]. We use grid search to find the

best value for γ using svm.tune [109], configured in a 10-fold cross-validation repeated

Chapter 4. A comparative study of anomaly detection techniques 78

3 times [111]. This function uses the classification error as a performance measure to

decide the best value for γ.

Before the different detection techniques can be compared, an additional step has to be

carried out, since the OC-SVM technique returns a binary value (which simply indicates

if the sample is an outlier or not) and the LOF, Mahalanobis and hierarchical clustering

techniques return an outlier score (in our context, outliers will be considered as attacks).

Thus, the outlier score must be translated into a decision about whether the sample is

considered an outlier or not. In order to do so, for each of these score-based techniques, we

select a threshold score beyond which the sample is considered an outlier. This threshold

score is determined as the threshold where the false positive rate in the training dataset

is equal to the PFPR. The procedure is as follows:

1. The outlier score is computed for each sample in the training dataset using the

corresponding detection algorithm. This results in a list L of scores.

2. Any sample in the training dataset identified as attacked should be considered a

false positive (FP), since this dataset does not contain any attack. Therefore, the

maximum amount of allowed false positives in the training dataset is defined by

the PFPR (i.e. FP ≤ |L| ∗ PFPR).

3. The |L| ∗ PFPR highest score in L is set as the threshold.

Furthermore, LOF also requires the definition of the parameter k. In this study, we have

determined that k = 10 is a good choice following the indications of [57], as described in

Section 4.1.2.

4.2.6.2 Validation and test phase

The validation and test datasets are used to evaluate the performance of the algorithms

in 72 experiments: (1 with all the attacks together + 7 with each attack separately) x 3

feature vector definitions x 3 PFPR levels. As Figure 4.4 shows, these datasets contain

the same number of samples and each is divided into several partitions. Dataset (b)

contains half of the dataset without attacks and the other half with attacks, with equal

proportion of samples from each of the seven attack types. This dataset allows us to

Chapter 4. A comparative study of anomaly detection techniques 79

(a) FV1. (b) FV2. (c) FV3.

Figure 4.5: Results using the test dataset with samples of all the attacks filtering the
features according to the three feature vector definitions with a very restrictive PFPR.
The plots show the metrics f-score (f), the false positive rate (FPR) and the true positive
rate (TPR). The captions below each plot indicate the feature vector definition used in

each case.

validate and test the behavior of the detection algorithms in a general way, taking into

account all the attacks. Moreover, we also create validation and test datasets (c) to (i),

which only include samples of a single attack. These datasets allow us to evaluate the

performance of the algorithms for each of the different attacks separately. We balance

the number of samples with and without attack in each of the datasets using sampling

with replacement [112].

In the validation and test phases, we use the detection algorithms to decide whether

each sample has to be considered as an attack or not. Then, we count the correct

identifications of attacks as true positives, the incorrect identifications of attacks as false

positives, the correct identifications of no attacks as true negatives and the incorrect

identifications of no attacks as false negatives. Afterwards, we compute the metrics

described in Section 3.3.1. The training and validation phases are iteratively conducted

to explore the most suitable configurations of the algorithms. These configurations are

then applied in the test phase to obtain the results shown in the next section. To compare

the different algorithms we use the true positive rate (TPR), the false positive rate (FPR)

and the f-score.

Chapter 4. A comparative study of anomaly detection techniques 80

Table 4.1: Results sorted by TPR using test dataset (b) with samples of all the
attacks.

FV PFPR technique F-score FPR TPR
FV3 very restrictive ocsvm 0.872 0.033 0.798
FV3 restrictive ocsvm 0.857 0.033 0.774
FV2 very restrictive ocsvm 0.853 0.024 0.762
FV2 restrictive ocsvm 0.853 0.024 0.762
FV3 permissive ocsvm 0.843 0.030 0.750
FV1 very restrictive ocsvm 0.6 0.708 0.729
FV1 restrictive ocsvm 0.599 0.696 0.723
FV2 permissive ocsvm 0.809 0.024 0.696
FV1 permissive ocsvm 0.583 0.681 0.690
FV2 permissive hierarchical clustering 0.665 0.211 0.552
FV2 permissive mahalanobis 0.670 0.149 0.542
FV2 restrictive mahalanobis 0.655 0.098 0.511
FV2 permissive lofactor 0.641 0.149 0.507
FV3 permissive hierarchical clustering 0.616 0.220 0.495
FV2 very restrictive mahalanobis 0.645 0.048 0.487
FV3 permissive mahalanobis 0.621 0.149 0.484
FV2 restrictive lofactor 0.631 0.098 0.484
FV3 restrictive mahalanobis 0.598 0.098 0.448
FV2 very restrictive lofactor 0.601 0.048 0.44
FV3 permissive lofactor 0.569 0.149 0.428
FV3 restrictive hierarchical clustering 0.545 0.140 0.401
FV3 restrictive lofactor 0.547 0.098 0.395
FV3 very restrictive mahalanobis 0.535 0.048 0.374
FV2 restrictive hierarchical clustering 0.517 0.098 0.366
FV3 very restrictive lofactor 0.514 0.048 0.354
FV1 permissive hierarchical clustering 0.394 0.158 0.265
FV3 very restrictive hierarchical clustering 0.340 0.054 0.210
FV2 very restrictive hierarchical clustering 0.311 0.071 0.191
FV1 restrictive hierarchical clustering 0.258 0.101 0.156
FV1 permissive lofactor 0.251 0.149 0.154
FV1 restrictive lofactor 0.195 0.098 0.113
FV1 permissive mahalanobis 0.124 0.149 0.071
FV1 very restrictive hierarchical clustering 0.122 0.057 0.067
FV1 very restrictive lofactor 0.117 0.048 0.064
FV1 restrictive mahalanobis 0.112 0.098 0.062
FV1 very restrictive mahalanobis 0.046 0.048 0.024

4.3 Results and discussion

This section shows the most relevant results of the 72 experiments. As previously men-

tioned, these experiments evaluate the detection algorithms using the different feature

vector definitions for the different PFPR on the test dataset partitions shown in Fig-

ure 4.4. Only the most important information is included in this section (Figure 4.5,

Chapter 4. A comparative study of anomaly detection techniques 81

Table 4.2: Results of several cases exceeding the PFPR. Cases where PFPR<FPR
are highlighted

FV attack PFPR technique F-score FPR TPR
FV2 Selective

forwarding
30%

very
restrictive

ocsvm 0.811 0.117 0.762

FV2 Selective
forwarding

30%

very
restrictive

lofactor 0.218 0.048 0.125

FV2 Selective
forwarding

30%

very
restrictive

mahalanobis 0.598 0.048 0.437

FV2 Selective
forwarding

30%

very
restrictive

hierarchical
clustering

0.003 0.071 0.002

FV2 Selective
forwarding

50%

very
restrictive

ocsvm 0.82 0.054 0.732

FV2 Selective
forwarding

50%

very
restrictive

lofactor 0.502 0.048 0.343

FV2 Selective
forwarding

50%

very
restrictive

mahalanobis 0.609 0.048 0.449

FV2 Selective
forwarding

50%

very
restrictive

hierarchical
clustering

0.003 0.071 0.002

FV2 Selective
forwarding

30%

restrictive ocsvm 0.811 0.117 0.762

FV2 Selective
forwarding

30%

restrictive lofactor 0.348 0.098 0.221

FV2 Selective
forwarding

30%

restrictive mahalanobis 0.613 0.098 0.464

FV2 Selective
forwarding

30%

restrictive hierarchical
clustering

0.111 0.098 0.062

Tables 4.1 and 4.2). The remaining results are shown in Appendix A.

Filtering the datasets according to the feature vector definition FV2 and using OC-SVM

is the optimal approach for attack detection in the context described in this chapter.

Table 4.1 (sorted by the true positive rate column) presents the performance of the

algorithms using samples with all the attack types in test dataset (b) and filtering the

features according the three feature vector definitions. The top rows in the table show

Chapter 4. A comparative study of anomaly detection techniques 82

that OC-SVM is the technique performing the best in terms of true positive rate and

false positive rate. For all the PFPR, OC-SVM performs better than any of the other

techniques. The minimum difference in the performance occurs with a permissive PFPR.

In this case the true positive rate using OC-SVM is 37% higher than with LOF, 28%

higher than with Mahalanobis distance and 26% higher than with hierarchical clustering.

With a very restrictive PFPR (Figure 4.5), which is the most challenging configuration

to disclose attacks, the difference in the performance is the highest. In this case the

true positive rate using OC-SVM is 73% higher than with LOF, 56% higher than with

Mahalanobis distance and 300% higher than with hierarchical clustering. In this last

configuration, the true positive rate using OC-SVM is over 75% and the f-score over

85%.

From a theoretical point of view, the results suggest that a large amount of samples

with attack lie too close to samples without attack in the vector space. Therefore,

techniques based on distances (i.e. Mahalanobis, LOF and hierarchical clustering) cannot

distinguish between the two types of samples in many cases (especially in the most

restrictive situations). However, in OC-SVM, the results suggest that the separating

hyperplane resulting from the training process is closely adjusted to the data without

attacks. As a result, samples with attacks lie, in most cases, outside the frontier defined

by this hyperplane, even when these samples are very near to the ones without attacks.

Furthermore, as it can be seen in Appendix A, using the features defined by FV2, OC-

SVM also gives the best results for all the metrics in 18 of the 21 experiments when

using test datasets (c) to (i), which contain only samples of a single type of attack (i.e.

7 attacks × 3 feature vector definitions). However, in three experiments (Table 4.2), the

false positive rate exceeds the PFPR. In the experiment with 30% selective forwarding,

the false positive rate exceeds the very restrictive PFPR by 6.7 percentage points and

the restrictive PFPR by 1.7 percentage points. In the experiment with 50% selective

forwarding, the false positive rate exceeds the very restrictive PFPR by less than 1

percentage point. Although these three experiments show the false positive rate as

slightly over the PFPR, the other 18 experiments show that OC-SVM is generally the

most suitable in this context.

Unlike filtering features with FV2 or FV3, when filtering is performed with FV1, datasets

with and without attacks show only a slight variation. For example, as Table 4.3 shows,

Chapter 4. A comparative study of anomaly detection techniques 83

Table 4.3: Mean of the standard deviation of all the features of the training dataset
(a) and the test dataset (b) with all the attacks for each feature vector definition

FV Dataset Std. Mean

FV1 training dataset (a) 0.48
FV1 test dataset (b) 0.45
FV2 training dataset (a) 0.39
FV2 test dataset (b) 0.60
FV3 training dataset (a) 0.57
FV3 test dataset (b) 0.79

when data in the feature vectors are normalized and we compute the mean of the stan-

dard deviation among all the features, with FV1 the difference between including and

excluding attacks is minimal (i.e. 0.48 for the training dataset and 0.45 for the test

dataset). However, this difference is larger with the other two feature vector definitions

(i.e. 0.39 for the training dataset and 0.60 for the test dataset with FV2). Including

only features from FV1 makes attack samples and normal samples to lie very close in

the vector space. Therefore, the performance of all the compared techniques is generally

very poor in this case as it can be seen in Table 4.1. With FV1, the highest true positive

rate is achieved when dealing with attacks that affect a large number of nodes (i.e. 90%

selective forwarding attack and jamming attack near the base station). In this case,

the technique based on hierarchical clustering achieves a true positive rate of around

30% if PFPR is permissive. Hence, in the scenarios where only the features in FV1 are

available, none of these techniques is suitable. Therefore, we can conclude that public

administrations should never allow WSN providers to supply so little network status

data.

Finally, Figure 4.5 also shows that OC-SVM is the only technique resistant to the inclu-

sion of too many features for the algorithms. With the extra features included in FV3,

the rest of the algorithms decrease their performance. SVMs do not depend on the size

of the vector space to be able to properly generalize [113]. This technique shows more

resistance to high dimensionality and to the inclusion of correlated features.

Furthermore, in the scenario using the extra features included in FV3, the detection

performance of the OC-SVM algorithm slightly improves in some cases. However, as

previously stated, these features are currently not sent in any of the analyzed services

in Barcelona. Besides, sending extra features can be detrimental for the network nodes

Chapter 4. A comparative study of anomaly detection techniques 84

and, therefore, the slight increment in the performance is not worth the effort of adding

the extra features in FV3.

4.4 Conclusions

In this chapter, we compared diverse techniques to analyze whether the data received

from smart city WSNs are the result of the normal operation of the network or whether

they contain some type of anomaly due to computer attacks. The compared techniques

are either semi-supervised or unsupervised, because obtaining a large dataset of labeled

data with attacks for training purposes is difficult in a smart city. Therefore, super-

vised techniques are not practical in this context. In this comparative study, we used

real data from the smart city of Barcelona to simulate WSNs and implement typical

attacks. Then, using these data, we compared four anomaly detection techniques based

on different principles: Mahalanobis distance, local outlier factor, hierarchical clustering

and OC-SVM. We used various feature vector definitions to identify the optimal network

status fields that the service providers have to include to effectively detect attacks. We

also considered three scenarios with different maximum levels of permitted false positive

rates. As a result of this work, we conclude that OC-SVM is the most suitable tech-

nique in the smart city scenario described in this thesis. Moreover, we justified that the

optimal network status information that should be gathered for proper attack detection

must include the sequence number of the application packet and the battery level. Con-

sidering the most restrictive case with a permitted false positive rate of less than 5%,

our experiments achieved a true positive rate of over 75%. This value is at least 56%

higher than the rates achieved with any of the other compared techniques.

Chapter 5

Intrusion detection pipeline viability

So far, an architecture capable of receiving and indexing big data from smart city WSNs

has been proposed in order to analyze the data in the search for intrusions. Moreover,

a pipeline to carry out these analyses has also been presented. This chapter includes

a study of the viability and scalability of the execution of this pipeline and its subpro-

cesses. Section 5.1 analyzes the criticality of each subprocess in the pipeline and, for the

ones showing a high critical nature, it is shown that they can be parallelized, providing

an implementation with MapReduce. Section 5.2 analyzes the main time constraints

between subprocesses. Finally, Section 5.3 includes a simulation of the most critical

subprocesses and it confirms that, using mid-range servers, a volume of data similar to

that required by a typical smart city service can be processed. Thus, provided enough

hardware resources, the pipeline is scalable.

5.1 Principal subprocesses

Chapter 3 has shown that the pipeline in Figure 5.1 is the basic processing flow from

data reception until the triggering of warnings due to intrusions. This section analyzes

the scalability of the subprocesses in the figure. For each subprocess, we examine its

computational complexity and, for the most complex ones, we provide a MapReduce

schema in order to show that the subprocesses are parallelizable and the general pipeline

is scalable and viable. A SIEM system is the base of the proposed architecture. Therefore,

it can be assumed that the system is capable of gathering and indexing big data.

85

Chapter 5. Intrusion detection pipeline viability 86

Figure 5.1: Intrusion detection pipeline.

5.1.1 Preprocessing

The raw WSN data have to be transformed and indexed in order to ease the subse-

quent steps. The transformation operations for this subprocess described in Section 3.4.1

generally have a very low computational complexity, i.e. O(1), since many are simple

operations applied to a single sample (e.g. unit conversions).

Other operations also require previously received data. However, generally, only the

immediately prior sample is necessary (e.g. battery consumption can be computed by

subtracting previous battery level from current level). This can also be computed in

O(1).

