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Abstract

Current gravitational wave observations suggest that binary black hole (BBH) systems

will be the dominant gravitational waves sources in the frequency range of advanced grav-

itational waves detectors. The full time-frequency dynamics of these systems have been

long known to not be covered accurately by Post-Newtonian (PN) and Effective-One-

Body (EOB) formulations of the two body problem. In particular, they fail to reproduce

the merger-ringdown regimes where the strong general relativity (GR) effects arise. This

involves that any of the quantities computed from the analytic approximants will suffer

deviations that may induce an eventual loss of the signal-to-noise-ratio (SNR) and affect

the parameter estimation (PE) results. On the other hand, numerical relativity (NR)

simulations are thought to provide the most accurate representation of the full evolution

thus filling the gap left by the analytic models. Current nonprecessing gravitational wave

(GW) models are calibrated to NR data giving name to the so called inspiral-merger-

ringdown models (IMR) used in the LIGO template banks. Regarding the strategy they

follow in describing the GW strain, they are classified as the EOBNR (time domain)

and the Phenom-based models (frequency domain). Both approaches have been mainly

calibrated with spin-aligned NR simulations, where the physical information is mostly

described by means of the mass-ratio and some effective spin parameter. In this thesis

we have developed the framework for a recalibration of the phenomenological models by

adding a set of 23 unequal-spin NR simulations to include unequal-spin effects. To this

end, we have created a novel fitting strategy that has been particularly well suited for

the inclusion of the subdominant effects and the extreme mass-ratio regime. This new fit

strategy has been used for the calibration of new and upgraded fits to the final spin, final

mass and peak luminosity, being all of them used in the firsts LIGO GW observations.

This fitting methodology is currently being tested and adapted for the recalibration of

nonprecessing phenomenological models, also showing similar and promising results.
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Resum (en català)

All llarg de la història, l’ésser humà ha rebut i interpretat la informació arribada del

cel per mitjà de les ones electromagnètiques (la llum) provinent dels estels i galàxies

més llunyanes. Tant és aix́ı, que fins el 2015 aquest hauria sigut pràcticament l’únic

mitjà emprat per la comunitat cient́ıfica per a observar i estudiar els esdeveniment

astrof́ısics que succeeixen en el nostre cosmos. No obstant, el 14 de setembre de 2015

s’obri una nova finestra d’observació a l’univers gràcies a la primera detecció directa de les

ones gravitacionals concloent l’esforç perseguit des de fa dècades per les col·laboracions

cient́ıfiques LIGO i Virgo.

Les ones gravitacionals són minúscules oscil·lacions de l’espai-temps que es propaguen

a la velocitat de la llum. La seva descripció teòrica sorgeix de la teoria general de la

relativitat d’Albert Einstein i degut a la seva feblesa, necessitem dels esdeveniments

astrof́ısics més catastròfics per a poder detectar-les. La primera detecció de les ones

gravitacionals fou consistent amb l’aproximació, col·lisió i estabilització de dos forats

negres de 36 i 29 masses solars a 1300 milions d’anys llum els quals alliberaren al voltant

del 5% de la seva massa en forma de febles ones de l’espai-temps, essent l’event astrof́ısic

més potent mai observat. Aquest event fou anomenat GW150914 d’acord amb la data

d’observació i fou anunciat públicament anunciat l’11 de Febrer del 2016 per la col-

laboració LIGO-Virgo. No obstant, aquest no ha sigut l’únic event observat en el temps

de desenvolupament d’aquesta tesi doctoral. Essent fidel als requeriments estad́ıstics

que confirmen o desestimen qualsevol detecció, es pot certificar l’observació d’almenys

un event més també compatible amb la col·lisió de dos forats negres anomenat GW151226

i havent-hi un tercer el qual no va arribar als mı́nims estad́ıstics establerts anomenat

LVT151012.

La fusió de sistemes binaris de forats negres són un candidat òptim per a l’observació

i estudi de les ones gravitacionals. Les prediccions actuals apunten a aquests tipus

d’events com els més freqüents en els detectors terrestres LIGO. Llavors, per a una

òptima caracterització de les ones observades es necessiten també dels models teòrics més

precisos. En aquesta tesi s’han treballat i millorat els anomenats models fenomenològics

d’ones gravitacionals en sistemes no precessants, és a dir, en el que el pla de l’òrbita

és fix. Aquests, modelen les ones gravitacionals per mitjà de l’acoblament de les ben

conegudes solucions anaĺıtiques com les oferides pels models post-Newtonians (PN) i

les formulacions effective-one-body (EOB) amb els resultats de les computacionalment

costoses solucions numèriques de les equacions d’Einstein. Són models d’ona definits a

l’espai de freqüència que depenen de la relació de masses dels forats negres aix́ı com
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de l’anomenat esṕı efectiu χeff , que no és més que el resultat de la combinació de les

components perpendiculars al pla de l’òrbita dels dos espins reduint aix́ı la dimensió de

l’espai de paràmetres a sols dues components. Aix́ı i tot, malgrat que els models actuals

responen prou bé als resultats de les cerques d’ones gravitacionals, no són tan òptims per

a la inferència estad́ıstica dels espins de cadascun dels objectes degut a la degeneració

inherent en la definició de l’esṕı efectiu.

El focus d’aquesta tesi ha sigut l’extensió dels models fenomenològics d’un sol esṕı a

models de dos espins en els que s’ha afegit la dependència subdominant de la diferència

d’esṕı ∆χ = χ1 − χ2. Per a arribar a aquest fi, s’han hagut d’emprar les dades de més

de 400 simulacions de sistemes binaris de forats negres de 4 codis diferents (BAM, SpEC,

LAZEV, MAYA) de les quals 23 s’han obtingut en el transcurs d’aquesta tesi amb el codi

BAM i que comporta l’àrdua tasca de l’evolució, extracció de les ones gravitacionals i

postprocessament de la senyal. Aix́ı, i per a millorar els models existents, s’ha redefinit

l’estratègia en la construcció i addició d’elements subdominants als ansaetzë bidimen-

sionals en els que a més a més s’han inclòs els resultats coneguts del ĺımit en què un forat

negre és molt més gran que l’altre. Tot això ha resultat en nous models fenomenològics

per a la massa total radiada, l’esṕı de l’objecte final i el pic de lluminositat. Aque-

sts models han demostrat millorar les descripcions antigues d’aquestes quantitats fent

patent de forma clara el possible impacte dels efectes subdominants en els futurs models

fenomenològics d’ones gravitacionals.
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Resumen (en castellano)

A lo largo de la historia, el ser humano ha recibido e interpretado la información recibida

del cielo por medio de las ondas electromagnéticas (la luz) provenientes de las estrellas y

galaxias más lejanas. Tanto es aśı, que hasta finales de 2015 este hab́ıa sido el único medio

utilizado por la comunidad cient́ıfica para observar y estudiar los eventos astrof́ısicos

que suceden en nuestro cosmos. No obstante, el 14 de septiembre de 2015 se abre una

nueva ventana de observación al universo gracias a la primera detección directa de las

ondas gravitacionales, concluyendo el esfuerzo perseguido desde hace décadas por las

colaboraciones cient́ıficas LIGO y Virgo.

Las ondas gravitacionales son minúsculas oscilaciones del espacio-tiempo que se propa-

gan a la velocidad de la luz. Su descripción teórica surge de la teoŕıa de la relatividad

general de Albert Einstein y debido a su débil interacción con la materia, necesitamos de

los eventos astrof́ısicos más catastróficos para poder detectarlas. La primera detección

de las ondas gravitacionales fue consistente con la aproximación, colisión y estabilización

de dos agujeros negros de 36 y 29 masas solares a 1300 millones de años luz los cuales lib-

eraron alrededor del 5% de su masa en forma de débiles ondas del espacio-tiempo, siendo

el evento astrof́ısico más potente jamás observado. Dicho evento fue llamado GW150914

de acuerdo con su fecha de observación y fue públicamente anunciado el 11 de Febrero

de 2016 por la colaboración LIGO-Virgo. Sin embargo, este no ha sido el único evento

observado en el transcurso de esta tesis doctoral. Siendo fiel a los requisitos estad́ısticos

que confirman o desestiman qualquier detección, se puede certificar la observación de al

menos un evento más también compatible con la colisión de dos agujeros negros llamado

GW151226 y habiendo un tercero el cual no llegaŕıa a los mı́nimos requisitos estad́ısticos

para ser confirmado llamado LVT151012.

La fusión de sistemas binarios de agujeros negros son un candidato óptimo para la ob-

servación y estudio de las ondas gravitacionales. Las predicciones actuales apuntan a

este tipo de eventos como los más frecuentes en los detectores terrestres LIGO. Para una

óptima caracterización de las ondas observadas necesitamos los modelos teóricos más pre-

cisos. En esta tesis se han trabajado y mejorado los llamados modelos fenomenológicos

de ondas gravitacionales en sistemas sin precesión, es decir, en el que el plano de la órbita

es fijo. Estos, modelan las ondas a través del acoplamiento de las conocidas soluciones

anaĺıticas como las ofrecidas por los modelos post-Newtonianos (PN) y las formulaciones

effective-one-body (EOB) con los resultados de las computacionalmente costosas solu-

ciones numéricas de las ecuaciones de Einstein. Son modelos de onda definidos en el

espacio de frecuencias que dependen de la relación de masas de los agujeros negros aśı
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como del llamado esṕın efectivo χeff que no es más que el resultado de la combinación

de las componentes perpendiculares al plano de la órbita de los dos espines y con el que

se consigue reducir la dimensión del espacio de parámetros a solo dos componentes. Aśı

y todo, a pesar de que estos modelos responden suficientemente bien a los resultados

de las búsquedas de las ondas gravitacionales, no son tan óptimos en la inferencia es-

tad́ıstica de los espines de cada uno de los objetos debido a la degeneración inherente

en la definición del esṕın efectivo.

El foco de esta tesis ha sido la extensión de los modelos fenomenológicos de un solo esṕın

a modelos de dos espines en los que se ha añadido la dependencia subdominante de la

diferencia de espines ∆χ = χ1−χ2. Con este fin, se han tenido que utilizar los datos de

más de 400 simulaciones de sistemas binarios de agujeros negros de 4 códigos diferentes

(BAM, SpEC, LAZEV, MAYA) de las cuales 23 se han obtenido en el transcurso de esta tesis

con el código BAM y que ha conllevado la dif́ıcil tarea de la evolución, extracción de las

ondas gravitacionales y postprocesamiento de la señal. Aśı, y para mejorar los modelos

existentes, se ha redefinido la estrategia en la construcción y adición de elementos sub-

dominantes a los ansaetzë bidimensionales en los que además se han usado los resultados

anaĺıticamente conocidos en los que un agujero negro es mucho mayor que el otro. Todo

esto ha conclúıdo en la prescripción de nuevos modelos fenomenológicos para la masa

total radiada, el esṕın final y el pico de luminosidad. Estos modelos han demostrado

mejorar las descripciones antiguas para estas cantidades, desvelando de forma clara el

posible impacto de los efectos subdominantes en futuros modelos fenomenológicos de

ondas gravitacionales.
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Summary (in English)

Throughout history, human beings have received and interpreted information from dis-

tant stars and galaxies through electromagnetic waves (light). Until 2015 this was the

dominant way for observing astrophysical events happening in our cosmos. However, on

September 14’th 2015 a new window to the universe was opened thanks to the first di-

rect gravitational wave detection, a goal pursued for several decades by the LIGO/Virgo

scientific collaboration.

Gravitational waves are tiny space-time oscillations propagating at the speed of light.

They are a prediction of the Einstein theory of gravity and we need the most catas-

trophic astrophysical events to detect them. The first observation of gravitational waves

described the inspiral, merger and ringdown of two black holes with 36 and 29 solar

masses located at 1300 billion light-years, where about the 5% of the total mass was

radiated as gravitational waves and becoming the most powerful astrophysical event ever

observed. The event was called GW150914, consistently with its the arrival date and

was publicly announced on February 11’th 2016 by the LIGO Virgo collaboration. This

has not been the only event observed during this thesis project. Relying on statistical

criteria arguments, we can certify the observation of one additional event also compat-

ible with the coalescense of a pair of black holes tagged as GW151226 plus a third one

called LVT151012 likely from astrophysical origin but that did not reach the statistical

significance required to be confirmed.

The coalescense of binary black hole systems are an optimal candidate for the obser-

vation and study of gravitational waves. The current observations suggest that these

kind of events could dominate the future ground based detections. Then, we need to

optimise the theoretical waveform models to characterise the future observations. In

this thesis we have given the first steps towards a new upgrading of the nonprecessing

gravitational waves models. These models result from the matching of the well known

post-Newtonian (PN) and effective-one-body (EOB) analytic formulations to the com-

putationally expensive numerical solutions of the Einstein equations. They are defined in

the frequency domain and depend on the ratio of the two black hole masses (mass-ratio)

and some effective spin χeff that results from the combination of the components of the

spins orthogonal to the orbital plane thus reducing the physical parameter space to only

two dimensions. Then, although this current prescription have been demonstrated to be

sufficient for the searches of the gravitational waves in the data, they are not so optimal

for the statistical inference of the spins of each BH, which is partially caused by the

inherent degeneracy introduced by the effective spin.
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The focus of this work has been the extension of the one-spin phenomenological models

to its two-spin version by adding the subdominant effects carried by the spin difference

terms ∆χ = χ1−χ2. To that end, we have employed the data of more than 400 simula-

tions of binary black hole systems generated by four different codes (BAM, SpEC, LAZEV,

MAYA), 23 of them generated throughout this thesis by means of the BAM code. This

involved the difficult task of evolving, extracting the waves and the data postprocessing

of each case. Then, we have redefined the strategy for building higher than two dimen-

sional ansaetze to add subdominant effects and where we have also included the results

of the extreme mass ratio limit. All this analysis has resulted in the prescription of new

phenomenological models for the final mass, final spin and peak luminosity. The new

models have been shown to improve the old descriptions of these quantities while they

have clearly revealed the possible impact of the subdominant effects in the near future

phenomenological models.
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(Jiménez-Forteza) for pushing me forward to obtain my goals.

x



This work has been done as a member of the LIGO Scientific Collaboration and sup-

ported by the FPI-CAIB grant of the Conselleria d‘Educació i Universitats del Govern de
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Resumen (en castellano) vi

Summary (in English) viii

Acknowledgements x

List of Figures xv

List of Tables xviii

Abbreviations xix

1 Introduction to Gravitational Waves 1

1.1 Introduction to GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 General principle of covariance in GR . . . . . . . . . . . . . . . . 2

1.1.2 Curvature in GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Ricci tensor and Bianchi identities . . . . . . . . . . . . . . . . . . 5

1.2 Weak field approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Linearization of the Einstein field equations . . . . . . . . . . . . . 6

1.2.2 Equations of motion in the TT frame . . . . . . . . . . . . . . . . 9

1.2.3 Generation of gravitational waves . . . . . . . . . . . . . . . . . . . 10

1.2.3.1 Quadrupole formula derivation . . . . . . . . . . . . . . . 11

1.2.3.2 Toy model: BBH system . . . . . . . . . . . . . . . . . . 12

1.3 Sources of gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Gravitational wave detectors . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Resonant bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Laser Interferometer Gravitational wave Observatory: LIGO . . . 19

1.4.3 Other interferometric detectors . . . . . . . . . . . . . . . . . . . . 23

1.4.4 Third-generation ground-based gravitational wave detectors . . . . 24

xii



Contents xiii

1.4.5 Space-based gravitational wave detectors: LISA mission . . . . . . 24

1.5 Prospects on gravitational waves astronomy . . . . . . . . . . . . . . . . . 26

2 Two body problem overview 28

2.1 BBH physical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Waveform anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Analytic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Post-Newtonian approximants . . . . . . . . . . . . . . . . . . . . 33

2.3.2 SEOBNR approximants . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Phenomenological waveform models . . . . . . . . . . . . . . . . . 36

2.4 Numerical relativity models . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 ADM 3+1 formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Space-time 3+1 field equations . . . . . . . . . . . . . . . . . . . . 40

2.4.3 The BSSNOK formulation . . . . . . . . . . . . . . . . . . . . . . . 42

3 Simulations of BBH systems with the BAM code 45

3.1 The BAM code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Derived quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Apparent horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Final spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Final mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.5 Luminosity and peak luminosity . . . . . . . . . . . . . . . . . . . 56

3.3 Unequal-spin simulations with BAM . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Unequal spin simulations . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Grid configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Apparent horizon fits for the BAM code . . . . . . . . . . . . . . . 64

3.4 Eccentricity reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Eccentricity in the Keplerian two body problem . . . . . . . . . . . 68

3.4.2 NR eccentric waveforms . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Reducing the eccentricity in a real case . . . . . . . . . . . . . . . 72

3.5 Time and frequency integration of the psi4 . . . . . . . . . . . . . . . . . 76

3.6 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Hierarchical data-driven fitting of BBH mergers 81

4.1 Hierarchical data-driven approach . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2 Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.3 NR data as a driver of the phenomenological fits . . . . . . . . . . 83

4.1.4 Spin parametrization and unequal-spin motivation . . . . . . . . . 85

4.1.5 Extreme-mass-ratio limit . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.6 Model selection criteria and ranking statistics . . . . . . . . . . . . 89

4.1.7 Fit uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Hierarchical data-driven fitting: Application to final spin and energy ra-
diated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 NR data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 Choice of fit quantity . . . . . . . . . . . . . . . . . . . . . . . . . 94



Contents xiv

4.2.3 One-dimensional subspace fits . . . . . . . . . . . . . . . . . . . . . 94

4.2.3.1 1D fits: Final Spin . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3.2 1D fits: Radiated energy . . . . . . . . . . . . . . . . . . 96

4.2.4 Two-dimensional fits . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.4.1 Two-dimensional fits: final spin . . . . . . . . . . . . . . 98

4.2.4.2 Two-dimensional fits: energy radiated . . . . . . . . . . . 100

4.2.5 Unequal-spin contributions and 3D fit . . . . . . . . . . . . . . . . 101

4.2.5.1 Unequal-spin contributions and 3D fit: final spin . . . . . 102

4.2.5.2 Unequal-spin contributions and 3D fit: energy radiated . 105

4.2.6 Fit assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.7 Precessing binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.8 Spin parameter selection . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.9 Apparent horizon and area theorem . . . . . . . . . . . . . . . . . 115

4.2.10 Data sets and NR uncertainties . . . . . . . . . . . . . . . . . . . . 116

4.3 Hierarchical data-driven fitting: Application to peak luminosity . . . . . . 120

4.3.1 Astrophysical implications of the peak luminosity . . . . . . . . . . 121

4.3.2 NR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.3 Constructing the phenomenological fit . . . . . . . . . . . . . . . . 123

4.3.4 One-dimensional subspace fits . . . . . . . . . . . . . . . . . . . . . 124

4.3.4.1 One-dimensional non-spinning fit . . . . . . . . . . . . . . 124

4.3.4.2 One-dimensional equal-mass-equal-spin fit . . . . . . . . . 125

4.3.5 Two-dimensional fits . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.6 Unequal-spin contributions and 3D fit . . . . . . . . . . . . . . . . 128

4.3.7 Fit assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.8 Residuals and information criteria . . . . . . . . . . . . . . . . . . 132

4.3.9 Large-mass-ratio and extremal-spin limits . . . . . . . . . . . . . . 134

4.3.10 NR data investigations . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.10.1 Comparison between different codes . . . . . . . . . . . . 136

4.3.10.2 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3.10.3 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3.10.4 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 A phenomenological frequency-domain model: PhenomD 146

5.1 Overview of the phenom-based models . . . . . . . . . . . . . . . . . . . . 147

5.1.1 Some notes on the PhenomD construction. . . . . . . . . . . . . . 147

5.2 Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Inspection of the PN approximants . . . . . . . . . . . . . . . . . . . . . . 151

5.4 Unequal-spin effects on the PhenomD coefficients . . . . . . . . . . . . . . 153

6 Conclusions and outlook 155

Bibliography 160



List of Figures

1 GW150914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1.1 Parallel transport and Covariant Derivative . . . . . . . . . . . . . . . . . 5

1.2 Gravitational waves - Matter Interaction . . . . . . . . . . . . . . . . . . . 10

1.3 Gravitational wave source . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 BBH system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 GW detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Resonant bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 LIGO observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 Frequency domain GWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Third-generation gravitational wave (GW) detectors . . . . . . . . . . . . 25

1.10 GW sources and prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 BBH extrinsic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Time domain hybrid waveform . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Space-time foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Normal vector to Σt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 3D visualization of the ψ4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 rψ4,22(t) vs rh4,22(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Luminosity Llm(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Unequal spin simulation plan . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 BAM Cartesian boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Sine waves and grid resolution . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Apparent horizons for different η choices . . . . . . . . . . . . . . . . . . . 65

3.8 Apparent horizons evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9 Apparent horizons fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 Keplerian orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 Eccentricity in a Keplerian orbit . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 CPU hours per cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 Residual eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.14 Residual eccentricity correction with Ω . . . . . . . . . . . . . . . . . . . . 75

3.15 Residual eccentricity correction with the radial coordinate separation r . . 75

3.16 Eccentricity reduction across the parameter space . . . . . . . . . . . . . . 76

3.17 Fourier integration with no f0 cutoff . . . . . . . . . . . . . . . . . . . . . 77

3.18 FFI algorithm vs polynomial fit . . . . . . . . . . . . . . . . . . . . . . . . 79

3.19 Polynomial extrapolation of ψ4 . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Flowchart of the hierarchical fitting methodology . . . . . . . . . . . . . . 84

xv



List of Figures xvi

4.2 Parameter space coverage: final mass and energy radiated . . . . . . . . . 85

4.3 Unequal-spin effect reflected in the final spin . . . . . . . . . . . . . . . . 87

4.4 BIC raking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Final spin in terms of η and Seff . . . . . . . . . . . . . . . . . . . . . . 93
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Preface

In 1915 Albert Einstein published his magnificent theory of general relativity [1]: a

revolutionary theory of gravity conceptually very different from Newton theory of grav-

ity. The new theory merged the concepts of space and time in a unique entity called

space-time sculpted by its matter content.

Albert Einstein’s new theory was able to reproduce all the old predictions of Newtonian

gravity and to answer some of the long-time opened questions of this theory. One

of the weak points of Newton’s theory concerned the infiniteness of the speed of the

propagation of the gravity force. This contrasted with the statements of the special

theory of relativity where the maximum allowed speed was set to be the speed of light.

Only one year after the publication of his theory, Albert Einstein himself found a solution

hidden in his equations in the form of very feeble waves that propagate at the speed of

light. They were expected interact so weakly with matter that he did not expect they

could be ever discovered [1, 2]. The answer to this question arrived as small, oscillating

perturbation on September 14th, 2015 when the two LIGO detectors (Hanford and

Livingstone) vibrated at almost the same time consistent with the general relativity

predictions [3]. This date is now considered the birth of gravitational wave astronomy.

First direct gravitational wave detection was publicly announced on 11th February 2016

by the LIGO and Virgo Scientific Collaboration (LVC). The discovery described the

last stages of the evolution of a binary black hole system (BBH) with initial black hole

masses of 36+5
−4 M� and 29+4

−4 M�, which finally merged into a single BH with 62 M�

at a estimated distance of 1.3 billion light years. The system was named GW150914,

according to the date of its observation. This milestone detection was not only the first

direct evidence on the existence of gravitational waves but it also was the confirmation

that BHs exist and form binary systems, that they can exist with masses about the

30M� and merge to a final object of about 60M�. The system was observed with a

matched-filter signal-to-noise-ratio (SNR) of 24 and with a significance larger than 5.1σ,

equivalent to false alarm rate of 1 event per 203000 years. This signal caused a minimal

displacement on the LIGO mirrors of about ∼ 10−18 meters, i.e., a thousand of times

xxii



Figure 1: First gravitational wave observation reported by the LIGO-Virgo scientific
collaboration [3]. Top panel: Minimally filtered strain h(t) corresponding to GW150914.
Notice the remarkably nice agreement between the shifted signals in both detectors
(right panel). Bottom panel: Numerical relativity prediction for the observed signal

compared with the reconstructed wavelet from the detector’s data.

smaller than the size of the atomic nucleus. Despite the smallness of the effect caused

on the mirrors, its evidence were overwhelming when looking into the data. Figure 1

shows the data segment corresponding to GW150914 [3]. The signal is clearly outlined

over a minimally band-filtered noise having a good agreement with GR predictions. This

has not been the only event observed by the LIGO detectors during this thesis project.

A lower mass system tagged as GW151226 and with masses 14.2M� and 7.5M� was

also observed during the first LIGO observation run (O1) with a lower SNR of 13 and

where the match-filtering techniques were essential to detect it. Moreover, there was a

third binary black hole (BBH) candidate called LVT151012 that did not reach the 5σ

threshold required to be confirmed although there exist some indications that suggest its

astrophysical origin. Then, the era of the gravitational wave astronomy has just started

with the hope of having more and more diverse astrophysical observations that help us

to better understand our universe.

Structure of this thesis

This thesis talks about the modelling of gravitational waves and final state quantities

from binary black hole mergers framed in the context of LIGO detectors. Then, Chapters

1 and 2 introduce the basic context and formalism used in the later ones. Chapter 1 pro-

vides a quick review of the basic concepts related to gravitational wave astronomy. We go

over the most relevant points of general relativity (GR) and the weak field approxima-

tion (gravitational waves (GWs) ) to end with a brief overview of the main gravitational



waves (GWs) sources, interferometers and prospects in GW astronomy. Chapter 2 is in-

tended to review the several analytic and numerical solutions to the two body problem

focused on BBH mergers. To this end, I first identify the relevant physical parame-

ters in BBH mergers and I describe some aspects of the morphology of the radiation.

Then, I give an overview of the different PN and EOB formulations, phenomenological

and SEOBNR approximants and NR results putting some more emphasis in describing

the Arnowitt-Deser-Misner (ADM) 3 + 1 decomposition of the Einstein Field equations

and the Baumgarte-Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK) formulation

used in the BAM code. In Chapter 3 I extend the first results of obtained in this thesis;

the numerical setup and simulation of 23 BBH systems with unequal spins and per-

formed with the BAM code. In this Chapter we detail the main features of the code,

from the initial data to the mesh-refinement structure. Then, we describe all the data

post-processing needed to obtain the final products: ψ4(t), strain h(t) and luminosity

L(t) as well as the final mass and final spin. This post-processing involves resolution and

extrapolation studies, the analysis of the possible sources of numerical errors and the

eccentricity reduction of all the set of cases. Chapter 4 constitutes the original results

obtained throughout this thesis project in collaboration with Glasgow University and

University of Cardiff. Using the simulations described in Chapter 4 and collecting all

the available NR data from the SXS [4], RIT [5], and GaTech [6] waveform catalogs,

we have developed a new hierarchical, data-driven fitting methodology that has been

applied for a new calibration of phenomenological models for the final mass and final

spin [7] and peak luminosity [8] of BBH mergers. In Chapter 5 I give a brief review of

the PhenomD model and I show the primary results of the new fitting methodology on

the calibration of a three-parameter PhenomD model. Finally, in Chapter 6 I outline

the main results and conclusions obtained in this thesis and I analyse the possible ways

of extending this research.



Chapter 1

Introduction to Gravitational

Waves

Albert Einstein’s General theory of Gravity GR [9–12] predicts that any accelerated,

non-axisymmetric source of energy emits space-time oscillations that propagate at the

speed of light. These oscillations are elusive weakly interacting waves that travel freely

through the Universe carrying out physical information about the processes which gen-

erate them: scientific community refers to them as gravitational waves [1, 2] and were

detected for the first time on 14th of Semptember 2015 by the LIGO/Virgo collabora-

tion [3, 13], almost 100 hundred years after their theoretical description. GR is generally

accepted as the best candidate theory of gravity in modern physics. While it provides an

extremely accurate description of all the dynamical processes formerly explained through

the popular Newton’s formulation of gravity, it also expands its horizon to an innumer-

able new set of physical objects unexplained by this old theory: so much catastrophic

and exotic as black hole (BH) , wormholes, the expansion of the universe but also other

less dramatic physical situations as the anomalous precession of the planet Mercury and

and the correct description of light bending [11]. Contrary to Newton’s theory, gravity is

no longer viewed as a “force” but as a consequence of the deformation of the space-time

fabric. In the words of John Archibald Wheeler:

Space-time tells matter how to move, matter tells space-time how to curve.