We consider this subprocess as non-critical. We assume that, if the system is capable of

gathering and indexing large amounts of data, then it is also capable of preprocessing

them.

5.1.2 Filtering

In this subprocess, preprocessed data are filtered using comparison operations with other

variables or constants (e.g. variable > value), which have a computational cost of O(1).

Moreover, more complex filter functions, such as a dichotomic search where a variable is

compared against multiple other ordered values have a cost of O(log(n)).

We consider that this is not a critical subprocess. As in the previous case, if the system

is capable of gathering and indexing large amounts of data, then it is also capable of

filtering them.

Chapter 5. Intrusion detection pipeline viability 87

5.1.3 Clustering

The aim of this subprocess is dividing data into groups (i.e. clusters) in order to segment

analysis according to the different groups. In this way, administrators reduce the search

space and draw conclusions from a short amount of nodes with common features.

Regarding computational costs, clustering involves algorithms that can be computation-

ally intensive. Nonetheless, once clustering is performed, the clusters do not have to be

recomputed often. Basically, clusters are no longer valid at the moment that variables

for which data have been clusterized change or when nodes are joined or removed from

the network. This does not happen very often, because these variables tend to be stable

(e.g. frequency band, location).

5.1.4 Aggregation

Data aggregation operations have computational costs that depend on the number of

samples to aggregate. For instance, aggregating the last n samples on a single variable

using an operation such as mode has a maximum computational cost of O(nlog(n)).

Other aggregation operations have lower computational costs (e.g. minimum, maximum,

sum, mean and median can be calculated in time O(n)). The most complex aggregation

operations require sorting the list of samples, which is the sub-operation with the highest

cost. However, as this sub-operation can be, at least, partially reused between subsequent

aggregation operations on the same data source, the total computational complexity of

these aggregation operations can be substantially reduced.

Furthermore, n is generally not large for aggregation operations that have time restric-

tions. In these cases, higher time restrictions imply shorter intervals and, therefore, also

imply including fewer samples in the time interval.

Hence, we consider that this subprocess is non-critical and can be done by any big data

system.

Chapter 5. Intrusion detection pipeline viability 88

5.1.5 Model computation

As seen in Section 3.3, several types of anomaly detection techniques are suitable for

detecting intrusions in this context. This subprocess can be computationally critical

using any of the suggested techniques for the following three reasons:

• In the case of univariate models, the complexity arises due to the fact that a dif-

ferent model needs to be computed for each variable that requires monitoring. In

this way, although univariate techniques have a low computational complexity (e.g.

Tukey’s method can be computed in O(nlog(n)) or less if the list of samples is al-

ready sorted), the models have to be computed for each of the necessarym variables

in the dataset and, therefore, it is convenient to parallelize the computation.

• In the case of univariate autoregressive models, although they require few historical

samples and they have a low training computational complexity (ARIMA models

on n training samples can be computed in O(n) [114]), their usage has an additional

critical factor because the models can not be reused several times and, therefore,

they have to be recomputed every time new data arrive.

• In the case of multivariate models, the training process is complex. With n as

the number of training samples, the computational complexity of OC-SVM lies

between O(n2) and O(n3) [115].

Hence, relying on both univariate and multivariate models can be computationally ex-

pensive and requires a systematic parallelizable approach to be able to compute all the

models required by administrators with large historical datasets with many variables.

Therefore, we propose a procés based on MapReduce to divide the input data and train

the models in parallel. Algorithm 1 presents the pseudocode for this process. The ba-

sic structure of this algorithm can be used to train either simple univariate or complex

machine learning multivariate models. Algorithm 2 contains auxiliary functions used in

Algorithm 1. Figure 5.2 shows two examples of the usage of the algorithm. In this man-

ner, with enough hardware resources, the system is capable of parallelizing and scaling

this subprocess to train the necessary anomaly detection models.

Chapter 5. Intrusion detection pipeline viability 89

Algorithm 1 MapReduce algorithm pseudocode to train anomaly detection models.
Require: record, a sample from the training dataset
Require: G, a tuple with the variable names to group the record variables
Require: F , a tuple of tuples with the variable names of the features selected to generate
the models
procedure map

g_values← get_variable_values(record,G)
for each feature_names ∈ F do

feature_values← get_variable_values(record, feature_names)
new_key ← concat(g_values, feature_names)
emit(new_key, feature_values)

end for
end procedure

Require: key, a new key generated in a map function.
Require: values, a tuple with the tuples emitted in a map function with the same
new_key.
procedure reduce

trainned_model← train(values)
persist(key, trained_model)

end procedure

Algorithm 2 High-level description of the auxiliary functions used in Algorithm 1
procedure get_variable_values(record,variable_names)

Returns a subset of record with the variable values defined by variable_names
end procedure
procedure concat(values)

Concatenates all input values separating them by "_".
end procedure
procedure emit(key,value)

Publishes intermediate results containing key and value. These are shuffled with
other intermediate results and fed to a reducer.
end procedure
procedure train(training_dataset)

Trains a model using training_dataset with a predefined anomaly detection algo-
rithm. The model is returned by this function.
end procedure
procedure persists(key,value)

Persists value with key in a key-value system.
end procedure

Chapter 5. Intrusion detection pipeline viability 90

(a) Example of the execution of Algorithm 1 to compute univariate models based on low and high
thresholds for all the variables of the input records. The input dataset contains the variables:
id_sensor, lqi and hops. In this example, the required parameters in map function are: record

= < id_sensor, lqi, hops >, G = < ”id_sensor” > and F = << ”lqi” >,< ”hops” >>.

(b) Example of the execution of Algorithm 1 to compute multivariate models based on
OC-SVM per each cluster. The input dataset contains the variables: id_sensor, lqi,
hops and id_cluster. In this example, the required parameters in map function are:
record = < id_sensor, lqi, hops, id_cluster >, G = < ”id_cluster” > and F = <<

”id_sensor”, ”lqi”, ”hops” >>.

Figure 5.2: Examples of training models with Algorithm 1

Chapter 5. Intrusion detection pipeline viability 91

5.1.6 Intrusion detection

Intrusion detection using the models trained in the previous section requires steps similar

to those in the training process. The steps for dividing the original data until training

the model (i.e. splitting, mapping and shuffling) are equivalent. Then, a model stored

in the previous subprocess is loaded and used to test if the input data in the intrusion

detection subprocess contain anomalies.

Hence, taking into account these differences, the schema of the algorithm shown in the

previous section is also valid for this subprocess. Moreover, actions involved in this sub-

process are computationally less expensive than for the training subprocess. Loading

a model from a key-value structure (e.g. a hash table) can be done in O(1) on aver-

age. Testing if a value falls within two thresholds can also be done in O(1). For more

complex multivariate models, computational complexity varies depending on the specific

algorithm. The computational cost of testing with non-linear SVMs with a low number

of dimensions increases linearly with the number of support vectors of the model [116].

This number is limited by the size of the training set multiplied by the training set error

rate. This is clearly lower than the computational complexity of training the model.

5.1.7 Alarm management

With the proposed architecture, the detection engines generate alarms. The main respon-

sibilities of this subprocess are to combine and correlate these alarms into new and more

reliable alarms, which are finally warning system administrators. Although the amount

of alarms generated by the detection engines can be too high to be handled by a human,

it is not too high to be handled by a machine using conventional processing techniques.

Hence, this subprocess is not considered critical in terms of processing requirements.

5.2 Temporal constraints

This section studies the strongest temporal constraints that must be satisfied to be able

to execute the pipeline shown in Figure 5.1 in a sustainable manner. When implementing

and configuring detection algorithms, selecting window sizes, etc., it is of utmost impor-

tance to take into account these constraints, in order to avoid undesirable situations,

Chapter 5. Intrusion detection pipeline viability 92

such as testing for anomalies with outdated models. These constraints are especially

important in the face of real-time analysis. In the scope of this study, we only take into

account the constraints related with the life cycle of a single model.

First, the variables used in this section are:

• T_stream: average time between consecutive data arrivals from services monitored

by the model.

• T_window: time window used to aggregate data. This variable is not used when

data are not aggregated.

• T_exp_models: average time until the model expires.

• T_train: average time taken training the model.

• T_test: average time taken to test new data with the trained model.

• T_redo_detection: average time taken until the model is reused to test for anoma-

lies on new data.

Below we show basic time constraints between the different steps in order to keep a

sustainable execution cycle of the subprocesses in the pipeline:

T_window >> T_stream (5.1)

T_redo_detection ≥ T_stream (5.2)

T_redo_detection ≥ T_test (5.3)

T_exp_models ≥ T_train (5.4)

Constraints 5.1 and 5.2 are basic in order to perform computation only when there are

new input data and new results can be obtained. Constraint 5.3 ensures that the input

Chapter 5. Intrusion detection pipeline viability 93

queue at the intrusion detection subprocess does not constantly increase. Constraint 5.4

ensures that models do not expire before they can be trained.

Complying with these constraints is easy in situations without additional real-time re-

strictions, where intrusion analysis subprocesses can be programmed at the most con-

venient time in terms of system resources. Typical examples of this kind of subprocess

are cluster generation or model training with a large expiring time (T_exp_models >>

T_train).

However, these constraints are particularly important in cases where additional real-time

restrictions have to be considered. Ideally, all input data samples are analyzed in real-

time looking for anomalies. As previously seen, training models and intrusion detection

are the most critical subprocesses in the pipeline. The time required for these subprocess

depends on the specific type of analysis and on the algorithm selected to implement

it. Using detection methods that consume much computational time in networks with

a high data reception rate is generally incompatible with real-time analysis of all the

data samples. In real-time situations, i.e. T_redo_detection = T_stream, another

constraint needs to be considered:

T_test ≤ T_stream (5.5)

In these circumstances, detection algorithms with a very low computational complexity

for testing are adequate. Thus, using precomputed thresholds with a computational

cost of O(1) is suitable for discovering anomalies on single variables. For multivariate

analysis, we proposed using OC-SVM in Chapter 4. We have seen that the complexity

of this machine learning algorithm is also low for testing (i.e. linear with the number of

support vectors of the model).

Nevertheless, there are situations where, ideally, detection results have to be processed

in real time for all new data entering the system, but Constraint 5.5 cannot be satisfied.

In these cases, either the computational cost of the selected algorithm or the data rate is

too high. Therefore, ideally T_redo_detection = T_stream, but T_stream < T_test,

which would break Constraint 5.5. In these situations, in order to maintain a viable

anomaly analysis in real time, it is necessary to decrease the number of times that the

Chapter 5. Intrusion detection pipeline viability 94

test is executed (i.e. increase T_redo_detection). To that end, we distinguish between

analysis with direct streaming data or with aggregated data.

Detecting anomalies on direct streaming data without aggregation requires a sampling

method that does not analyze all data but just selects the most appropriate samples.

For instance, systematic sampling can be used to test one in n samples. In such a way,

system administrators can adjust T_redo_detection according to T_test.

Testing for anomalies on aggregated data relaxes some of the previous constraints. On

the one hand, provided that T_test = T_redo_detection < T_window, every new

data sample is eventually included in at least one time window for aggregation and

subsequently used for testing. For example, a service sending data every minute on

average (T_stream = 1m), where these data are aggregated using 15-minute windows

(T_window = 15m). If, on average, running an anomaly test on new data takes 6

minutes (T_test = 6m), then, by Constraint 5.3, system administrators need to set

T_redo_detection ≥ 6. In this way, although T_redo_detection >> T_stream, every

new observation is aggregated and included in a test sample more than once. However,

if T_test = T_redo_detection > T_window, then the sampling method must select

the most appropriate aggregated data to run the detection tests.

Finally, it is worth noting that there are some types of models that expire shortly,

such as autoregressive models, where T_model_exp = T_stream in the most critical

scenario. In theses cases, besides the previous considerations, T_train ≤ T_stream by

Constraint 5.4. This may imply that models that require large historical training datasets

become unaffordable. However, using models that expire shortly is suitable in situations

where previous samples are highly correlated with current samples. Therefore, small

historical datasets are better suited in these cases. Autoregressive models have already

been used to predict anomalies on WSN data, proving that this type of model can be

executed in very constrained devices and that the best performance results are obtained

including very few previous samples in the models [65].

5.3 Temporal analysis

As previously stated, the most time-critical subprocess in the pipeline is anomaly detec-

tion, especially when there are real-time constraints. It has also been mentioned that

Chapter 5. Intrusion detection pipeline viability 95

• Operating System: Ubuntu 14.04 LTS

• Memory (RAM): 8 GB

• Processor: Intel ®Core ™ i5-4210U CPU @ 1.70GHz x 4

• Programming language: Python 2.7

• Machine learning library: Scikit-learn 0.17 [84]

Figure 5.3: Characteristics of the experimental environment

the subprocess with the highest computational complexity is training machine learning

models. Within the MapReduce schema for these subprocesses, the most critical execu-

tion units are in the reduce function. For these reasons, this section includes an empirical

analysis of the time required for these reduce functions.

For this experiment, we generated several datasets with which we trained and tested OC-

SVM. We created a dataset that contained 100,000 samples of 1,000 variables for training

purposes. This represents the equivalent of more than 2 months of observations from a

system that sends 1 observation per minute on average. We also created 2 more datasets

of 1,000 samples and 1,000 variables each. One of the datasets contained anomalies

and the other was anomaly-free. The datasets were created generating random numbers

following a normal distribution X ∼ N(µ, σ2). For the training dataset and the anomaly-

free test dataset, the normal distribution followed X ∼ N(0, 0.9), and for the test data

with anomalies it followed X ∼ N(3, 1). The environment used for this experiment is

shown in Figure 5.3.

In the experiments, we measured the time required to train the models and test for

anomalies. The next section presents the results and discusses the viability of these

algorithms in the smart city context.

5.3.1 Results and discussion

In this experiment, fitting the model using the training dataset required 92.91 minutes

and testing the models on 2,000 samples from the test datasets required 0.019 seconds per

sample. Considering a real-time analysis and setting T_redo_detection = T_stream =

60s (1 observation per minute on average), the temporal constraints 5.3 and 5.5 are

Chapter 5. Intrusion detection pipeline viability 96

satisfied. Taking into account these measures, a single machine like the one used in this

experiment (Figure 5.3) would be able to handle testing anomalies on 3,157 samples

every minute. This is 4,546,080 samples every day and more than 31 million samples

every week. For samples of 4 KB, this implies processing 18.18 GB every day and 6,6

TB every year.

Framing this in the context of a smart city, it can be seen that detection via this route

is viable for typical urban services. In Section 2.1, it was explained that the Oyster card

system in London gathers 7 million registers every day, including information about the

user’s ID, the location and a timestamp recorded every time a citizen enters or exits the

public transportation network. Assuming 5 variables for these fields and using large data

types of 10 bytes, such as long doubles, this would result in registers of 50 bytes, which

would yield 350 MB of data every day.

Section 2.1 also mentioned a smart building use case, where about 1 billion registers are

gathered every day. Consider 50-byte registers again, then this generates 50 GB of data

every day.

Therefore, anomaly detection with OC-SVM would be feasible with a single machine

with the characteristics in Figure 5.3 on datasets with a data volume similar to real

urban services like the Oyster card. A small cluster of 3 machines would also be able to

handle the analysis for datasets such as the one in the smart building use case.

These measurements were computed considering non-aggregated data. In many situ-

ations, OC-SVM is tested on aggregated data. Using the testing method described in

Section 5.2 for aggregated data, where T_stream << T_redo_detection < T_window,

then testing datasets like those would become less time intensive. For example, if data

were aggregated in time windows of 20 minutes (T_window = 20m) and tested for

anomalies every 10 minutes (T_redo_detection = 10m), then every data sample would

be aggregated and analyzed twice within two time windows. Through this aggregation

process, a test dataset such as the smart building one would be reduced from 50 GB

and 1 billion registers every day to 5 GB and 100 million a day. This falls within the

values that a single machine like Figure 5.3 can handle. Furthermore, it should be noted

that the server in Figure 5.3 has reduced processing and memory power compared to

conventional servers in data processing centers.

Chapter 5. Intrusion detection pipeline viability 97

As seen at the beginning of this section, the training time was 92.91 minutes, which

is much longer than the testing time. This is logical taking into consideration that the

training computational complexity stays between O(n2) and O(n3), with n being the size

of the training dataset. Thus, extremely large historical training datasets are not viable.

Due to Constraint 5.4, it is important that T_exp_models ≥ 92.91 in order to keep a

sustainable cycle concerning the training process. It seems unreasonable to believe that

models trained using 2-month data (86,400 minutes) will expire before 92.91 minutes,

which is 0.001% of the time interval of data on which the model is based. If that were

the case, then other models using fewer samples would be more recommendable.

5.4 Conclusions

This section has reviewed the computational complexity of the subprocesses involved

in the anomaly detection pipeline. We have identified the most critical subprocesses:

model computation and intrusion detection. For these subprocesses, we have presented

algorithms based on the MapReduce paradigm to parallelize them and, therefore, make

them scalable. Furthermore, we have described the principal time constraints of the

pipeline. Taking into account this constraint is important in selecting the most adequate

algorithms to maintain a viable anomaly detection cycle. OC-SVM has proven to be

very suitable in this context. Although the training complexity of this algorithm is high,

the test complexity is low, which is essential in real-time situations. We have empirically

tested that performing anomaly detection using OC-SVM in a big data scenario like

the Oyster card in London could be handled using a server with modest computational

capacity, and the scenario of the city with smart buildings could be processed with a

small cluster of 3 machines.

Chapter 6

Attack Classification schema

In the previous chapters, we have proposed an architecture to gather evidence of mal-

functions in urban WSNs. The two main components of the architecture are a rule-based

detection engine and an anomaly-based detection engine. As previously seen, these en-

gines are capable of triggering alarms in the case of attacks in smart city WSNs. However,

the real challenge is to not only show warnings that indicate that a network has been

compromised, but identify the cause of the problems and the affected components.

This chapter provides guidelines to assist smart city administrators in their response

to incidents, when the detection tools trigger an alarm that involves multiple services,

nodes or frequency bands. These alarms, triggered through a correlation rule as it will

be shown below, not only have a high severity level, but are also difficult to resolve.

Administrators need to find out the attack type, to locate the source of the incident and

the involved devices. In order to facilitate these tasks, this chapter presents a schema

with the basic steps to classify attacks.

The approach followed in this chapter takes into account the requirement that no assump-

tion must be made regarding specific network configurations, available countermeasures,

installed IDS, etc. Considering a generic smart city architecture, the guidelines presented

in this chapter are designed in a general manner in order to be easily adaptable to many

smart city scenarios. Section 6.1 describes the assumptions taken in this regard.

In order to abstract the schema from particular implementations and make it more

generalizable, Section 6.2 identifies the basic alarm types that can be triggered in the

98

Chapter 6. Attack classification schema 99

architecture proposed in Chapter 3. Thus, in the rest of the chapter, we refer to these

alarm types instead of specific alarms caused by specific intrusion detection techniques.

In Section 6.3, we propose seven different attack models based on the study of the effects

that attacks have in the components of smart city WSNs in a generic way. The models

include the most popular attacks against WSNs. Section 6.4 outlines a procedure with

the steps required to classify the received alarms into one of the attack models. This

procedure has been devised taking into account the aforementioned assumptions and

alarm types. In Section 6.5, we propose a set of contingency plans to mitigate the

attacks.

Section 6.6 shows an experimental demonstration with two types of urban WSNs as a

proof of concept of the benefits of the proposed classification schema. This proof of

concept shows how the classification procedure determines the most likely attack types.

Furthermore, it also demonstrates that simple correlation rules, combining alarms from

the two detection engines, can significantly increase the detection rate and, therefore,

generally improve the reliability of the detection system. Finally, Section 6.7 concludes

the chapter.

6.1 Assumptions

As mentioned above, the contributions proposed in this chapter intend to be a guide for

how smart city administrators should behave in the case of attack, taking into account

the effects that attacks cause to the elements of a generic smart city. In any case, each

specific scenario will have to be examined individually and administrators will have to

adapt the models, the schema and the list of contingency measures to their smart city

context. The most relevant assumptions taken to create the guidelines included in this

chapter are listed below:

• Each service uses a single WSN configuration with the same communication pro-

tocols in their nodes. If a single urban service is implemented by two providers

with different networks types, in this chapter, it is considered to be two different

services.

Chapter 6. Attack classification schema 100

• Gateways are shared by different WSNs and providers. These devices are assumed

to be connected to the electricity grid, have enough computational power and a

good communication network from and towards the city central servers. Therefore,

gateway providers can use conventional security measures.

• The smart city is considered to be in an advanced state of development with a

high density of sensors and networks. Therefore, if attack traces involve several

providers, networks in several frequency bands, etc.; then the analyzed scenario

includes these required elements.

• Large scale attacks are disclosed as several different attacks. For instance, a jam-

ming attack affecting several frequency bands is considered as several jamming

attacks.

6.2 Alarms

As seen in the Chapter 3, one of the main functions of the rule-based detection engine is

to offer a way to create alarms that are triggered when a rule is fulfilled. In addition, ad-

ministrators can set a severity level and an action to execute when the alarm is triggered

(i.e. run a script). These two properties are very relevant in a smart city, because it is

a very complex system that includes multiple subsystems and devices, and, therefore, it

is likely that many events trigger a plethora of alarms. Obviously, many of these alarms

may not be relevant as a consequence of false alarms or ephemeral malfunctions. Hence,

administrators can label the alarms with a severity code to have a first filter to distin-

guish the alarms that require their immediate attention and also assign an automatic

action to activate a security measure.

The following subsections firstly describe the general alarm types that can be generated

with the detection engines of the proposed architecture. Secondly, the section will focus

on the alarms triggered by correlation rules.

6.2.1 General alarm types

This section will outline the different types of alarms that can be triggered with the

architecture for an intrusion detection platform sketched in Chapter 3. In order to select

Chapter 6. Attack classification schema 101

the different categories of alarm types, we have considered the characteristics of the

techniques that trigger the alarms, the analyzed variables and the dynamics of the data.

Thus, in the rest of the chapter, a high level of abstraction is achieved by referring to

the different alarm types instead of mentioning specific intrusion detection techniques,

which would make the schema proposed in this chapter less generalizable.

The different types of alarms that we consider are:

• AT1 - Alarms triggered by simple thresholds

This type of alarm is triggered by simple rules that check whether a variable stays

within pre-set thresholds. These thresholds can be computed manually for certain

variables, for which administrators know a priori their normal boundaries; or they

can be computed using methods to find outliers, such as Tukey’s method (see

Section 2.4.1 for more information). In the case of an attack that triggers an

alarm of this type, administrators can have a valuable hint to find the origin of

the incident, because the rule that triggers the alarm is generally associated with

a single variable of a single node. However, by focusing on just one variable,

several attacks may show the same effects and, therefore, other evidence needs to

be gathered.

• AT2 - Alarms triggered by complex models

The alarms triggered by complex anomaly detection models, such as OC-SVM,

allow administrators to disclose attacks that leave more subtle evidence than just

single variables going over thresholds. Thus, these allow monitoring the normal

state of several variables, involving different nodes and services at the same time.

Compared to AT1 alarms, these alarms allow administrators to know that data are

anomalous as a whole and, therefore, they have less information about the specific

variables or nodes that are affected.

• AT3 - Alarms triggered by time series analysis

Time series analysis is useful in smart cities because many services generate times

series data. In these cases, new observations are closely related to previous ones.

Chapter 6. Attack classification schema 102

For these types of data, static thresholds are sometimes inadequate. Mathematical

models, capable of predicting future values, are more suitable to point out the

real values that deviate from the forecasts, which, therefore, can be considered

anomalous.

• AT4 - Alarms triggered by correlation

These types of alarms result from establishing certain relationships between an

attack and its effects in an area or in some network components. These effects are

in turn detected by the other alarm types. Therefore, these types of alarms are

created to aggregate other alarms into a single one.

When system administrators create any of the alarms described above, they have to

assign a severity level to the alarm. Administrators then have an easy way to filter the

alarms that will actually receive their attention. Identifying the severity of the alarms

is generally a specific task dependant on the specific smart city and on the security

policies. For instance, administrators can flag an alarm as severe if it is implemented on

an especially critical service or node; or if the alarm is implemented on a highly reliable

protocol and, therefore, any sign of anomaly is a clear sign of attack. Moreover, as it

will be seen in the next section, it is also recommended to create AT4 alarms with a

high-severity level, because they are more reliable and can affect several systems.

6.2.2 Alarms triggered by correlation rules

A correlation rule is a type of rule that is used to group alarms that have some kind

of relationship. The new alarm triggered by a correlation rule can be considered more

trustworthy than the alarms that it is composed of, since it gets triggered only if several

unwanted situations have already triggered some alarms. Therefore, alarms triggered by

correlation rules can be considered more critical, not only because they are more reliable,

but also because the alarms that it is composed of may come from several services,

devices, providers, etc. Moreover, correlation rules allow administrators to reduce the

number of alarms that require their attention. For instance, creating a correlation rule

to group the alarms by location in a WSN reduces all the alarms triggered by a source

Chapter 6. Attack classification schema 103

of interference to a single alarm, instead of receiving individual alarms from each of the

sensor nodes in the area that receives the interference.

Moreover, administrators can use correlation rules to implement signatures for known

attacks, for which administrators can clearly identify the attack traces. In this way,

alarms triggered by these rules will not only be reliable, but they will also straightaway

point to a specific attack type. The creation of correlation rules is highly dependent on

the WSNs that are deployed together, their configurations, and, in general, the specific

scenario. Therefore, defining a methodology to create correlation rules falls out of the

scope of this thesis.

However, as seen in the examples in Chapter 3, general purpose correlation rules can

be easily implemented in most scenarios and, as the proof of concept of Section 6.6 will

show, this can significantly improve the detection success. As a general guideline, we

recommend that smart city administrators create correlation rules to group the alarms

received within a certain time interval triggered by devices sharing certain characteristics,

such as a nearby location, the frequency band, the provider, the gateway, etc.

In this way, once a severe alarm built from a correlation rule is received, administrators

can begin to collect more insights about the compromised components, providers, etc.

The next sections provide some guidelines to assist administrators to this end.

6.3 Attack models

Attacks in WSNs are traditionally detected analyzing particular parameters from each

of the affected communication layers. Nevertheless, as previously mentioned, from the

smart city administrators’ perspective, it is unrealistic to count on the availability of all

the parameters and maintaining very specific detection systems for each WSN would be

unmanageable. Therefore, the models in this attack schema are a general classification,

based on the anomaly traces that most common attacks in WSN leave on the affected

data described in Section 3.2.1 and on the attack’s geographical influence. For each

attack model, a list of attack candidates is provided. These are the most common

attacks reported in the literature (see more details in Section 2.3.1). Figure 6.1 shows

graphical representations of the seven models. These models are described as follows:

Chapter 6. Attack classification schema 104

Model 1: Vertical attacks

Description: Attacks that show vertical attack traces (i.e. from a group of node

leaves to the base station) on a single WSN. The main aims of these attacks

is to obstruct one or more paths in order to increase the arrival time of the

packets from the target leaves, to crash intermediate routing nodes, to decrease

node batteries or to provoke a general DoS.

Affected data: Application data, packet latency, battery level.

Geographical influence: Attack traces along large network paths starting near

the leaves and ending near the base station.

Attack candidates: Path-based DoS, overwhelm, misdirection, spoof, alter or

replay routing information, wormhole, sybil to an important routing node,

blackhole on an important routing node, sinkhole.

Model 2: Transmission medium attacks

Description: Attacks that affect nearby nodes using the same frequency bands

or MAC protocols. Other bands or protocols are not affected. Basically,

attackers take advantage of the transmission medium in order to prevent the

proper delivery or reception of packets from certain nodes. These attacks

applied to routing nodes also hamper the correct communication of other

nodes outside of the attacker’s direct influence area.

Affected data: Network status data (e.g. RSSI, SNR), application data, packet

latency, battery level.

Geographical influence: Reduced area of nearby nodes.

Attack candidates: Unfairness, collision, jamming.

Model 3: Locally dispersed attacks

Description: Attacks that affect dispersed nodes from a single WSN with the

main goal of creating delays, dropping packets and depleting node batteries.

Affected data: Application data, packet latency, battery level.

Geographical influence: No geographical influence.

Attack candidates: Misdirection, spoof, alter or replay routing information, sybil,

data tampering, wormhole, selective forwarding, sinkhole.

Chapter 6. Attack classification schema 105

Model 4: Widely dispersed attacks

Description: Attacks that affect dispersed nodes from several WSNs. Attackers

aim to reduce the proper operation of one or several WSNs. In this case, at-

tackers do not use constant attack techniques, which would be more effective,

in order to cover up their intentions and delay the moment of their discovery.

Affected data: Application data.

Geographical influence: No geographical influence.

Attack candidates: Selective forwarding at a gateway, unfairness at a gateway

(not-constant), collision at a gateway (not-constant), jamming at a gateway

(not-constant).

Model 5: Widely intensive attacks

Description: Attacks that affect a great percentage of nodes from several WSNs

using the same gateway. Attackers use these techniques to completely stop

the service provided by one or more WSNs.

Affected data: Application data, battery level.

Geographical influence: Wide area of nearby nodes.

Attack candidates: Blackhole at a gateway, unfairness at a gateway (constant),

collision at a gateway (constant), jamming at a gateway (constant), other

attacks that crash or isolate the gateway.

Model 6: Local service alteration attacks

Description: Attacks that affect several nearby nodes from the same WSN. The

main goal is to alter application information from an area. The attackers

either drop application packets or send false information.

Affected data: Application data.

Geographical influence: Reduced area of nearby nodes.

Attack candidates: Blackhole, sinkhole, sybil, data tampering.

Model 7: Single node attacks

Description: Attacks that aim at depleting the batteries of a single node. This

becomes very critical when attackers aim at an important router node in

Chapter 6. Attack classification schema 106

(a) Model 1: vertical attacks (b) Model 2: transmission medium attacks

(c) Model 3: locally dispersed attacks (d) Model 4: widely dispersed attacks

(e) Model 5: widely intensive attacks (f) Model 6: local service alteration attacks

(g) Model 7: single node attacks

Figure 6.1: Graphical representation of the seven attack models

network areas with few paths to the sink. Several of these attacks on each

path divide the network.