GR draws a physical theory of gravity in a fully geometrical scheme that will require

us to use the well-known tools of differential geometry to disentangle coordinates effects

from the genuine features of the space-time geometry. In this chapter I review the basic

GR derivations following [14, 15].

1



Chapter 1. Introduction to Gravitational Waves 2

1.1 Introduction to GR

Wheeler’s most popular quote is mathematically synthesized through Einstein field equa-

tion; a four-dimensional equation given in term of symmetric tensors computed from the

metric,

Gµν = 8π
G

c4
Tµν , (1.1)

where Gµν and Tµν denote the Einstein tensor and the stress-energy tensor of a matter

field respectively, and G and c are Newton’s gravitational constant and the speed of light.

The left hand side of (1.1) encodes the geometrical content of the four-dimensional space-

time. In the standard scenario, this space-time is usually depicted as four-dimensional

Lorentzian manifold with an underlying smooth background metric tensor gµν which

captures the notion of distance on the manifold and it reads:

ds2 = gµνdx
µdxν (1.2)

where the repetition of the indices denotes a summation over twin indices. The element

ds2 defines the infinitesimal displacement between to nearby points on the manifold. It

might be seen as the analogous to any purely spatial line element in a given Riemma-

nian manifold but now considering also displacements in time. The four-dimensional

metric tensor gµν is described as a symmetric 4× 4 matrix, that is, with 10 independent

components from the total 16 coefficients. Gravitational interactions are thoroughly

determined by the metric tensor and is the basis of most of the calculations in GR.

1.1.1 General principle of covariance in GR

The principle of general covariance was formulated by Albert Einstein as one of the

axioms of GR (and any other physical law) to be fulfilled. It states that the form of the

physical laws must be invariant under any arbitrary change of coordinates or, equiva-

lently, that any physical theory must be expressed in terms of tensor fields. Equation

(1.2) is invariant under smooth changes of the space-time coordinates

xµ = fµ(xν) , (1.3)

keeping constant the space-time interval ds2 regardless the coordinate system used for

labeling the space-time points. This is, the four-dimensional length element ds must be

preserved regardless the coordinate choice. Then, the metric tensor gµν must behave

as a covariant tensor field under general coordinate transformations, meaning that any
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change of the coordinates is propagated as:

gµ′ν′ = gµν

(
∂xµ

∂xµ′
∂xν

∂xν′

)
. (1.4)

The general covariance of GR also implies that one might freely move from one system

of coordinates to another without affecting the underlying space-time geometry inherent

to our manifold. Thus, we can always find a coordinate system satisfying:

∂λgµν |P = 0 , (1.5)

at any regular space-time point P and where λ = (0, 1, 2, 3). This means that it always

exists a local inertial system at P described by the rules of special relativity, i.e., the

space-time is locally flat at P . However, what would be the result of inspecting the

field values at different points P?, how do we measure non-local differences on the field

variables? how do we disentangle the coordinate effects from the “isolated” variations

of the field variables? The common flat space-time derivative (1.5) does not break up by

itself the physical ambiguity driven by the change of the coordinates on a given surface:

one has also to compensate for the changes in the coordinate basis from one point to

another to recover the same conceptual meaning of the partial derivative in a flat space-

time. This is achieved by means of the covariant derivative, which applied to a vector

field takes the following form,

∇µvν = ∂µv
ν + Γνµλv

λ . (1.6)

where v is a vector field defined defined in the vicinity of P . The first term of the

right hand side of (1.6) is the usual partial derivative used in a flat space-time while

Γ accounts for the so called Christoffel symbols which describe the metric connection

and give a sense of how the vectors are parallel-transported along any curve. The

definition of the covariant derivative is not restricted to vector fields but it is a general

operation applicable to any tensor of a given rank with the same philosophical idea;

the characterization of the tensor field variations taking into account the changes on

the coordinate basis along our manifold. Here we use our rank-two metric tensor to

illustrate its formulation,

∇λgµν = ∂λgµν − Γσλµgσν − Γσλνgµσ . (1.7)

At this point, we should recall that the standard prescription of GR must recover locally

the special relativity results. This means that we should be allowed to define at any

point P a local inertial coordinate system which satisfies (1.5). Thus, it is natural to

generalize (1.5) to (1.8) in order to guarantee that special relativity is fully recovered
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locally.

∇λgµν = 0 . (1.8)

The tensorial character of (1.8) implies that this equality must be hold in any coordinate

system, providing the following familiar relations between the Christoffel symbols and

the metric tensor,

Γλµν =
1

2
gλκ (∂µgκν + ∂νgκµ − ∂κgµν) , (1.9)

where gλκ is the inverse matrix of gλκ thus satisfying,

gλµgλν = δµν . (1.10)

1.1.2 Curvature in GR

Equations (1.2) to (1.10) illustrate the profound geometrical character of GR being

sometimes difficult to distinguish between geometrical effects induced by some particular

coordinate choice and the intrinsic effects of the curvature (gravitation). This well known

problem is solved according to the rules of differential geometry and, in particular,

through the Riemman tensor which provides a univocal characterization of the curvature

of the space-time,

(∇λ∇σ −∇σ∇λ) vµ = Rµβλσv
β . (1.11)

Equation (1.11) provides a measure of the non-Euclideanity of our four-dimensional

space-time; a flat, gravity free (Euclidean) space-time is the only configuration with a

vanishing Rµβλσ. To illustrate this, consider the closed curve delimited by the equilateral

triangle of Figure 1.1 and imagine we move a vector emanating at the point A along

the curved triangle on the sphere. After completing the full path, one realises that we

do not get the original vector back. This is a feature of curved space-times, i.e., with

non-zero Riemann tensor. Then, combining (1.6) and (1.11) the Riemann tensor reads:

Rµλσν = ∂λΓµσν − ∂σΓµλν + ΓµλρΓ
ρ
σν − ΓµσρΓ

ρ
λν . (1.12)

The tensorial character of (1.12) guaranties that if the Riemman is not zero for a given

coordinate system, it will not be zero for any other possible arbitrary choice of coor-

dinates. Thus, it provides a simple way of separating the curvature (gravitation) from

other coordinate related effects.
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Figure 1.1: Illustration of a vector parallel-transported from the point A along the
close thick curve highlighted in the figure. In a curved space-time the vector does not

return to itself.

1.1.3 Ricci tensor and Bianchi identities

The Riemman tensor is a four-rank tensor corresponding to 44 = 256 components.

However, from (1.9) and (1.12) one finds a series of symmetries that reduce the number

of independent components of the Riemann tensor to only 20. Taking into account all

the symmetries, the only way of contracting a pair of indices results in the Ricci tensor,

which is naturally related to the Einstein tensor (1.1) through,

Rµν ≡ Rρµρν , (1.13)

where allowing for (1.9) and (1.10) one finally gets,

Rµν =
1

2
(∂ρ∂µgνρ + ∂ρ∂νgµρ − ∂ρ∂ρgµν − ∂µ∂νg) . (1.14)

Another important relation of the Riemann tensor involves its covariant derivative, and

is known as the second Bianchi identity,

∇ρRµνλσ +∇ρRµνσλ +∇σRµνρλ = 0 , (1.15)

Finally, by contracting two pairs of indices one gets the analogous Bianchi identity for

the Ricci tensor,

∇µ
[
Rµν − R

2
gµν
]

= 0 , (1.16)

which is interpreted as a conservation law for the object enclosed within the brackets.

Equation (1.16) is directly related with the first equation shown in this text (1.1) thus
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being:

Gµν = Rµν −
R

2
gµν , (1.17)

where the bracketed object in (1.16) is nothing more that the contravariant version of the

Einstein tensor. Furthermore, coming back to (1.1), from pure geometrical statements

and through (1.16) we get the predicted conservation law for the energy momentum

tensor which reads:

∇µTµν = 0 . (1.18)

Thus, (1.18) is the generalization of the energy and momentum conservation in special

relativity ∂µTµν = 0 on non-Euclidean space-times.

1.2 Weak field approximation

The gravitational interaction is in general weaker than the other known forces1 of nature;

for instance, while I am writing these lines a pile of molecules can hold me comfortably

seated on my chair through their electrostatic repulsion against the total gravitational

pull exerted by the whole Earth. This might be qualitatively understood by looking at

the strong suppression factor G/c4 ∼ 10−46 of (1.1): it takes an enormous amount of

energy to deform the space-time geometry.

However, there exist many scenarios in our universe in which large and compact forms

of energy are eventually emitted as gravitational waves and also carrying out more

power than most of the well known astrophysical electromagnetic events [3, 13]. Those

feeble waves propagate at the speed of light and warp our space-time likewise a small

stone thrown to a quiescent lake would perturb its surface. They were for the first

time formulated by Albert Einstein [1] one year after the publication of GR and are a

direct consequence of (1.1) under certain assumptions that we will detail in this chapter.

We start our deduction with (1.1) with c = 1 and G = 1 (geometrical coordinates) to

simplify the notation, namely:

Gµν = 8πTµν . (1.19)

1.2.1 Linearization of the Einstein field equations

Gravitational waves arise formally when one considers the effect of a small linear per-

turbation to the flat background space-time ηµν . We want to obtain the equations of

motion in terms of the linearly perturbed flat metric by computing all the curvature

1Recall that we do not longer consider gravity as a force but as an effect of the space-time geometry.
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related quantities exposed in Sec. 1.1. Then, we express the perturbed metric as,

gµν = ηµν + hµν , |hµν | � 1 , (1.20)

where we choose ηµν to take its canonical form ηµν = diag(−1, 1, 1, 1) and hµν satisfies

the properties of a tensor field on a flat background (Minkowski space-time). Regarding

the weakness of the perturbation and ignoring higher than linear contributions in hµν ,

it is easy to obtain the contravariant form of (1.20),

gµν = ηµν − hµν . (1.21)

In this scenario, ηµν is used for lowering and raising the indices. We begin by computing

the expression of the Christoffel symbols in terms of the new metric (1.20) and neglecting

higher than linear order terms in hµν :

Γλµν =
1

2
ηλκ (hκν,µ + hκµ,ν − hµν,κ) , (1.22)

Once computed the connection coefficients in this new frame, we must propagate them

through the Einstein field equations to compute the perturbed Riemman tensor (1.12)

neglecting higher than linear order terms in hµν . The perturbed Riemann tensor reads:

Rρσµν =
1

2
(∂σ∂µhρν + ∂ρ∂νhσµ − ∂ρ∂µhσν − ∂σ∂νhρµ) , (1.23)

while the perturbed Ricci tensor is computed from the contraction of the ν and ρ indices:

Rµν =
1

2

(
∂µ∂

λhλν + ∂ν∂
λhλµ − ∂λ∂λhµν − ∂µ∂λh

)
,

R = ∂λ∂ρhλρ − ∂λ∂λh , (1.24)

where h = hλλ is the trace of the metric perturbation and R = Rλλ is the Ricci scalar.

We can now incorporate the results of (1.24) in (1.17) to get the explicit form of the

perturbed Einstein tensor. However, it is convenient for reducing the formal complexity

of our equations to define a trace reversed metric pertubation tensor such:

h̄µν = hµν − ηµνh/2, h̄ = −h. (1.25)

With these modifications the Einstein tensor reads:

Gµν =
1

2

(
∂ρ∂µh̄νρ + ∂ρ∂ν h̄µρ − ∂ρ∂ρh̄µν − ηµν∂ρ∂σh̄ρσ

)
. (1.26)

According to the Einstein field equations (1.19), (1.26) must be equal to 8πTµν . This
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equality implicitly means that we are taking the zeroth order contribution in hµν of the

energy-momentum tensor, i.e., that the scale of the Tµν is on the same order of magnitude

than the perturbation. However, (1.26) can be further simplified taking advantage of the

coordinates freedom contemplated by GR. Thus, we are allowed to consider any small

but arbitrary change of coordinates, such that:

xµ′ = xµ + εµ , (1.27)

where ε satisfies |∂µεµ| � 1.

These new coordinates transform our initial metric to first order in ε to:

(gµν)′ = ηµν + hµν − ∂µεν − ∂νεµ , (1.28)

where the prime indicates that we are working in the new coordinates. This coordinate

transformation leaves the physical situation intact for any arbitrary but small εµ. Then,

after some algebra we identify:

(
h̄µν
)′

= h̄µν − ∂µεν − ∂νεµ + ηµν∂λε
λ , (1.29)

(
∂ν h̄µν

)′
= ∂ν h̄µν − ∂ν∂νεµ . (1.30)

At this point, we are allowed to choose any coordinate transformation that satisfies

∂ν h̄µ,ν = ∂ν∂νεµ, thus:
(
∂ν h̄µν

)′
= 0, (1.31)

which defines the so called harmonic, De Donder or Lorentz gauge (being the analogous

condition in electromagnetism). Thus, in these coordinates and after some algebra we

get:

�h̄µν = 16πTµν , (1.32)

where the � = ηµν∂
µ∂ν is D’Alembertian operator in flat space. Equation (1.32) stands

for a wave equation for metric waves propagating at the speed of light (c = 1) with

a source term Tµν . Now, for the sake of simplicity, we set this term to zero (vacuum

solution) to study its properties. The general complex solution given in terms of plane

waves, namely:

�h̄µν = 0 , (1.33)

h̄µν = Aµνe
ikαxα , (1.34)

where kµ is the wave vector and Aµν the amplitude tensor. We can now deduce the usual

properties of a plane wave by inspecting the properties of the set of Equations (1.31)
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to (1.34). First, notice that inserting the plane wave solution (1.34) in (1.33) we obtain:

ηµνkµkν = kνk
ν = 0, (1.35)

which describes a null wave vector, i.e., that h̄µ,ν propagates at c = 1.

Furthermore, combining the Lorentz gauge (1.31) and (1.34) we find the following rela-

tion between the amplitude tensor Aµν and the wave vector kµ:

Aµνk
ν = 0 . (1.36)

This indicates that the amplitude of the oscillation Aµν is transverse to the direction of

propagation defined by kν : the general solution describes a plane wave traveling along

null vectors. All the gauge choices and, in particular, (1.25) and (1.36) describe the

gravitational waves in the so called transverse-traceless (TT) gauge (trace-free and

transverse propagation). Notice that the amplitude tensor Aµν (as well as the metric

perturbation hµν) has in principle ten independent components because of the symmetry

of the metric tensor. On the other hand, the orthogonality condition (1.36) provides a

set of four extra equations for the amplitude tensor thus reducing this number to a total

of six. This, added to the gauge freedom associated to the four coordinate functions εµ

of (1.29) reduce this number to only two, consistent with the two light polarizations,

which we denote by h+ (plus polarization) and h× (cross polarization). Then, these

metric waves propagating in the z-axis direction turns out to be,

hµν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



. (1.37)

1.2.2 Equations of motion in the TT frame

The general solution found in (1.37) gives a sense of how a metric wave perturbation

propagates. However, we will compute the effect of a passing GW on free particles (for

simplicity). This is done by solving the geodesic deviation equation for a non-interacting

particle under the effect of a TT plane wave perturbation. This is given by:

∂2xµ

dt2
= Rµ00λx

λ , (1.38)
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Figure 1.2: Effect of a gravitational wave traveling in the z-direction (crossing the
sheet of paper) on a ring of free particles living on the x − y plane. Top panel: +

polarization, bottom panel: x polarization.

and using the results of (1.23) it takes the following form,

∂2xµ

dt2
=
∂2hµλ
dt2

xλ , (1.39)

that is nothing more that the acceleration suffered by the free particle to the passage of

a metric perturbation hµν . Indeed, it acts like a force to any particle stuck at xµ. Then,

solving (1.39) to leading order in h one gets,

xµ(t) =

(
δµλ +

1

2
hµλ(t)

)
xλ0 , (1.40)

being hµν an oscillatory function of time (plane wave) as shown in (1.34). From (1.37)

and (1.40) we can have an idea of how a metric plane wave would modify the xµ positions

of a free particle. To make the illustration easier, let us choose a certain orientation such

h× = 0. Equation (1.40) reads:

x =

(
1 +

1

2
h+(t)

)
x0 , y =

(
1− 1

2
h+(t)

)
y0 . (1.41)

Then, while the wave is shrinking one of the coordinates at the same time is stretching

the other coordinate. This oscillatory behavior on test particles is the basis gravitational

wave detectors. Figure 1.2 illustrates the separated effect of the two polarizations on a

ring of test particles. Notice that h× behaves similarly but rotated 45◦.

1.2.3 Generation of gravitational waves

We have seen that a small, time dependent metric perturbation to the flat metric ηµν ,

under certain gauge considerations and solving the equations with Tµν = 0, results on the

description of a planar metric wave moving at the speed of light. Now, we consider the
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situation one level up by taking a non-vanishing but still small energy-momentum tensor

(far-zone solution). Then, each source will described by a different energy distribution

(different energy momentum tensor) which will characterise a different wave profile.

1.2.3.1 Quadrupole formula derivation

As it happens in electromagnetism, the general solution of (1.34) is given in terms of

the retarded Green function, namely,

h̄µν(t, x) = 4

∫
Tµν (t′, x′)

|x− x′| d
3x′ , (1.42)

where x accounts for the position of the source in relation to the observer, x′ traces the

geometry of the source, t′ = r− |x− x′| is the retarded time and r is the position of the

source center of mass (see Figure 1.3). First, notice that all the objects of astrophysical

Figure 1.3: Reference frame for a given gravitational wave source represented by the
black ellipsoid. Objects of astrophysical interest satisfy ~x ≈ ~r usually referred as the

far zone regime.

interest (see Sec. 1.3) are far away from the detector’s frame or, in other words, that the

intrinsic coordinates x′ are negligible compared to the source-detector distance x. This

is known as far-zone approximation and it is mathematically translated as: r ≈ |x|.
In order to simplify some calculations we can transform (1.42) to the Fourier domain

namely,

h̄µν(ω, x) =
4eiωr

r

∫
T̃µν

(
ω, x′

)
d3x′, (1.43)
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where we have taken advantage of the far-zone condition. In addition, the energy-

momentum tensor conservation (1.18) translates to: −∂j T̃ jν = −iωT̃ 0ν . Thus, taking

into account the energy momentum tensor conservation and integrating by parts (1.43)

one finally gets,

h̄ij = −2

r
∂0∂0

∫
xixjT00(t− r, x)d3x , (1.44)

where the integrand is nothing more than the mass-quadrupole moment according to

the famous Einstein 1916 results [2],

h̄ij = −2

r
Ïij(t− r) . (1.45)

From the last equation it is clear that any source with a non-vanishing second deriva-

tive of the mass-quadrupole moment will emit gravitational waves. This explains why

perfectly axisymmetric sources as individual spinning BH, neutron star (NS) are not

expected to be GW emitters. Indeed, galactic NSs with a minimal a 1mm crust, not

aligned with the orbital axis, could be sufficient to generate periodic GW signals de-

tectable by LIGO [16–18].

1.2.3.2 Toy model: BBH system

For the first time in these lines we work out the equations that relate the gravitational

waves to BBH mergers which is the main topic of this thesis. It is well known that

a complete accurate solution of such systems is only possible when full NR is taken

into account. Even the most up to date post-Newtonian [19, 20] and EOB analytic

models [21, 22], which account for higher order quadrupolar corrections, breakdown in

the late inspiral and merger-rindown regimes2. However, it is still possible to obtain an

accurate solution when the system is far from the coalescence and the two black holes

can be considered as a point-like, slow-moving particles. As a toy example and at zero

order we can get an analytic solution for the metric perturbation hµν . For simplicity,

it is assumed a quasi circular (zero-eccentric) orbital decay which is equivalent to the

formulation of the Kepler two body problem for a circular orbit (with G = c = 1),

v2 = M/d , ωorb =
√
M/d3 , (1.46)

where d stands for relative distance between the two particles, v the relative velocity,

M = m1 + m2 is the total mass and ωorb is the angular velocity. Then, we locate the

2See Sec. 2.2 for a detailed description of the waveform anatomy.
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Figure 1.4: Artistic representation of the two body orbit for a BBH system in a
quasi-circular evolution. The orbital distance d(t) progressively shrinks to eventually

merge in a Kerr BH.

two bodies on the z = 0 plane as,

x1 = {d cos(ωorbt), d sin(ωorbt), 0} ,
x2 = {−d cos(ωorbt),−d sin(ωorbt), 0} . (1.47)

From (1.44) is clear that the only relevant energy momentum tensor component is the

00 which in this example takes the following form,

T00(t, x) =M
(
δ(x1 − d cos(ωorbt))δ(x2 − d sin(ωorbt)) (1.48)

+ δ(x1 + d cos(ωorbt))δ(x1 + d sin(ωorbt))
)
, (1.49)

where the δ function is used to define the position of each black hole orbiting at an an-

gular frequency ωorb. Then, after integrating (1.44) it is possible to obtain the following

expression for the gravitational waves strain,

hij =
8M

r
d2ω2

orb




0 0 0 0

0 − cos(2ωorbt) − sin(2ωorbt) 0

0 − sin(2ωorbt) cos(2ωorbt) 0

0 0 0 0



. (1.50)

Then, binary systems emit GWs with twice the frequency of the orbital system. This

condition is quite well preserved at quadrupole order during the whole evolution, getting

only relevant deviations in the merger-ringdown regime of the evolution, where the strong

field effects appear. Additionally, notice that (1.50) is written in terms of the geometrical
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units with G = c = 1. Putting back the physical units to the equation, that is, adding

a factor G/c3 10−36 and eventually considering a standard scenario in which two black

holes of masses M = 10M� orbit around each other at 100Mpc far away from the Earth

and at a relative distance of 105 km, we get that an estimated strain of h ∼ 10−21. Thus,

such catastrophic configuration only will affect the Earth (detectors) geometry in one

part on 1021, that translated to the ground-based detectors implies a variation on the

test masses of the order 10−18 (Sec. 1.4), i.e, smaller than the size of a proton.

BBH mergers are expected to be not only the dominant source of gravitational wave

detections but also the events with highest SNR on the ground based detectors [23, 24].

From the predicted astrophysical sources, only an unlikely supernova (SN) explosion in

the Milky Way might generate a compatible amplitude (indeed larger) than the expected

far away binary mergers. Then, in order to increasingly constrain the various astrophys-

ical scenarios for BBH mergers, it is essential to gain statistics by performing as many

detections as possible with the highest possible SNRs. This motivates the development

of increasingly accurate prescriptions of gravitational waveform models and which has

been the main topic of this thesis.

1.3 Sources of gravitational waves

Due to the weak nature of gravity and consistently with the numbers and estimates

given in the last section, detectable gravitational waves are related to catastrophic, high

energy cosmological events such as Compact-Binary-Mergers (CBC) , highly rotating

NSs, SN explosions, early universe phase transitions, cosmic strings etc. leaving also

some room for non-predicted astrophysical events that may emerge. In this section we

describe some of the most promising astrophysical events expected to be gravitational

wave emitters.

Compact Binary Coalescences

CBC, and in particular BBH mergers, are the targeted sources of study of this thesis,

being the predicted dominant events on ground based detectors. By CBC we mean

BH-BH, BH-NS and NS-NS binary mergers. Indeed, the first astrophysical clue on the

existence of gravitational waves was the discovery of the Hulse and Taylor pulsar [25] in

1974. Nowadays, the scientific effort in seeking for gravitational waves coming from CBC

mergers is overwhelmingly justified: the LIGO detectors have already observed the late

inspiral, merger and ringdown of several binary systems compatible with a stellar-mass

BH-BH coalescenses [3, 13].
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Stellar-mass compact binary mergers are expected to be the dominant source of future

detections for ground-based gravitational detectors, as it is being confirmed by the cur-

rent observations [26]. They describe pairs of old stars that have already gone through

all the stages of stellar evolution, have been gravitationally bound and then orbit each

other while the orbital distance is shrinking. This stage can last several Myrs until

the merger, where the final object definitively settles down to a Kerr black hole3. The

major fraction of gravitational wave radiation is emitted in the last few orbits (seconds)

and it is what we observe in the ground-based detectors. The collection of more events

will help to constrain the formation scenarios, stellar evolution models and population

distributions [27]. Mergers involving matter are also excellent candidates as an EM

counterpart observation. The expected number of detections per year on the upgraded

advanced detector era might reach the 1000 events/year [26].

Other sources compatible with the space-based detectors (Sec. 1.4.5) are the extreme

mass-ratio-inspirals (EMRI) and the intermediate binary black hole mergers (IMBBH).

They are predicted to be large mass compact mergers with frequencies on the order

of the mHz, i.e., out of the LIGO frequency band but very relevant for space-based

missions as LISA [28].

Continuous gravitational waves

From Sec. 1.2 we have learned that any physical system with a time-varying quadrupole

moment is a gravitational wave emitter. This makes of rapidly, spinning and with some

degree of asymmetry Milky Way neutron stars, potential gravitational wave candidates

[29]. Although they are known to be almost spherically rotating objects, any elastic

stress or magnetic field might induce small deformations (ellipticity) on the shell of the

neutron star that might be related with the internal equation of state (EOS) of the

star. They are expected to be emitters of an almost monochromatic gravitational wave

strain (small deviations on the spin rate are also predicted by the theory) thus making

possible long time integrations of the data as opposite to BBH mergers. On the other

hand, its weak strain limits the searches to the Milky Way, hence reducing a lot the

volume coverage in relation to BBH mergers. Current continuous waves (CW) searches

are seeking for systems with an ellipticity constrained to be less than 1mm for some of

the known Milky Way pulsars [29].

3This is always true for systems where at least one of the two bodies is a BH. For NS-NS mergers
the situation is in general the same, except for low mass mergers, where the remnant mass may not be
sufficient to collapse into a BH, thus leaving a remnant NS.
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Stochastic sources

Astrophysical models predict a low occurrence of ground-based GW detections from

BBH mergers and CW emitters in a sense that they are very unlikely to be found

as the superposition of two or more signals. Even the optimistic 1000 detections of

BBH systems predicted in the next ∼ 4 − 5 years become a small number when one

considers the probability of having two events at the same time and ringing at the

same frequency [30]. However the situation might be completely different when moving

to space missions. One of the considered noise contributions (confusion noise) of the

LISA mission (see Sec. 1.4.5) are the galactic binary white-dwarf inspirals. Taking into

account that most of Main Sequence (MS) stars end their life as a white dwarf and that

about the 50% live in binary systems we could end with ∼ 10 million of interacting

binaries, being all potential gravitational wave emitters. In this scenario, the chances of

having a superposition of more than two signals also increase thus creating an stochastic

gravitational wave background hitting continuously the detectors.

The stochastic background may also have a cosmological origin [31]. Some cosmologi-

cal models predict that the universe passed through an accelerated expansion phase in

its initial stages which was related to some hypothetical phase transition. This likely

involved a fast warping of the space-time that likely created a relic gravitational wave

background (analogous to the electromagnetic cosmic microwave background CMB). If

these models come true and recalling that this accelerated expansion happened much

before than the recombination era (when the CMB was formed) we will cross the elec-

tromagnetic barrier to see farther back into the history of the Universe than ever before.

Burst

The word “burst” in this context collects all the unmodeled gravitational wave sources

that emerge as a transient in the data. It is actually a search for the unexpected.

Several and completely different scenarios might generate such transients: core-collapse

SN, high-mass binary black hole mergers4, exotic events as cosmic strings and any non-

predicted source.