Affected data: Battery level.

Geographical influence: No geographical influence.

Attack candidates: De-synchronization, flooding, sinkhole, collision.

Chapter 6. Attack classification schema 107

6.4 Classification procedure

As previously seen, the proposed architecture can gather a plethora of AT1, AT2 and AT3

alarms from many different nodes triggered by the same attack. Section 6.2.2 has shown

that administrators can implement correlation rules in order to group some of these

alarms and, thus, trigger a high severity AT4 alarm to warn them when the evidence

of attacks is strong. Then, at the point of receiving an AT4 alarm, administrators have

to start inquiring to find out the type of attack and which elements in the network are

compromised. This section provides guidelines to classify the alarms into one of the

seven models described above. In this way, using the models provide administrators

with information about the most likely attacks that fit the evidence.

Figure 6.2 presents the workflow with the classification schema. As the figure shows,

the process begins when administrators receive a high severity AT4 alarm (step (a)).

Then, administrators have to decide which other alarms registered in the system could

be related to the incident and, therefore, have to be collected for analysis (step (b)). In

general, these related alarms are the ones triggered by nearby nodes during a short time

interval before or after the incident, or by other components of the same network, or

the same provider, etc. As a result of step (b) administrators identify a set of alarms

that are relevant for the classification of the incident. In the subsequent steps, this set

of alarms is analysed to answer the following questions:

• Are multiple nodes affected? (step (c)).

• Are the affected nodes geolocalized together? (step (d)).

• Are multiple services affected? (steps (e) and (k)).

• Are multiple frequency bands affected? (step (f)).

• Is the gateway involved in the attack? (steps (g), (l) and (m)).

• Are the alarms in the set of alarms relevant? (step (i)).

• Do vertical paths show signs of being affected? (step (j)).

It is worth noting that verifying whether a gateway is involved in the attack is usually the

responsibility of the gateway provider, who has full access to the gateway. Moreover, as

Chapter 6. Attack classification schema 108

Figure 6.2: Procedure to classify attacks into seven attack models according to the
evidence in the alarms triggered by the detection engines.

mentioned in Section 6.1, we consider that gateways are not constrained in terms of pro-

cessing power, are connected to the electricity grid and have reliable telecommunication

connections. Therefore, providers can perform complete analysis on the gateways with

conventional security tools (e.g. antivirus, IDS) to test if they have been compromised.

In addition to the analysis through the aforementioned questions, the workflow eventu-

ally requires splitting the alarm set into several subsets according to a certain criterion

(e.g. by frequency band) (steps (h) and (n)). Splitting the alarm set is important to

differentiate between several alarms due to different incidents occurring in the same de-

vices around the same time. When there is no model clearly identifiable from the alarm

set, as loops (c) - (i) and (c) - (n) show, we propose an iterative process that divides

the alarm set into several partitions and each of them is used to start the classification

procedure again. Thus, alarms that are not related are divided into different partitions

and, therefore, analyzed separately. These unrelated alarms from the same area at the

same moment in time can be due to concurrent attacks, false alarms, etc.

Lastly, the final states of the procedure in Figure 6.2 show the attack model that fits

the evidence given by an alarm set. The states where third party services or important

communication nodes are affected are indicated by a red box.

Chapter 6. Attack classification schema 109

Below, in order to illustrate the classification process, an example incident is resolved:

1. A high severity alarm (AT4) calls the smart city administrators’ attention (step

(a)) to a parking WSN controlled by provider A. This AT4 alarm is defined with

a correlation rule that groups three or more AT1 alarms (triggered if the received

RSSI is above a threshold) in a two hour window. Administrators look in the system

for other alarms in the same time window sharing the same area or equipment (step

(b)). They find other AT1 alarms from an environmental WSN, which is controlled

by provider B. In this case, the AT1 alarms were programmed with a simple rule

that would check that the data from the sensors was received in the scheduled

intervals. All these alarms make up the alarm set used by the administrators to

classify the incident.

2. At this point, administrators start analysing the alarm set by answering the ques-

tions proposed in the schema. Firstly, they run a simple query to determine if

multiple nodes are affected (step (c)). The result of this query is positive.

3. Administrators visually inspect the nodes to figure out if the affected nodes are

geolocalized together (step (d)). The result of this query is positive.

4. Administrators verify if multiple services are affected in all the alarms (step (e)).

The result of this query is positive (because the parking service and the environ-

mental monitoring service are affected).

5. Administrators make another simple query to check if multiple bands are affected

(step (f)). The result of this query is negative (because the WSNs from the two

services are configured in the same frequency band).

6. Administrators conclude that the analyzed WSNs are under an attack from model

number 2. Moreover, the affected data that triggered the alarms supports this con-

clusion, i.e. RSSI over the limit in the parking WSN and packet latency increased

in the environmental WSN. This is a transmission medium attack, where the source

of the attack affects nearby nodes using the same frequency bands and/or MAC

protocols. In this type of attack, the affected nodes can be from different WSNs

and different providers. Likely attacks are: unfairness, collision and jamming.

Chapter 6. Attack classification schema 110

With this procedure, we point out the most likely attack model, we limit the affected

nodes, the area and the providers. Additionally, we also indicate if the attack is com-

promising the transmission medium (i.e. blue mark), a gateway (i.e. red mark) or the

provider’s infrastructure (i.e. green mark). Moreover, the previous section listed the

attack candidates for each model. The next section recommends contingency plans to

mitigate the short and medium term consequences of the attacks.

6.5 Contingency plans

At the end of the procedure in the previous section, the administrators have a sharper

picture of the cause of the alarms and, therefore, they can contact the service providers

to look for a solution to the problem. In general, solving this type of attack can be a long

process, since it involves coordinating several parties and analyzing many devices, which

can be difficult to access. Hence, at this moment, besides looking for a solution to patch

the possible vulnerabilities, it is also paramount to mark the data from the compromised

services and to avoid new data becoming compromised.

Below, basic recommendable strategies to mitigate the possible negative consequences of

the attacks are listed. These contingency plans are divided in short and medium-term

actions depending on whether other services are affected.

Short-term actions:

Transmission medium compromised

• Data from the compromised service in quarantine

• Data from nearby services in quarantine

• Exclusion area required

Gateway compromised

• Data from the compromised service in quarantine

• Data from other services in the compromised gateway in quarantine

• If other gateways available, then compromised gateway excluded

Provider’s security compromised

• Data from all the services of the provider in quarantine

Chapter 6. Attack classification schema 111

Medium-term actions:

Transmission medium compromised

• Data from the compromised service and the nearby services excluded from

learning, statistical and analysis processes

Gateway compromised

• Data from the compromised service and other services in the compromised

gateway excluded from learning, statistical and analysis processes

Provider’s security compromised

• Data from the services of the compromised provider excluded from learn-

ing, statistical and analysis processes

Putting the measures listed above in place avoids the situations where other services

compromise new data and where compromised data are used in an urban operation.

For instance, in the short-term, we propose establishing exclusion areas when attacks

compromise the transmission medium. In this way, mobile devices using WSN technology

avoid entering areas where their transmissions can be in danger. In the medium-term, we

propose that data from compromised devices should be excluded from business analytical

tasks to avoid drawing wrong conclusions. For example, the municipality could decide to

expand a parking facility, basing the analysis on compromised WSN data from a parking

lot indicating overuse.

Depending on the critical nature of the affected services, it is possible that other contin-

gency strategies are required. Hence, administrators have to analyze the details of each

use case to figure out the necessary additional countermeasures.

6.6 Proof of concept

This section includes a proof of concept to demonstrate the use of the proposed classifica-

tion schema to detect and locate a data availability attack. This type of attack is difficult

to detect, can involve several services from different WSNs from different providers and

requires the analysis of multiple types of data. The implemented attack in this proof of

concept simulates a 20% selective forwarding attack that affects a wide area with dis-

persed nodes from several WSNs from different providers. Selective forwarding attacks

Chapter 6. Attack classification schema 112

become more obvious as the dropped packet rate and the number of affected nodes in-

crease, and when it affects a reduced and non-dispersed area. Therefore, we analyze the

benefits of using the defined schema in a highly complex detection scenario.

6.6.1 Scenario description

In this section, we build a scenario for the demonstration and we analyze the data using

the core packages included in R [108] and the packages e1071 [109] and caret [117] for

the OC-SVM classification and FPC [118] for the clustering algorithms. The original

data came from two Barcelona service providers from July to November 2015. The

two services collect data from street parkings and sound meters. The data from the

parking service include the gateway identifier used by each packet to send the data

from the parking sensors to the central servers. The sound data do not include this

information. For this proof of concept, it is necessary to extend the real data to have

a dataset with the minimum amount of information to be able to simulate attacks and,

subsequently, perform anomaly analysis. Therefore, in order to have a proper dataset

for this demonstration, the following actions are performed:

• The sound meters are placed in the area of the parking network respecting the

layout of both networks. Figure 6.3 shows the node position in both networks.

• A gateway identifier is assigned to each packet received from the sound network.

The assignment of a gateway to each sound packet is based on the gateway com-

putational load. Thus, gateways processing many parking network packets receive

fewer sound packets. As it will be seen later on, this gateway identifier is only used

to simulate the attack. When we perform the analysis later, the gateway identifier

is considered unknown in the sound packets.

• The data types described in Section 3.2.1 are received at the data center from

diverse services and are generally considered available to any service. However,

in this scenario, the sound service does not provide the sequence number of the

application packets, which can be used to easily calculate the application packet

loss. Therefore, the packet loss rate is added to the sound meter data.

• A normal packet loss rate (i.e. not due to attacks) is also considered. There is

a wide variability on ordinary packet loss rates in WSNs, depending on several

Chapter 6. Attack classification schema 113

Figure 6.3: Sensor positions and division of the parking sensor nodes in clusters.

network characteristics, such as the communication protocols or the node density.

In [119], the authors performed measurements using the Collection Tree Protocol

(CTP), which is one of the most popular routing protocols in WSNs, and they found

end-to-end packet delivery rates from 90.5% to 99.9%. Thus, in this simulation,

the sound monitoring service has a conservative 90% packet delivery rate (i.e. 10%

packet loss rate without attack).

In this scenario, we simulate a selective forwarding attack in one of the gateways, where

20% of the received packets are randomly dropped. This causes data loss from sensors

belonging to the two services spread throughout the neighborhood. This scenario, with

only two services, is a basic configuration for a smart city and demonstrates the value

of the proposed classification schema. Scenarios including more services and providers

would increase the complexity of the analysis, but, at the same time, more alarms from

other WSNs would be trigger and, then, there would be more evidence of the attack,

which would enhance the value and the results of the classification procedure.

Chapter 6. Attack classification schema 114

6.6.2 Analysis

This section presents the basic procedures to detect anomalies and trigger alarms (Sec-

tion 6.6.2.1). Thus, this proof of concept briefly shows how to apply the techniques

proposed and reviewed in the previous chapters. Moreover, it shows the importance of

implementing correlation rules and demonstrates how to use the classification schema

proposed in this chapter (Section 6.6.2.2).

6.6.2.1 Basic detection analysis

In this section, a rule-based technique with a predefined threshold (AT1 type in Sec-

tion 6.2.1) and an anomaly-based technique (AT2 type in Section 6.2.1) are used on

aggregated data from the parking and the sound services to unveil the attacks affecting

the smart city.

In order to perform the detection analysis, we first divide the data from this simulation

into three sets. 50% of the data is used for training purposes, 25% is used as a validation

data to tune the parameters of the algorithms and the last 25% is used as a test dataset.

The selective forwarding attack is only applied to the validation and the test data.

We implement three types of alarms to detect the attacks:

• We use rule-based detection on the sound data. From this service, we ag-

gregate the number of lost application packets in one hour windows and we define

a threshold to determine the maximum number of lost application packets that is

considered normal (i.e. not due to an attack). Setting a high threshold implies

decreasing the detection rate (i.e. number of detected attacks divided by the num-

ber of total attacks) and the false positive rate (i.e. instances that are incorrectly

classified as attacks divided by the number of total instances that are not attacks).

• We use OC-SVM on the parking data. In this case, the procedure to detect

attacks has the following steps:

1. We group the sensor nodes into clusters by location using DBSCAN[120].

Figure 6.3 shows the division by clusters.

2. We aggregate the number of changes in the parking spots per cluster in one

hour windows.

Chapter 6. Attack classification schema 115

3. We use OC-SVM to train and test a model in order to verify if the num-

ber of changes in each cluster in each window at the corresponding hour of

the day is normal. The OC-SVM hyperparameters are used to test different

combinations of detection and false positive rates.

• We create a simple correlation rule (AT4 type in Section 6.2.1) that is triggered

when various alarms from any of the previous two detection techniques have been

triggered in one hour. In order build this correlation rule, we compare the detection

rate and the false positive rate of varying amounts of alarms triggered by any of

the two detection engines. As shown below, by decreasing the number of required

alarms in the correlation rule, we can gradually increase both the detection rate

and the false positive rate. The results are shown in Figure 6.4.

Generally, alarms based on thresholds are more reliable than alarms triggered by machine

learning techniques. If an attacker performing a selective forwarding in the gateway

drops a large amount of packets, then the AT1 alarm implemented with a threshold

for the number of lost application packets from the sound service would be enough in

order to discover the attack. However, the most challenging situations arise when the

attacks affect few sound packets and many parking packets, which is the scenario that

is implemented in this proof of concept. Thus, we demonstrate the advantages of using

correlation rules and the classification schema proposed in this chapter. Figures 6.4 and

6.5 show the performance of the detection techniques in this scenario. Figure 6.4 shows

that, in general, for a false positive rate lower than 25%, the combination of alarms from

the first two techniques in a correlation rule outperforms the other techniques operating

separately. In the smart city context, the false positive rate must be kept low to avoid

overwhelming system administrators. As seen in Figure 6.5, setting a maximum 5%

false positive rate implies that the detection rate using correlation detection is more

than 1.5 times higher than using only OC-SVM and more than 3.5 times higher than

using only rule-based detection. Therefore, this outcome shows that administrators can

significantly improve detection results by implementing simple correlation rules as shown

in this example.

These results are particularly interesting when taking into account that the detection

scenario is highly complex due to a 20% selective forwarding dropping rate (only 10%

more than the normal loss rate for the sound network) and the difficulty of detecting

Chapter 6. Attack classification schema 116

Figure 6.4: Evolution of the detection rate and the false positive rate of the three
techniques. In the rule-based detection, increasing the packet loss threshold decreases
the detection rate and the false positive rate. In the OC-SVM detection, a higher value
of the hyperparameter ν increases the detection rate and the false positive rate. In the
detection by correlation, including more alarms in the correlation rule decreases the

detection rate and the false positive rate.

anomalies in nodes spread in a wide area. There is also a need to detect the attacks

within a one hour window, which allows time to apply short-term contingency actions.

Therefore, the performance of the proposed detection process would increase in scenarios

with a higher dropping rate, where the attack is focused on a narrow area or without

short-term contingency requirements.

This simulated detection process also shows that alarms triggered by the correlation

rule must be considered as highly severe. The other alarms are also important to trace

incidents in the smart city, but they are less reliable and provide less information about

the incidents than correlation rules. In the next section, starting from the reception of a

highly severe alarm, the proposed schema is used to classify the incident into an attack

model.

6.6.2.2 Enhanced analysis with attack classification

In this proof of concept, AT1 and AT2 alarms can be constantly triggered and, therefore,

do not deserve administrators’ attention until an AT4 alarm is received. Upon receiving

an AT4 alarm (step (a) in the schema shown in Figure 6.2), administrators can proceed

with the other steps in the classification procedure:

Chapter 6. Attack classification schema 117

Figure 6.5: Detection rate comparison between the three techniques at a 5% false
positive rate.

1. Administrators must retrieve other alarms from the same service, from the same

area or from some network that shares important components with the network

that triggered the alarm (step (b)). Thus, in this scenario, alarms from the parking

and sound service have to be retrieved and make up the base alarm set for this

analysis.

2. The answer to the question Multiple nodes affected? is Yes (step (c)).

3. The answer to the question Nodes geolocalized together? is No (step (d)), since

Figure 6.6 shows that the anomalies detected in the sound sensors and parking

clusters are sparsely distributed.

4. The answer to the question Multiple services affected? is Yes (step (k)).

5. At this point administrators could have already taken preventive countermeasures

involving the transmission medium and the gateway. They should request the

gateway provider to undertake a comprehensive analysis of the gateway (step (m))

to confirm that the networks are under an attack model number 4. As it can be seen

in Section 6.3, this corresponds to a widely dispersed attack, where the most likely

attack candidates aim at the gateway and match the traces of a selective forwarding,

a non-constant unfairness, a non-constant collision or a non-constant jamming. In

this situation, the basic recommended contingency strategies involve marking an

exclusion area near the gateway, redirecting WSN traffic to other gateways (if

Chapter 6. Attack classification schema 118

Figure 6.6: Sound sensors and parking sensor clusters where the attack has been
detected.

possible) and quarantining the data from the compromised gateway, the nearby

services and other services that were using this gateway.

As this example has shown, using the classification schema and taking into account the

alarms from the smart city WSNs as a whole, smart city administrators not only detect

anomalies in a more reliable way, but are also provided with a clearer picture of the

attacks causing the incidents.

6.7 Conclusions

In this chapter, we have extended the intrusion detection platform presented in the

previous chapters with a schema to classify the evidence left by attacks against smart city

WSNs into seven different attack models. This schema provides smart city administrators

with guidelines to identify the attacks and the compromised network components. These

models have been proposed by taking into account the effects that the attacks have on

Chapter 6. Attack classification schema 119

the components of smart city WSNs in a generic way. For each attack model, we have

provided a list of attack types to narrow down the most likely cause of attack and we have

provided a set of contingency plans to mitigate short and medium term consequences of

the attacks. This schema does not claim to be comprehensive and, therefore, it does not

include all the possible attacks for all possible smart city configurations. This schema

has been designed to be adaptable to many smart cities and it should be treated as a

guideline to develop a security and incident response system for smart city WSNs.

This chapter has also shown that the combined use of rule-based detection and OC-SVM

by means of simple correlation rules can significantly improve detection results. The

combination of these techniques in a correlation rule can outperform the other techniques

operating separately, and this has been shown in a complex detection scenario with a

20% selective forwarding dropping rate (only 10% more than the normal loss rate for

the sound network). To the best of our knowledge, this is the first approach towards

studying the effects of correlating WSN security analysis of different services in the smart

city. The proof of concept has also exemplified the procedure to follow to figure out the

most likely attacks and components compromising two WSNs.

Chapter 7

Conclusions

In recent years, smart city projects are gaining importance in the urban development

of many cities around the world. This has involved acquiring new ways of managing

the cities, which have generally been based on technological solutions that gather and

process large amounts of city data. To this end, public administrations, which aim at

developing smart city solutions, normally deploy WSNs in order to collect data from

the streets and, in this way, obtain information about the operation of the metropolitan

infrastructures.

Nonetheless, a massive deployment of WSNs in an unprotected environment, like the

streets, raises some security concerns. Furthermore, public administrations are gener-

ally outsourcing the installation and maintenance of the WSNs to external providers.

These facts create scenarios with several barriers to security, from which, this thesis has

highlighted three. Firstly, outsourcing potentiates the heterogeneous environment of the

smart city. Each urban service demands a different level of security and each provider

offers a different solution to implement a system. Secondly, network devices adminis-

tered by the providers become less accessible for the public administration. This, in

many cases, is an impediment to access system logs and to monitor the security health

of the network. And thirdly, WSNs are generally designed to be highly efficient in order

to reduce energy consumption and extend battery life. This results, in some cases, in

the fact that downstream communication is not implemented, which hardens software

120

Chapter 7. Conclusions and future work 121

updates, key exchange, etc. Therefore, finding generalizable security solutions to pro-

tect the WSNs that can cope with the heterogeneity of the smart city and that are also

efficient and adaptable enough to be installed in the sensor nodes is unfeasible.

Currently, in order to protect the WSNs, public administrations include security clauses

in the service-level agreements with the external providers. Accordingly, security mech-

anisms are in hands of the providers. Generally, the providers embed countermeasures

based on cryptography, obfuscation, frequency hopping and so on in the sensor nodes.

However, these security measures are only effective if they are properly applied and

maintained, and, in front of severe attacks, they are totally futile. Thus, in this scenario,

smart city administrators must have mechanisms to verify their WSNs operation, so that

they can urge, if necessary, external providers to apply the required security measures. In

this context, this research work aims at contributing to increase smart city WSN security

from the point of view of the smart city administrators. The rest of this chapter presents

the conclusions of this thesis in Section 7.1, and future work directions in Section 7.2.

7.1 Conclusions

As a first contribution in this dissertation, we have proposed a centralized architecture

to gather all the available application and network status data from the urban WSNs

in order to analyze them and disclose attacks. In this way, this architecture contributes

towards a centralised intrusion detection platform for smart cities. The proposed archi-

tecture has been designed to be non-intrusive and transparent to the WSN providers.

The architecture design also takes into account that different smart cities require differ-

ent services and that different providers use different technologies. The architecture and

the algorithms included in this thesis intend to be portable to many smart city models.

Consequently, we studied the characteristics of current smart city projects and we have

abstracted the proposed architecture from any specific smart city configuration. Hence,

the proposed system is easily integrable and adaptable to many smart cities, and the

proposed detection algorithms can be applied in many WSN types.

In the proposed architecture, intrusion detection is basically handled by two detection

engines: a rule-based detection engine and an anomaly-based detection engine. The rule-

based detection engine looks for patterns of attacks that have previously been recorded

Chapter 7. Conclusions and future work 122

in signature databases. Although this mechanism is highly effective to detect certain

attacks, it has the main drawback that unknown attacks, for which there are still no

signatures, go unnoticed. Moreover, creating rules that involve many variables becomes

too complex and difficult to maintain, and defining static thresholds for highly dynamic

systems is sometimes unfeasible. On the other hand, anomaly-based detection normally

uses machine learning and statistical techniques to discover data that deviate from nor-

mality. In this way, these types of techniques are capable of disclosing unknown attacks.

However, they are not fully reliable and they trigger a certain amount of false alarms.

Therefore, it is necessary to combine the two types of detection engines in order to avoid

an excessive amount of false positives and also to be able to detect unknown attacks.

Incorporating a correlation system which brings together alarms triggered by both de-

tection engines has significantly shown an increase of the detection rate. Additionally, it

reduces the number of relevant alarms that need the administrator’s attention.

This thesis has put more focus on the anomaly-based detection engine because it can

offer more flexibility and adaptability to different WSNs than the rule-based engine.

Instead of using static rules, the anomaly-based engine uses mathematical models that

are constantly updated using the data gathered from the WSNs. In this way, this engine

is responsible to create the models that define the normal behavior of the variables and,

then, use these models to verify that new data from the WSNs come without anomalies.

This engine has to be capable of finding normality boundaries for single variables and

also identify not normal situations considering the relationship between several variables

at the same time. In this thesis, we have studied several multivariate anomaly detection

techniques, and we have concluded that OC-SVM is very suitable in this context. This

is a semi-supervised machine learning technique, which has given good detection results

in several scenarios incorporating in the models different application and network status

variables from the different layers of the WSN communication protocols. As a result of

the studies included in this dissertation, we have determined that the sequence number of

the application packet and the battery level are the minimum network status information

that providers have to send from the sensor nodes to the smart city central servers to be

able to run successful anomaly analysis.

Furthermore, this thesis has shown that intrusion detection with the proposed methods

requires several steps. For instance, data have to be pre-processed and aggregated, and

Chapter 7. Conclusions and future work 123

machine learning models need to be trained and, then, anomaly analysis can be per-

formed. We have analyzed the computational complexity of the different steps and we

have identified model computation and intrusion detection as the most critical subpro-

cesses among these steps. On the one hand, model computation has to be considered

critical, because the computational complexity of training machine learning models is

generally very high. However, this action is executed very seldom. On the other hand,

anomaly detection is generally computationally inexpensive, but it has to be executed

very often. This thesis validates that the pipeline involving all the required steps is viable

even in scenarios involving big data without having to rely on a hardware architecture

with exceptionally high computational resources.

Additionally, one of the main challenges for smart city administrators is not only to

detect that an attack is compromising the WSNs of the external providers, but also to

identify the specific attack. This thesis has provided guidelines to gather the evidences

of the attack and then point out one of seven proposed attack models. In this way, smart

city administrators narrow down the possible attack type affecting their networks and

they can also figure out the compromised devices and some mitigation strategies to limit

short and medium term harmful consequences of the attacks.

Summing up, in this thesis we have proposed a system that contributes to improve

smart city WSN security in a generic manner. The solutions proposed in this thesis are

suitable to be adapted and deployed to several smart city models. In order to adapt

the proposed solutions, smart cities need to further study the consequences of attacks

in their particular scenarios and extend or reduce the solutions proposed in this thesis

according to their circumstances. In this way, the proposed solutions can help smart city

administrators to enhance security, to mitigate the consequences of attacks, to increase

data quality, to monitor that providers apply the necessary security countermeasures in

their networks, and, in general, to improve WSN security as a whole.

As a result of our work, we have seen that intrusion detection in a smart city is a very

complex problem. A black-box solution with a multipurpose detection algorithm that

covers most of the attacks for most of the configurations is not feasible. This thesis is a

first contribution on this research field and it does not aim to include a comprehensive

intrusion detection system capable of disclosing any attack targeting any possible business

case in any type of smart city. Therefore, smart city administrators can use the tools

Chapter 7. Conclusions and future work 124

proposed in this thesis as a basis and adapt these solutions to the particular cases in

their cities.

7.2 Future work

This thesis has presented generic methods that can be used in many smart city situa-

tions focusing on problems concerning typical attacks that can affect several smart city

WSNs. As future work, it would be of great value to provide the best ways to detect

attacks taking into account the specificities of the typical services included in the smart

cities. Although we have already suggested certain algorithms to set thresholds up, data

integrity attacks have different effects for application data in the different services and,

therefore, in order to have more effective detection, it is necessary to study how attacks

affect the most important variables on each service or in the network, and then find the

best algorithm to detect them. For example, it would be useful to find the best way to

automatically determine the boundaries for sound meters or for the RSSI in the most

used WSNs configurations.

Moreover, it is also important to enhance the guidelines provided in this thesis with a

methodology to configure the necessary parameters to run the proposed intrusion detec-

tion processes. This would be very useful, for instance, to set up the OC-SVM parameters

or to find the most adequate time window size to aggregate data. Furthermore, the guide-

lines of the thesis have to also be enhanced with a methodology to build correlation rules

integrating alarms from the two detection engines.

It also remains as future work to find a clustering methodology to divide the networks in

small areas, with which administrators can apply the detection techniques and withdraw

relevant conclusions bearing in mind the compromised frequency bands, protocols, node

location, etc. The experiments performed in this thesis have used small networks or the

scenarios were divided ad-hoc. However, in a real smart city situation with multiple

WSNs, these tasks need to be handled by algorithms in order to make them scalable.

Finally, we have proposed guidelines that narrow down the list of candidate attacks

compromising a system, the affected components and providers. However, in a real smart

city it is necessary to have an automatic system including a comprehensive list of attacks

and other possible causes of network malfunctioning. The rule-based detection engine is

Chapter 7. Conclusions and future work 125

theoretically capable of identifying any type of known attack if it leaves traces on the

data. However, as far as we know, there are currently no public signature databases to

identify attacks in this context. Additionally, if large datasets of labeled data from the

smart city WSNs were available, then, it would be possible to use supervised machine

learning algorithms to train models to classify the anomalies into specific attacks. The

availability of large datasets of labeled data would also allow studying the performance

of deep learning techniques in this context. The analysis of these type of techniques also

remains as future work.

Appendix A

Supplementary materials for

Chapter 4

This Appendix contains supplementary materials for Chapter 4. Each table shows the

results of the experiments considering a different feature vector and/or a different PFPR.

126

Appendix A. Supplementary materials for Chapter 4 127

Table A.1: Comparative study results for the FV1 dataset with a very restrictive
PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.60 0.71 0.73
All attacks lofactor 0.12 0.05 0.06
All attacks mahalanobis 0.05 0.05 0.02
All attacks hierarchical clustering 0.12 0.06 0.07

Jamming near 4 ocsvm 0.63 0.67 0.77
Jamming near 4 lofactor 0.21 0.05 0.12
Jamming near 4 mahalanobis 0.10 0.05 0.05
Jamming near 4 hierarchical clustering 0.18 0.06 0.10
Jamming near 9 ocsvm 0.62 0.70 0.76
Jamming near 9 lofactor 0.13 0.05 0.07
Jamming near 9 mahalanobis 0.10 0.05 0.05
Jamming near 9 hierarchical clustering 0.07 0.06 0.04
Jamming near BS ocsvm 0.77 0.26 0.79
Jamming near BS lofactor 0.04 0.05 0.02
Jamming near BS mahalanobis 0.02 0.05 0.01
Jamming near BS hierarchical clustering 0.08 0.06 0.04

Selective forwarding 30% ocsvm 0.54 0.97 0.73
Selective forwarding 30% lofactor 0.11 0.05 0.06
Selective forwarding 30% mahalanobis 0.03 0.05 0.01
Selective forwarding 30% hierarchical clustering 0.06 0.06 0.03
Selective forwarding 50% ocsvm 0.57 0.95 0.79
Selective forwarding 50% lofactor 0.08 0.05 0.05
Selective forwarding 50% mahalanobis 0.05 0.05 0.03
Selective forwarding 50% hierarchical clustering 0.07 0.06 0.03
Selective forwarding 70% ocsvm 0.58 0.90 0.78
Selective forwarding 70% lofactor 0.05 0.05 0.03
Selective forwarding 70% mahalanobis 0.03 0.05 0.02
Selective forwarding 70% hierarchical clustering 0.14 0.06 0.08
Selective forwarding 90% ocsvm 0.61 0.72 0.75
Selective forwarding 90% lofactor 0.07 0.05 0.04
Selective forwarding 90% mahalanobis 0.03 0.05 0.02
Selective forwarding 90% hierarchical clustering 0.15 0.06 0.08

Appendix A. Supplementary materials for Chapter 4 128

Table A.2: Comparative study results for the FV1 dataset with a restrictive PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.6 0.7 0.72
All attacks lofactor 0.2 0.1 0.11
All attacks mahalanobis 0.11 0.1 0.06
All attacks hierarchical clustering 0.26 0.1 0.16