In these type of searches [32] the different pipelines look for similar patterns within

the maximum 10ms that separate an event from Hanford to Livingstone (which also

defines the line that joins the two detectors). Of special interest are the high-energetic

4The frequency of the system scales as 1/M . This effect shifts the signal to the low frequency regime.
For some specific high mass configuration all the inspiral may be totally overlapped by the low frequency
noise thus just leaving “visible” the short merger-ringdown phase. For a more illustrative picture see
Figure 1.8 and imagine what would be the effect of increasing the mass of the most left-shifted waveform.
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burst expected from NS-NS and NS-BH mergers. These events could be the source

of the gamma ray burst observations by the electromagnetic telescopes. Having its

gravitational wave counterpart would also help to locate the system and provide an

alternative description to the, up to now, unknown sources. These searches will be

obviously optimized when more detectors are added to the net.

1.4 Gravitational wave detectors

Nowadays the physical reality of the gravitational waves is accepted by the vast majority

part of the scientific community after the observation of the GW150914, GW151226 and

LVT151012 systems by the LIGO detectors. However, this belief was not so uniform

until the late 50’s. Besides the known weakness of the signals predicted by the equations

of GR and which made the researchers doubt about an eventual future detection, it

was not even clear whether those space-time wiggles could produce any physical effect

when crossing our matter fields. The discussion was solved by Richard Feymann and

his famous sticky bead argument at the Chapel Hill conference in 1957. He illustrated

with a simple though experiment that gravitational waves must carry energy and that

it could be transferred to heat the surface of a metallic stick as a consequence of the

friction caused by the movement of two beads attached to it.

Figure 1.5: Pictorial representation of some GW detectors. From left to right: AU-
RIGA [33], LIGO-Livingstone [34], ET [35], LISA [28].

1.4.1 Resonant bars

The Feymman thought experiment was a great boost for the idea of building gravi-

tational wave detectors. Indeed, one of the researchers who attended the Chapel Hill

conference, Joseph Weber, was the first scientific to make a real attempt to detect grav-

itational waves based on the so called resonant bars (see figure on the left of Figure 1.5).

The underlying idea of these detectors involved the phenomenon called sympathetic

resonance that actuates when an external vibration matches the resonance or ringing
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frequency of the material (in the same way that a civil engineer must control the ringing

frequency of the different structures when building a bridge).

Figure 1.6: Joseph Weber working on his resonant bars for detecting gravitational
waves. The bars originally consisted of a cylinder of aluminum 2 meters long and 1

meter in diameter.

The characteristic ringing frequency of the Weber’s aluminum bars were about the 1600

Hz thus peaking at frequencies consistent with low mass binary systems (∼ 10M�) and

with the not very frequent, at least in the Local Group5, SN explosions. However,

the main problem of the bars was not so much the frequency but the very limited

sensitivity achieved. Weber’s bars sensitivity was only sufficient to detect signals with a

typical strain about h ∼ 10−16. This magnitude, compared to the estimated zero order

quadrupole strain of h ∼ 10−21 computed in the previous section would be roughly

equivalent to detect a BBH merger at a distance of 1kpc (in the Milky Way), which is

very unlikely considering the current rate estimates and standard astrophysical binary

population models.

Despite all the complications described above, Weber claimed having detected gravita-

tional waves in 1969, being just the first of a series of “detections” announced in the

following years. However, none of those claims were sufficiently significant to be seri-

ously considered and after years of failed detections the usage of resonant bars became

unpopular among the growing gravitational waves community. However, there still re-

main alive some modern projects as AURIGA [33] which is also being used for research

in quantum gravity.

5The Local Group comprises more than 54 galaxies including the Milky Way. The raw rate of SN
explosions is about 6 per century in the Local Group being this number too low for considering them as
likely candidates for an eventual detection.
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1.4.2 Laser Interferometer Gravitational wave Observatory: LIGO

In the late 60’s and in parallel to the first realizations of resonant bars, a new idea based

on the elegant concept of light interferometry emerged as a promising alternative to bar

based gravitational wave detectors. This first approach sowed the first seeds of what we

know today as the Laser Interferometer Gravitational wave Observatory (LIGO).

The idea of using laser interferometry to monitor the relative motion of two freely

hanging mirrors and based on the old idea of a Michelson interferometer were firstly

considered in the early 60’s by two Russian researchers: M.Gertsenshtein and V. I.

Pustovoit [36] although the first tests and designs had to wait until the late 60’s when

Robert Forward an colleagues at Hughes Research Laboratories (California) built the

first small-scale (1 m) prototype. This initial version was later complemented by We-

ber and Rainer Weiss at Massachusetts Institute of Technology (MIT), Hans Billing

and colleagues in the Max Planck Institute for Quantum optics in Garching (Munich)

and by Ronald Drever and collaborators in Glasgow University by building new and

upgraded prototypes that, at the same time, were growing up in size to achieve more

sensitivity (1-40 meters). In parallel, K. Thorne and the new-born gravitational wave

group at Caltech started the first investigations on the modelling of the astrophysical

sources and their predicted gravitational wave emission. The goal was to envision from

a theoretical point of view the different sources that could produce such elusive emission

and which ended with a still premature but quite satisfactory description of most of the

sources referred to in Sec. 1.3. The combined results of the theoretical modelling and

the instrumental performance of these first designs made quickly clear the necessity of

kilometer-long observatories to detect gravitational waves; it was born the idea of the

LIGO detectors. After years of planning and prototype research now funded by the

National Science Foundation (NSF) the MIT and the Caltech groups submitted in 1987

the initial proposal that finally ended in 2002 with the installation and commissioning

of LIGO’s initial interferometers at Hanford, Washington and Livingston, Lousiana.

Basic design of a LIGO interferometer

The current ground based gravitational wave observatories are based on the old idea of a

Michelson-Morley interferometers used in the classical experiment to test the existence

of the ether in 1887. The underlying physics of an interferometer rely on the well known

physical phenomena called light interference which is nothing more than the pattern

resulting from the superposition of two or more light sources of equal or nearly-equal

frequency. The basic idea is sketched out in Figure 1.7.
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Figure 1.7: A simplified design of a LIGO interferometer. The laser hits the beam
splitter and then follows perpendicular paths towards the mirrors. Each beam is forced

to bounce 280 times in the Fabry-Perot cavities to finally reach the photodetector.

In a Michelson-Morley interferometer, a monochromatic light beam (laser) is emitted

towards a mirror (beam splitter) which divides the original beam into two identical but

perpendicular beams; one just passing through while the other is redirected (reflected)

90 degrees. Both beams travel towards two reflecting mirrors placed at exactly the

same distance from the beam splitter, which in this case (LIGO) are 4-km of ultra-high

vacuum arms. In absence of any passing gravitational wave, the two beams travel back

the same distance until they reach the photodetector thus being superposed. Then,

whenever the distance traveled (optical path) is exactly the same, they cancel each

other out in a so called destructive interference. However, imagine a gravitational wave

passing through the detectors. As we show in Sec. 1.2, a GW stretches one of the arms

while shrinking the other. This induces a variation in the optical path that causes a

time delay between two beams when reaching the photodetector; they will not be longer

canceled out but instead a constructive interference signature will be recorded, being

specific of each astrophysical source.

Main sources of noise acting on a LIGO interferometer

The aim behind its design is now clear; detect variations in the length of the arms

on the order of ∆L ∼ 10−18m. This astonishingly small magnitude leaves the reader

wonder how many possible noise contributions would make vibrate one atom a distance

one thousand times smaller than the size of its nucleus (and even larger displacements).

However, we are not looking for individual vibrations but for coherent and correlated

displacements of all the atoms of the mirror: an eventual gravitational must affects
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equally all the atoms of the macroscopic system. Thus, the phase shift produced for a

passing gravitational wave in a simple Michelson-Morley interferometer reads [36],

∆φ =
4π

λL
h0L ∼ 5× 10−11 , (1.51)

where λL ∼ 1µm is the typical wavelength of the LIGO lasers and where we have taken

h0 ∼ 10−21. LIGO interferometers are supplemented by Fabry-Perot cavities which force

to bounce each laser beam about 280 times before finally merge in the photodetector

(illustrated as diffused red beams in Figure 1.7). This increases by about the same

factor the estimated phase shift, being now about ∆φ ∼ 10−8. This phase resolution is

achievable considering the current performance of the detectors although there still exist

several noise contributions that may cause such phase shifts. These noise sources may

even simulate the effect GW so it is essential to identify them to avoid any confusion.

Each contribution affects the data in a different way depending on the frequency and

added together define the sensitivity of the detector Sn(f). They are usually classified

as: shot noise, radiation pressure noise, seismic and Newtonian noise and thermal noise.

Let us briefly describe the main features of each contribution:

− Shot noise. The shot noise comes from the quantum character of the light emitted

by the laser. The averaged power emitted by a monochromatic laser is nothing

more than the sum of the energy of each photon constituting the beam in a given

observation time T such P = 1/TNEγ , where N is the total number of photons

arrived at T and Eγ its energy. The amount of power lost by the counting error is

governed by a Poisson distribution which in the limit of high power lasers, i.e., large

N , becomes a Gaussian process with ∆N =
√
N , being ∆P/P ∼ N−0.5. Thus, this

contribution is reduced increasing the power the laser by re-injecting coherently

the partially reflected light through the so called power recycling mirrors.

− Radiation pressure. The laser itself exerts an extra pressure over the mirrors

that affects their position. Intuitively, the higher the power is, the higher the

pressure will be. This effect could be easily compensated if the power of the

laser were constant by applying the equivalent force in the opposite direction.

However, we have seen that the power is described by a Gaussian process thus

making fluctuate the pressure impinged to the mirrors. This generates a stochastic

pressure that shakes the mirrors thus mimicking an eventual gravitational wave

oscillation. This is tackled using squeezed light [37] to reduce the uncertainty in the

phase at the cost of increasing the amplitude uncertainty (Heisenberg uncertainty

principle).
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− Seismic and Newtonian noise. LIGO detectors are ground based gravita-

tional wave detectors that, inevitably, interact with the surrounding environment.

This implies that any external “shake” produced by earthquakes, wind, human

activities might affect the position of the mirrors and must be accounted for in

the calibration. This type of noise sources affect the low frequency regime of the

detector and it is one of the major unsolvable limitations of the ground based

detectors, restricting the detections to sources that are, at least, above ∼ 10Hz.

− Thermal noise. The inherent fluctuations of the atoms composing the mirrors

and suspensions originate oscillations that must be estimated and reduced to a

minimum level. It is the dominant source of noise and it is attenuated by materials

with low mechanical dissipation factors that are actively monitored to reduce the

oscillation of the suspensions.

Figure 1.8: Illustration of some waveform amplitudes from a mass-ratio q = 1 non-
spinning system located at a luminosity distance 1.4 Giga-light years superposed to the
theoretical predictions of the

√
Sn(f) for the initial advanced LIGO run (compatible

with the first period of data acquisition) and the zero detuned detector scheduled for
2019. The waveforms have been computed with the so called PhenomD model [38, 39].

The combination of all the noise sources draw the current power spectral density Sn(f)

or sensitivity of the detector. In Figure 1.8 I illustrate the theoretical prescription of

the noise curves in the advanced detector era tagged as aLIGO2015 and aLIGO2019

(upgraded version). They are expected to be dominantly sensitive from about ∼ 10Hz

(seismic and Newtonian bound) to about a few kHz (shot noise). During the first

observation run O1 both detectors achieved a sensitivity approximately equal to the

theoretical predictions (orange curve in Figure 1.8) with the now well known results:
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the detection of two gravitational waves from BBH systems. Furthermore, the detectors

are scheduled to be upgraded in different phases until late 2019-2020 when they will

optimally achieve the so called zero detuned configuration (red curve), extending the

volume coverage to cosmological distances (DL ∼ 2Gpc).

1.4.3 Other interferometric detectors

Beyond LIGO, there exist current plans for adding more interferometric detectors to the

net in a short time scale. These are:

• GEO-600 consists of two 600 m detector where the light passes twice thus making

an effective distance of 1.2 km. Located in Hannover (Germany), it is the result of a

collaboration between the United Kingdom and Germany. It is capable to observe

GWs from 50Hz to 1.5kHz. Its sensitivity can not compete with the advanced

detectors, being more than one order of magnitude lower in the low frequency

regime and what have made of GEO-600 a test bank for the technology later

implemented in the LIGO-Virgo detectors. On September 18th 2015, it started

taking data simultaneously with the LIGO detectors.

• Virgo is built in Cascina (Italy) as a french-italian collaboration. It consist in a

3km interferometer with a devising very similar to the LIGO detectors. It is also

compatible with the same frequency range but, for the moment, with a bit less

sensitivity. During the period 2007-2011, some coincidence runs were performed

together with the two LIGO detectors before starting a long term upgrading phase.

It is scheduled to join the LIGO detectors by the end of 2017 thus having for the

first time the three advanced detectors taking coincident data.

• KAGRA (Kamioka Gravitational Wave Detector) is a project approved on 22

June 2010 for the construction of an underground interferometric detector with

two arms, 3km long at Gifu (Japan). It uses the same state of art devising of the

LIGO-Virgo detectors. The first initial operative phase (iKAGRA) started taking

data on March 2016. The baseline design is expected to be online by 2018.

• IndIGO (LIGO-India) was announced on February 12th 2016 one day after the

milestone announcement of the first GW observation by LIGO. The proposed

detector is a Michelson Interferometer with Fabry-Perot cavities in two enhanced

arms of 4km length aiming to be sensitive in the frequency range between 30 to

800Hz. Its design is thought to be identical to that of LIGO detectors thus adding

other detector to the net by 2020.
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1.4.4 Third-generation ground-based gravitational wave detectors

The current LIGO detectors (status, science and devising) are known as the second-

generation or advanced gravitational wave ground-based observatories. Although we

can now carry out primary and innovative research on the GWs field, there exist some

well known conceptual and devising limitations that constrain the science performance

of the second-generation gravitational wave observatories.

One of the major limitations comes from the unavoidable low frequency noise that is

generated by a combination of the seismic and thermal noises sources. This frequency

regime agree with the frequencies predicted for high-mass and high-mass-ratio events

thus making more difficult to separate them from the noise. This is directly translated as

a loss of intermediate mass-ratio binary mergers (not yet observed) and an eventual first

observation of an intermediate-mass stellar object (∼ 100M�). Related to the latter,

a better performance of of the low frequency regime will increase the total SNR per

observation thus allowing an improved description of the inspiral regime while increasing

the physical horizon distance up to cosmological scales (z ∼ 10) for events compatible

with GW150914.

To circumvent these impediments there exist ongoing plans to go one step further in the

ground-based gravitational wave astronomy: the Einstein Telescope (ET) [40, 41] and

the Cosmic Explorer (CE) [42]. The ET is a design for an underground gravitational

wave detector on a Sagnac configuration forming an equilateral triangle with three arms

of 10km and with two detectors in each corner. It is expected to reduce the seismic

and Newtonian noise influence on the data thus opening the GW spectra to the ∼ 1Hz

astronomy. On the other hand the CE is a project for a 40km gravitational wave

observatory conceived as the current LIGO-Virgo detectors. The in-band sensitivity

may ranges from 10Hz to a few kHz. It will be dominantly limited by quantum noise

in the high frequency regime and by the Newtonian noise for low frequencies. In figure

Figure 1.9 we show the estimated sensitivity for both detectors compared to the current

second-generation GW observatories and an eventual 20 reduced km version.

1.4.5 Space-based gravitational wave detectors: LISA mission

In Figures 1.8 and 1.9 is illustrated one the main impediments of the ground-based grav-

itational wave detectors: the potential growth of the noise when going to frequencies

below the 10Hz. As we mention in Sec. 1.3, it may exist a rich population of gravi-

tational waves sources within a region centered about the mHz. Thus, this unsolvable

limitation is inherently attached to the Earth and restricts significantly the sparsity of
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the sources that can be detected on the ground. However, it is possible to overcome this

issue by building a space-based interferometer: this is the main underlying idea of the

LISA mission.

The LISA mission translates the idea of gravitational wave laser interferometry to space.

One of the obvious gains, besides avoiding the seismic noise always present in the Earth,

is that in space we can attain interferometric distances much larger than for ground-

based interferometers. The mission plan is based on the idea using laser interferometry

to monitor the position of free flying test masses in a triangular formation and separated

2.5 million km apart. This does not only allows to reach better sensitivities but also

shifts the frequency range to the mHz gravitational wave astronomy thus matching

the typical frequencies of EMRIS, IMBBH mergers, galactic binary inspirals (white-

dwarf and neutron star binaries), cosmological stochastic background and also working

as an alarm for the future LIGO-type mergers. All this challenging technology has been

successfully tested by the LISA-pathfinder mission [43] which was conceived as a test

mission to prove the technology devised for LISA. The LISA team has recently submitted

a proposal in response to the ESA call for L3 mission concepts [28].

Figure 1.9: Figure from [42]. Target sensitivity for the ET and CE projects compared
to the current LIGO-Virgo detectors. With these plans, the sensitivity will increase

about factor of 10.
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1.5 Prospects on gravitational waves astronomy

The groundbreaking GW discovery and the near future predictions about the new de-

tectors and detections offer a unique way of observing our universe in a way never

contemplated. Finally, we have (and have had) the opportunity of observing the high

frequency range of the gravitational wave spectra and unveil the physics of some of the

most powerful, energetic and catastrophic events of the cosmos (GW150914, GW151226,

LVT151012). This new innovative science will be first tied to the performance of the

operating ground-based gravitational wave detectors and then expanding its horizons

thanks to progress in third-generation and space-based gravitational wave detectors.

Then, some of the current open physics questions could be further clarified relying on

the new GW band. I list below some of them.

Fundamental physics

1. Is GR the correct theory of gravity? The final stages of BBH mergers provide a

direct window into the behavior of gravity in the strong field regime. While the two

events already detected have been identified as compatible with BBH mergers, the

SNR of the signal was not high enough to conclude much about the final ringdown,

where, for instance, the area theorem and No-Hair theorem can be tested. With

more detections we expect to place better constraints on the theory.

2. How does matter behave under extreme conditions of density and pressure? Neu-

tron stars are rapidly rotating objects that can emit gravitational radiation through

elastic deformations, magnetic deformations, unstable r-mode oscillations, and free

precession. All these effects create different waveform patterns that give us infor-

mation about the stellar interior thus relating them to the still unknown equation

of state (EoS).

Astronomy and astrophysics

4. How abundant and what are the formation channels of stellar-mass black holes?

An increased statistics will help us to constrain the masses and spins of the stellar-

mass BHs thus generating the first observable distributions of these objects. Fur-

thermore, as different formation channels predict different parameter distributions

we could place better constraints to the stellar initial-mass function.

5. Do intermediate-mass black hole exist? One of the current unknowns in astro-

physics is the existence of IMBHs (M ∼ 100− 105M�). Although there seems to

be some evidence [44] there is no unambiguous electromagnetic detection yet.
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6. What is the origin of gamma-ray bursts? Each LIGO candidate activates an alarm

that is sent to the partner telescopes to observe large regions of the sky seeking

for an electromagnetic counterpart matching the signal detected in the GW spec-

tra. This includes eventual events involving matter as binary neutron star (BBH)

mergers, being the latter one possible explanation for the gamma-ray bursts ob-

served.

Cosmology

7. How was the universe before the formation of the cosmic microwave background

(CMB)? Analogous to what happens with the CMB, there might exists a stochastic

gravitational wave background originated from the combination of a large number

of random and independent events. However, this spectra is expected to be placed

much earlier (10−36 − 10−32s) than the formation of the CMB layer thus having

information of the first stages of the universe.

The first GW observations have only minimally filled a short band of the gravitational

wave spectra. In the following years and thanks to theoretical and technological progress

in GW wave detectors, we expect to slowly complete the GW spectra by adding the cur-

rently unexplored bands. Then, the GW astronomy will not only be an ideal complement

of the EM spectra but a completely different way of studying many physical effects never

observed in the EM range.

Figure 1.10: Artistic representation of some gravitational wave sources to be observed
for the second and third generation gravitational wave observatories. From left to
right: CMB, EMRI inspiral, SN explosion, BBH mergers. Credits: CalTech, Wikipedia,

Scientific American, Physics World.
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Two body problem overview

The main topic of this thesis has been the numerical simulation and modelling of BBH

systems, motivated by the recent GWs detections [3, 45] and future predictions [24].

These events will dominantly populate the ground-based GW spectra. To maximise the

number of detections and getting an accurate estimate of the BBH physical parameters

it is essential to work with the best possible gravitational representations. Current GW

models go far beyond the simple example shown in Chapter 1, where we have deduced

the GW strain at the zero-order or Newtonian limit. There actually exist analytic

representations of the waveforms described by means of the PN and EOB formalisms that

solve the dynamics to a much higher level of accuracy. These analytic approaches provide

an accurate description of the inspiral and late-inspiral phase although they break down

in the merger part of the evolution. In parallel, numerical relativity solutions gained a

lot of popularity after the breakthrough in 2005 [46]. Based on the 3+1 formulation of

the Einstein field equations, several codes and groups around the globe have succeeded

in simulating about the last 20 orbits of the evolution of BBH systems thus becoming

the most faithful representation of the physical waveforms [47]. On the contrary and

beyond its proven success, the computation of the radiation using NR codes present a

series of challenges that we must consider:

- NR simulations are computationally very expensive. A single and not particularly

challenging simulation (nonprecessing with low mass-ratio and low spins), can take

on the order 105 CPU hours. This becomes a strong limitation in order to populate

sufficiently the parameter space and calibrate the waveform models.

- As a consequence of the high computational cost, we are constrained to short

NR waveforms. The initial physical waveform frequency is usually larger than

the corresponding lower frequency cuttoff (∼ 10Hz) of the ground-based detec-

tors [48] for high-mass-ratio mergers. This limitation is addressed by building

28
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hybrid waveforms that combine the known analytic results with the NR solutions

(see Chapter 5). Generating much longer evolutions is then highly constrained by

the performance of NR codes.

- NR waveforms are rather recent in the history of numerical relativity. Nowadays,

there exist on the order of 1000 public BBH waveforms unequally distributed across

the parameter space. Then, while some regions of the parameter space are quite

well covered by the different NR codes, there exists a clear lack of data in high-

mass-ratio, high-spin regimes. (see the parameter space plots of Chapter 4 and

Chapter 5).

The latter points motivate the use of the two available waveform representations for an

optimal modelling of the radiation: through analytic models which accurately describe

the low-motion regime and NR codes that model the region where the analytic models fail

in its description. Indeed, the combination of the analytic GR-based formulations with

the NR results are the basis of the current analytic and semi-analytic Inspiral-Merger-

Ringdown (IMR) models used in the template banks of the ground based detectors. In

this section we summarise the main features of the formulations considered.

2.1 BBH physical parameters

Before detailing the main features of analytic and NR formulations, we first discuss the

relevant physical parameters of standard BBH mergers. A BBH system refers to an

object where two black holes are gravitationally bound and orbit each other. These

objects emit energy in the form of GWs while the orbit shrinks to eventually merge. In

particular, a non-charged black hole is univocally described by its total mass and the

three spin components, popularly known as the No-Hair Theorem. Thus, we deal with a

system of 8 source-based or intrinsic parameters Ξ =
{
m1,m2, ~S1, ~S2

}
, being mi and ~Si

the masses and the spins of the two particles. For convenience and modelling purposes,

they are normally recombined to finally read:

Ξ =
{
M,η, ~S1, ~S2

}
, (2.1)

where now M = m1 + m2 is the total mass, η = m1m2/M
2 is the symmetric mass-

ratio. Here, the eccentricity of the orbit is not considered according to the standard

astrophysical scenario for BBH LIGO-mergers1. Then, with these 8 parameters we can

completely describe the evolution, fusion and further stabilization of a BBH system.

1At so high frequencies, most of the BBH systems are expected to be circularized by radiating away
the eccentricity [49].
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Figure 2.1: Representation of the reference frame of the detector (z axes) and its
relation to the source frame (z’ axes). The angles θ and φ locate the source on the sky

while i provides the relative orientation of source frame with the line of sight.

The set formed by Ξ is complemented with an additional collection of 7 extra parameters

which account for the angular position, polarization and distance to the source. They

are known as the extrinsic parameters, namely:

Λ = {dL, θ, φ, ψ, i, t0,Φ0} (2.2)

where dL is the luminosity distance, θ is the polar angle, φ the azimuthal angle, ψ the

polarization angle, i the inclination, t0 the reference time and Φ0 the reference phase

(see Figure 2.1).

This way of splitting the parameter space is specially useful since the extrinsic param-

eters can be normally factored out as independent contributions of the GWs strain.
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This property allow us to develop models only based on the intrinsic parameters where

the contribution of the extrinsic parameters are trivially added to the models. In this

thesis we have restricted our studies to nonprecessing systems meaning that from the

initial 6 spin components we are left with only two components aligned with the orbital

momentum ~L of the system. Moreover, the total mass acts as a simple scaling factor

for the amplitude while it shifts the time and frequency evolution. Then, it is normally

set as M = m1 + m2 = 1 thus not being relevant for the modelling of BBH mergers.

Consequently, the physical parameter space that we want to synthetise is reduced to

Ξ = {η, S1z, S2z}. In addition, as suggested by the PN results [20, 50–52] and con-

firmed by many previous studies of NR-calibrated models [38, 53, 54], the dominant

parameter dependencies can be reduced to only two, being them the mass-ratio and

some appropriate effective spin parameter Seff that results from combination the indi-

vidual spins of the binary. The phenomenological final state fits, the luminosity fit and

the phenomenological models presented in Chapter 4 and Chapter 5 use this {η, Seff}
parametrization. Similarly, the subdominant effects studied in this thesis are added by

adding ∆χ = χ1 − χ2 corrections to our expressions where χi = Si/m
2
i .

2.2 Waveform anatomy

In this thesis, the targeted result of the BBH dynamics is the gravitational wave strain

h(t) (or h̃(f) if we are in the frequency-domain) as well as other derived quantities as the

final mass, final spin and peak luminosity. Indeed, h(t) is the quantity measurable on

ground-based GW detectors. As suggested throughout the text, analytic and numerical

representations are not equally satisfactory in the modelling of the signal; while the slow-

motion is well covered by the analytic models the strong GR regime must be represented

by the NR solutions. The limits of the slow-motion regime, i.e., where NR is needed are

not uniformly defined and may variate across the parameter space. However, even by

eye inspection, we can identify three clear phases in the evolution: the inspiral (INward-

Spiral) phase, the merger, and the ringdown. I describe below the basic features of these

three regimes.

• Inspiral. It describes the quasi-adiabatic inward evolution towards the coalescense.

It represents the far-zone zone solution where the two BHs are far from each

other and orbit at low speeds. PN and EOB approximants enable us to represent

accurately this evolution even when the speed is no longer small (∼ 0.1c). In

Figure 2.2 the inspiral is framed in red and we see that both the amplitude and

the frequency evolution increase smoothly.
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• Merger. The merger frames the regime where the most strong GR effects are

present. It covers the last orbits ∼ 2 − 3 of the evolution although its exact

placement is not defined in general. PN approximants breakdown at these stages

and full GR is needed for an adequate description (see Sec. 2.4.1).

• Ringdown. The ringdown describes the regime right after the merger, where the

two BHs have merged into a final object. Then, the system settles down to a

stationary and equilibrium solution of the field equations where any distortion in

its shape is radiated through GWs. They are emitted in a well known spectrum of

exponentially decaying frequency modes, called the quasinormal modes (QNMs).

Their solutions can be modeled analytically and any deviation from their predic-

tions would imply a violation of the No-Hair Theorem. A clean characterization of

the ringdown regime could allow us to explore whether other exotic objects could

mimic the events observed by LIGO [55].

Figure 2.2: Time-domain representation of a mass-ratio q = 18 system with dimen-
sionless spin χ1 = −0.8 (biggest BH) and χ2 = 0. We show the three different phases
of the evolution. In the zoomed section we show the ringdown regime, where it is clear
the amplitude decay. The modeling and further detection of the ringdown could help

in the future to constrain and reject alternative gravity theories.

The three regimes together give name to the so called IMR waveforms [38, 56] which

are currently employed as waveform templates for searches and parameter estimation in

the LIGO waveform banks.

2.3 Analytic models

Fully analytic gravitational waveform models [19, 22] describe accurately the inspiral

phase of the evolution of BBH mergers although they breakdown at the late inspiral and

merger-ringdown. Despite this well known limitation, analytic models are still used for

many purposes as for calibrating the early inspiral part of the NR calibrated models or as

input data for solving the NR initial data. In parallel, NR calibrated models [38, 39, 56]

provide a continuous solution on the physical parameter space of the two body problem
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that covers the full waveform in both time and frequency domains. In this section we

will provide a brief depiction of the main approaches to the two body problem: PN

approximants and EOB solutions and phenomenological and EOB-NR models.

2.3.1 Post-Newtonian approximants

In Sec. 1.2.3.2 we have obtained the zero-order solution (Newtonian) of the gravitational

waves generated by two point-like masses under the assumptions of weak field and slow

motion. These assumptions are mathematically extended through an expansion of the

equations of motion in terms of a truncation parameter ε ∼ (v/c)n where v is the speed

of the system, c the speed of light and n the order of the PN expansion. In particular,

post-Newtonian approximants solve the evolution of the orbital phase φ(t) by expanding

it in terms of (v/c)n, where Ω = φ̇(t) [57], namely

(ωd)2 =
GM

d
+
∑

n

an

(
GM

dc2

)n
. (2.3)

Equation (2.3) is nothing more than the generalization of the Kepler formula for a

shrinking evolution, with GM/d the Keplerian orbital speed of the system.

Standard PN approximants solve the dynamics of the system considering quasi-circular

and adiabatic orbits; the two bodies move at low speeds compared to the speed of light

and the radial velocity is smaller than the tangential one (slowly shrinking). Indeed,

(2.3) gives the corrected orbital evolution by means of the quadrupole approximation

(1.45), where the orbital frequency satisfies Ω = 2ω far from the merger. If higher than

quadrupolar corrections are considered (higher modes) the strain can be expanded as,

h(t) =
∞∑

l=2

l∑

m=−l
hlm(t, r)2Ylm(θ, φ) (2.4)

where 2Ylm are the spin-two spherical harmonics. In this scenario the frequency evolution

of the GWs does not scale so trivially and it results from the superposition of all the

terms considered in (2.4). Moreover, each m contribution satisfies, at least in the early

inspiral, that Ωm = mωm (see Chapter 4).

Equation (2.3) is computed from the total energy of the system E and the energy flux

L = dE
dt . The inherent ambiguity of GR in defining the energy of a system arises here.

In Chapter 1 we obtained the GWs solution by inserting a linear perturbation to a flat

background metric. We can do the same but not restricting the expansions just to linear

terms but also considering higher order corrections to the flat metric [19]. Then, in order
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to compute the orbital quantities we use:

dE

dt
=
dE

dv

dv

dt
= L(v) , Mω = v3 , φ(t) =

∫ t

ωdt′ , (2.5)

where v is the orbital speed of the system. The most up to date PN expansions to the

energy E and the flux L are currently known up to v7 order which translated to the

PN nomenclature are the so-called 3.5PN approximants for nonprecessing models (the

targeted systems of this work). Then, before giving the explicit expressions let us define

some of the variables that appear in them[57]:

x =

(
GMω

c3

)2/3

, M = m1 +m2, (2.6)

δM = m1 −m2, ν = µ/M =
m1m2

M2
, (2.7)

~S ≡ ~S1 + ~S2, ~Σ ≡
(
~S2

m2
−

~S1

m1

)
, (2.8)

S` = ~Sˆ̀, Σ` = Σˆ̀. (2.9)

where, x is the variable used for the evolution. Then, the expressions for the energy

E(x) are [19, 57]:

E(x) =− µc2x

2

{
1 + x

(
− 3

4
− 1

12
ν

)
+ x2

(
− 27

8
+

19

8
ν − 1

24
ν2

)

+ x3/2

[
14

3
S` + 2

δM

M
Σ`

]
x3

(
− 675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)

+ x5/2

[(
11− 61

9
ν

)
S` +

δM

M

(
b− 10

3
ν

)
Σ`

]

+ x7/2

[(
135

4
− 367

4
ν +

29

12
ν2

)
S` +

δM

M

(
27

4
− 39ν +

5

4
ν2

)
Σ`

]}
.

(2.10)

Note that ω ∼ v3 and x ∼ v2, what clarifies the why of the name given to the PN

expansion. Of particular note are the terms in S` and Σ` and their combinations. As we

will see in Chapters 4 and 5 such terms and alternative combinations of them are used

for defining the physical parameters of the phenomenological models. Finally, spin-spin

corrections to (2.10) have been added in [20]. The corresponding expressions for the

GWs flux DE/Dt can be found in Section (9.2) of [19, 57].

Then, there exist different strategies for computing ω and Ω in (2.5). Note that, in

summary, one ends up with an equation for dv/dt that can be integrated to obtain v(t).

This can be immediately used for solving ω and Ω by means of:

dv

dt
=
L(v)
dE
dv

, (2.11)
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and where other related variables as the quasi-circular linear and angular momentum

can be computed through pt = µv, L = rpt, where pt is the tangential linear momentum.

To obtain the radial contribution one has to account for the radiation reaction terms

[19] which lead the shrinking of the orbit.

This way of proceeding gives name to the TaylorT1 approximant [50, 58, 59]. In addition,

(2.11) can be inverted in a way such we compute (dEdv )/L(v) up to 3.5PN order and then

to find the corresponding equation for t(v). This result can be directly replaced in

the quantity dΩ/dv and then d compute the phase by analytic integration. This is

the so called TaylorT2 approximant (see [19] for explicit expressions). The TaylorT3

approximant [60] is obtained from the expressions for TaylorT2 by first inverting the

Taylor expansion and inserting them into the TaylorT2 phase. Finally, TaylorT4 is

obtained by re-expanding L(v) and truncating it at the 3.5PN order.

The different solutions for the angular frequency ω (that is trivially deduced from the

phase) and the orbital speed v can now be replaced in the zeroth-order GWs solution

(Chapter 1) to provide a much better and long-termed approximation to the physical

solution while the zero-order amplitude factor is kept the same (which is true since the

amplitude A satisfies Ȧ/A� Ω̇):

h(t) =
4Mηv2

r
e−i(2ω

PN t) (2.12)

although today this result is further improved by also considering higher-order correc-

tions to the amplitude [61, 62].

Alternatively, we can also obtain the equivalent frequency-domain analytic expressions

using the Stationary-Phase-Approximation (SPA) [36]. In this approximation, (2.12)

is Fourier transformed taking advantage of the slow evolution of the amplitude and

expands the phase around a fixed time tf up to second order. These transformations

define the TaylorF2 approximant [19] which has been longer used in the calibration of

the phenomenological IMR models (Sec. 2.3.3).

2.3.2 SEOBNR approximants

The EOB approximants [21, 22] map the dynamic of the two-body system onto an

effective one body moving in a background space-time. They were initially proposed

for solving equal-mass systems, pushing the PN expressions right up to the merger

and where the ringdown is added from the results of perturbation theory. Although

they are considered essentially more accurate than the PN prescriptions, they also get

relevant deviations in the merger phase. Then, EOB models have given way to NR
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calibrated models where the late PN coefficients are adjusted by fitting them to NR

simulations; they are the so called EOBNR models. Nowadays there exist different ver-

sions of these models: SEOBNRv2 [63], this being a 22 mode, spinning and nonprecessing

model, SEOBNRv3 [64] which also accounts for precession, EOBNRv2HM [65], a nonprecess-

ing, non-spinning model including higher harmonics up to l = 5 and the latest version

SEOBNRv4 [66] which improves SEOBNRv2 by increasing the number of the NR points

and also including a calibration to the extreme-mass-ratio limit by means of Teukolsky

waveforms [56].

In the EOB formalism the full dynamics is described by solving a coupled system of

ordinary differential equations for each point of the parameter space. Then, time-domain

solutions have to be translated to frequency-domain representations, for searches and

parameter estimation purposes. Although this is still a much faster process than the

full NR solution (∼ CPU seconds versus 105−6 CPU hours), they are still too slow for

searches and parameter estimation studies, where hundreds of thousands of waveforms

have to be generated. To resolve this, reduced basis methods or better known as reduced

order models (ROM) [67] have been shown essential for its usage in the LIGO data.

2.3.3 Phenomenological waveform models

The alternative to EOB models is given by the phenomenological waveform models [38,

39, 53, 54, 68, 69]. They provide a closed form IMR representation of the quadrupolar

strain in the frequency domain by fitting simple polynomial functions and whose coef-

ficients are mapped to the physical parameter space by matching the known PN/EOB

results to NR waveforms. Since the 2005 NR breakthrough [46], several versions of the

models have been successfully calibrated in parallel to the growth of the BBH simula-

tions field although only the last version presented in [38, 39, 70] is considered suitable

for parameter estimation purposes. Here, we summarize the different versions of the

phenom-based models:

• PhenomA [68]. Nonspinning phenomenological model calibrated to equal-mass

waveforms generated with the CCATIE code [71] and a set of unequal-mass 0.16 ≤
η ≤ 0.25 performed with the BAM code [72]

• PhenomB [53]. Extension of the PhenomA model to spinning binaries calibrated

with NR waveforms contained in [−0.75, 0.75] and mass-ratios in [0.16, 0.25] per-

formed with the LLAMA [73], CCATIE [71] and BAM [72] codes. The spin

contribution is motivated by a PN effective parametrization such χ = (m1χ1 +

m2χ2)/(m1 +m2).
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• PhenomC [54]. Spinning model calibrated to an extended set of NR waveforms con-

tained in [−0.85, 0.85] and mass-ratios in [0.16, 0.25] performed with the LLAMA [73],

CCATIE [71], BAM [72] and SPEC [74] codes. The PN model is taken from the

TaylorF2 [50, 75] phase and the 3PN amplitude [61, 62] where the late inspiral

is also fitted to NR. The spin contribution is fitted by the same effective spin

parameter χ as in PhenomB.

• PhenomP [69]. Precessing phenomenological model based on the twisted version of

the PhenomC and where the spin-precessing effects are fitted by the leading order

effective spin contribution called χp. An upgraded version based on PhenomD has

been used in the first detections for parameter estimation (PE) .

• PhenomD [38, 39]. Latest version of the non-precessing equal-spin version of the

phenomenological models. This model extends the calibration region to mass-ratio

q = 18 and individual spins χi ∈ [−0.85, 0.85] with an upgraded ansatz build on

the phase derivative. It is the reference model of this work. Its formulation is

given in detail in Chapter 5.

2.4 Numerical relativity models

Phenomenological models and EOBNR models rely on NR solutions of the Einstein field

equations. As we have illustrated in the introduction, these form a set of 10 coupled, non-

linear, second-order partial differential equations for the four-dimensional metric tensor

gµν represented by (1.19). These equations are written in a fully covariant way thus

making no clear distinction between time and spatial coordinates. While this is quite

natural from the point of view of differential geometry we are intuitively accustomed to

solve the dynamics of physical systems by taking time derivatives of our quantities to

study its evolution in time. For instance, we could be interested in finding the future state

of a BBH system given some physical configuration and initial data, tracking its orbit

and dynamics. This inherently lead us to express the equations with time derivatives

on the left hand side and some other arbitrary source terms on the right hand side thus

labeling in a different way the time and spatial coordinates and which motivates the

idea of the space-time foliation with three spatial and one time components (3+1). In

this section, we briefly discuss the main points of 3+1 ADM decomposition and we will

relate them with the BBH solutions. Here we outline the main derivations of [14, 76].
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2.4.1 ADM 3+1 formalism

The study of the time evolution of a given physical system is commonly formulated as

a Cauchy problem: given a system of dynamical equations and some adequate initial

data, the fundamental equations must uniquely predict the past and future evolution

of the system. Here, we first want to split (1.19) into a system of dynamical equations

where the coordinates take the usual conception of space and time. Then, consider a

four-dimensional manifold M, decomposed in three-dimensional Σt space-like surfaces

(slices), being the parameter t an scalar field that connects two immediately consecutive

space-like slices (see Figure 2.3). Notice that t does not necessarily coincides with the

proper time of any particular observer but represents a general time function. The

Figure 2.3: Example of space-time foliation of the space-like surfaces Σ given the
time parameter t and the lapse and shift vector definitions.

geometry contained between two adjacent surfaces is described by the space-time metric

which, in the most general form, can divided in the following components:

• three-dimensional spatial metric γij(t, x
i) with (i=1,2,3). It is the induced

metric on a given space-like slice Σ and it defines the line element on the slice

considered. It is used for raising and lowering indices on the slice,

dl2 = γijdx
idxj (2.13)

• Lapse function α(t, xi). It accounts for the time elapsed when one travels from

Σt to Σt+dt for Eulerian observers (these moving along the normal vector ~n to the
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surface). It directly relates the time coordinate t with the proper time τ .

dτ2 = α(t, xi)dt2 (2.14)

• Shift vector β(t, xi). It defines the relative velocity of the Eulerian observers

with the lines of constant spatial coordinates. The particular case of β(t, xi) = 0

defines the so called adapted coordinates (Eulerian observers).

xit+dt = xit − βi(t, xi)dt (2.15)

The α and β functions can be specified freely. Different choices of these quantities will

define different foliations of our space-time, thus fixing how different observers move on a

given space-time. Indeed, since we are not restricted to any particular choice (it appears

again the general covariance of GR), we have the freedom of defining a completely

different representation of our space-time: they are just gauge dependent functions of

our space-time. Then, combining the elements of Equations (2.13) to (2.15) it is possible

to define a general four-dimensional space-time metric such that,

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj . (2.16)

A natural way of describing the intrinsic geometry of a given hypersurface is through

the gradient of its unit normal vector ∇~n. Since our slicing is fixed by hypersufaces at

t, the normal vector is given by the gradient ∇µt. It is easy to show that ~n takes the

following form in these coordinates:

nµ = (−α, 0) nµ =
(
1/α,−βi/α

)
. (2.17)

where nµ has been normalised such nµnµ = −1 while the sign convention is chosen such

nµ points to future. The variation of the normal vector ~n along a given surface Σt gives

a sense of its three-dimensional shape and it is related to so called extrinsic curvature

tensor Kµν . Mathematically, it is defined either by the projecting the ∇νnµ or by means

of the Lie derivative of the induced metric along the field of unit vectors ~n:

Kµν = −Pαµ∇αnν (2.18)

£~n(γµν) = ∇µnν + nµn
α∇αnν = −1

2
Kµν (2.19)

where Pµν := δµν + nµnν defines the projection operator onto spatial hypersurfaces and

nµKµν = 0 (Kµν is a purely spatial tensor). Notice that Kµν only depends on how we

move ~n within a given Σt thus being a geometrical property of the slice itself. Equation

(2.18) is not only restricted to the propagation of observers along the normal vector ~n
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Figure 2.4: Representation of the normal vector ~n parallel transported into some
specific Σt. Its variation draws intuitively the geometry of the slice considered.

(Eulerian observers). We can define any arbitrary time vector as

tµ ≡ αnµ + βµ , (2.20)

where tµ defines the lines of constant spatial coordinates (see Figure 2.3). Since ~n is

normal to Σt it satisfies for any scalar function,

£~n(γµν) =
1

α
£α~n(γµν) , (2.21)

which implies,
1

α

(
∂t −£~β

)
γij = −2Kij (2.22)

and where we have used that in the adapted coordinates £~t = ∂t.

2.4.2 Space-time 3+1 field equations

In the previous section we have obtained the evolution equation for the three-dimensional

metric γij from purely geometric concepts. To close the evolution system, we require the

analogous equation for the extrinsic curvature Kij . Although this is normally shown by

considering the contractions of the normal vector ~n with the projector operator Pµν , it

can also be obtained by propagating the 3 + 1 decomposition through the Einstein field

equations (1.19). To do so and to illustrate the calculations, we use here the adapted

coordinates, i.e., with βi = 0 recalling that the essential modification with respect the

general foliation of (2.16) concerns the time derivatives such,

1

α
∂t →

1

α

(
∂t −£~β

)
, (2.23)

as we have seen in (2.22). With this consideration and from the 3 + 1 metric tensor

defined in (2.16), it is possible to obtain the relations for the Christoffel symbols listed

in Table 2.1.
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Γ0
00 = ∂t logα

Γ0
i0 = ∂t logα

Γ0
ij = −1/αKij

Γk00 = αγkj∂jα

Γki0 = −αγkjKij

Γkij = Γ̂kij

Table 2.1: 3 + 1 decomposition of the four-dimensional Christoffel symbols as in [14].

Γ̂kij stands for the connection coefficients of the induced three-dimensional metric γij .

Now, we apply an equivalent transformation to the energy-momentum tensor Tµν . Then,

analogously to what we do in the special case of a flat space-time (special relativity), we

identify three independent contributions:

• The energy density

ρ = Tµνnµnµ , (2.24)

• The momentum density

Si = −Tµi nµ , (2.25)

• The stress tensor

Sij = Tij , (2.26)

that correspond to the decomposition of Tµν into parts that are either longitudinal with

nµ (ρ), tranverse (Tij) or of mixed type (Tµi nµ). Taking the relations obtained in Table

2.1 (see [14] for a detailed description) and inserting them in the Einstein field equations

one finds the corresponding evolution equation for the extrinsic curvature Kij that reads,

(∂t −£β) γij = −2Kij , (2.27)

(∂t −£β)Kij = ∇i∇jα+ α
[
Rij +KKij − 2KikK

kj
]

(2.28)

− 8πα

[
Sij −

1

2
(S − ρ) γij

]
, (2.29)

where we have rewritten (2.22) and we have applied (2.23). Doing the same with the

mixed (0i) and (00) components we get the constraint equations,

H ≡ 1

2

[
R+K2 −KijK

ij
]
− 8πρ = 0 , (2.30)

Mi ≡ ∇j
(
Kj
i −Kδ

j
i

)
− 8πSi = 0 . (2.31)

The system of equations presented here gives all the ingredients to evolve any four-

dimensional space-time given some sane initial conditions similarly to how the Maxwell

equations are solved. However, Equations (2.27) to (2.31) do not form a well-posed

evolution system, i.e., that the solution exists, it is unique and it changes continuosly

with the initial conditions. One has to find a reformulation of the ADM equations to get
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the well-posedness of the system of equations. For BBH hole evolutions this is addressed

using two significantly different frameworks: based on the generalized harmonic gauge

formulation [77–79] and on the BSSNOK conformal compactification [80–83]. Since the

work of Pretorius [46], and based on these two strategies, several groups and codes

around the world have succeeded in simulating gravitational waves from BBH mergers

and that has resulted in the creation of several public waveform catalogues [6, 84, 85].

I review here the BSSNOK formulation since is the basis of the BAM code, used in this

thesis for the performance of the nonprecessing, unequal-spin BBH simulations.

2.4.3 The BSSNOK formulation

In the late 80’s and well into the 90’s, first Nakamura, Oohara and Kojima [80, 81]

and after Baumgarte, Shibata and Nakamura [82, 83] presented a novel formulation of

the ADM equations based on two main modification of these equations: by a conformal

transformation of the spatial metric and the introduction of a new evolution variable

referred as Γ̃i. The new reformulation exhibited far more stability than the old ADM

equations [83]. Today, it is known as the BSSNOK formulation of the 3 + 1 Einstein

field equations. We show here some of the key points.

Consider the following conformal rescaling of the spatial metric:

γ̃ij ≡ ψ−4γij , (2.32)

where ψ is a positive scalar function called conformal factor. The conformal metric

is chosen to has unit determinant γ̃ = 1 not only on the initial slice, but also during

the evolution. Although this choice is specially suitable in Cartesian coordinates some

recent work by [86, 87] shows how to translate this condition to more general coordinate

systems. This provides the following relation between the conformal factor ψ and the

three-spatial metric determinant γ:

ψ = γ1/12 . (2.33)

In addition, the extrinsic curvature is separated into its trace and its tracefree part thus

defining:

Aij = Kij −
1

3
γijK , Ãij = ψ−4Aij , (2.34)

where one also rescales the traceless tensor Aij with an appropriate power of ψ. As

mentioned before, a crucial point on the BSSNOK formalism is the introduction of the
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auxiliary conformal connection function defined by:

Γ̃i := γ̃jkΓ̃ijk = −∂j γ̃ij , (2.35)

where Γ̃ijk are the Christoffel symbols of the conformal metric. This spatial gauge condi-

tion is specially suitable to eliminate the mixed second derivatives that would appear in

the evolution equations in its absence. Since Γ̃i is evolved independently, (2.35) might

be seen as an additional constraint equation. Then, we want to re-express now the set

of ADM evolution Equations (2.27) to (2.29) in terms of the new conformal metric and

the new connection gauge. Now, the system of equations takes the following form:

∂0γ̃ij = −2αÃij , (2.36)

∂0φ =
1

6
αK, (2.37)

∂0Ãij = e−4φ (αRij −DiDjα)TF + α
(
K Ãij − 2Ãi

mÃmj

)
, (2.38)

∂tK = −DiDiα+ α

(
ÃmnÃmn +

1

3
K2

)
, (2.39)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃j∂jβ

j

− 2
(
α∂jÃij + ˜Aij∂jα

)
, (2.40)

where ∂0 = ∂t − £~β
, Di is the covariant derivative associated to the spatial metric γij ,

“TF” denotes the trace-free part and where we have defined φ = logψ = 1/12 log γ.

Now, instead of the 12 variables of the ADM evolution Equations (2.27) to (2.29), we

count now in total 17: φ, K, γ̃jk,Ãij and Γ̃i. Then, recalling that Ã = 0 and γ̃ = 1, these

variables get reduced to 15 independent ones. On the other hand, the Lie derivatives

with respect to the shift vector are given by:

£~β
φ = βk∂kφ+

1

6
∂kβ

k (2.41)

£~β
γ̃ij = βk∂kγ̃ij + γ̃ik∂jβ

k + γ̃jk∂iβ
k − 2

3
γ̃ik∂kβ

k (2.42)

£~β
Ãij = βk∂kÃij + Ãik∂jβ

k + Ãjk∂iβ
k − 2

3
Ãik∂kβ

k (2.43)

The conformal transformation and the splitting of the extrinsic curvature tensor in into

its trace and trace-free components provide a better control over the slicing conditions α

and βi. However, the system of Equations (2.36) to (2.40) is still not stable by itself for

long term simulations. We have to propagate the conformal transformation through the

ADM constraint Equations (2.30) to (2.31). Indeed, (2.30) has already been considered

in (2.39) to eliminate the Ricci scalar R. Now, we are left with the momentum constraint
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(2.31) which takes the following form in the new variables:

∂jÃ
ij = −Γ̃ijkÃ

jk − 6Ãij∂jφ+
2

3
γ̃ij∂jK (2.44)

Then, we replace the terms ∂jÃ
ij in (2.40) to get the following evolution equation for

Γ̃i:

∂tΓ̃
i = βm∂mΓ̃i − Γ̃m∂mβ

i +
2

3
Γ̃i∂mβ

m + 2αΓ̃imnÃ
mn +

1

3
γ̃im∂m∂nβ

n

+γ̃mn∂m∂nβ
i − 4

3
αγ̃im∂mK + 2Ãim (6α∂mφ− ∂mα) , (2.45)

Finally, the complete system of evolution equations is given by Equations (2.36) to (2.45).

However, it is worth to notice that the crucial piece in this formulation is the replacement

of the momentum constraints directly in the evolution equations. The subsequent system

of equations is known to be much more stable [83] than the original York-ADM equations.

Indeed, Equations (2.36) to (2.45) are the most widely used representation of the Einstein

3+1 evolution equations of space-times with and without matter. In this work, the BBH

data of three (BAM,LAZEV,MAYA) of the four NR codes used has been computed using the

BSSNOK formulation.



Chapter 3

Simulations of BBH systems with

the BAM code

In this chapter we present the numerical set up, evolution and final post-processing of

a set of 23 NR simulations performed during the realization of this thesis project with

the BAM code. These simulations have been selectively used for the formulation of new

and enhanced fits for the final spin, energy radiated and peak luminosity paying special

attention to the calibration of unequal-spin effects and the extreme mass-ratio limit

(Chapter 4). These results are also expected to be a key ingredient for the ongoing

upgrade of the PhenomD model [38, 39] to a three parameter model (Chapter 5) lead by

the UIB group [88]. To this end, we have also complemented our data set with several

public resources as the SXS [4, 89], GaTech [6, 90] and RIT [5, 85, 91, 92] public

catalogues. Finally, an extra set of 38 extreme mass-ratio waveforms [93–95] have been

used for the calibration of the extreme-mass-ratio limit in the peak luminosity fit.

3.1 The BAM code

The BAM code evolves the 3+1 decomposed Einstein field equations using the BSSNOK

formulation introduced in the previous chapter and in the framework of the moving

puncture. Then, the 2-black-hole initial data is modeled by adopting the Brill-Linquist

wormhole topology [96] (see also Sec. 3.1) with 2+1 asymptotically flat ends for the

initial geometry. The asymptotically flat ends are compactified and identified as ri

coordinate singularities which are referred to as the punctures (i labels the number

of BHs on my initial data). This puncture view representation of the initial slice is

particularly useful since it associates masses, momenta and spins with any number of

black holes.

45
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The BSSNOK variables (Sec. 2.4.3) are evolved as a partially constrained scheme, where

the algebraic constraints det(g) = 1 and Tr(Aij) = 0 are enforced at every intermediate

time step to ensure the strong hyperbolicity of the evolution. Then, to close the system

of evolution equations (Equations (2.36) to (2.45)), we are left to define the evolution

equations for the gauge variables. In BAM, the lapse and shift are evolved though the 1+

log [97] and gamma-freezing conditions [71] respectively thus,

∂0α = −2αK , ∂0β
i =

3

4
Bi , ∂0B

i = ∂tΓ̃
i − ηBi, (3.1)

where ∂0 = ∂t − ζβm∂m and Bi is an auxiliary vector that has been shown particularly

suitable to avoid having a perturbation in the constraints that persists at the initial

location of the punctures [76].

There still remains some freedom in the choice of the conformal factor (Sec. 3.1). In BAM,

it is usually chosen to evolve the variable χ = ψ−4 [98] (see (2.37)) instead of φ = logψ

[99] (although some tests have been also performed with φ). This transformation involves

that initially χ is O(r4) when ψ has the usual pole at the puncture 1/r thus replacing the

singular structure of the black hole by a vanishing χ. Then, (2.37) takes the following

[98],

∂0χ =
2

3
χ(αK − ∂αβα) + βi∂iχ, (3.2)

This transformation allows to avoid excision and establishes a simple way of tracking

the position of the punctures. Using the chain rule and recalling that χ = 0 at the

punctures one finds

∂t(~xpunc) = −~β(~x), (3.3)

which gives name to the moving puncture framework.

Initial data and black hole parameters

To evolve the BSSNOK system of Equations ((2.30) to (2.45)) together with the gauge

evolution Equations (3.1), we first need some initial conditions for all the set of equations.

This means that we have to find a time-zero solution (initial data) for the 12 components

of the spatial metric γij and the extrinsic curvature Kij together with some suitable

initial values for the lapse α and the shift vector βi.

In the BAM code the initial data is solved taking advantage of the York-Lichnerowicz

conformal decomposition [100–102] that starts with a conformal transformation of the

metric given by:

γij = ψ4γ̄ij , (3.4)
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where to avoid any confusion with the BSSNOK conformal decomposition we represent

the new metric with a bar. Initially, it is chosen a conformally flat three-dimensional

metric with γ̄ij = δij and a maximal slicing condition given K = 0. Then, it is possible

to find an analytic expression for Kij given by vectors with a relevant physical meaning

(see Chapter 3 of [76]),

Kij = ψ2 3

2r2

[
niPj + njPi + nkP

k(ninj − δij)
]
− 3

r3
(εilknj + εjlkni)n

lSk , (3.5)

where ni is the unit outward-pointing radial vector and where P i and Si can be indetified

with the ADM linear momentum and the spin of the punctures. Equation (3.5) is known

as the Bowen-York extrinsic curvature [103, 104].