Jamming near 4 ocsvm 0.63 0.67 0.76
Jamming near 4 lofactor 0.31 0.1 0.19
Jamming near 4 mahalanobis 0.19 0.1 0.11
Jamming near 4 hierarchical clustering 0.32 0.1 0.2
Jamming near 9 ocsvm 0.63 0.69 0.77
Jamming near 9 lofactor 0.3 0.1 0.19
Jamming near 9 mahalanobis 0.17 0.1 0.09
Jamming near 9 hierarchical clustering 0.2 0.1 0.12
Jamming near BS ocsvm 0.79 0.23 0.79
Jamming near BS lofactor 0.11 0.1 0.06
Jamming near BS mahalanobis 0.07 0.1 0.04
Jamming near BS hierarchical clustering 0.2 0.1 0.12

Selective forwarding 30% ocsvm 0.54 0.97 0.72
Selective forwarding 30% lofactor 0.18 0.1 0.1
Selective forwarding 30% mahalanobis 0.09 0.1 0.05
Selective forwarding 30% hierarchical clustering 0.18 0.1 0.1
Selective forwarding 50% ocsvm 0.57 0.94 0.78
Selective forwarding 50% lofactor 0.15 0.1 0.08
Selective forwarding 50% mahalanobis 0.11 0.1 0.06
Selective forwarding 50% hierarchical clustering 0.19 0.1 0.11
Selective forwarding 70% ocsvm 0.58 0.9 0.78
Selective forwarding 70% lofactor 0.12 0.1 0.07
Selective forwarding 70% mahalanobis 0.07 0.1 0.04
Selective forwarding 70% hierarchical clustering 0.24 0.1 0.14
Selective forwarding 90% ocsvm 0.61 0.7 0.76
Selective forwarding 90% lofactor 0.11 0.1 0.06
Selective forwarding 90% mahalanobis 0.06 0.1 0.03
Selective forwarding 90% hierarchical clustering 0.3 0.1 0.19

Appendix A. Supplementary materials for Chapter 4 129

Table A.3: Comparative study results for the FV1 dataset with a permissive PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.58 0.68 0.69
All attacks lofactor 0.25 0.15 0.15
All attacks mahalanobis 0.12 0.15 0.07
All attacks hierarchical clustering 0.39 0.16 0.26

Jamming near 4 ocsvm 0.62 0.64 0.73
Jamming near 4 lofactor 0.38 0.15 0.25
Jamming near 4 mahalanobis 0.22 0.15 0.13
Jamming near 4 hierarchical clustering 0.40 0.16 0.27
Jamming near 9 ocsvm 0.62 0.67 0.74
Jamming near 9 lofactor 0.35 0.15 0.23
Jamming near 9 mahalanobis 0.19 0.15 0.11
Jamming near 9 hierarchical clustering 0.29 0.16 0.18
Jamming near BS ocsvm 0.79 0.16 0.76
Jamming near BS lofactor 0.14 0.15 0.08
Jamming near BS mahalanobis 0.09 0.15 0.05
Jamming near BS hierarchical clustering 0.42 0.16 0.28

Selective forwarding 30% ocsvm 0.52 0.96 0.69
Selective forwarding 30% lofactor 0.23 0.15 0.14
Selective forwarding 30% mahalanobis 0.11 0.15 0.06
Selective forwarding 30% hierarchical clustering 0.26 0.16 0.16
Selective forwarding 50% ocsvm 0.56 0.91 0.75
Selective forwarding 50% lofactor 0.21 0.15 0.13
Selective forwarding 50% mahalanobis 0.11 0.15 0.06
Selective forwarding 50% hierarchical clustering 0.28 0.16 0.18
Selective forwarding 70% ocsvm 0.57 0.85 0.74
Selective forwarding 70% lofactor 0.19 0.15 0.11
Selective forwarding 70% mahalanobis 0.08 0.15 0.05
Selective forwarding 70% hierarchical clustering 0.36 0.16 0.24
Selective forwarding 90% ocsvm 0.62 0.66 0.74
Selective forwarding 90% lofactor 0.15 0.15 0.09
Selective forwarding 90% mahalanobis 0.06 0.15 0.03
Selective forwarding 90% hierarchical clustering 0.44 0.16 0.30

Appendix A. Supplementary materials for Chapter 4 130

Table A.4: Comparative study results for the FV2 dataset with a very restrictive
PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.85 0.02 0.76
All attacks lofactor 0.60 0.05 0.44
All attacks mahalanobis 0.64 0.05 0.49
All attacks hierarchical clustering 0.31 0.07 0.19

Jamming near 4 ocsvm 0.86 0.00 0.75
Jamming near 4 lofactor 0.69 0.05 0.53
Jamming near 4 mahalanobis 0.67 0.05 0.52
Jamming near 4 hierarchical clustering 0.49 0.07 0.33
Jamming near 9 ocsvm 0.88 0.00 0.78
Jamming near 9 lofactor 0.67 0.05 0.52
Jamming near 9 mahalanobis 0.67 0.05 0.52
Jamming near 9 hierarchical clustering 0.35 0.07 0.22
Jamming near BS ocsvm 0.86 0.00 0.76
Jamming near BS lofactor 0.68 0.05 0.52
Jamming near BS mahalanobis 0.67 0.05 0.51
Jamming near BS hierarchical clustering 0.62 0.07 0.47

Selective forwarding 30% ocsvm 0.81 0.12 0.76
Selective forwarding 30% lofactor 0.22 0.05 0.13
Selective forwarding 30% mahalanobis 0.60 0.05 0.44
Selective forwarding 30% hierarchical clustering 0.00 0.07 0.00
Selective forwarding 50% ocsvm 0.82 0.05 0.73
Selective forwarding 50% lofactor 0.50 0.05 0.34
Selective forwarding 50% mahalanobis 0.61 0.05 0.45
Selective forwarding 50% hierarchical clustering 0.00 0.07 0.00
Selective forwarding 70% ocsvm 0.87 0.03 0.79
Selective forwarding 70% lofactor 0.60 0.05 0.44
Selective forwarding 70% mahalanobis 0.63 0.05 0.47
Selective forwarding 70% hierarchical clustering 0.23 0.07 0.14
Selective forwarding 90% ocsvm 0.84 0.01 0.73
Selective forwarding 90% lofactor 0.64 0.05 0.48
Selective forwarding 90% mahalanobis 0.64 0.05 0.48
Selective forwarding 90% hierarchical clustering 0.44 0.07 0.29

Appendix A. Supplementary materials for Chapter 4 131

Table A.5: Comparative study results for the FV2 dataset with a restrictive PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.85 0.02 0.76
All attacks lofactor 0.63 0.10 0.48
All attacks mahalanobis 0.66 0.10 0.51
All attacks hierarchical clustering 0.52 0.10 0.37

Jamming near 4 ocsvm 0.86 0.00 0.75
Jamming near 4 lofactor 0.69 0.10 0.55
Jamming near 4 mahalanobis 0.68 0.10 0.54
Jamming near 4 hierarchical clustering 0.68 0.10 0.54
Jamming near 9 ocsvm 0.88 0.00 0.78
Jamming near 9 lofactor 0.67 0.10 0.53
Jamming near 9 mahalanobis 0.68 0.10 0.55
Jamming near 9 hierarchical clustering 0.66 0.10 0.52
Jamming near BS ocsvm 0.86 0.00 0.76
Jamming near BS lofactor 0.69 0.10 0.55
Jamming near BS mahalanobis 0.67 0.10 0.53
Jamming near BS hierarchical clustering 0.68 0.10 0.54

Selective forwarding 30% ocsvm 0.81 0.12 0.76
Selective forwarding 30% lofactor 0.35 0.10 0.22
Selective forwarding 30% mahalanobis 0.61 0.10 0.46
Selective forwarding 30% hierarchical clustering 0.11 0.10 0.06
Selective forwarding 50% ocsvm 0.82 0.06 0.73
Selective forwarding 50% lofactor 0.56 0.10 0.41
Selective forwarding 50% mahalanobis 0.63 0.10 0.49
Selective forwarding 50% hierarchical clustering 0.29 0.10 0.18
Selective forwarding 70% ocsvm 0.87 0.03 0.79
Selective forwarding 70% lofactor 0.61 0.10 0.47
Selective forwarding 70% mahalanobis 0.65 0.10 0.50
Selective forwarding 70% hierarchical clustering 0.54 0.10 0.39
Selective forwarding 90% ocsvm 0.84 0.01 0.73
Selective forwarding 90% lofactor 0.65 0.10 0.50
Selective forwarding 90% mahalanobis 0.66 0.10 0.51
Selective forwarding 90% hierarchical clustering 0.59 0.10 0.44

Appendix A. Supplementary materials for Chapter 4 132

Table A.6: Comparative study results for the FV2 dataset with a permissive PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.81 0.02 0.70
All attacks lofactor 0.64 0.15 0.51
All attacks mahalanobis 0.67 0.15 0.54
All attacks hierarchical clustering 0.67 0.21 0.55

Jamming near 4 ocsvm 0.81 0.00 0.67
Jamming near 4 lofactor 0.69 0.15 0.57
Jamming near 4 mahalanobis 0.68 0.15 0.55
Jamming near 4 hierarchical clustering 0.73 0.21 0.63
Jamming near 9 ocsvm 0.83 0.00 0.70
Jamming near 9 lofactor 0.67 0.15 0.55
Jamming near 9 mahalanobis 0.69 0.15 0.56
Jamming near 9 hierarchical clustering 0.73 0.21 0.64
Jamming near BS ocsvm 0.83 0.00 0.70
Jamming near BS lofactor 0.69 0.15 0.57
Jamming near BS mahalanobis 0.68 0.15 0.55
Jamming near BS hierarchical clustering 0.73 0.21 0.63

Selective forwarding 30% ocsvm 0.77 0.11 0.70
Selective forwarding 30% lofactor 0.38 0.15 0.26
Selective forwarding 30% mahalanobis 0.63 0.15 0.50
Selective forwarding 30% hierarchical clustering 0.41 0.21 0.28
Selective forwarding 50% ocsvm 0.78 0.05 0.67
Selective forwarding 50% lofactor 0.57 0.15 0.43
Selective forwarding 50% mahalanobis 0.66 0.15 0.53
Selective forwarding 50% hierarchical clustering 0.60 0.21 0.47
Selective forwarding 70% ocsvm 0.83 0.03 0.73
Selective forwarding 70% lofactor 0.62 0.15 0.49
Selective forwarding 70% mahalanobis 0.65 0.15 0.52
Selective forwarding 70% hierarchical clustering 0.66 0.21 0.54
Selective forwarding 90% ocsvm 0.80 0.01 0.68
Selective forwarding 90% lofactor 0.65 0.15 0.52
Selective forwarding 90% mahalanobis 0.67 0.15 0.54
Selective forwarding 90% hierarchical clustering 0.69 0.21 0.58

Appendix A. Supplementary materials for Chapter 4 133

Table A.7: Comparative study results for the FV3 dataset with a very restrictive
PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.87 0.03 0.80
All attacks lofactor 0.51 0.05 0.35
All attacks mahalanobis 0.53 0.05 0.37
All attacks hierarchical clustering 0.34 0.05 0.21

Jamming near 4 ocsvm 0.90 0.00 0.82
Jamming near 4 lofactor 0.69 0.05 0.54
Jamming near 4 mahalanobis 0.57 0.05 0.40
Jamming near 4 hierarchical clustering 0.63 0.05 0.47
Jamming near 9 ocsvm 0.90 0.00 0.82
Jamming near 9 lofactor 0.68 0.05 0.52
Jamming near 9 mahalanobis 0.58 0.05 0.42
Jamming near 9 hierarchical clustering 0.61 0.05 0.45
Jamming near BS ocsvm 0.90 0.00 0.81
Jamming near BS lofactor 0.68 0.05 0.53
Jamming near BS mahalanobis 0.47 0.05 0.31
Jamming near BS hierarchical clustering 0.65 0.05 0.50

Selective forwarding 30% ocsvm 0.82 0.15 0.80
Selective forwarding 30% lofactor 0.12 0.05 0.07
Selective forwarding 30% mahalanobis 0.44 0.05 0.29
Selective forwarding 30% hierarchical clustering 0.01 0.05 0.00
Selective forwarding 50% ocsvm 0.87 0.09 0.83
Selective forwarding 50% lofactor 0.22 0.05 0.12
Selective forwarding 50% mahalanobis 0.51 0.05 0.35
Selective forwarding 50% hierarchical clustering 0.01 0.05 0.01
Selective forwarding 70% ocsvm 0.88 0.05 0.82
Selective forwarding 70% lofactor 0.41 0.05 0.27
Selective forwarding 70% mahalanobis 0.55 0.05 0.39
Selective forwarding 70% hierarchical clustering 0.04 0.05 0.02
Selective forwarding 90% ocsvm 0.88 0.02 0.80
Selective forwarding 90% lofactor 0.58 0.05 0.42
Selective forwarding 90% mahalanobis 0.55 0.05 0.39
Selective forwarding 90% hierarchical clustering 0.15 0.05 0.08

Appendix A. Supplementary materials for Chapter 4 134

Table A.8: Comparative study results for the FV3 dataset with a restrictive PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.86 0.03 0.77
All attacks lofactor 0.55 0.10 0.39
All attacks mahalanobis 0.60 0.10 0.45
All attacks hierarchical clustering 0.54 0.14 0.40

Jamming near 4 ocsvm 0.89 0.00 0.80
Jamming near 4 lofactor 0.69 0.10 0.55
Jamming near 4 mahalanobis 0.61 0.10 0.46
Jamming near 4 hierarchical clustering 0.71 0.14 0.59
Jamming near 9 ocsvm 0.89 0.00 0.80
Jamming near 9 lofactor 0.67 0.10 0.53
Jamming near 9 mahalanobis 0.63 0.10 0.49
Jamming near 9 hierarchical clustering 0.68 0.14 0.55
Jamming near BS ocsvm 0.89 0.00 0.80
Jamming near BS lofactor 0.69 0.10 0.55
Jamming near BS mahalanobis 0.53 0.10 0.38
Jamming near BS hierarchical clustering 0.69 0.14 0.57

Selective forwarding 30% ocsvm 0.80 0.15 0.77
Selective forwarding 30% lofactor 0.17 0.10 0.10
Selective forwarding 30% mahalanobis 0.56 0.10 0.41
Selective forwarding 30% hierarchical clustering 0.28 0.14 0.17
Selective forwarding 50% ocsvm 0.86 0.09 0.83
Selective forwarding 50% lofactor 0.30 0.10 0.18
Selective forwarding 50% mahalanobis 0.58 0.10 0.43
Selective forwarding 50% hierarchical clustering 0.27 0.14 0.17
Selective forwarding 70% ocsvm 0.87 0.05 0.81
Selective forwarding 70% lofactor 0.48 0.10 0.33
Selective forwarding 70% mahalanobis 0.62 0.10 0.47
Selective forwarding 70% hierarchical clustering 0.44 0.14 0.30
Selective forwarding 90% ocsvm 0.87 0.02 0.78
Selective forwarding 90% lofactor 0.60 0.10 0.45
Selective forwarding 90% mahalanobis 0.60 0.10 0.45
Selective forwarding 90% hierarchical clustering 0.55 0.14 0.41

Appendix A. Supplementary materials for Chapter 4 135

Table A.9: Comparative study results for the FV3 dataset with a permissive PFPR.

attack technique F-score FPR TPR
All attacks ocsvm 0.84 0.03 0.75
All attacks lofactor 0.57 0.15 0.43
All attacks mahalanobis 0.62 0.15 0.48
All attacks hierarchical clustering 0.62 0.22 0.49

Jamming near 4 ocsvm 0.88 0.00 0.78
Jamming near 4 lofactor 0.68 0.15 0.56
Jamming near 4 mahalanobis 0.62 0.15 0.49
Jamming near 4 hierarchical clustering 0.71 0.22 0.62
Jamming near 9 ocsvm 0.88 0.00 0.79
Jamming near 9 lofactor 0.67 0.15 0.54
Jamming near 9 mahalanobis 0.65 0.15 0.51
Jamming near 9 hierarchical clustering 0.71 0.22 0.61
Jamming near BS ocsvm 0.88 0.00 0.78
Jamming near BS lofactor 0.68 0.15 0.56
Jamming near BS mahalanobis 0.54 0.15 0.40
Jamming near BS hierarchical clustering 0.70 0.22 0.60

Selective forwarding 30% ocsvm 0.80 0.14 0.75
Selective forwarding 30% lofactor 0.23 0.15 0.14
Selective forwarding 30% mahalanobis 0.60 0.15 0.46
Selective forwarding 30% hierarchical clustering 0.37 0.22 0.25
Selective forwarding 50% ocsvm 0.85 0.08 0.81
Selective forwarding 50% lofactor 0.35 0.15 0.22
Selective forwarding 50% mahalanobis 0.60 0.15 0.46
Selective forwarding 50% hierarchical clustering 0.45 0.22 0.32
Selective forwarding 70% ocsvm 0.87 0.04 0.80
Selective forwarding 70% lofactor 0.50 0.15 0.36
Selective forwarding 70% mahalanobis 0.62 0.15 0.49
Selective forwarding 70% hierarchical clustering 0.55 0.22 0.42
Selective forwarding 90% ocsvm 0.86 0.02 0.77
Selective forwarding 90% lofactor 0.61 0.15 0.48
Selective forwarding 90% mahalanobis 0.63 0.15 0.49
Selective forwarding 90% hierarchical clustering 0.63 0.22 0.51

Bibliography

[1] Milind Naphade et al. “Smarter cities and their innovation challenges”. In: Com-

puter 44.6 (2011), pp. 32–39.

[2] Andrea Caragliu, Chiara Del Bo, and Peter Nijkamp. “Smart cities in Europe”.

In: Journal of urban technology 18.2 (2011), pp. 65–82.

[3] Constantin Gurdgiev, S Dirks, and M Keeling. “Smarter cities for smarter growth”.

In: IBM Institute for Business Value (2010).

[4] C Manville. Mapping Smart Cities in the EU. European Parliament, Directorate

General for Internal Policies, Policy Department–Economic and Scientific Policy.

Tech. rep. IP/A/ITRE/ST/2013-02, available http://www. europarl. europa. eu-

/RegData/etudes/etudes/join/2014/507480/IPOLITRE_ET (2014) 507480_EN.

df, 2014.

[5] The Royal Academy of Engineering. Smart infrastructure: the future. Tech. rep.

The Royal Academy of Engineering, 2012, pp. 16–17.

[6] Malik Tubaishat et al. “Wireless sensor-based traffic light control”. In: Conf. Con-

sumer Communications and Networking. IEEE. 2008, pp. 702–706.

[7] Ivan Stoianov et al. “PIPENET: A wireless sensor network for pipeline moni-

toring”. In: Int. Symp. Information Processing in Sensor Networks. IEEE. 2007,

pp. 264–273.

[8] N. Perlroth. Smart City Technology May Be Vulnerable to Hackers. http://

bits.blogs.nytimes.com/2015/04/21/smart-city-technology-may-be-

vulnerable-to-hackers/. Accessed: 2016-02-08. 2015.

[9] Branden Ghena et al. “Green lights forever: analyzing the security of traffic in-

frastructure”. In: Workshop on Offensive Technologies. USENIX. 2014.

136

http://bits.blogs.nytimes.com/2015/04/21/smart-city-technology-may-be-vulnerable-to-hackers/
http://bits.blogs.nytimes.com/2015/04/21/smart-city-technology-may-be-vulnerable-to-hackers/
http://bits.blogs.nytimes.com/2015/04/21/smart-city-technology-may-be-vulnerable-to-hackers/

Bibliography 137

[10] Jhoana Mutiangpili. Government Sector Outsourcing. Tech. rep. Tholons, 2010,

p. 18.

[11] Felipe Gil-Castineira et al. “Experiences inside the ubiquitous Oulu smart city”.

In: Computer 44.6 (2011), pp. 48–55.

[12] Yong Woo Lee and Seungwoo Rho. “U-city portal for smart ubiquitous mid-

dleware”. In: Int. Conf. Advanced Communication Technology (ICACT). Vol. 1.

IEEE. 2010, pp. 609–613.

[13] Min Chen. “Towards smart city: M2M communications with software agent intel-

ligence”. In: Multimedia Tools and Applications 67.1 (2013), pp. 167–178.

[14] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural el-

ements, and future directions”. In: Future Generation Computer Systems 29.7

(2013), pp. 1645–1660.

[15] Luis Sanchez et al. “SmartSantander: IoT experimentation over a smart city

testbed”. In: Computer Networks 61 (2014), pp. 217–238.

[16] Inc. Sensys Networks. Sensys Networks VDS240 Wireless Vehicle Detection Sys-

tem. Design Guidelines for Intersection Applications. Tech. rep. Sensys Networks,

Inc., 2014.

[17] Briony J Oates. Researching information systems and computing. Sage, 2005.

[18] Doug Laney. “3D data management: Controlling data volume, velocity and vari-

ety”. In: META Group Research Note 6 (2001), p. 70.

[19] Michael Batty. Smart Cities and Big Data. http://www.spatialcomplexity.

info/files/2013/07/BATTY-AESOP-ACSP-20131.pdf. Accessed: 2016-08-09.

2012.

[20] Shintaro Yamamoto, Shinsuke Matsumoto, and Masahide Nakamura. “Using cloud

technologies for large-scale house data in smart city”. In: IEEE 4th Int. Conf. on

Cloud Computing Technology and Science (CloudCom). IEEE. 2012, pp. 141–148.

[21] Min Chen, Shiwen Mao, and Yunhao Liu. “Big data: a survey”. In: Mobile Net-

works and Applications 19.2 (2014), pp. 171–209.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google file sys-

tem”. In: ACM SIGOPS operating systems review. Vol. 37. ACM. 2003, pp. 29–

43.

http://www.spatialcomplexity.info/files/2013/07/BATTY-AESOP-ACSP-20131.pdf
http://www.spatialcomplexity.info/files/2013/07/BATTY-AESOP-ACSP-20131.pdf

Bibliography 138

[23] Konstantin Shvachko et al. “The Hadoop distributed file system”. In: 2010 IEEE

26th symposium on mass storage systems and technologies (MSST). IEEE. 2010,

pp. 1–10.

[24] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on

large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[25] Xiaochong Zhang. The overall MapReduce word count process. http://xiaochongzhang.

me/blog/wp-content/uploads/2013/05/MapReduce_Work_Structure.png. Ac-

cessed: 2016-08-31. 2013.

[26] Shimin Chen and Steven W Schlosser. “Map-reduce meets wider varieties of ap-

plications”. In: Intel Research Pittsburgh, Tech. Rep. IRP-TR-08 5 (2008).

[27] Fadhilah Kurnia Putri et al. “Finding Frequent Route of Taxi Trip Events Based

on MapReduce and MongoDB”. In: KIPS Transactions on Software and Data

Engineering 4.9 (2015), pp. 347–356.

[28] Bin Cheng et al. “Building a Big Data Platform for Smart Cities: Experience and

Lessons from Santander”. In: 2015 IEEE Int. Congress on Big Data. IEEE. 2015,

pp. 592–599.

[29] David Miller et al. Security information and event management (SIEM) imple-

mentation. McGraw Hill Professional, 2010.

[30] Stephen Sorkin. Large-Scale, Unstructured Data Retrieval and Analysis Using

Splunk. Tech. rep. Accessed: 2016-08-09. Splunk Inc., 2011, p. 7. url: https:

//www.splunk.com/web_assets/pdfs/secure/Splunk_and_MapReduce.pdf.

[31] Juan Manuel Lorenzo. AlienVault Installation Guide. Tech. rep. AlienVault LC,

2010, p. 52.

[32] Chris Meering and Paolo Balella. Smart cities and the Internet of Things. Mu-

nicipal transformation with the HPE Universal IoT Platform. Tech. rep. Hewlett

Packard Enterprise Development LP, 2016.

[33] Fabio Leccese, Marco Cagnetti, and Daniele Trinca. “A smart city application: A

fully controlled street lighting isle based on Raspberry-Pi card, a ZigBee sensor

network and WiMAX”. In: Sensors 14.12 (2014), pp. 24408–24424.

[34] Inc. Ruckus Wireless. Public Access: City of San Jose. Tech. rep. Ruckus Wireless,

Inc., 2014.

http://xiaochongzhang.me/blog/wp-content/uploads/2013/05/MapReduce_Work_Structure.png
http://xiaochongzhang.me/blog/wp-content/uploads/2013/05/MapReduce_Work_Structure.png
https://www.splunk.com/web_assets/pdfs/secure/Splunk_and_MapReduce.pdf
https://www.splunk.com/web_assets/pdfs/secure/Splunk_and_MapReduce.pdf

Bibliography 139

[35] Mark Anderson. “WiMax for smart grids”. In: IEEE Spectrum 47.7 (2010), pp. 14–

14.

[36] Inc. LinkLabs. A comprehensive look at Low Power, Wide Area Networks For

Internet of Things Engineers and Decision Makers. Tech. rep. LinkLabs, Inc.,

2016.

[37] Libelium Comunicaciones Distribuidas S.L. Plug & Sense! Smart parking. Tech.

rep. Libelium Comunicaciones Distribuidas S.L., 2016.

[38] IEEE Computer Society. IEEE Standard for Local and metropolitan area networks

- Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). Tech. rep.

IEEE Computer Society, 2011, p. 294.

[39] Lamia Chaari and Lotfi Kamoun. “Wireless sensors networks MAC protocols anal-

ysis”. In: arXiv preprint arXiv:1004.4600 (2010).

[40] ZigBee Standards Organization. Zigbee specification. Tech. rep. ZigBee Standards

Organization, 2012, p. 594.

[41] Gabriel Montenegro et al. Transmission of IPv6 packets over IEEE 802.15. 4

networks. Tech. rep. The IETF Trust, 2007.

[42] Vinay Kumar and Sudarshan Tiwari. “Routing in IPv6 over low-power wireless

personal area networks (6LoWPAN): A survey”. In: Journal of Computer Networks

and Communications 2012 (2012).

[43] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. Ad hoc on-demand

distance vector (AODV) routing. Tech. rep. The IETF Trust, 2003.

[44] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained application

protocol (CoAP). Tech. rep. The IETF Trust, 2014.

[45] T Kavitha and D Sridharan. “Security vulnerabilities in wireless sensor networks:

A survey”. In: Journal of information Assurance and Security 5.1 (2010), pp. 31–

44.

[46] Hero Modares, Rosli Salleh, and Amirhossein Moravejosharieh. “Overview of secu-

rity issues in wireless sensor networks”. In: Int. Conf. Computational Intelligence,

Modelling and Simulation. IEEE. 2011, pp. 308–311.

[47] Javier Lopez and Jianying Zhou. “Overview of wireless sensor network security”.

In: Wireless sensor network security. IOS Press, incorporated (2008), pp. 1–21.

Bibliography 140

[48] Wooyoung Jung et al. “SSL-based lightweight security of IP-based wireless sen-

sor networks”. In: Int. Conf. Advanced Information Networking and Applications

Workshops. IEEE. 2009, pp. 1112–1117.

[49] David Gascón. IoT Security Infographic – Privacy, Authenticity, Confidentiality

and Integrity of the Sensor Data. “The Invisible Asset”. http://libelium.com/

downloads/security_infographic.pdf. Accessed: 2016-08-10. 2015.

[50] Aristides Mpitziopoulos et al. “Defending wireless sensor networks from jamming

attacks”. In: Int. Symposium Personal, Indoor and Mobile Radio Communications.

IEEE. 2007, pp. 1–5.

[51] Ilkyu Kim et al. “A Distributed Signature Detection Method for Detecting Intru-

sions in Sensor Systems”. In: Sensors 13.4 (2013), pp. 3998–4016.

[52] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A

Survey”. In: ACM Comput. Surv. 41.3 (2009), 15:1–15:58.

[53] John W Tukey. Exploratory data analysis. Reading, Mass., 1977.

[54] Douglas C Montgomery, Cheryl L Jennings, and Murat Kulahci. Introduction to

time series analysis and forecasting. John Wiley & Sons, 2015.

[55] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine

learning 20.3 (1995), pp. 273–297.

[56] Edwin M Knorr and Raymond T Ng. “Finding intensional knowledge of distance-

based outliers”. In: VLDB. Vol. 99. 1999, pp. 211–222.

[57] Markus M Breunig et al. “LOF: identifying density-based local outliers”. In: ACM

sigmod record. Vol. 29. ACM. 2000, pp. 93–104.

[58] Aleksandar Lazarevic et al. “A Comparative Study of Anomaly Detection Schemes

in Network Intrusion Detection.” In: Int. Conf. Data Mining. SIAM. 2003, pp. 25–

36.

[59] Miao Xie et al. “Anomaly detection in wireless sensor networks: A survey”. In:

Journal of Network and Computer Applications 34.4 (2011), pp. 1302–1325.

[60] Yang Zhang et al. “Statistics-based outlier detection for wireless sensor networks”.

In: Int. Journal of Geographical Information Science 26.8 (2012), pp. 1373–1392.

[61] Jing Su et al. “Anomaly Detection of Single Sensors Using OCSVM_KNN”. In:

Big Data Computing and Communications. Springer, 2015, pp. 217–230.

http://libelium.com/downloads/security_infographic.pdf
http://libelium.com/downloads/security_infographic.pdf

Bibliography 141

[62] F. Liu, X. Cheng, and D. Chen. “Insider Attacker Detection in Wireless Sensor

Networks”. In: Int. Conf. on Computer Communications. IEEE. 2007, pp. 1937–

1945.

[63] Nauman Shahid, Ijaz Haider Naqvi, and Saad Bin Qaisar. “Characteristics and

classification of outlier detection techniques for wireless sensor networks in harsh

environments: a survey”. In: Artificial Intelligence Review 43.2 (2015), pp. 193–

228.

[64] Pu Cheng and Minghua Zhu. “Lightweight anomaly detection for wireless sensor

networks”. In: Int. Journal of Distributed Sensor Networks 2015 (2015), p. 3.

[65] Qin Yu, Lyu Jibin, and Lirui Jiang. “An Improved ARIMA-Based Traffic Anomaly

Detection Algorithm for Wireless Sensor Networks”. In: Int. Journal of Distributed

Sensor Networks 2016 (2016).