Usually in BBH evolutions, the initial physical parameters of (3.5) are chosen by means

of the quasi-circular 3.5PN and EOB predictions for the initial momenta and spins

(Chapter 2). In particular, we freely select some spin configuration as well as some initial

distance D0 that defines the initial separation of the punctures. Then, the quasi-circular

assumption involves that we can get Pi = f(D0, S
i) thus completing the definition of

Kij . Equation (3.5) is the usual definition of the initial extrinsic curvature for the

puncture codes (BAM,LAZEV,MAYA) used in this thesis. It is also worth to notice that the

ADM-TT coordinate gauge used to define the PN dynamics and the effective coordinates

[22] used in EOB prescriptions is different although very close to the conformally flat

gauge used for solving the initial data, getting this match better as the separation D0

increases. Relatively small deviations of ≈ 1% in the PN-EOB predictions result in the

appearance of a residual eccentricity that we remove following the recipe described in

Sec. 3.4.

Once the solution for Kij is known, we are left to find a solution for the conformal factor

ψ to finally obtain the physical three-dimensional metric γij . This equation is given

by the Hamiltonian constraint (2.30) that, after the conformal transformation of (3.4),

reads:

8D̄2ψ − R̄ψ + ψ5
(
KijK

ij −K2
)

= 0 , (3.6)

where D̄2 and R̄ are the Laplace operator and the Ricci scalar for the metric γ̄ij . Notice

that by means of (3.5) we already have all the ingredients for solving (3.6). However,

before attacking this solution let us try to pose the simplest case of a time-symmetric

initial data problem with R̄ = 0. In this scenario we are left to solve a Laplace equation

for a conformally flat metric, D2ψ = 0. One of the possible solutions to this equation is

given by ψ = 1 +m/2r where m is the bare mass and that can be related to the mass of

the puncture, i.e., recovering the Schwarzschild solution. Indeed, the Laplace equation
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admits a solution given by a superposition of punctures, namely,

ψ = 1 +
N∑

i=1

mi

2|~r − ~ri|
= 1 + ψBL . (3.7)

The latter is the so called Brill-Linquist initial data [96], and for binary black hole

evolutions N = 2. The solution for a general case where the punctures have both linear

momentum and spin is based on a Brill-Linquist solution but also accounting for the

source terms and remnant interaction. This is synthesised by ψ = ψBL + u, presented

in [105] and gives name to the so called puncture formalism. Then, the Hamiltonian

constraint is solved for u and it reads,

D̄2u+
1

8ψ7
BL

ĀijĀ
ij = 0 , (3.8)

where Āij = ψ2Kij and recalling that γ̄ij = δij (R̄ = 0) and K = 0. The key feature of

the puncture method concerns the fact that we do not need special boundary conditions

close to the punctures. In this regime we find that ψBL ∼ 1/r while ĀijĀ
ij ∼ 1/r6 thus

removing any divergence in (3.8).

To complete the definition of the initial conditions we need to specify some initial values

for the gauge variables α and βi. In BAM, it is chosen initially a pre-collapsed lapse

α = ψ−2
BL (that makes α = 0 at the punctures) and βi = 0.

An interesting consequence of BL initial data is that it represents a dynamical scenario

that evolves towards the Kerr solution but being different from it initially. Moreover,

it is known that the Kerr space-time can not be represented by Bowen-York initial

data [106]. This incompatibility leads to an initial space-time that may be seen as the

expected Kerr geometry plus a residual content on gravitational waves. Then, the extra

energy content is radiated away in a short time, hence, taking energy out from the

system. This ejection is the so called junk radiation and is a consequence of choosing

conformally flat initial data (3.4) for a Kerr-based space-time and which restricts the

values of the initial mass and spins to 0.812 & M ≤ 1 and χ . 0.93 [106–108]. This

effect increases with the magnitude of the spin components while it decreases for larger

D0. Thus, since this ejection slightly perturbs the system, the initial masses and spins of

the particles are usually readed after this ejection, i.e., when the system is relaxed. The

superposed boosted Kerr-Schild data used by the SXS collaboration does not show this

extra content of radiation and allow them to perform near extremal spin configurations

[109, 110].

Then, in summary, this is how we solve the initial data for BAM:
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1 - We solve either the PN or the EOB quasi-circular dynamics for a given
{
q, ~S1, ~S2

}

configuration which yield the values for the momenta P i of the punctures and

defines the initial Kij .

2 - The code solves (3.8) for the variable u which is directly related to the conformal

factor given the following initial data choices: γ̄ij = δij , i.e., R̄ = 0 and K = 0.

Then, we choose a pre-collapsed lapse and βi = 0. At this point we already have

all the ingredients to evolve our space-time.

3 - The analytic PN-EOB momenta will in general deviate from the quasi-circularity

thus adding some residual eccentricity that in general is about ∼ 1%. This enforces

to recalibrate the initial momenta following the results of Sec. 3.4 and then solve

again the initial data equations.

Numerical setup

The computational domain is resolved by a set of L cubic hierarchically nested boxes

that define L levels of mesh-refinement cubes indexed by ` = 0, ..., `m, ..., L − 1. Here,

` = 0 defines the outermost box while `m and L−1 the outermost and innermost moving

boxes [72]. Each level of refinement ` is described by a Cartesian cube with a constant

grid-spacing h` in the x−y−z directions with N3
` points on level `. A refinement factor

of two relates two consecutive nested refinements thus satisfying h` = h0/2
`. Then, each

black hole is covered by a subset of moving nested ` ≤ `m boxes which track the position

of the punctures by using (3.3) where a Berger-Oliger type adaptative-mesh-refinement

(AMR) [111] is used for the time stepping. In addition, the finest boxes h` surrounding

each particle must be sufficiently large to enclose both apparent horizons (AHs) (see

Sec. 3.2.2). For unequal-mass systems where one tipically has rAHl/rAHs ∼ q > 1

(q = ml/ms ≥ 1) and where s/l label the smallest and largest particle respectively, some

of individual the refinements h`=L−1,L,...,0 surrounding the largest particle are eliminated

to not overlap with its AH radius rAH . Indeed, the sharped radial profile of some of

the evolution variables around the punctures (e.g. the shift) enforces to setup a grid

sufficiently large and resolved to capture them. In this line, it has been found empirically

that this is achieved when the ratio between the finest box surrounding each particle

and its apparent horizon satisfies,

L(s/l)

2rAH(s/l)
&

3

2
, (3.9)

where Ls/l represent the finest boxes surrounding each BH. This lower limit is not

rigorously fixed, though a ratio of 1.5 is normally sufficient to resolve the mentioned

profiles. Larger values for this ratio would even fit better the data though also increasing
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the computational cost. Finally, the outermost boxes `m > ` are kept unmoved and

define the levels where the gravitational waveforms are extracted while ` = 0 is chosen

to be far enough to avoid inward reflections of our fields after reaching the boundaries

of our computational domain. Close to merger, when the innermost boxes are close to

meet each other, the domain is re-grided to enclose both the AH of the two individual

black holes and the apparent horizon of the final object (from which we compute the

final mass and final spin).

Finally, the evolution equations are usually evolved using sixth-order finite differencing

in space combined with the method of lines with a fourth-order Runge-Kutta scheme

for time integration. In addition, despite the robustness of the methods described, there

always remain some numerical noise as a consequence of the discretization and rounding

errors. This may lead to appearance of high frequency modes propagating through the

numerical grid. Then, in order to minimise their effect, artificial dissipation is added

trhough the standard Kreiss-Oliger dissipation operator (Q) of order 2r,

Q =
σ(−h)2r−1(D+)r(D−)r

22r
, (3.10)

where h is the spatial stepping, D± first order derivative operators and with σ controlling

the strength of the operator. Finally, the apparent horizons are tracked with the AHmod

code [112].

BAM setup: summary

The BSSNOK and gauge evolution equations together with the initial data and the

numerical setup form a closed system to evolve BBH simulations. However, we are still

free to configure the initial setup by tuning some of the parameters, equations etc. In

summary, this is all the freedom that we have in the initial configuration:

• The choice of the evolution variable for the conformal factor. In this thesis we

have always used the χ method.

• The choice of the initial lapse function and shift condition. In our evolutions we

set initially α = ψ−2
BL and βi = 0.

• The choice of η and ζ in the shift condition this being ζ = η = 1 for all runs

reported in this thesis.

• The Kreiss-Oliger dissipation factor and the order of spatial finite differencing on

the evolution equations. In our case they have been set to σ = 0.5 and 2r = 6

combined with a sixth-order finite differencing scheme in space.
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• The Courant factor C = ∆t/∆x; typically ∼ [0.25, 0.5]. The upper limit C = 0.5

is normally sufficient for near equal-mass simulations while a more restrictive one

C = 0.25 is needed for high mass-ratio cases to resolve the steeper profiles present

in all the evolution variables caused by the asymmetry of these cases.

• The sampling of the spatial coordinates by using (3.9) or using a more relaxed

version of it (with a factor larger than 1.5).

• The placement of the outer boundary defined through the outermost box ` = 0.

3.2 Derived quantities

3.2.1 Gravitational waves

The simulation plan explained in Sec. 3.3 is targeted to recalibrate the existing spin-

aligned phenomenological waveform models [38, 39] by adding subdominant effects as,

in particular, the unequal-spin terms [7, 8]. Then, one of the main goals of this thesis has

been the computation of the radiation resulting from 23 unequal-spin BBH mergers. In

BAM, the gravitational wave signal is computed from the space-time metric using the 4th

Newmann-Penrose scalar ψ4(t, r, θ, φ) [113]. (follow [114] for a detailed discussion about

different alternatives of wave extraction methods). Then, the ψ4(t, r, θ, φ) is defined by:

ψ4 = −Rαβγδnαm̄βnγm̄δ, (3.11)

where Rαβγδ is the four-dimensional Riemann tensor, and n and m form part of the null-

tetrad {l, n,m, m̄} (see [72]), being m̄ the complex conjugate of m. For many different

purposes, it is usual to project the ψ4 in a basis of spin-two spherical harmonics [115]

−2Ylm as:

ψ4,lm(t, r) =

∫ 2π

0

∫ π

0
ψ4(t, r, θ, φ)−2Ȳlm(θ, φ)dΩ

ψ4(t, r, θ, φ) =
∞∑

l=2

l∑

m=−l
ψ4,lm(t, r)Ylm(θ, φ) (3.12)

where the l = 2,m = ±2 modes are the well known quadrupolar modes. Thus, (3.11)

allows to split the emission in terms of even/odd contributions (higher modes) that are

weighted by its corresponding spherical harmonics and superposed as individual con-

tributions. This is particularly useful for current waveform modelling purposes where,
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historically, only the quadrupolar terms has been calibrated (see the overview of wave-

form models of Chapter 2) and motivated by the fact that they carry with the majority

of the power of the signal for comparable mass and nonprecessing systems1.

The ψ4, as well as other quantities in NR, is only well defined at null infinity where all

the gauge effects are expected to vanish. However, the finiteness of our computational

domain obligates to compute the GWs signal ψ4 at a finite distance over spheres located

at finite radius rf according to (3.12). Far from the source, the peeling theorem [116–

118] states that ψ4 ∼ r−1 thus being more natural to define the quantity rfψ4(t, rf ). This

rescaling partially removes the amplitude decay and also reduces the gauge dependency

on the radial coordinate2. In fact, rfψ4(t, rf ) is the natural magnitude provided by NR

codes (BAM,LAZEV,MAYA, SpEC) and analytic (EOB, PN) and semi-analytic (SEOBNR,

Phenom) models for waveform-derived analysis. To minimise this finite radius effects,

there exist a few strategies to extrapolate ψ4(t, r) to null-infinity through polynomial

extrapolation [60, 119] and by using results of perturbation theory [120]. We address

this issue in Sec. 3.6 and Chapter 4. Then, for the sake of clarity,

rψ4(t, r, θ, φ) =
∞∑

l=2

l∑

m=−l
rψ4,lm(t, r)Ylm(θ, φ) (3.13)

A three-dimensional intuition of (3.13) is given in Figure 3.1. This figure illustrates a

snapshot of the three-dimensional ψ4 into its AMR box of length 100M3 corresponding

to a BAM run with physical parameters consistent with GW150914. The red and blue

colors determine the maximums and minimums of the radiation at merger times traveling

out from the source. The waves in the outer regions (green and yellow) correspond to the

late inspiral regime where the strength is not as strong as in the merger. They represent

the solution at a retarded time τ ∼ t− r, i.e, when the two BHs are still further apart.

Equation (3.13) is the standard representation of the ψ4 on the context of gravitational

wave detectors and waveform modelling. However, the detectors measure the change

on the proper length of the arms produced by a passing gravitational wave, being pro-

portional to the strain h(t). These two quantities are related through a second time

1There is an ongoing effort for including higher than quadrupolar corrections using the EOB formalism
and the phenomenological framework carried out by the LIGO waveform group.

2Recall that in the Newman-Penrose decomposition [113] there still remain higher order terms in r−a

with a ≥ 2 that are not contemplated in the (3.13). This gives sense to the far-from-source restriction
that it is normally considered for the wave extraction and that helps to reduce the gauge effects on the
ψ4.

3For BBH evolutions the total mass is factored out from the system of equations. These equations
are usually formulated in geometrical units where M = 1. In BAM units this would correspond to 200rS ,
where rS = 2GM/c2 is the Schwarzschild radius for a system of total mass M .
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Figure 3.1: Snapshot of of the three-dimensional ψ4 for a run with parameters com-
patible with GW150914 as seen in a Cartesian box about ∼ 100M times larger than the
apparent horizon ∼ 1M (the small sphere at the center of the grid). The color gradient
reveal the peaks (red) and valleys (blue) of the emission as seen when averaging over
orientations (see Figure 3.2). The system was evolved with the BAM code by Sascha

Husa while the visualization was performed by Rafel Jaume [88].

derivative, as:

h(t, θ, φ) =
d2ψ4(t, θ, φ)

dt2
=
∞∑

l=2

l∑

m=−l
hlm(t)Ylm(θ, φ) , (3.14)

where we have dropped the radial coordinate to simplify the notation.

Current time-domain [63, 64] and frequency-domain [38, 39] waveform models used in the

template banks of the detectors calibrate the l = 2,m = ±2 contributions of (3.14). An

example is illustrated in Figure 3.2, where we show the real part of the time evolution of

the l = 2,m = ±2 term for the same physical case that in Figure 3.1 and for the ψ4,22(t)

(left) and h22(t) (right) modes. In these figures, we show the last ∼ 20 GW cycles

for a nonprecessing simulation performed with the BAM code (black) with parameters

{q = 1.2, χ1 = −0.5, χ2 = 0.5} overlapped with its equivalent SEOBNRv4 signal [66] (red)

and where it is clear the agreement between the NR waveform and the semi-analytic

approximant. The minimal spike located at the beginning of the simulation is the so
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called junk radiation (Sec. 3.1) and it is usually cut off for any waveform-derived analysis.

Figure 3.2: Illustration of the 22 mode rψ4,22(t) (left panel) and its corresponding
strain rh22(t) (right panel). The simulation was performed with the BAM code and used
for the calibration of the new final state and luminosity fits [7, 8] as well as in the new

calibration of the phenom model (Sec. 5).

3.2.2 Apparent horizons

Multiple physical quantities might be computed directly from the geometry of the BHs

at each time step. For instance, spin and mass are well defined horizon quantities that

come out naturally from the event horizon (EH) . An event horizon defines the boundary

surface where light cannot escape from the black hole. They are invariant properties

of our space-time. However, in NR simulations, where we evolve our three-dimensional

slices, EHs are only well defined at the future of each slice, i.e., after the full performance

of the simulation. This makes AHs the right quantity to followup [121].

An apparent horizon defines the limiting boundary of a succession of trapped null sur-

faces, where the light rays does not propagate away from the BH4. They are always

contained into an EH being also dependent on the choice of the gauge variables. NR

codes include different strategies to track and monitor their shape during the full evolu-

tion. In particular, AHs provide a very good approximation to EHs when the final object

has finally settled down and the space-time is stationary (see Sec. 3.3.3). Then, final

mass and final spin can be computed from surface integrals over the final AH by means

of the Isolated Horizon (IH) and Dynamical Horizon (DH) approaches [123, 124]. The

BAM code finds the horizons through the AHmod code [112] (see [125, 126] for a detailed

description of different strategies to find AHs).

Final mass and final spin computed from the AH are generally expected to be more

accurate than those based on the evaluation of radiative and asymptotic quantities such

as the Bondi mass or the ADM angular momentum. These are computed through the

4Mathematically it is defined by a vanishing expansion Θ of the null geodesics [122].
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waves evaluated at finite radius, where errors may arise due to finite radius truncation,

insufficient extrapolation to infinity or numerical inaccuracies in propagating the wave

content to large distances at sufficient numerical resolution. We briefly discuss below

(Sections 3.2.3 and 3.2.4) the different approaches for computation the final spin and

final mass (radiated energy).

3.2.3 Final spin

The final spin of a BBH system is nothing more than the remnant total angular mo-

mentum J saved in final object that has not been ejected through gravitational wave

radiation and where, for low mass-ratio cases, the major contribution comes from the

orbital angular momenta L. It can be computed from surface integrals over the AH using

the IH [123, 124, 127], from surface integrals over spheres at large or infinite radius (as

in [72]), or from the energy or angular momentum balance computed from initial and

radiated quantities (see Equations 3.16 and 3.19 below). Moreover, it is also obtained

from fits to the ringdown [128]. Then, once the AH surface SAH is known the final spin

is calculated through,

J = − 1

8π

∮

SAH

Kµνφ
νdSµ , (3.15)

where Kµν is the extrinsic curvature, φν a killing vector reflecting an axial symmetry on

S and dS the area element. While the situation is simple for nonprecessing cases where

the axial symmetry is quite well preserved so φν is naturally defined, it may become

complicated when there is strong precession [129].

Alternatively, the angular momentum loss is also formulated in terms of radiation-based

quantities as,

dJz
dt

= − lim
r→∞

{
r2

16π
Re

[∫

Ω

(
∂φ

∫ t

−∞
rΨ4dt̃

) (∫ t

−∞

∫ t̂

−∞
rΨ4dt̃dt̂

)
dΩ

]}
, (3.16)

where dΩ = sin θdθdφ. Thus, the final Jz may be computed by integrating (3.16) once

the radiation rΨ4 has been computed. However, as stated in Sec. 3.2.2, (3.16) may suffer

from truncation, extrapolation and from the different levels of resolution accounted for.

Then, (3.16) is normally only used as a cross-check of the horizon value whenever it is

available.

3.2.4 Final mass

In asymptotically flat space-times the usual definitions of the mass are through the

ADM mass and the Bondi mass. Both definitions assume an asymptotic behavior of the
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space-time, being both quantities defined at spatial infinity and null infinity respectively.

One of the problems underlying the ADM mass and Bondi mass is that the eventual

extra radiation living in our space-time is also included in its definition thus merging

the isolated BH mass with the eventual gravitational wave radiation. This ambiguity

is disentangled by means of the second law of black hole thermodynamics or the area

theorem of black holes [130] which fixes a nice relation between the area of the EH and

the lowest possible BH mass namely,

M2
irr =

AEH
16π

, (3.17)

where Mirr is the so called the irreducible mass, and AEH never decreases. Then, given

the irreducible mass, the final Kerr mass is defined trhough the so called Christodoulou

formula [131],

M2 = M2
irr +

S2

4M2
irr

, (3.18)

where S is the dimensionful spin of the BH. Equation (3.17) is the usual definition of the

BH mass in BBH evolutions. It is important to notice here that the area that appears

in (3.17) is the EH area. However, as we suggest in Sec. 3.3.3, the apparent horizon

AH is found to be an excellent approximation to the EH for stationary space-times, i.e.,

when the final BH has settled down [126] and the gauge effects tend to vanish.

On the other hand, the energy radiated may be also computed from the waves through,

dE

dt
= lim

r→∞

[
r2

16π

∫

Ω

∣∣∣∣
∫ t

−∞
Ψ4(t, r, θ, φ)dt̃

∣∣∣∣
2

dΩ

]
. (3.19)

Likewise for the final spin and for the same reasons, the mass computed from the ra-

diation is in general less accurate than the horizon one. In all our computations it is

used as cross-check of the horizon related values and as an estimator of the error on its

magnitude. This is extended in Chapter 4.

3.2.5 Luminosity and peak luminosity

The gravitational wave luminosity is defined as the total power emitted through gravi-

tational waves. It is a purely radiative magnitude related to the waves through equation

(3.19). Then, taking into account (3.13), (3.19) and the orthonormality of the spin-two

spherical harmonics, the luminosity can be expressed as a linear superposition of the

quadratic amplitudes of the (lm) modes |ḣlm(t)|2 namely,
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dE

dt
= L ≈ 1

16π

lmax∑

l=2

+l∑

m=−l

∣∣∣ ḣlm(t)
∣∣∣
2
, (3.20)

where the equality is only satisfied in the limit lmax → ∞ and where lmax ∼ 6 is in

general sufficient to collect all the physical content (see [8] and Chapter 4).

For an accurate computation of L(t) through (3.20) we have to find an appropriate

numerical setting for resolving not only the (22) and (2-2) modes but also the lm modes

up to lmax. This is not always easy due to the large differences in the frequency evolution

of the different modes (see Sec. 3.3 for clarification). These difficulties are evident in

Figure 3.3 where we have plotted the indidual contributions to the total luminosity

for the set of dominant modes: {22, 21, 33, 32, 44, 43} for a BAM simulation with physical

parameters q = 1.75, χ1 = −0.85 and χ2 = 0.85. Notice that the accuracy of some of the

modes is not optimal in the early stages of the evolution. In particular, the subdominant

modes {21, 32, 43} are shown to be very noisy. Also notice that the effect of the junk

radiation seems to be larger than in Figure 3.2 since in this case the spins are closer to

the BL limit. In this work we give priority to the peaks, being the quantities used for

the luminosity peak fit [8]. Then, we do not expect that the loss observed in the inspiral

regime affects too much the peak values.

Figure 3.3: Luminosity per mode for a BAM q = 1.75, χ1 = −0.85 and χ2 = 0.85 case.
Notice that the noise affects dominantly the subdominant modes being comparable with
their amplitudes. In this case, the junk radiation seems be more important although

still far from corrupting the evolution.

The hierarchical fitting procedure developed in this work has been tested on the related

quantity Lpeak, this corresponding to the maximum amplitude (3.20). In Chapter 4 we

extend some of the numerical issues that may affect its value.
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3.3 Unequal-spin simulations with BAM

Before going into much detail about the coverage of the parameter space, we must em-

phasize that the evolution of the 3+1 Einstein field equations introduced in Chapter 2

require an extremely large amount of computational resources. This is not a particu-

larity of the BAM code or the BSSNOK framework but a common feature in any of the

existing formulations that evolve BBH systems. The amount of resources needed for

simulating each point of the parameter space is enormous, typically ranging from 105

to 106 CPU hours. Thus, to optimize the use of the resources it is essential a previ-

ous and careful analysis of the parameter space we want to cover. Although during the

working plan we have produced several nonprecessing equal-spin configurations [38, 39],

the main contribution has been the production a set of 23 nonprecessing unequal-spin

configurations used in the calibration of [7, 8]. We detail below some aspects of the

parameter space coverage.

3.3.1 Unequal spin simulations

With unequal-spin simulations, we aim to add to any waveform-related quantity an

additional dependence on the physical parameter ∆χ = χ1−χ2. As we detail in Chapter

4, the choice of this parameter is influenced by the form of the PN expressions following

a similar strategy than for the choice of the dominant spin term Seff . Ideally, one

would like to populate the parameter space with as many different ∆χ cases as possible.

However, the limitedness of the computational resources motivates a previous devising

of the parameter space that we want to fill. Then, in our case, the parameter space

chosen is basically motivated by the astrophysical predictions, which anticipate that

the mass-ratio distributions will peak on q ≈ 1 (this is being confirmed by the current

LIGO GWs observations [3, 45]) though they do not place strict constraints5 on the

spin configuration beyond the well known Kerr limit χiz ≤ 1. Thus, based on these

expectations we have drawn the edges of our parameter space at q = [1, 4] with the

spins χiz contained ∈ [−0.85, 0.85]. Notice we could not achieve higher spins due to

the limitations imposed by the Bowen-York limit which restricts the initial spins to be

χ . 0.93 [106–108]. Indeed, the BAM code shows some instabilities after the first few

orbits of the evolution for χiz = 0.9 and in the simplest q = 1.

The simulation plan is shown in Figure 3.4. The corners of our parameter space coincide

with the regions where ∆χ is expected to be larger (an extended revision of this effect can

5The different formation chanels also predict different spin distributions (see [132, 133]). However,
based on the current observations, it is still not possible to say much about any preferred channel thus
making plausible any spin configuration.
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Figure 3.4: Simulation plan for the 34 original unequal-spin configurations. In black
we plot the 23 simulations performed, postprocessed and included in this work while in
red we show the planned but not simulated. The arrows in orange are related with the
effective χeff = m1χ1+m2χ2 (see Chapter 4). Notice that the arrows point dominantly

to χ2 as the mass-ratio increases (recall that m2 > m1 in BAM).

be found in Chapter 4). We have also populated the intermediate regions with χiz = ±0.5

to favor the interpolation of the points placed within the boundaries and reducing the

possible extrapolation artifacts in any of the waveform magnitudes. The arrows represent

the χeff = m1χ1 + m2χ2 effective spin used in some of the phenomenological models.

Since the convention used in BAM sets q = m2/m1 > 1 most of them point in the χ2

direction In addition, we have added in red a subset of simulations originally planned

but not finally performed by the time of the thesis writing. The physical parameters of

the configurations are listed in Table 3.1.

3.3.2 Grid configuration

In this work, the waveforms have been extracted at finite radii and as far as possible to

minimise some well-known gauge effects [72] of finite extraction. This involves that we

have to deal with very different scales from the numerical point of view; one centered in

the punctures and its evolution (O ∼ 10M) and the other at the wave zone (O ∼ 100M)

making unpractical to build a uniform and sufficiently resolved grid covering the whole

space-time for obvious reasons. If we would have to propagate the resolution of the finest

levels to the wave extraction zone the computational cost would increase by a factor of

(Lcoarsest/Lfinest)
3. This issue is solved by setting up a hierachy of nested Berger-Oliger
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q χ1 χ2 ω0 e
[
×10−3

]
Erad χf Lpeak

[
×10−3

]

1.00 0.00 -0.85 0.022 2.25 0.0392 0.5514 0.856
1.00 0.85 -0.85 0.023 2.61 0.0491 0.6854 1.048
1.00 0.50 -0.50 0.023 1.59 0.0485 0.6858 1.018
1.20 0.00 -0.85 0.020 0.74 0.0401 0.5747 0.868
1.20 0.50 -0.50 0.028 1.76 0.0503 0.7142 1.058
1.20 0.85 -0.85 0.028 2.16 0.0527 0.7359 1.110
1.50 -0.50 0.50 0.024 1.80 0.0408 0.5865 0.844
1.75 -0.85 0.85 0.021 2.66 0.0343 0.4607 0.710
1.75 0.85 0.00 0.021 1.00 0.0682 0.8724 1.313
2.00 0.50 -0.50 0.024 1.76 0.0464 0.7510 0.916
2.00 0.00 -0.85 0.023 2.85 0.0347 0.5693 0.722
2.00 0.00 0.85 0.024 2.52 0.0436 0.6732 0.834
2.00 0.85 -0.85 0.024 1.78 0.0556 0.8344 0.609
2.00 -0.85 0.85 0.022 3.07 0.0310 0.4002 0.620
2.00 -0.50 0.50 0.023 2.60 0.0336 0.4925 0.666
2.00 -0.85 0.00 0.022 2.70 0.0292 0.3425 0.580
2.00 0.85 0.00 0.023 2.02 0.0646 0.8782 0.864
3.00 -0.50 0.50 0.024 1.69 0.0237 0.3339 0.424
3.00 0.50 -0.50 0.025 1.41 0.0373 0.7410 0.410
3.00 -0.85 0.00 0.023 3.25 0.0201 0.1562 0.371
4.00 0.00 0.85 0.026 1.79 0.0230 0.4900 0.372
4.00 -0.85 0.85 0.023 2.04 0.0158 0.0323 0.263
4.00 -0.50 0.50 0.024 1.68 0.0177 0.2152 0.293

Table 3.1: New BAM simulations used in this work. We have put a special focus on
highly unequal spins; For each simulation, we list mass ratio q = m1/m2, initial spins
χ1 and χ2, reference orbital frequency Ω0, initial separation D0 (after junk radiation),
eccentricity e, radiated energy Erad (scaled to unit initial mass) and dimensionless final

spin χf .

Cartesian grids [72, 111], where the innermost and most resolved l ≥ lm grids surround

and track the individual positions of each puncture while the coarsest ones are static and

far beyond the typical orbital scales as illustrated in Figure 3.5. In addition, recall that

the resolution decreases by factor of 2 per level. This scaling captures the 1/r fall-off

of the metric for a single puncture [72]. Then, if a certain level l at a distance rl is

sufficiently well resolved by hl, the next one 2rl should also be well resolved by 2hl.

A typical grid setup for the BAM code is shown in Table 3.2. This configuration corre-

sponds to the same GW150914-type system illustrated in Figures 3.1 and 3.2. Then, we

proceed as follows:

• We first set the size of the innermost/finest moving boxes. These must resolve the

a priori unknown AHs (see Sec. 3.3.3) thus forming two separate sets of nested

boxes that resolve each BH. The outer boxes are just gridded at hl = h02l.
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Figure 3.5: Illustration of the BAM l boxes. The ones surrounding the AHs evolve
according to the evolution of the shift vector (3.3) while the outermost boxes are static.
The extraction of the gravitational waves is normally performed in the outermost boxes

where the resolution is also increased with respect other levels.

Table 3.2: Configuration of the initial adapted grid for the evolution of the system
GW150914. We provide the following information in this order: level of refinement
l, spacial resolution hl, time resolution dtl, number of points of the box Nl, size of
the boxes 0.5hlNl and waveform extraction levels Rex. The blue line delineates the
separation between moving boxes l > 6 and the static ones l ≤ 6. The size of the box

with the finest grid is highlighted in red.
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• The outermost box (or the boundary of our space-time) must be placed far enough

to not have reflections of the radiation back to the computational domain which

involves that LRex > 2tcoal where tcoal is the coalescense time (for this purpose is

sufficient a 1PN estimate).

• The time step must be chosen in order to satisfy the Courant factor condition. For

the BAM numerical scheme it has been shown to be sufficient ∆t/∆x . 0.5 although

the optimal value may slightly depend on the physical parameters. In the example

illustrated in Figure 3.2 this factor is set to 0.4. For high mass-ratio cases q & 4 the

time stepping has to be in general reduced to capture the field dynamics around

the small particle thus being more indicated a value of ∆t/∆x ∼ 0.25.

• It is also required to maintain an appropriate resolution on the levels where the

waveforms are extracted. These are located as far as possible to minimise the

gauge effects in the wave zone. We consider a sufficiently far away extraction radii

when Rex ∼ 100. The required resolution is normally hRex∼100 . 0.8. In terms of

points per wavelength we normally require at least about 16 per oscillation (see

Figure 3.6).

Of particular note is the resolution at the wave zone Rex ∼ 100M since we obtain the

main product of our simulations there: the gravitational waves. During the evolution the

frequency of the orbit changes in about one order of magnitude from the inspiral regime

to the merger. Indeed, the typical wavelength at the starting of the simulation of the

dominant mode is λ22 ∼ 100M whereas at merger times it gets reduced to λ22 ∼ 10M .

This effect is even magnified when one considers higher modes, broadening the frequency

range by a factor up to [1/2,mmax] where mmax normally coincides with lmax. This

makes difficult properly to resolve with a unique grid not only the different modes but

also the different frequencies regimes. This issue is illustrated in Figure 3.6, where

we have plotted two sine waves traveling along the x direction in a spatial grid with

hRex = 1M . To visualize the discretization effects on the waves, we have fixed the

frequencies according to the typical BBH (22) mode inspiral and merger frequencies

(orange and blue) and the (32) merger frequency (green). Then, in this example, it is

clear that whereas the inspiral regime is sufficiently resolved by our grid, the merger

remains unresolved. This is even more evident in the case of the (33) mode where the

frequency satisfies that f33 ∼ 1.5f22. Although in general we will adapt our grid to the

get an accurate (22) mode by a grid configuration adapted to the merger, where the

frequency is higher, the situation may be more complicated when considering the higher

modes.

The accuracy of our waveforms is not only limited by resolution-dependent numerical

errors but also by the finiteness of our numerical computational domain. Recall that the
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Figure 3.6: Snapshot of different sine waves f(t0, x/λ) traveling along a discretized
spacial coordinate x with the typical wavelengths that characterize the gravitational
wave emission in different regimes. Left panel: Representation of the sine waves with
the typical (22) mode frequencies for the inspiral phase (orange) and merger (blue).
Right panel: Comparison of the (22) (blue) and (32) (green) mode frequencies in the
merger phase. Due to the broad frequency band of our systems, the same grid may not

resolve sufficiently all the regimes and perturbations.

GW signal is only unambiguosly defined for an observer at null infinity. However, most

of the codes (SpEC, BAM,LAZEV, MAYA) extract the waveforms at finite radii and follow

different strategies for extrapolating the waveforms [60, 120]. For example, if we expand

the Newman-Penrose scalar ψ4 in terms of the radial distance and far from the source

we see that (see the detailed review of [76]):

ψ4 ∼
1

r
+O(

1

r2
) (3.21)

The same qualitative behavior is obtained from perturbation theory through the Regge-

Wheeler-Zerilli odd-parity equations [114, 134, 135]. In this scenario, one considers the

propagation of tensor fields in a perturbed asymptotic Schwarzschild/Kerr background

space-time that, at the same time, resembles our BBH space-time with GWs propagating

far from the source. Then, the importance of the O(1/r2) correction is tightly related to

the frequency of the oscillatory tensor field (see equation 10 of [120]) which in our study

correspond to gravitational waves propagating through the perturbed space-time. In

particular, these corrections take the following form for the evolution of the gravitational

wave phase:

φlm ∼
l(l + 1)

4π(r/λlm)
(3.22)

where (lm) tags the mode considered, λlm the wavelength and r the radial distance from

the source in isotropic coordinates.

Equation (3.22) fixes a quantitative relation to estimate the importance of neglected

O(r−2) terms by relating them to the frequency (or wavelength) of the waveforms.

Coming back to our (22) example shown in Figure 3.2 we see that for r ∼ 100M the

relation given in (3.22) gives a correction O(1) for the phase which might be relevant for

the inspiral and not so much for the merger, where we have O(0.1). Again, this effect is
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also augmented for some of the higher modes. In this case, configurations with m > 2

and given that in the inspiral phase it is satisfied λlm = m/2λ22, will tend to increase the

r/λlm ratio thus being the neglected 1/r2 corrections more relevant. For NR waveforms,

the higher-order 1/r2 terms are also accounted for from two main approaches: using

analytic extrapolation by means of the Regge-Wheeler-Zerilli equations [120] or by

polynomial extrapolation. Analytic extrapolation [120] follows the procedure sketched

in this section. It also includes higher than O(1/r) factors to account for the effect of

the spin. Although it provides a physically motivated expansion in O(1/rn) powers, it

may conflicts with the gauge effects, which are also known to be on the same order. On

the other hand, the polynomial extrapolation is purely driven by looking at the data at

different extraction radii and adjust its behavior by higher order polynomials. In Sec.

3.6 we address this issue for BAM and SpEC waveforms.

3.3.3 Apparent horizon fits for the BAM code

In Sec. 3.2.2 we have justified that AHs are the proper quantities to followup in NR

simulations given their similarities to EHs in local quasi-stationary space-times. Al-

though they are shown to depend on the gauge choice, for the BAM code it has been

found and longer used a standardized setup6 of the gauge variables which allow us to

relate the AHs for different BBH physical configurations. Then, any predictability about

the AHs would also make possible an estimate of the size of the boxes that define our

computational domain.

The construction of the respective finest grids enclosing each of the horizons involves a

previous knowledge of their sizes. However, the AHs are not steady gauge dependent

quantities but they grow along the evolution until they get stabilized. The growth and

stabilization of the apparent horizon is controlled by the choice of the shift condition

and, implicitly, through an appropriate choice of the damping term η of (3.1).

To illustrate its qualitative effect in our evolution let us assume η → ∞. Then, from

(3.1) and in this extreme limit it is easy to show that Bi ∼ exp−ηt and βi ∼ exp−ηt /η

that goes to zero as η → ∞. After a time t ∼ 4/ηM our space-time will satisfy βi ≈ 0

thus defining a slicing characterized by Eulerian observers with nν = {−α, 0}. In this

situation, the black hole horizon grows rapidly in the coordinate space to eventually

cover the whole computational domain and breaking the evolution. This is clear if one

computes the outgoing null geodesics from the ADM equations in the βi = 0 case. In

6We call the standard setup as the optimal setup of gauge variables and values that has been histori-
cally fine tuned to perform the recent BBH simulations. Needless to say that this standardized/optimal
setup may vary across the parameter space but, even in this case, there would exist one optimal config-
uration per each case.
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this case, the coordinate speed of the outgoing null rays is v ∼ α > 0 thus making

self-evident this unstoppable growth. Then, following the same deduction and using the

ADM 3+1 metric results we see that the shift vector acts as a brake of the coordinate

speed that helps to stabilize this growth. Indeed, any finite value of η will increasingly

constrain the coordinate speed as η → 0 thus fixing the apparent horizon size. This is

shown in Figure 3.7 where I illustrate the time evolution of the AH for three different

choices of η for the GW150914-type simulation. We see that the coordinate size of the

AH decreases as η → 0. On the contrary, the masses associated to the horizon do not

show any gauge dependence as expected, being a consequence of the area invariance.

Figure 3.7: The simulation corresponds to the same system consistent with
GW150914 with q = 1.2 and ~χ1 = −~χ2 = {0, 0, 0.5}. The dashed lines represent
the evolution of the apparent horizons and where it is evident the dependence on η.
On the other hand, the horizon masses are equivalent for the three choices as expected.
The sharped jump occurs at merger-ringdown times, where the final object is formed.

The control of the coordinate speed (and the slicing) through the η value is important

not only for controlling the size of the AH but for the global good performance of

the simulations. For the BAM code it has been found empirically that fixing η = 1

results in having more sane evolutions [72] and where the gauge effects on the waveforms

get quickly dissipated. We have also observed that for lower values of η the initial

fluctuations originated by the junk radiation are also quickly radiated away. However, it

takes some time to achieve the quasi-stationay solution. The coordinates evolve rapidly

initially and this stage of the evolution is driven by NR. Thus, the initial ignorance

of the AHs sizes makes unclear the definition of our finest boxes and grids. To solve

this, one could define a “sufficiently” large and well resolved finest box based on some

previous empirical studies across the parameter space with the risk of not matching

the (3.9) condition. On the other hand, a reasonable grid configuration that leads to a
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stable evolution until the final formation of the AHs would allow us to compute their

size. Then, we could restart the simulation again now exactly satisfying (3.9). This was

exactly the strategy followed in all the old BAM runs [38] adding an extra computational

cost of ∼ 10000 CPU hours per case.

Figure 3.8: Time evolution of the apparent horizons of the two particles (small BH in
blue and large BH in orange). Left panel: Orbital motion of the two horizons resolved
by the respective finest boxes. The system has evolved 200M , time enough to reach
the domain in which the horizons are formed and get stabilized. Right panel: Time
evolution of the horizons up to the ringdown and posterior relaxation of the system.
Notice that the horizons take about ∼ 100M to be formed and stabilized although their
steady value might depend on the choice of the η. The simulation corresponds to the

same GW150914 system of Figure 3.7.

Figure 3.8 illustrates the evolution of the horizons and their relation to the finest boxes

for a GW150914-type configuration. The system takes about 100M to get stabilized and

follow an almost steady evolution until the merger, where the high NR-dynamics arises

and the two AH horizons result in a single AH. Notice the closeness of the AH values

to the EHs predictions (dashed lines) after the stabilization of the gauge variables (∼
100M). At this stage the space-time is locally quasi-stationary in the regions surrounding

each black hole and where η has been tuned to satisfy this. After the formation final

object (rEHf in the plot), AH and EH values are almost the same up to numerical

accuracy since at this stage the space-time is stationary.

To avoid the extra step of computing numerically the AHs and save computational cost

we studied its dependence on the physical parameters for a given gauge setup. Then we

collected a set of NR evolutions with η = 1, ranging from q [1., 4.] and |Si| ∈ [0., 0.85]

that resulted in the calibration of two different fits for each AH. Both fits depend on the

mass ratio q and the norm of the spin Si and their prescription have been shown to be

quite similar to the Kerr EH for isolated BHs in isotropic coordinates,

rEH,i = mi

√
1− χ2

i , (3.23)
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where mi labels the mass of each BH and χi the magnitude of the dimensionless spin.

Ideally, this would describe the situation where the two BHs were infinitely apart from

each other or increasingly isolated. However, as they get closer this description deviates

from the physical reality due to the space-time deformation caused by the other BH.

Then to account for this interaction, we have proposed a modified form of (3.23) by

inserting some extra free coefficients namely,

rEH,small =
0.899767

√
1− 0.852345χ2

small − 0.0100553q
√

1− 0.852345χ2
small

q + 1
, (3.24)

rEH,large =
q
(

0.84086
√

1− 0.852345χ2
large + 0.0488517q

√
1− 0.852345χ2

large

)

q + 1
,

(3.25)

where q is the mass-ratio, msmall = 1/(1 + q) and mlarge = q/(1 + q). The first factor

of (3.24) is the dominant one. Indeed it resembles the Kerr prescription for the EH

(3.23) except that the mi and χi coefficients are different to one as a consequence of

the mentioned interaction. The second term is less dominant and it helps to reduce

the errors even in the extrapolation regions. Moreover, both formulas are well behaved

on the extreme spin limit χ = 1. In Figure 3.9 we show the results for the AH fits in

relation to the calibration points and some extra test points that have not been used in

the calibration. We have obtained a maximum deviation ∼ 5% for the non calibrated

q = 8 which is consistent with the accuracy required for our initial grid setup and being

this point far beyond the calibration region. Recall that the main purpose of these fits

is to get closer to the empirical relation imposed by (3.9), which is well satisfied given

the accuracy reached with (3.24). In addition, notice that we have constrained the fits

to satisfy rEH,small(1, χ) = rEH,large.

Figure 3.9: Apparent horizons fits for the smallest BH (left) and for the biggest one
(right) compared to calibration points (red) and the test points (blue). We see a good

agreement between data and fits even for the points out of the calibration region.
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3.4 Eccentricity reduction

Most of stellar mass compact objects are expected to have zero eccentricity when entering

in the LIGO band [49]. At these frequencies all the eccentricity is diluted through the

emission of gravitational waves thus circularizing the orbit. For instance, the Hulse-

Taylor pulsar [25] has today an eccentricity of e ≈ 0.617 while it is orbiting at a frequency

of 4 × 10−5 Hz, still far away from the initial ∼ 10 Hz of the ground based detectors.

By the time that the two objects reach a separation compatible with the ∼ 10 Hz the

eccentricity of this system is estimated to be about e ∼ 10−4. These values, besides being

residual compared to the e ≈ 0.617 of the Hulse-Taylor pulsar and other astrophysical

binaries [136], are currently undetectable by the parameter estimation pipelines and

search algorithms [137, 138] given the actual SNR expectations of the past and future

GW detections. This historically led the waveform modellers to develop zero-eccentric

models thus reducing the dimension of the parameter space by one unit (see the overview

of the PhenomD [38, 39] waveform model in Sec. 5). In addition, recent but not

sufficiently tested formulations of eccentric waveforms are being developed [138–140] with

the hope of constraining the eccentricity in future and more powerful GWs observations.

These models are expected to be clearly more relevant for space-based missions as LISA,

where the frequency band is estimated to be centered about the 0.001 Hz thus making

possible the observation of inspiraling objects with noticeable values of eccentricity.

3.4.1 Eccentricity in the Keplerian two body problem

To illustrate the problem let us start with the simple Keplerian two body formulation

and assuming zero gravitational wave emission. In this context, the solution of the orbit

is given by equation (3.26):

r =
p

1 + e cos θ
, (3.26)

where r = |~r1 − ~r2|, e ∈ [0, 1] is the eccentricity, p the so called semi-latus rectum of the

curve and θ the phase of the orbit. It is also useful to describe the orbital motion in

terms of its radial and tangential velocities, namely:

Vr = ṙ =

√
µ

p
e sin θ , (3.27)

Vt = rθ̇ =

√
µ

p
(1 + e cos θ) , (3.28)

where Vt and Vr are the tangential and radial velocities respectively, µ = G(m1 + m2)

and where the dots represent first time derivatives. Combining (3.26) and (3.28) we can
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Figure 3.10: Keplerian representation of three orbits with three different values of
the eccentricity.

relate the orbital frequency θ̇ with the radial separation r and the eccentricity e:

θ̇ =

√
µ

p3
(1 + e cos θ)2 (3.29)

Equations (3.26) to (3.31) encode a series of properties that are also satisfied when

we consider the gravitational waves emission. First, notice that Vt � Vr, i.e, that the

tangential velocity is always larger than the radial one. This property is well maintained

during the evolution getting only important deviations during the very last orbits (∼ 4)

where the merger takes place. Then, for small values of e, the orbital distance r and the

orbital frequency θ̇ may be expressed as:

r ≈ p(1− e cos θ +O(e2)) (3.30)

θ̇ ≈
√
µ

p3
(1 + 2e cos θ +O(e2)) (3.31)

This situation represents the most common frame in the context of the BBH simulations.

However, despite the quasi-circular assumptions of our equations, different agents may

insert a residual eccentricity in the orbital motion. These agents are dominantly caused

by either taking inaccurate initial parameters from the known analytic solutions (PN,

EOB models) or by the coordinate mismatch between NR codes and these approximants.

The usual eccentricity estimated from our NR simulations is typically small e . 0.01

and we aim to remove it not only to better match the astrophysical predictions but also

for simplifying the process of building our hybrids (see Chapter 5).

Figure 3.11 illustrates the effect of the eccentricity in the Keplerian two body problem.
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Figure 3.11: Illustration of the effect of perturbing the initial state for a Keplerian
orbit by e. Top panel: Radial coordinate r (or distance between the two particles) for
three different initial parameter configurations: one non-eccentric (blue), and two with
residual eccentricities (orange and green). Bottom panel: Orbital frequency θ̇ for the

same initial configuration.

We see that whenever the eccentricity is small, it provokes an oscillation with the same

period of the orbit and with amplitude λ = e for the radial separation and λ = 2e for

the orbital frequency. In addition, the maximums and minimums of the oscillations are

correlated with the sign of the perturbation. Then, an estimate of the amplitude of

these oscillations in the orbital quantities is directly related to the correction factor λ,

thus quantifying the correction needed to get a circular motion. This procedure may

be iterated in many steps to get increasingly lower values of e. In Sec. 3.4.2 we extend

this method to the gravitational wave emission case, showing no significant differences

to what we see in the Keplerian case.

3.4.2 NR eccentric waveforms

The initial conditions of our NR simulations are given by the analytic solutions of the

PN and EOB models. Likewise in the Keplerian two body problem, given the physical
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parameters of our system (mass-ratio and spins) and the initial positions and momenta,

the orbital evolution may be described by the analytic models although they are not

accurate enough to reproduce the late inspiral and merger-ringdown regimes. Then,

once defined an initial orbital frequency Ω0 (or distance D0) as the starting value of the

NR simulation, the quasi-circular values of the momenta are univocally defined from

the PN/EOB evolutuion equations. With this, we have all the ingredients to define the

initial extrinsic curvature and then for solving the Bowen-York initial data (see Sec.

3.1).

We aim to model the evolution of quasi-circular/non-eccentric orbits according to the

current astrophysical models and LIGO expectations. Hence, we must solve the quasi-

circular formulation of the analytic models for a system described by
{
q, ~S1, ~S2

}
that

evolves from Ω0 to merger. Each Ω0 will correspond to a different initial momenta

configuration that we could continuously vary resulting in a longer/shorter evolution.

However, we must keep in mind two major points:

• Analytic models are known to deviate from the physical solution in the late in-

spiral of the evolution. This involves that all the physical magnitudes leading the

evolution differ from the real7 physical solution. The location of the late inspiral

is quite compatible with the typical Ω0’s chosen by the NR codes, hence, the val-

ues of the initial momenta might also get deviated from the quasi-circularity, thus

inserting a residual eccentricity in the evolution.

• The solution to the previous item would be trivial if we would have infinite com-

putational resources: let us locate the initial distance D0 far enough in order to

get negligible PN deviations and, consequently, a non-eccentric representation of

the Bowen-York initial data. However, this is rather unpractical since the compu-

tational cost for simulating a single orbit increases as we get further and further

from the merger, being quite different across the parameter space.

Then, we must define an intermediate criterion which optimizes the combination of

the two listed items. For waveform modeling purposes we typically demand to have

about 20 NR cycles, which may be roughly converted to typical initial distances within

D0 ∈ [12, 8]M (which will vary across the parameter space) and being these numbers

still affordable in terms of the CPU hours. To illustrate this, see Figure 3.13 where we

have plotted the time elapsed per orbit for a low mass-ratio (i.e. computationally not

very demanding) system. Notice the pronounced increasing of the computational cost

7It is widely assumed by the gravitational wave community that, in general, the NR solutions repre-
sent the most faithful representation of the physical waveforms. In each LIGO detection the observed
waveform have been matched to the closest NR representation to study possible GR deviations.
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Figure 3.12: CPU hours per orbit (left panel) and cumulative CPU hours
(right panel) for the simulation of BBH system with parameters q = 1.75 and
{~χ1 = −0.85, ~χ2 = 0.85}. In red we show the EOB estimate for the time elapsed per or-
bit while in black we represent the same quantity but for the NR simulation. It is clear
the steep increase of the computational cost when reaching initial distances D0 > 12M .

per orbit when moving the system further than D0 ∼ 12. At this stage, we do not still

detect strong deviations from the analytic models: the PN and NR evolutions seem to

agree. However, this match is not perfect and for some cases it creates the residual

eccentricity shown in Figure 3.13.

3.4.3 Reducing the eccentricity in a real case

In Sec. 3.4.1 we have given the ingredients for reducing the eccentricity in the simplified

case of a Keplerian orbit. As a first analysis, we apply the Newtonian corrections to

the initial parameters as described in Sec. 3.4.1. Due to the high computational cost

of these runs, I have chosen one highly eccentric case with e = 0.013 to show the full

process. Thus, Figure 3.13 illustrates the evolution of three equal-parameter systems

with three different degrees of eccentricity for a given separation D = 11. In this plot,

the evolution with e = 0.013 represents the original eccentric data while the others result

from applying the 1± 2e corrections to the tangential momenta.

To reduce the eccentricity of this case to a more reasonable value ef ∼ 10−3 (where the

the subscript refers to the final eccentricity after the iteration) we apply a similar and

simplified version of the iterative procedure described in [141]. Thus, we first aim to

estimate the λ correction from the formulas shown in Sec. 3.4.1. Once the amplitude of

the correction has been estimated, we must look at the position of the maximums and

minimums to find out the direction of the correction (larger or lower than one) and then

correct the tangential momenta by p1
t = p0

t (1 + λ) = p0
t (1 + 2e) (superscripts denote

the number of iterations performed) and where e can take positive and negative values.

Thus, we are left to solve again the initial data for this new configuration and let the

system evolve with a lower value of the eccentricity. Note that other agents as an ill
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Figure 3.13: Shrinking of the orbital distance and frequency rising of a non-precessing
BBH simulation with parameters q = 3 and {~χ1 = 0, ~χ2 = 0.85}. The effects of the
eccentricity not only makes the system fluctuate around the quasi-circular evolution
but also shifts (delays or speeds up) the evolution. The primary run in this case is
represented by the orange line while the others result after a first iteration for correcting

e.

gauge choice may induce the system to oscillate although it normally does not last as

long as the orbital eccentricity. In addition, in the optimal scenario, where all the gauge

quantities have been calibrated carefully to minimise these effects, we have found that

the mismatch in the initial momenta values is the most dominant agent in creating these

oscillations.

The eccentricity is clearly related to the amplitude of the oscillations by (3.26) and

(3.31). Then, we have worked out two different methods to estimate the amplitude of

these oscillations: by fitting a lower order, time-dependent polynomial p(t) ∼ O(t2−4)

that fits the data neglecting the oscillations and, alternatively, using the well known

results of the PN models. For the latter, we may need to correct the secular deviations

that appear at late inspiral caused by the inaccuracy of the PN models. This is addressed

by a cutting the PN expansions at low order and then complement them by adding a

polynomial ansatz that is fitted to the data. Both methods share the same virtues and

inconveniences; while the polynomial is PN independent so it does not propagate the

possible mismatch of the PN evolution at the inspiral, it lacks at the same time of the

physical PN intuition. Indeed, both arguments may be turned around to justify one or

the other approach. In this work we have tested both algorithms obtaining a very good

agreement between the two approaches.

The polynomial ansatz is chosen capture the smooth quasi-circular evolution (non-

oscillatory) but taking care of not overfitting the data to not capture the oscillations.

This typically involves to constrain the degree of the polynomial ansatz to O(t2−4):

p(t) =

2−4∑

n=0

bnt
n , (3.32)
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On the other hand the 1PN terms of the evolution have been shown to be sufficiently ac-

curate in order to capture the quasi-circular trend of the evolution. Then, the expanded

1PN r(t) and Ω(t) read:

θ =

(
η
t0 − t

5

)−1/8

,

Ω(t) = (aθ3/(16π))(1 + bθ2 + cθ3 + dθ5) , (3.33)

r(t) = D0
(t0 − t)
t0

1/4 (
a+ bt+ ct2

)
, (3.34)

where η is the symmetric mass-ratio, D0 the initial distance of the simulation8, t0 the

1PN estimate of the coalescense time and {a, b, c, d} a set of free coefficients that capture

the deviations from the 1PN term. Then, through (3.32) and (3.33) we capture the non-

eccentric trend of the r(t) and Ω(t) evolutions. Now, we are left to adjust the sinusoidal

oscillations. To do so, we use the same functionality observed for the Keplerian problem

(Sec. 3.4.1):

1− fnon−ecc/fecc(t) ≈ A sin(Ω(t)t+ φ0) , (3.35)

where fnon−ecc is our non-eccentric fit (either the polynomial fit or the 1PN one), fecc(t) is

our eccentric function (r or Ω), Ω(t) the non-eccentric angular velocity (in this notation

it is satisfied that Ω(t) = fnon−ecc if the orbital frequency is the quantity chosen to

correct e) and {A, φ0} the remaining two coefficients that adjust the amplitude and the

time-shift of the oscillations. Then, we fit the sinusoidal ansatz to the first 4-5 cycles of

the evolution to get an estimate of the eccentricity and that is related to the amplitude

of the oscillation by e = A. However, these cycles can not be taken from t = 0 since the

system is not yet relaxed until it overtakes the junk radiation emission which typically

occurs at t ∼ 150. Thus, for the sanity of the fit, we select the data after the junk

emission which increases even more the computational cost of each iteration.