[66] Bordeaux Digital City. EUROCITIES Guidance webinar Standards WG. Tech.

rep. Bordeaux Digital City, 2016.

[67] International Organization for Standardization. Sustainable development of com-

munities – Indicators for city services and quality of life. ISO 37120:2014. Geneva,

Switzerland: International Organization for Standardization, 2014.

[68] International Telecommunication Union (ITU). ITU-T Y.4400 series – Smart

Sustainable Cities - Setting the framework for an ICT architecture. Tech. rep.

Geneva, Switzerland: International Telecommunication Union (ITU), 2016.

[69] International Telecommunication Union (ITU). ITU-T L.1600 - Key performance

indicators definitions for smart sustainable cities. Tech. rep. Geneva, Switzerland:

International Telecommunication Union (ITU), 2015.

[70] British Standards Institution. Guide to establishing a model for data interoperabil-

ity. Guide PD 182:2014. London, United Kingdom: British Standards Institution,

2014.

[71] British Standards Institution. Guide to the role of the planning and development

process. Guide PD 8101:2014. London, United Kingdom: British Standards Insti-

tution, 2014.

[72] AENOR. UNE 178102-1:2015. Smart cities. Infrastructures. Telecommunication

systems. Part 1: Multiservice city networks. Tech. rep. AENOR, 2015.

Bibliography 142

[73] AENOR. UNE 178104:2015. Smart cities. Infrastructures. Comprehensive sys-

tems for a Smart City management. Tech. rep. AENOR, 2015.

[74] AENOR. UNE 178107-4:2015 IN. Guidelines on smart cities infrastructures. Ac-

cess and transport networks. Part 4: Wireless Sensor Networks, WSN. Tech. rep.

AENOR, 2015.

[75] AENOR. UNE 178301:2015. Smart Cities. Open Data. Tech. rep. AENOR, 2015.

[76] Sergio Marti et al. “Mitigating routing misbehavior in mobile ad hoc networks”.

In: Int. Conf. Mobile Computing and Networking. ACM. 2000, pp. 255–265.

[77] Sumit Gupta, Rong Zheng, and Albert MK Cheng. “ANDES: an anomaly detec-

tion system for wireless sensor networks”. In: Int. Conf. Mobile Adhoc and Sensor

Systems. IEEE. 2007, pp. 1–9.

[78] Nithya Ramanathan et al. “Sympathy for the sensor network debugger”. In: Int.

Conf. Embedded Networked Sensor Systems. ACM. 2005, pp. 255–267.

[79] Pedro Domingos. “A few useful things to know about machine learning”. In: Com-

munications of the ACM 55.10 (2012), pp. 78–87.

[80] Sven Zacharias et al. “Identifying sources of interference in RSSI traces of a single

IEEE 802.15. 4 channel”. In: Int. Conf. on Wireless and Mobile Communications,

Venice, Italy. 2012.

[81] Georgy Shevlyakov et al. “Robust versions of the Tukey boxplot with their ap-

plication to detection of outliers”. In: 2013 IEEE Int. Conf. on Acoustics, Speech

and Signal Processing. IEEE. 2013, pp. 6506–6510.

[82] Chengwei Wang et al. “Statistical techniques for online anomaly detection in data

centers”. In: 12th IFIP/IEEE Int. Symp. on Integrated Network Management (IM

2011) and Workshops. IEEE. 2011, pp. 385–392.

[83] Osman Salem et al. “Online anomaly detection in wireless body area networks

for reliable healthcare monitoring”. In: IEEE journal of biomedical and health

informatics 18.5 (2014), pp. 1541–1551.

[84] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

[85] Chesner Désir et al. “One class random forests”. In: Pattern Recognition 46.12

(2013), pp. 3490–3506.

Bibliography 143

[86] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algo-

rithm for deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.

[87] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Information

Processing Systems 25. Curran Associates, Inc., 2012, pp. 1097–1105.

[88] Richard Socher et al. “Parsing natural scenes and natural language with recursive

neural networks”. In: Int. conf. on machine learning (ICML-11). 2011, pp. 129–

136.

[89] Sarah M Erfani et al. “High-dimensional and large-scale anomaly detection using

a linear one-class SVM with deep learning”. In: Pattern Recognition (2016).

[90] Victoria J Hodge and Jim Austin. “A survey of outlier detection methodologies”.

In: Artificial Intelligence Review 22.2 (2004), pp. 85–126.

[91] Lior Rokach and Oded Maimon. “Data mining and knowledge discovery hand-

book”. In: Springer, 2005. Chap. Clustering methods, pp. 321–352.

[92] Fionn Murtagh and Pierre Legendre. “Ward’s Hierarchical Agglomerative Clus-

tering Method: Which Algorithms Implement Ward’s Criterion?” In: Journal of

Classification 31.3 (2014), pp. 274–295.

[93] L. Torgo. Data Mining with R, learning with case studies. Chapman and Hal-

l/CRC, 2010. url: http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR.

[94] Alice Este, Francesco Gringoli, and Luca Salgarelli. “Support vector machines for

TCP traffic classification”. In: Computer Networks 53.14 (2009), pp. 2476–2490.

[95] Sophia Kaplantzis et al. “Detecting selective forwarding attacks in wireless sensor

networks using support vector machines”. In: Int. Conf. Intelligent Sensors, Sensor

Networks and Information. IEEE. 2007, pp. 335–340.

[96] Ling Zhuang and Honghua Dai. “Parameter optimization of kernel-based one-class

classifier on imbalance learning”. In: Journal of Computers 1.7 (2006), pp. 32–40.

[97] Smriti Joshi, Anant Kr Jaiswal, and Pushpendra Kr Tyagi. “A Novel Analysis of

T Mac and S Mac Protocol for Wireless Sensor Networks Using Castalia”. In: Int.

Journal of Soft Computing and Engineering 2.6 (2013), pp. 128–131.

http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR

Bibliography 144

[98] Yulia Ponomarchuk and Dae-Wha Seo. “A Lightweight and Effective Jamming

Detection in Electronic Shelf Label Systems”. In: Int. Conf. Ubiquitous Informa-

tion Technologies & Applications. IEEE. 2009, pp. 1–6.

[99] András Varga. “The omnet++ discrete event simulation system”. In: In ESM’01.

2001.

[100] Dimosthenis Pediaditakis, Yuri Tselishchev, and Athanassios Boulis. “Performance

and scalability evaluation of the Castalia wireless sensor network simulator”. In:

Int. Conf. Simulation Tools and Techniques. ICST. 2010, p. 53.

[101] Fredrik Osterlind et al. “Cross-level sensor network simulation with cooja”. In:

Conf. Local Computer Networks. IEEE. 2006, pp. 641–648.

[102] Lee Breslau et al. “Advances in Network Simulation”. In: IEEE Computer 33.5

(May 2000), pp. 59–67.

[103] Kamal Mehdi et al. “CupCarbon: a multi-agent and discrete event wireless sensor

network design and simulation tool”. In: Int. Conf. Simulation Tools and Tech-

niques. ICST. 2014, pp. 126–131.

[104] Ivan Minakov et al. “A comparative study of recent wireless sensor network sim-

ulators”. In: ACM Transactions on Sensor Networks (TOSN) 12.3 (2016), p. 20.

[105] Victor Garcia-Font, Carles Garrigues, and Helena Rifà-Pous. A comparative study

on anomaly detection techniques for smart city wireless sensor networks (Source

code). http://einfmark.uoc.edu/technology/get/id/2. Accessed: 2016-06-09.

2016.

[106] Texas Instruments. CC2420. 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver.

Tech. rep. Accessed: 2016-06-09. Texas Instruments, 2014, p. 85. url: http :

//www.ti.com/lit/ds/symlink/cc2420.pdf.

[107] Tijs Van Dam and Koen Langendoen. “An adaptive energy-efficient MAC protocol

for wireless sensor networks”. In: Int. Conf. Embedded networked sensor systems.

ACM. 2003, pp. 171–180.

[108] R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria, 2015. url: https://

www.R-project.org/.

http://einfmark.uoc.edu/technology/get/id/2
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
https://www.R-project.org/
https://www.R-project.org/

Bibliography 145

[109] David Meyer et al. e1071: Misc Functions of the Department of Statistics, Proba-

bility Theory Group (Formerly: E1071), TU Wien. R package version 1.6-6. 2015.

url: https://CRAN.R-project.org/package=e1071.

[110] Chih-Chung Chang and Chuan-bi Lin. “Training v-support vector classifiers: the-

ory and algorithms”. In: Neural computation 13.9 (2001), pp. 2119–2147.

[111] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Encyclopedia of Database Sys-

tems”. In: Springer US, 2009. Chap. Cross-Validation, pp. 532–538.

[112] Ranjan K Som. “Practical sampling techniques”. In: CRC press, 1995. Chap. Sim-

ple random sampling, pp. 38–40.

[113] Vladimir Cherkassky and Yunqian Ma. “Practical selection of SVM parameters

and noise estimation for SVM regression”. In: Neural networks 17.1 (2004), pp. 113–

126.

[114] Hani Omar, Van Hai Hoang, and Duen-Ren Liu. “A Hybrid Neural Network Model

for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles”.

In: Computational Intelligence and Neuroscience 2016 (2016).

[115] Scikit-learn developers. Scikit-learn. Support Vector Machines. http://scikit-

learn.org/stable/modules/svm.html. Accessed: 2016-08-14. 2014.

[116] Marc Claesen et al. “Fast prediction with SVM models containing RBF kernels”.

In: arXiv preprint arXiv:1403.0736 (2014).

[117] Max Kuhn. Contributions from Jed Wing et al. caret: Classification and Regres-

sion Training. R package version 6.0-47. 2015. url: https://CRAN.R-project.

org/package=caret.

[118] Christian Hennig. fpc: Flexible procedures for clustering. R package version 2.1-9.

2014. url: http://CRAN.R-project.org/package=fpc.

[119] Omprakash Gnawali et al. “Collection tree protocol”. In: Proceedings of the 7th

ACM Conf. on Embedded Networked Sensor Systems. ACM. 2009, pp. 1–14.

[120] Martin Ester et al. “A density-based algorithm for discovering clusters in large

spatial databases with noise.” In: Kdd. Vol. 96. 34. 1996, pp. 226–231.

https://CRAN.R-project.org/package=e1071
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=fpc

List of publications

Conference proceedings

[121] Victor Garcia Font, Carles Garrigues, and Helena Rifà Pous. “Seguridad en smart

cities e infraestructuras críticas”. In: Actas de la XIII Reunión Española sobre

Criptología y Seguridad de la Información (RECSI 2014). Universidad de Ali-

cante. 2014, pp. 221–226.

[122] Victor Garcia-Font, Carles Garrigues, and Helena Rifà-Pous. “An architecture for

the analysis and detection of anomalies in smart city WSNs”. In: Proceedings of the

First IEEE International Smart Cities Conference (ISC2). IEEE. 2015, pp. 207–

2012.

[123] Victor Garcia-Font, Carles Garrigues, and Helena Rifà-Pous. “Anomaly detection

in smart city parking data: A case study”. In: Actas de la XIV Reunión Española

sobre Criptología y Seguridad de la Información (RECSI 2016). Universitat de les

Illes Balears. 2016, pp. 81–85.

Journal articles

[124] Victor Garcia-Font, Carles Garrigues, and Helena Rifà-Pous. “A Comparative

Study of Anomaly Detection Techniques for Smart City Wireless Sensor Net-

works”. In: Sensors 16.6 (2016). Impact Factor=2.033(2015), 1st quartile, p. 868.

[125] Victor Garcia-Font, Carles Garrigues, and Helena Rifà-Pous. Attack classification

schema for smart city WSNs (under review). 2016.

146

T H E

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Smart city initiatives
	1.2 Generic smart city architecture
	1.3 Objectives
	1.4 Research methodology
	1.5 Contributions
	1.6 Thesis organization

	2 Background and related work
	2.1 Big data and the smart city
	2.1.1 Big data management mechanisms
	2.1.2 MapReduce
	2.1.3 Security information and event management

	2.2 Wireless sensor networks
	2.2.1 General overview
	2.2.2 Physical layer
	2.2.3 Data link layer
	2.2.4 Network layer
	2.2.5 Application layer

	2.3 WSN security
	2.3.1 Attacks on WSNs
	2.3.1.1 Attacks against the physical layer
	2.3.1.2 Attacks against the data link layer
	2.3.1.3 Attacks against the network layer
	2.3.1.4 Attacks against the transport layer
	2.3.1.5 Attacks against the application layer

	2.3.2 Basic countermeasures

	2.4 Intrusion detection
	2.4.1 Anomaly detection

	2.5 The role of standards
	2.6 Conclusions

	3 Architecture
	3.1 Main architecture requirements
	3.2 Architecture overview
	3.2.1 Data types
	3.2.2 Rule-based detection engine
	3.2.3 Anomaly-based detection engine

	3.3 Designing the anomaly-based detection engine
	3.3.1 Maintenance of machine learning models

	3.4 Intrusion analysis outline
	3.4.1 Preprocessing
	3.4.2 Filtering
	3.4.3 Clustering
	3.4.4 Aggregation
	3.4.5 Model computation
	3.4.6 Intrusion detection
	3.4.7 Alarm management

	3.5 Use case: attack on a parking WSN
	3.5.1 Scenarios
	3.5.2 Attack model
	3.5.3 Intrusion detection process
	3.5.3.1 Preprocessing, filtering, clustering and aggregation
	3.5.3.2 Model computation
	3.5.3.3 Intrusion detection
	3.5.3.4 Alarm management

	3.5.4 Results and discussion

	3.6 Conclusions

	4 A comparative study of anomaly detection techniques
	4.1 Description of anomaly detection techniques
	4.1.1 Mahalanobis distance
	4.1.2 Local outlier factor
	4.1.3 Hierarchical clustering
	4.1.4 Support vector machines

	4.2 Simulation and anomaly detection analysis
	4.2.1 Smart city security simulation challenges
	4.2.2 Experimental procedure
	4.2.3 Data collection
	4.2.4 Simulation
	4.2.5 Feature selection
	4.2.6 Anomaly analysis
	4.2.6.1 Training phase
	4.2.6.2 Validation and test phase

	4.3 Results and discussion
	4.4 Conclusions

	5 Intrusion detection pipeline viability
	5.1 Principal subprocesses
	5.1.1 Preprocessing
	5.1.2 Filtering
	5.1.3 Clustering
	5.1.4 Aggregation
	5.1.5 Model computation
	5.1.6 Intrusion detection
	5.1.7 Alarm management

	5.2 Temporal constraints
	5.3 Temporal analysis
	5.3.1 Results and discussion

	5.4 Conclusions

	6 Attack Classification schema
	6.1 Assumptions
	6.2 Alarms
	6.2.1 General alarm types
	6.2.2 Alarms triggered by correlation rules

	6.3 Attack models
	6.4 Classification procedure
	6.5 Contingency plans
	6.6 Proof of concept
	6.6.1 Scenario description
	6.6.2 Analysis
	6.6.2.1 Basic detection analysis
	6.6.2.2 Enhanced analysis with attack classification

	6.7 Conclusions

	7 Conclusions
	7.1 Conclusions
	7.2 Future work

	A Supplementary materials for Chapter 4
	Bibliography
	List of publications