In Figure 3.14 and Figure 3.15 we show the results of the eccentricity estimate for the

highly eccentric case shown in Figure 3.13 (green line) using the two mentioned methods:

polynomial fitting and through a PN fit, repeating the analysis for the radial separation

r(t) and orbital frequency Ω(t). On the left panel of the figure, we illustrate the strength

of the oscillation in relation to the non-eccenctric motion (3.35) with respect to the

polynomial and PN fits. We see good agreement between the two predictions where

we have obtained that e = 0.012 ± 0.001 and where the error has been computed from

the averaged differences between the fit and data amplitudes. The right panel shows

the normal evolution of the oscillatory fits in relation to the non-oscillating ones and

8The initial distance is given in terms of the ADMTT coordinates. In the case of the BAM code
there exist a good agreement between the code coordinates and the ADMTT ones. However, we have
also found an agreement within the ∼ 1% of match between this coordinates choice with alternative
formulations as the SpEC code [84] for such far-merger regions.
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the data. Both plots show a good match between the data and the oscillating fits thus

ensuring an accurate estimate of e. There also exists a minimal offset between the PN-

based fits and the polynomial-based ones. However, in this case this does not affect

the estimate of the eccentricity since we are computing the amplitude of the oscillations

with respect the non-eccentric fit, i.e., if there is any trend in the non-oscillating fit

fnon−ecc(t), it is immediately propagated to fecc(t) (see (3.35)) thus keeping the relative

amplitudes almost constant (within numerical accuracy). For the radial separation r(t)

the PN fit has not worked so well in this case likely caused by the step slope observed

in the first stages of the evolution.

Figure 3.14: Eccentricity estimate of a BBH simulation with parameters q = 3 and
{~χ1 = 0, ~χ2 = 0.85} using as an estimator the orbital frequency Ω. On the left panel we
show the relative difference of the eccentric and non-eccentric evolutions with respect to
the polynomial fit. On the right sided panel we show in blue and red the non-eccentric
fits using polynomial and PN ansatze respectively while the dashed curves represent the
eccentricity estimates by fitting a sinusoidal ansatze (3.35) to capture the oscillations.

Figure 3.15: Eccentricity estimate of a BBH simulation with parameters q = 3 and
{~χ1 = 0, ~χ2 = 0.85} using as an estimator radial coordinate separation r. We repeat
the same analysis as in figure 3.14. Here we see that the PN fit does not work so well

as for Ω.

Finally, in Figure 3.16 we show the results after applying the methods proposed in this

section for the subset of the waveforms listed in Table 3.1. The points in red represent the

original eccentricity computed in the first iteration for the cases with highest eccentricity.

The points in black show the eccentricity after applying the λ corrections outlined in

this section. Notice that for most of the cases the eccentricity is sufficiently reduced
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after one single iteration, being reduced on average a factor of ∼ 5. To avoid extra

computational cost the eccentricity tests are performed in a low resolved grid where the

moving boxes are resolved by 64 points (we use about 96 in highly resolved evolutions).

This may create some extra noise in the orbital quantities that may be propagated to

the eccentricity estimate (3.35). In these set of runs this effect has been shown to be

negligible in relation to the errors originated by fitting only a reduced number oscillations

(about 3-4). In this line, notice that the λ corrections needed are O(10−3)), i.e., very

compatible with the fit errors. For this reason, it is sometimes difficult to reach lower

values than e ∼ (10−3)).

Figure 3.16: Eccentricity reduction for 15 of the 23 runs performed in this thesis. Here
q is the mass-ratio and χeff = m1χ1 + m2χ2. With the simplistic iterative method
proposed in this chapter the eccentricity has been reduced about a factor ∼ 5 for almost
all the cases. We observe a minimal increasing in the initial e for positive χeff that
might indicate some more lack of accuracy of the PN-EOB models in these regimes.

The values labeled in black are low enough to avoid further iterations.

3.5 Time and frequency integration of the psi4

The frequency-domain gravitational wave models [38, 39] are calibrated through the

so called hybrid waveforms [54, 119], built from the match of the inspiral part of the

analytic models and the corresponding NR waveform. However, the natural waveform-

related quantity obtained from the simulations is the ψ4, which is related to the strain

h(t) through (3.14). This involves a double time integration of the ψ4(t) to get h(t) and
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a single time integration to get the luminosity dE/dt = L(t), i.e.:

h(t) = ψ4(t)|(t→−∞) +
dψ4(t)

dt
|(t→−∞) +

∫ t ∫ t′

ψ4(t′)dt′dt , (3.36)

L(t) =
dψ4(t)

dt
|(t→−∞) +

∫ t

ψ4(t′)dt′ , (3.37)

A direct time integration of the data usually leads to non-secular drifts that can not be

explained through the two unknown constants resulting from the time integration [142]

and arise as numerical artifacts originated from noisy, finite and discrete data segments.

While there exist different strategies to perform the ψ4(t) to h(t)/L(t) conversion, in

this thesis we will briefly describe two integrators defined in the Fourier domain: the

fixed-frequency-integration (FFI) algorithm described in [142] and a modification of the

FFI driven by the low frequency patterns observed in the Fourier domain 22 mode h̃22(f)

and which are repeated across the parameter space [8].

Figure 3.17: Time domain h22 mode strain computed from the 22 mode ψ4 for a BAM
(blue) and SXS (red) simulations with parameters q = 1.5, χ1 = −0.5 and χ1 = 0.5.
The linear drifts are fairly evident in both cases. Both waveforms have been shifted to

be centered at h(t) ∼ 0.

FFI algorithm

The FFI algorithm [142] is a frequency-based integrator which eliminates the low fre-

quency noise originated when operating in finite segments of the data by down-weighting

the noisiest part by a factor f0. It relies on the idea that all the frequency content must

be contained in [f0,orb, fQNM ], where f0,orb ∼ f0 is the first physical orbital frequency of

the system, f0 a tunable parameter similar to f0,orb and fQNM the highest pole of the

quasi-normal mode frequencies. Then, the algorithm is defined as:

h̃ (f) =




− ψ̃4(f)

f2
, if f ≥ f0 ,

− ψ̃4(f)
f20

, if f < f0 .
(3.38)



Chapter 3. Simulations of unequal spin systems with the BAM code 78

Although f0 ideally should correspond to the first physical frequency, the noisy character

of the numerical data, normally force us to tune it around an “optimal” value. Then,

f0 must be chosen such:

• Sufficiently large to not capture the increasing low frequency contribution.

• Sufficiently small to not apply a too restrictive factor that reduces too much the

amplitude of the waveform in the inspiral regime.

Exponential Fit (EF)

The exponential-fit (EF) relies on the same idea proposed for the FFI algorithm: the

application of a down-weighting function that reduces to the minimum the low-frequency

noise artifacts. However, in this case we avoid the tuning of the f0 parameter by fitting a

restrictive exponential ansatz to the data contained between the first “clean” frequency

(see Figure 3.18) and the minimum of the parabola formed at low frequencies. This

pattern is repeated on the data across codes, and the parameter space and it has been

shown to work for BAM, SXS, and GaTech waveforms.

The performance of the different methods is shown in Figure 3.18 where we show the

effect of a straightforward Fourier transform (BAM and SpEC h̃22(f) waveforms in blue

and red) and how the two algorithms smoothly drive the amplitude of the low frequency

regime to zero.

Both methods described has been proven to be consistent with each other [8] as long

as the f0 is selected properly and the data used for the exponential fit is sufficiently

well sampled. We have tested this method across the parameter space not finding any

significant deviations between both approaches.

3.6 Extrapolation

The gauge independence of the waveforms is only strictly satisfied at null infinity J +

where a natural inertial coordinate system can be defined. However, most of NR codes

resolve a finite domain thus restricting the computation of any quantity at a finite

time/spatial coordinates. This may insert some well known distortion as the 1/r correc-

tions considered in Sec. 3.3.2. There exist different strategies for taking the waveform

quantities to null infinity; by polynomial extrapolation [60], by means of the Cauchy-

characteristic extraction [143, 144] or by combining the results of the perturbation theory

with the zero order rψ4(r, t) solution [120].
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Figure 3.18: Frequency domain 22 mode strain computed from the 22 mode ψ4 from
BAM (blue) and SXS (red) simulations with parameters q = 1.5, χ1 = −0.5 and
χ1 = 0.5. In the plot we show the low frequency behavior for both simulations and
how the FFI (green) and Exponential Fit (orange) algorithms down-weight the artificial
frequency increasing when approaching to f ∼ 0. The two gridlines lines fix an optimal

f0’s choice for the two respective runs.

In this work we have computed final spin and radiated mass from both radiative and

horizon quantities, being the radiative ones used as an estimator of the NR error. More-

over, the peak luminosity is uniquely defined from the waves thus forcing us to analyse

the extrapolation effects not only on BAM waveforms but also on waveforms from other

codes (see for instance Sec. 4.3.10.2). Here, we have followed a prescription similar to

[60] to take the quantities to null infinity J+. Far from the source, the waves travel

along outgoing null geodesics described in a Schwarzschild space-time,

u = T − r∗(R) , r∗(R) = R+ 2MADM log
R

2MADM
− 1 , (3.39)

where u is the retarded time, R and T are the Schwarzschild radial and time coordinates

and where all the NR codes considered in this work satisfy,

lim
r→∞

r = R , lim
r→∞

t = T . (3.40)

Then, the polynomial extrapolation works as follows: fix several retarded times ui and

then study the dependence of some quantity f(ui, r) on the radius ri. Then, fit the finite

radii data with a polynomial as,

f(ui, r) =

p∑

0

an
rn
. (3.41)

In our case, f(ui, r) is chosen to be the amplitude of the wave and where we fix ui = tmax,
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being tmax the time of the maximum amplitude and p the extrapolation order. In

Figure 3.19 we show the results of polynomial extrapolation on a BAM case with q = 18,

χ1 = 0, χ2 = −0.4 (left panel) and on a SXS (right panel) case with q = 1, χ1 = 0.97,

χ2 = 0.97. The quantity f(ui, r) studied here is the maximum amplitude ψ4(tmax, r) and

plotted in terms of 1/r. As expected, in both cases we have a good agreement between

the r−1 and r−2 fits which validates the 1/rn expansion of (3.41) and motivated in

Sec. 3.3.2 from perturbation theory. The shadowed regions represent the 90% credible

intervals for each fit and that can be used as an estimate of the extrapolation error.

Figure 3.19: Extrapolation of the maximum amplitude ψ4(tmax, r) for an BAM q = 18,
χ1 = 0, χ2 = −0.4 case (left panel) and a SpEC q = 1, χ1 = 0.97, χ2 = −0.97 (right
panel). In red we plot the data at ψ4(tmax, ri) whereas the blue points represent the
O(r−1) and O(r−2) extrapolated values. The shadowed regions give us the 0.9 credible

intervals for each fit. Notice that we are plotting here 1/r.

The polynomial expansion described in this section and shown in Figure 3.19 have been

relevant for the computation of the peak luminosity as well as the final mass and final

spin from the radiation. In Chapter 4 we explain these effects on a more general data set

where several codes fill our parameter space. In this line, we have seen that the different

tetrad convention used in the SpEC code may induce substantial differences in the finite

radii ψ4. By comparing cases with equal physical parameters with other codes (Chapter

4) we have observed steeper slopes on finite radii data thus making the extrapolation

to infinity essential. Finally, SXS and BAM waveforms used in this work have been

extrapolated with the method outlined in this section.



Chapter 4

Hierarchical data-driven fitting of

BBH mergers

Numerical relativity is an essential tool in studying the coalescence of binary black hole

systems (BBHs). It is still computationally prohibitive to cover the BBH parameter

space exhaustively, making phenomenological fitting formulas for BBH waveforms and

final-state properties important for practical applications. In this chapter, we describe

a general hierarchical bottom-up fitting methodology to design and calibrate fits to nu-

merical relativity simulations for the three-dimensional parameter space of quasicircular

nonprecessing BBHs, spanned by mass ratio and the individual spin components follow-

ing the novel results presented in [7, 8]. Particular attention is paid to incorporating the

extreme-mass-ratio limit and the subdominant unequal-spin effects. As an illustration of

the method, we provide three different applications: a fit to the final spin and final mass

(or equivalently, radiated energy) of the remnant black hole (Sec. 4.2) and to the peak

luminosity (Sec. 4.3). Then, using a total of 427 numerical relativity simulations for

the final mass and final spin fits and 457 for the peak luminosity (including the Teukol-

sky and RWZ waveforms mentioned in Sec. 4.1.5), we obtain results broadly consistent

with previously published fits, but improving in overall accuracy and particularly in the

approach to the extreme limit and for unequal-spin configurations. We also discuss the

importance of data quality studies when combining simulations from diverse sources,

how detailed error budgets will be necessary for further improvements of these already

highly accurate fits, and how this first detailed study of unequal-spin effects helps in

choosing the most informative parameters for future numerical relativity runs.

81
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4.1 Hierarchical data-driven approach

4.1.1 Motivation

Phenomenological waveform models [38, 39, 53, 54, 68, 69], as well as other NR data-

based models (final spin, final mass etc.) complement the information known from the

analytic prescriptions by fitting different ansätze to NR data. In particular, nonprecess-

ing, quadrupolar models provide a really accurate prescription of the strong GR regime,

where the analytic representation of the waveforms can not be longer trusted. Then,

the physical reliability of these fits will depend on different factors that may range from

the match of the ansätze to the actual physics, the number of data points used in the

calibration, how these points are spanned across the parameter space and the quality

of the NR data. Not all of these considerations were totally satisfied in the old phe-

nomenological waveform models, where the ansätze coefficients (see Chapter 5) used to

be mapped to the physical parameter space by means of of two parameter polynomials

as,

Λi =
∑

m,n

(λimnη
m)Sneff , (4.1)

being again Seff a given parametrization of the spin and where all the inspiral merger

and ringdown coefficients were fitted through the same ansatz. In this line, a similar

ansatz was also used for the calibration of the old final mass and final spin fits [38] where

the match to the NR data was more than satisfactory in the low mass-ratio regime but

observing larger deviations in the high-spin and high mass-ratio regime. This inaccuracy

was not only explained by the lack of data but also helped by the rigidity in the choice

of the ansätze. Some of the considered weak points were:

• The known analytic results as the extreme mass-ratio limit were not satisfactorily

incorporated. The proper accounting of this limit helps to calibrate the fits also in

the intermediate regions by smoothing out the interpolation to the extreme regime.

• The prescription of the coefficients through two parameters has been sufficient

but not optimal for parameter estimation purposes. Although they are known to

dominate the dynamics of BBH mergers, other subdominant effects as the unequal

spin terms may become relevant for a better estimate of the physical parameters

and in particular, of the individual spin components.

• The root mean square errors were the only quantity used to assess the quality of

the fits and to rank them. While they provide a useful measure of how the pair

fit-data is related, they do not account for the possible overfitting carried by (4.1).
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In this work, we have addressed the last points by replacing (4.1) by a list of ansätze

based on rational functions (more suitable for the fitting of the extreme mass-ratio

limit), ranked by information criteria magnitudes and where the extreme mass-ratio

and the unequal spin effects have been also accounted for. Then, we build up the fits

from lower to higher dimensions in order of importance (hierarchically), where the most

populated regions of the parameter space are used to constrain the fits. All of this has

been synthesised in a workflow that has been tested in the calibration of the final spin,

radiated energy and peak luminosity and which will replace (4.1) in the new calibration

of PhenomD model (Chapter 5).

4.1.2 Flowchart

We develop our hierarchical approach with the aim to ensure an accurate modelling of the

subdominant spin-difference effects and the extreme regions, along the lines illustrated as

a flowchart in Figure 4.1. First we study the one-dimensional subspaces of nonspinning

and of equal-mass-equal-spin black holes, being the regions where more NR data is

accumulated. Then, we combine and generalize these subspace fits by adding additional

degrees of freedom to cover the entire two-dimensional space of equal-spin black holes but

also constraining the generalized ansatz with information from the extreme-mass-ratio

limit. The approach to this limit is performed either in form of analytic expressions or by

directly including low mass-ratio data (see Sec. 4.1.5). In a third step, we investigate the

leading subdominant terms, which are dominantly linear in the spin difference ∆χ. We

finally produce a three-dimensional fit to the complete data set from this new hierarchical

ansatz. Doing so, we can construct a full ansatz with a relatively low number of free

fit coefficients and avoid the overfitting of spurious effects caused by small sample sizes,

while still capturing the essential physical effects.

At each step, we evaluate the performance of different fit choices by several quantitative

measures: by the overall residuals, by the Akaike and Bayesian information criteria

(AICc, BIC, [145, 146]), and by how well determined are the individual fit coefficients.

The information criteria are model selection tools to choose between fits with comparable

goodness of fit but different degrees of complexity, i.e. they penalize high numbers of

free coefficients. See Section 4.1.6 for details on these statistical methods.

4.1.3 NR data as a driver of the phenomenological fits

Since the 2005 breakthrough [46] the different NR groups have concentrated their ef-

forts in covering the physical parameter space with several BBH simulations to obtain

increasingly faithful descriptions of the gravitational waves emitted. However, given the
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nonspinning data
(NR + low-η)

equal-mass equal-χ data

1D fits in η 1D fits in Ŝ

2D ansatz
(
η, Ŝ

)
equal-χ data
(NR + low-η)

equal-χ data
(analytic extreme-mass-ratio limit)

constrained 2D ansatz
(
η, Ŝ

)

3D fit
(
η, Ŝ, χ1 − χ2

)
remaining data

combine best 1D ansätze

unequal-χ corrections

Figure 4.1: Flowchart of the hierarchical step-by-step construction leading to a three-

dimensional ansatz and fit for the quantity of interest over the (η, χ1, χ2) ≡
(
η, Ŝ,∆χ

)

space. The only variation between the final state fits and the peak luminosity fit is how
we process the extreme mass ratio limit (see 4.1.5).

technical difficulties and computational cost of the runs, the coverage of the physical

space has continued to grow rather asymmetrically not only motivated by technical con-

siderations but also supported by the astrophysical expectations. I list below some of

these considerations:

1. Old astrophysical event rate estimates [26, 147] (previous to the first GW detec-

tion) predicted mass distributions very peaked at equal-mass systems. Indeed,

these predictions are quite consistent with the actual GW observations [24] which

seem to favor the formation of systems with m1 ≈ m2.

2. Equal-mass, nonprecessing, and slowly-spinning systems require less “technical

complexity” from the NR point of view. The symmetries of the system allow to

speed up of the performance of the simulations by reducing the complexity of the

grids that resolve the system.

3. Although there is not much astrophysical information constraining the spin orien-

tation, the systems with equal spin and parallel to the total angular momentum

(~Si~L = +|S||L|) are predicted to be the most powerful GW emitters. This led both

GW and NR community to focus the calibration of the models to the spin-aligned

region, putting some more emphasis in the positive alignment.
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4. Special attention has been also payed to non-spinning systems since they represent

a natural guideline for going sequentially to higher mass-ratios while monitoring

the level of difficulty in the way to the high mass-ratio region.

Figure 4.2: NR data used for the final mass and radiated energy fits spanned by
mass-ratio q = m1/m2 and the two dimensionless spin components χ1, χ2, where the
color indicates the source catalog. The two perpendicular red regions determine the
equal-spin χ1 = χ2 (vertical frame) and the non-spinning χ1 = χ2 = 0 configurations

(horizontal) where it is clear the overdensity of points.

All these considerations have given way to the generation of the parameter space illus-

trated in Figure 4.2, where we have collected NR data from four different codes: BAM [72],

SpEC [84], LAZEV [85] and MAYA [6]. This data set has been the basis to calibrate the

final spin, energy radiated and peak luminosity fits and where the hierarchical build-up

of the model is sustained by the clear overdensity of points in the low mass-ratio and

non-spinning zones.

4.1.4 Spin parametrization and unequal-spin motivation

From PN theory, one can read off that the leading-order spin effect on the binary’s

inspiral phase [39, 148–150] is proportional to:

Seff = χPN =
χ1m1 + χ2m2

M
− 38η

113
(χ1 + χ2) (4.2)
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where M is the total mass of the system (that is set to 1), mi the mass of the BHs,

η the symmetric mass-ratio, χi the dimensionless spin and Seff labels one possible

spin parametrization. Such PN-based effective spin parametrization comes out from the

dominant spin-orbit terms and is shown to be valid not only during the inspiral phase

(where PN theory is still reliable) but also for the calibration of the merger-ringdown

regime. The situation described is similar for the current final state fits [7, 8, 151] where

the spin dependence is parametrized following a similar PN-based intuition but without

restricting ourselves to a unique definition of Seff . In this work and for the final spin,

radiated energy and peak luminosity fits we have tested three different definitions of

Seff :

Ŝ =
S

m2
1 +m2

2

S =
m2

1 χ1 +m2
2 χ2

M2
χeff =

m1χ1 +m2χ2

M
(4.3)

where all of them satisfy that Seff ∈ [−1, 1] and that Ŝ = S = χeff in the extreme

mass-ratio limit (m1 � m2).

Then, we follow a similar PN-based argument for the definition of the unequal spin

parameter by looking at the leading order ∆χ = χ1 − χ2 terms, which come out as (see

the appendix of [39]):

f(η)∆χ+O(g(η)Seff∆χ+ h(η)∆χ2) (4.4)

where f(η), g(η) and h(η) are functions that only depend on the symmetric mass-ratio

η and that we adjust to model the full 3D-unequal spin dependence (see Section 4.2).

Although the PN expressions reveal the presence of the unequal spin terms, there are

also some evidences from the point of view of the phenomenological fitting. A study of

the residuals of two-dimensional (η, Seff ) fits [38] for the final spin and energy radiated

with respect to unequal spin data (Section 4.2.1) reveal the subdominant deviations

predicted by these terms. For final spin, we find that 90% of relative errors are below

3% which suggests that unequal-spin effects make a large contribution to these small

errors, as shown by four times smaller 90% quantiles when restricting to equal-spin cases

only. See also Figure 4.3 for histograms of these distributions. For radiated energy, 90%

of relative errors are below 2%, with a reduction of that quantile by 1.4 for equal-spin

cases only, indicating that spin-difference effects are even smaller for this quantity, which

we will also see confirmed in our final results.
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Figure 4.3: Relative errors in final spin of the combined NR data set for this paper
under the two-dimensional PhenomD fit [38].

4.1.5 Extreme-mass-ratio limit

The computational cost of numerical simulations of BH binaries in full general relativity

diverges in the extreme-mass-ratio limit η → 01. However, in this extreme zone, the

evolution is equivalent to the much simpler case of a test particle orbiting a Kerr black

hole where many quantities are known analytically (see [152] and for final spin and

final mass and [153, 154] for the peak luminosity). Then, we have adapted the various

ansätze to this well known limit either by constraining directly the fit coefficients (final

spin and energy radiated) or through a direct calibration to high mass-ratio data (peak

luminosity). With this, we reduce the possible extrapolation artifacts originated by the

sparsity of the data in this region. In this section, we describe both approaches.

Extreme-mass-ratio limit: final spin and radiated energy

The energy and orbital angular momentum in the extreme mass-ratio limit have long

been known analytically for the final mass and final spin [152]: inserting the radius of

the innermost stable circular orbit (ISCO) from Eq. (2.21) of [152] into Eqs. (2.12) and

(2.13) of the same reference yields the test-particle energy (equivalent to the radiated

energy) and orbital angular momentum at ISCO:

EISCO(η, χ) = η

(
1−

√
1− 2

3 ρISCO(χf)

)
, (4.5a)

Lorb,ISCO(η, χ) =
2η
(

3
√
ρISCO(χ)− 2χ

)

√
3 ρISCO(χ)

, (4.5b)

1Using the TaylorT2 approximant we get a time estimate of T ∼ f
−8/3
0 /η where f0 is the innermost

stable circular frequency.
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with

ρISCO(χ) = 3 + Z2 − sgn(χ)
√

(3− Z1)(3 + Z1 + 2Z2), (4.6a)

Z1(χ) = 1 + (1− χ2)1/3
[
(1 + χ)1/3 + (1− χ)1/3

]
, (4.6b)

Z2(χ) =
√

3χ2 + Z2
1 . (4.6c)

Note that both EISCO and Lorb,ISCO depend linearly on η.

In the test-particle limit, the small BH plunges after reaching the ISCO, and further

mass loss scales with η2 [155]. Similar to previous work [91, 151, 156, 157], we will

exploit this fact to compute the final spin and radiated energy to linear order in η from

the analytical expressions, (4.5), holding at the ISCO. To linear order in η, we thus

simply have Erad = EISCO or Mf = 1− EISCO for the final mass, and for the final spin

χf we obtain the implicit equation

χf Mf(η, χf)
2 = Lorb,ISCO(η, χf) + S1 + S2 , (4.7)

being Lorb the quantity we chose to fit in order to eliminate the trivial dependence in

S1 + S2 (see Section 4.2.2). The individual BH spins can be written in terms of our

effective spin as

S1 + S2 = (1− 2η) Ŝ . (4.8)

Equation (4.7) can then be solved numerically for the final spin χf as a function of η and

of the effective spin Ŝ. Since this result holds to linear order in η, and assuming that

the final spin and mass are regular functions of η, we have thus essentially computed

the derivatives ∂Erad/∂η and ∂χf/∂η at η = 0, in addition to the values at η = 0, which

are Erad(0) = 0 and χf(0) = S1/M
2.

Additionally, assuming that the final state is indeed a Kerr BH, its final spin has to

satisfy χf ≤ 1. One would also expect the final spin for maximal effective spin, Ŝ = 1, to

decrease monotonically with increasing η. To construct an accurate fit in a neighborhood

of Ŝ → 1 that satisfies these expectations – in particular the Kerr limit – we will constrain

our ansatz with the analytically computed value of χ′f = ∂χf/∂η at (η = 0, Ŝ = 1). By

perturbing (4.7) around {η → 0, χf → 1} to linear order before taking the derivative in

η at the same point, we find

χ′f

(
η → 0, Ŝ → 1

)
= 0 . (4.9)

Several variations of this procedure have been used for previous final-spin fits, and

differences are due to previous works neglecting the radiated energy in (4.7) [91, 157],

or not enforcing the derivative for satisfying the Kerr limit [151].
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Extreme-mass-ratio limit: peak luminosity

For the peak luminosity, it is known [153, 154] that the leading-order term as η → 0 must

be Lpeak ∝ η2, with the symmetric mass ratio η = (m1m2)/(m1 +m2)2 = q/(1 + q)2.

However, no fully analytical results for the spin dependence in the extreme-mass-ratio

limit exist. Instead, here we constrain our fit by numerical results for finite, but very

large mass ratios produced by Refs. [158] and [95] which evolve BBH mergers in the test-

mass (large-mass-ratio) limit by combining a semi-analytical description of the dynamics

with a time-domain numerical approach for computing the multipolar waveform based

on BH perturbation theory. Waveforms are calculated by solving either the Regge-

Wheeler-Zerilli (RWZ) 1+1 equations (nonspinning case) or the Teukolsky 2+1 equation

(spinning case). Follow Refs. [8, 93–95] for a detailed description of this method.

In this work we use only the Teukolsky results at q = 103 (31 data points) and the RWZ

results at q = 104 and q = 105 (7 data points each), as the RWZ at q = 103 are expected

to be less accurate, and indeed their luminosities deviate at negative χ1.

4.1.6 Model selection criteria and ranking statistics

One of the major novelties of this work regarding the phenomenological modelling and

ansätze selection is the ranking of ansätze by several model selection tools (not used

in the previous phenom models [38, 39, 53, 54] and final state fits [92, 151, 159]) and

the usual residuals-based definitions. Thus, we rank fits by several standard statistical

quantities which are briefly summarized here for the benefit of the reader.

A basic figure of merit is the root-mean-square-error,

RMSE =

√√√√ 1
Ndata

Ndata∑

n=1

[XNR(ηn, χ1,n, χ2,n)− fit(ηn, χ1,n, χ2,n)]2 , (4.10)

which just checks the overall goodness of fit. One caveat here is that down-weighted

NR cases are fully counted in the RMSE, so that a generalized variance estimator using

weights can be more useful.

Furthermore, it is important in model selection to penalize models with too many free

coefficients, as in principle the RMSE can be made arbitrarily small when the number of

coefficients approaches the number of data points. A popular figure of merit for model

selection considering the number of coefficients is the Akaike information criterion [145],

AIC = −2 lnLmax + 2Ncoeffs , (4.11)
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which intuitively can be understood as weighing up goodness of fit (measured by the

maximum log-likelihood Lmax) against parsimony. Standard implementations, as the

one from Wolfram Mathematica, assume Gaussian likelihoods.

A generalization that corrects the AIC for low numbers of observations and reproduces

it for large data sets is the AICc:

AICc = AIC +
2Ncoeffs(Ncoeffs + 1)

Ndata −Ncoeffs − 1
. (4.12)

In this work, we always use AICc instead of AIC.

A related quantity, similar in form but with a completely different theoretical justifi-

cation and with subtle differences in practice, is the Bayesian information criterion or

Schwarz information criterion [146]:

BIC = −2 lnLmax +Ncoeffs ln(Ndata) . (4.13)

Though based on an approximation to full Bayesian model selection (while the AIC is

derived from information theory), the BIC in general cannot be interpreted as a direct

measure of Bayesian evidence between models.

For all of AIC, AICc and BIC, the model with the lowest value is preferred. Higher

than unit differences between two models are generally required to count as significant

evidence; [160] quotes ±5 as “strong” and ±10 as “decisive” evidence. In addition, to

augment our model selection criteria we also demand the well-constrainedness of each

individual fit coefficient, allowing for picking a fit with slightly worse summary statistics

(though requiring a goodness compatible with the previous values) if it has better-

constrained coefficients; or we drop individual coefficients from a high-order ansatz and

reassess the quantitative criteria for that reduced model.

As an example of how e.g. the BIC can guide model selection, we show in Figure 4.4 the

BIC ranking for the one-dimensional L′orb

(
η, Ŝ = 0

)
fits from Section 4.2.3. A plateau

of almost constant BIC is made up of several fits with Ncoeffs ≥ 3, with the more complex

fits yielding no additional improvement, so that we choose the simplest fit among this

group. Still, even if it had not come up actually top-ranked, as in this case, choosing a

low-Ncoeffs fit from within the high-ranked group would be preferable over some slightly

higher-ranked, but less-well-constrained fit.

Then, this ranking procedure is applied at each step in the build-up of the three-

dimensional fit to obtain the most statistically faithful fit form the zoo of ansätze

proposed. The selection process is applied for the final spin, radiated energy, peak

luminosity and also for the new calibration of the fit coefficients described in Chapter 5.
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Figure 4.4: BIC example for the one-dimensional final spin L′orb

(
η, Ŝ = 0

)
fits from

Section 4.2.3. The inset panel is a zoom-up of the top-ranked fits. The tested set
of ansätze includes all polynomials from second to seventh order in η and all rational
functions of order (i, j), j ≤ i, up to i+ j = 6. The preferred ansatz, a rational function

of order (3,1) with three free coefficients, is highlighted.

4.1.7 Fit uncertainties

The uncertainty of evaluating a fitted quantity Q at a point (η, χ1, χ2) can be expressed

through prediction intervals [161]

Q (η, χ1, χ2)± qt (x,Ndata −Ncoeffs)
√
σ̂2 + σ2

fit , (4.14)

where qt is the student-t quantile for a confidence level x, σ̂2 is the error variance

estimator from the (weighted) mean-square error of the calibration data under the fit,

and σ2
fit is the standard error estimate of the fitted model, which for a single-stage fit is

σ2
fit = gradt (η, χ1, χ2) · Cfit · grad (η, χ1, χ2) (4.15)

with the gradient vector grad (η, χ1, χ2) of the fit ansatz in the coefficients, evaluated at

this point, and the covariance matrix Cfit of the fit. Note that (4.14) gives the uncertainty

for a single additional observation, as opposed to the narrower confidence interval of the

mean prediction, which lacks the σ̂2 term.

In our hierarchical fitting approach, to propagate the uncertainties from the nonspinning,

equal-mass and extreme-mass-ratio limits, we have to assume that the uncertainties in

these regimes and that of the final fit are independent, so that we can take the full

covariance matrix as a block-diagonal composition of these four contributions. The half
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width of a prediction interval at confidence x is then

qt (x,Ndata −Ncoeffs)
√
σ̂2 + σ2

final + σ2
η + σ2

Ŝ
+ σ2

η=0 . (4.16)

As these three particular regimes are significantly better constrained than the bulk of

the parameter space (which is the main motivation for the hierarchical approach, in

the first place), their uncertainty contribution is small, so that the accuracy of this

approximation is not critical.

4.2 Hierarchical data-driven fitting: Application to final

spin and energy radiated

We first apply the hierarchical method to the final spin and final mass (energy radiated)

of the remnant black hole. Both quantities are crucial to obtain the frequencies of the

quasinormal-mode ringdown [162–165] for the calibration of the ringdown regime in full

inspiral-merger-ringdown waveforms [38, 39, 53, 63, 64, 69, 166, 167]. Although final

mass and final spin are actually known to a level of accuracy still unreachable by the

LIGO parameter estimation pipelines they can also be obtained from bayesian analysis

to the full waveforms with an accuracy similar to other BBH parameters [13, 24]. Then,

these phenomenological fits provide a parallel, accurate and fast shortcut to final state

values avoiding a full waveform analysis and that might be relevant in future observations

of stronger GW signals.

Apart from GW observations, the final state of a BBH merger is astrophysically inter-

esting in itself, e.g. for the computation of merger trees [168–175]. The mass and spin of

BHs surrounded by matter, e.g. accretion disks, may also be inferred from electromag-

netic observations (see [176, 177] for stellar-mass BHs and [178–180] for supermassive

BHs).

In this work, we concentrate on nonprecessing quasicircular BBHs, where the black hole

spins are parallel or antiparallel to the total orbital angular momentum of the binary.

These configurations are fully described in a three-dimensional parameter space: given

the masses m1,2 and physical spins S1,2, we use the two component spins χ1 = S1/m
2
1

and χ2 = S2/m
2
2 and the mass ratio, given either as q = m1/m2 with the convention

m1 > m2, or as the symmetric mass ratio η = (m1m2)/(m1 +m2)2 = q/(1 + q)2. The

total mass is only a scaling factor, and here we work in units of m1 +m2 = 1. Then,

here we exploit and investigate this structure by parametrizing spin effects in terms of

an effective spin Ŝ and a spin-difference parameter ∆χ = χ1 − χ2. As the effective spin

we choose Ŝ described in (4.3).
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Figure 4.5: Input data plotted against symmetric mass ratio η and effective spin Ŝ.
Data consist of the combined set of NR simulations (colored points) and the analytically
known [152] extreme-mass-ratio behavior (black line). Left panel: final spin; right panel:
radiated energy rescaled by η. Both χf and Erad/η follow a smooth surface in this space,
and the well-constrained 1D subspaces together already give a good indication of its

curvature.

4.2.1 NR data selection

We combine four data sets of nonprecessing, aligned-spin numerical relativity BBH sim-

ulations from independent codes and sources: the public SXS [4, 89], RIT [91, 92]

and GaTech [6, 90] catalogs as well as a set of simulations performed with the BAM

code [38, 72, 181], including 27 new cases for which initial configurations and results

are listed in Table 3.1. Then, we collected 161 cases from the SXS catalog, 107 from

RIT, 114 from GaTech and 45 from BAM; for a total of 427 cases. The sampling of our

three-dimensional parameter space by the four data sets is shown in Figure 4.2.

To obtain a qualitative understanding of the hierarchical structure in the two-dimensional

parameter space of mass ratio and effective spin, in Figure 4.5 we show the NR data set

over the (η, Ŝ) plane together with the analytical extreme-mass-ratio results, discussed

in Sec. 4.1.5. For both final spin and radiated energy, we find a reasonably smooth

surface spanned by the NR data points. In this work, these data surfaces are built from

Wolfram Mathematica standard Hermite interpolation. These plots already suggests

that – together with the known extreme-mass-ratio results to compensate the sparsity

of NR simulations at increasingly unequal masses – good one-dimensional fits in the two

best-sampled one-dimensional subsets (equal-mass-equal-spin and nonspinning BHs) will

significantly constrain any two-dimensional fits.

For details about extraction of final-state quantities, NR data quality and weight as-

signment, see Section 4.2.10. As explained there, we do not have a full set of NR

error estimates available, so we assign heuristic fit weights to each case based on the

expected accuracy of the respective NR code in that particular parameter space region.

For example, high-mass-ratio cases are down-weighted more for puncture codes.
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4.2.2 Choice of fit quantity

We first need to decide which quantity exactly we want to fit. It appears natural to

fit a quantity related to the “final” orbital angular momentum Lorb near merger, i.e.

separating out the known initial spins Si. This is particularly useful in connection with

the extreme-mass-ratio limit, since with (4.5b), Lorb is linear in η to leading order. We

can use the relation from (4.7) between Lorb and the dimensionless Kerr parameter χf

of the remnant BH, M2
f χf = Lorb + S1 + S2 = Lorb + S, also outside the extreme-mass-

ratio limit. Here Mf is the final mass of the remnant BH.

Instead of the actual angular momentum Lorb, we take the liberty of fitting the quantity

L′orb = M2 χf − S, where (as throughout the paper) M is set to unity. This way, all fit

results are easily converted to the final Kerr parameter χf by adding the total initial

spin S, and no correction for radiated energy has to be applied.

For the energy radiated we directly fit the quantity Erad to the data set described in

Section 4.2.1.

4.2.3 One-dimensional subspace fits

As the methodology is strictly equivalent for both quantities for every step shown in the

flowchart 4.1, we provide in the next subsections the separated results for final spin and

energy radiated. The peak luminosity is treated separately in Section 4.3.

4.2.3.1 1D fits: Final Spin

Motivated by the the unequal sampling of the parameter space by NR simulations,

as visualized in Figure 4.5, we start our hierarchical fit development with the sim-

plest and best-sampled subspaces of the NR data set, constructing one-dimensional fits

L′orb

(
η, Ŝ = 0

)
and L′orb

(
η = 0.25, Ŝ

)
over 92 nonspinning and 37 equal-mass-equal-

spin cases. We do not restrict ourselves to polynomial fits, and also include ansätze in

the form of rational functions. We have also found good fits for more general functions,

but we omit these here since we have not explored that option systematically.

Thus, we obtain the L′orb

(
η, Ŝ = 0

)
and L′orb

(
η = 0.25, Ŝ

)
fits for a large set of poly-

nomial and rational functions. Several of them produce competitive goodness of fit, as

measured by the root-mean-square-error (RMSE) or the full distribution of residuals.

However, we do not want to overfit the data, which could induce spurious oscillations in

the region of very unequal BH masses that is not covered by NR data. Hence, we rank

the fits by information criteria penalizing superfluous free coefficients.
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Figure 4.6: 1D-fits for the two constrained regions: nonspinning (left panel) and
equal-mass-equal-spin (right panel). Top panels: best fits in terms of the Bayesian infor-
mation criterion (BIC). Lower panels: residuals (∆L′orb = data−fit) of this fit (points)
and differences from the three next-best-ranking fits in terms of BIC (lines). See also

Figure 4.4 in Sec. 4.1.6 for an illustration of BIC ranking for this example.

Estimate Standard error Relative error [%]

a2 3.833 0.085 2.2
a3 −9.49 0.24 2.5
a5 2.513 0.046 1.8
b1 1.00096 0.00068 0.1
b2 0.788 0.042 5.3
b3 0.654 0.074 11.4
b5 0.840 0.030 3.6

Table 4.1: Fit coefficients for the one-dimensional nonspinning L′orb

(
η, Ŝ = 0

)
and

equal-mass-equal-spin L′orb

(
η = 0.25, Ŝ

)
fits over the 92 nonspinning and 37 equal-

mass-equal-spin NR cases, along with their uncertainties (standard errors) and relative
errors (Std.err./estimate).

Figure 4.6 shows the top-ranked fits for L′orb

(
η, Ŝ = 0

)
and L′orb

(
η = 0.25, Ŝ

)
in terms

of Schwarz’s Bayesian information criterion (BIC), which are both rational functions of

order (3,1):

L′orb

(
η, Ŝ = 0

)
=

1.3a3η
3 + 5.24a2η

2 + 2
√

3η

2.88a5η + 1
. (4.17)

L′orb

(
η = 0.25, Ŝ

)
=

0.00954b3Ŝ
3 + 0.0851b2Ŝ

2 − 0.194b1Ŝ

1− 0.579b5Ŝ
+ 0.68637 , (4.18)

The fit coefficients ai and bi along with their uncertainties are given in Table 4.1; all

are well determined. For L′orb

(
η, Ŝ = 0

)
we find that (4.17) is top-ranked by both BIC

and AICc. While only ranked 6th by RMSE, none of the considered fits is better than

(4.17) by more than 6% in that metric either. For L′orb

(
η = 0.25, Ŝ

)
, we first must
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constrain this fit to get L′orb(η = 0.25, Ŝ = 0) according to the nonspinning constraint

(4.17). This condition fixes an extra constraint for the constant term of the 1D ansatz

in Ŝ to reproduce the η = 0.25 nonspinning result, i.e. L′orb(η = 0.25, Ŝ = 0) must be

identical for both 1D fits resulting in (4.18). Then, we fit the L′orb

(
η = 0.25, Ŝ

)
data to

the L′orb

(
η = 0.25, Ŝ

)
ansatz finding that the best choice is represented by (4.18), this

being ranked 8th by RMSE, but with only 3% difference from the lowest RMSE, which

is attained by a P(5) fit with one more coefficients, marginally disfavored by about +1.7

AICc and +2.6 in BIC.

The exact ranking of fits can depend on the choice of fit weights (see section 4.2.10) and

on the ranking criterion, but we find that both (4.17) and (4.18) are top-ranked by both

BIC and AICc. Then, as long as the weights are the same, these are the fits among the

top-ranked group – by all three criteria – with the lowest number of fitting coefficients,

indicating they both represent a robust choice.

The lower panels of Figure 4.6 also compare the preferred fit both to the NR data and

to the three next-best ranking fits by BIC. For the η fit (left panel), we find that the

residuals are centered around zero with no major trends, while the differences among

high-ranked fits are much smaller than the scatter of residuals for the well-covered high-

η range, and that the “systematic uncertainty”, as indicated by the difference of high-

ranked fits, is still at the same level even in the extrapolatory low-η region. For the

equal-mass-equal-spin (right panel) we also find no major trends in the residuals distri-

bution, these being also centered around zero and with similar deviations than for the

nonspinning fit.

4.2.3.2 1D fits: Radiated energy

For the nonspinning 1D fit in symmetric mass ratio η, a simple fourth-order polynomial

Erad

(
η, Ŝ = 0

)
= a4η

4 + a3η
3 + a2η

2 +

(
1− 2

√
2

3

)
η (4.19)

with three free coefficients, listed in Table 4.2, is marginally preferred by both AICc and

BIC. More complicated rational functions are not able to yield any significant change in

residuals (only up to 1% in RMSE), while the differences between (4.19) and the next-

ranked fits are again much smaller than the remaining residuals, as shown in Figure 4.7.

For the effective-spin dependence, again the value at
(
η = 0.25, Ŝ = 0

)
is fixed from the

η fit which it is again conditioned to the choice of the form of the ansatz, now being

constructed as a product of nonspinning Erad

(
η, Ŝ = 0

)
with the equal-mass-equal-spin
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Erad

(
η = 0.25, Ŝ

)
(see Sec. 4.2.4). A rational function of order (3,1) is top-ranked by

AICc, BIC and RMSE and thus unambiguously selected as the preferred ansatz:

Erad

(
η = 0.25, Ŝ

)
=

0.0484161
(

0.128b3Ŝ
3 + 0.211b2Ŝ

2 + 0.346b1Ŝ + 1
)

1− 0.212b5Ŝ
(4.20)

with four free coefficients listed in Table 4.2, and well-behaved residuals as seen in

Figure 4.7.

Figure 4.7: 1D-fits for the two constrained regions: nonspinning (left panels) and
equal-mass-equal-spin (right panels). Top panels: selected fit, a fourth-order polynomial
P(4) for the nonspinning fit (4.19) and a rational R(3,1) function for the equal-mass-
equal-spin one (4.20). Lower panels: residuals of the fits (points) and differences from

the three next-best-ranking in terms of BIC (lines).

Estimate Standard error Relative error [%]

a2 0.561 0.003 0.5
a3 −0.847 0.027 3.2
a4 3.145 0.069 2.2
b1 −0.209 0.016 7.6
b2 −0.197 0.026 13.2
b3 −0.159 0.049 31.1
b5 2.985 0.034 1.1

Table 4.2: Fit coefficients for the one-dimensional nonspinning Erad

(
η, Ŝ = 0

)
and

equal-mass-equal-spin Erad

(
η = 0.25, Ŝ

)
fits over the 92 nonspinning and 37 equal-

mass-equal-spin NR cases.
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4.2.4 Two-dimensional fits

Next, we want to construct a two-dimensional fit covering the (η, Ŝ) space, as it was

illustrated in Figure 4.5, by combining both the 1D subspace fits and the extreme-mass-

ratio limit. As discussed above, for the final spin we take the sum of (4.17) and the

spin-dependent terms of (4.18) while for the energy radiated we take the product of

(4.19) and (4.20). In principle, the fitting procedure is robust enough to use either a

sum or product ansatz for either final-state quantity. However, we have found that for

the energy radiated the sum ansatz tends to produce suspicious curvature in the S = 1,

low-η region, which cannot be suppressed by the extreme-mass-ratio information due to

the lack of data in this region.

Then, we introduce the necessary flexibility to describe 2D curvature and the extreme-

mass-ratio limit by generalizing the Ŝ-dependent terms, inserting a polynomial of order

J in η for each bi through the substitution

bi → bi

j=J∑

j=0

fij η
j . (4.21)

We describe below the 2D build up of the final spin and radiated energy ansätze.

4.2.4.1 Two-dimensional fits: final spin

The general 2D ansatz is thus

L′orb

(
η, Ŝ

)
= L′orb (η, 0) + L′orb

(
0.25, Ŝ, fij

)
− L′orb (0.25, 0) . (4.22)

Here we choose to expand to third order in η (J = 3), which is the lowest order leaving

enough freedom to incorporate all available constraints from the 1D fits and the extreme-

mass-ratio limit, and, as evidenced by the residuals we find below, also high enough to

adequately model this data set. Of the resulting 16 coefficients, the three fi0 in the

numerator must vanish to preserve the L′orb

(
η = 0, Ŝ

)
= 0 limit, while consistency with

the equal-mass fit from (4.18) provides four constraints which we use to fix the fi3 terms:

fi3 = 64− 64fi0 − 16fi1 − 4fi2 . (4.23)
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Figure 4.8: Left panel: Two-dimensional L′orb

(
η, Ŝ

)
fit, visualized as L′orb

(
η, Ŝ

)
/η.

Right panel: Extreme-mass-ratio comparison of the rescaled final spin: analytical re-
sults from solving (4.7), the previous PhenomD final-spin fit of [38], and this work.

Estimate Standard error Relative error [%]

f21 8.774 0.019 0.2
f31 22.83 0.27 1.2
f50 1.8805 0.0025 0.1
f11 4.4092 0.0047 0.1

Table 4.3: Fit coefficients for the extreme-mass-ratio limit of the final spin, fitted
to discretized analytical results. The fourth coefficient, f11, is fixed by the derivative

constraint in (4.25) and its estimate and error computed from the others.

Four more coefficients are fixed by the extreme-mass-ratio information discussed in

Sec. 4.1.5: we re-express (4.7) in terms of L′orb/η and fit the discretized quantity

lim
η→0

L′orb

(
η, Ŝ

)

η
− 2
√

3 = lim
η→0

χf (η, S)− S
η

− 2
√

3 (4.24)

where 2
√

3 is the linear contribution from the nonspinning part (cf. (4.17)) and the

χf (η → 0, S) values are obtained by solving (4.7) numerically for small η. Before fitting,

we apply the derivative constraint from (4.9), which for the sum ansatz (4.22) implies a

coefficient constraint

f11 → 0.345225f21 + 0.0321306f31 − 3.66556f50 + 7.5397. (4.25)

We find this extra physical constraint to be essential in avoiding superextremal χf re-

sults due to fitting artifacts. The extreme-mass-ratio limit fit coefficients are listed in

Table 4.3, and the improved agreement between analytical results and this new fit, as

compared with the previous fit of [38], is illustrated at the right panel of Figure 4.8.

In summary, after constraining to the well-covered one-dimensional NR data subsets and

the analytically known extreme-mass-ratio limit, the 2D ansatz from (4.22) has reduced

from 16 to 5 free coefficients: {f12, f22, f32, f5,1, f52}.
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4.2.4.2 Two-dimensional fits: energy radiated

We now apply exactly the same to the energy radiated. For the 2D ansatz, we combine

the two 1D fits from Eqs. (4.19) and (4.20), expanding each Ŝ-dependent term with a

polynomial in η, according to (4.44):

Erad

(
η, Ŝ

)
= Erad (η, 0)

Erad

(
0.25, Ŝ, fij

)

Erad (0.25, 0)
. (4.26)

Contrary to the sum ansatz for χf in (4.22), we do not need to set the η-independent

coefficients fi0 of the Ŝ terms to zero, as the Erad

(
η, Ŝ

)
= Erad (η, 0) (1 + . . . ) form of

(4.26) already guarantees the correct η = 0 limit. Hence an expansion up to third order

in η of each Ŝ term, as we chose for the χf fit, would yield too many free coefficients,

and instead we only expand up to second order. The four fi2 coefficients are again fixed

by the equal-mass boundary conditions:

fi2 = 16− 16fi0 − 4fi1 . (4.27)

Similar to the procedure for χf , we can use the extreme-mass-ratio limit to fix the four

coefficients fi0 of the linear-in-η terms. Using the analytic result from (4.5a), we force

the fit to satisfy the equality

Erad(η → 0, Ŝ) = 1− EISCO(Ŝ) (4.28)

and fit the corresponding leading-order η dependence of our 2D ansatz to discretized

values of this quantity. Again we fix one of the four free coefficients of Erad

(
η → 0, Ŝ

)

by a constraint fixing the value at Ŝ = 1, which is necessary to capture the very steep

rise of (4.28) as Ŝ → +1:

f10 → −0.574752f20 − 0.280958f30 + 64.6408f50 − 88.3165 . (4.29)

The agreement between discretized analytical result and fit is shown in Figure 4.9 (right

plot), and fit coefficients are listed in Table 4.4.

We thus have 12− 4− 4 = 4 free coefficients fi1 {f11, f21, f31, f51}, of which f21 turns

out to be extremely poorly constrained, so that we set it to zero before refitting. Results

of the 2D fit, calibrated to equal-spin simulations only, are shown in Figure 4.9, which

shows that the steep shape of the extreme-mass-ratio limit at high Ŝ is smoothly attained

by the extrapolated fit. For the curvature at low η and extremal Ŝ = 1, where there is
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Figure 4.9: Left panel: Two-dimensional Erad

(
η, Ŝ

)
fit, visualized as Erad

(
η, Ŝ

)
/η.

Application of the extreme-mass-ratio limit helps in avoiding extrapolation artifacts
which would otherwise appear at low-η, high-|Ŝ| regions that are uncovered by NR
simulations. Right panel: extreme-mass-ratio comparison of analytical results, the

previous PhenomD radiated-energy fit of [38], and this work.

Estimate Standard error Relative error [%]

f20 4.27 0.38 8.9
f30 31.09 0.71 2.3
f50 1.56735 0.00032 0.02
f10 1.81 0.15 8.2

Table 4.4: Fit coefficients for the extreme-mass-ratio limit of the radiated energy,
fitted to discretized analytical results. The fourth coefficient, f10, is fixed by the con-
straint at Ŝ = 1, cf. (4.29), and its estimate and error are computed from the others.

no NR data, there might be also a contribution from the small remaining fit issues in

the extreme-mass-ratio limit (cf. Figure 4.9). The residuals again have larger RMSE

than the 1D fits in η and Ŝ, by factors of 6.5 and 1.8 respectively, but show no clear

apparent trends, allowing us to use this 2D fit as the basis for an unequal-spin residuals

study in the next step.

4.2.5 Unequal-spin contributions and 3D fit

In the previous section we have attacked the fourth level of Figure 4.1, which concerns

the fitting of the best possible f2D(η, Ŝ) ansatz. This is possible due to the dominance of

the primary physical parameters compared to the unequal-spin effects which allow us to

split the final ansatz in a sum of f2D(η, Ŝ)+O(∆χ). Now the final step in the hierarchical

procedure is to explore the subdominant effects of unequal spins, parametrized by the

spin difference ∆χ = χ1 − χ2. Thus, following the same structure as in the previous

section, we show separately the results for the calibration of the final spin and the

energy radiated.
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4.2.5.1 Unequal-spin contributions and 3D fit: final spin

We first study the residuals of the 238 unequal-spin NR cases under the equal-spin 2D

fit:

∆L′orb

(
η, Ŝ,∆χ

)
:= L′orb,NR

(
η, Ŝ,∆χ

)
− L′orb|eqSpinFit

(
η, Ŝ

)
. (4.30)

We do this at fixed steps in mass ratio, having sufficient numbers of NR cases for this

analysis at mass ratios q = {1, 1.33, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8}. This per-mass-ratio

analysis is only used to guide the construction of the full 3D ansatz and as a consistency

check, while the final full 3D fit will consist of fitting the constrained 2D ansatz plus

spin-difference terms directly to the full data set.

Figure 4.10: Examples of spin-difference behavior at fixed mass ratios, for residuals

∆L′orb after subtracting the two-dimensional L′orb

(
η, Ŝ

)
fit, as defined in (4.30). Top

row: q = 1; lower row: q = 4; left column: surfaces in
(
Ŝ,∆χ,∆L′orb

)
space; right

column: projections onto the ∆χ axis with linear and quadratic fits. At equal mass,
the surface is parabolic, with the linear term (blue line) and mixture term (not shown)
vanishing, but a clear quadratic dependence (orange line). At q = 4 and other inter-
mediate mass ratios, the surface is very close to flat and the linear term dominates.

At each mass ratio, we visually inspect the residuals, which span 2D surfaces in (χ1, χ2, L
′
orb)

or, equivalently,
(
Ŝ,∆χ,L′orb

)
space. As illustrated in Figure 4.31, we find surfaces close

to a plane, indicating a dominant linear dependence on ∆χ and possibly a mixture term

Ŝ∆χ. The exception is at equal masses, where quadratic curvature in the ∆χ dimension

dominates. In this case, exchange of χ1 and χ2 yields an identical binary configuration,

so that terms linear in ∆χ indeed have to vanish for symmetry reasons. We have also
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exploited this fact in the q = 1 analysis by adding mirror duplicates of each NR data

point. Motivated by these empirical findings and symmetry argument, we introduce up

to three spin-difference terms,

∆L′orb

(
η, Ŝ,∆χ

)
= A1(η) ∆χ+A2(η) ∆χ2 +A3(η) Ŝ∆χ . (4.31)

The full 3D ansatz is then simply the sum of Eqs. (4.22) and (4.31):

L′orb

(
η, Ŝ,∆χ

)
= L′orb

(
η, Ŝ

)
+ ∆L′orb

(
η, Ŝ,∆χ

)
. (4.32)

Adding higher orders in the effective spin or spin difference is not supported by visual

inspection. At each mass ratio, we now perform four fits in ∆χ for the values of the

Ai: linear, linear+quadratic, linear+mixed, or the sum of all three terms. Examples are

also shown in Figure 4.31.

Figure 4.11: Spin-difference behavior of final-spin data after subtraction of the two-

dimensional L′orb

(
η, Ŝ

)
fit, showing the results of fits as in Figure 4.31 at η steps

corresponding to q = {1, 1.33, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8} and three estimates for the
three ansatz functions Ai(η) from Eqs. 4.31 and 4.35: (i) unequal-spin part of the final
3D fit from (4.32) (“direct 3D fit”), (ii) fit of the unequal-spin terms from (4.35) (“fit
to residuals”) to the residuals of the 2D fit from (4.22) over all mass ratios, (iii) fits of
(4.35) to the per-mass-ratio results. Top-left panel: linear term A1 only. The remaining
panels are for the combined linear+quadratic+mixture fit, in clockwise order: linear
term A1, quadratic term A2 and mixture term A3. The A1 results from the combined
fit are very similar to those from the linear-only fit, demonstrating the robustness of
extracting leading-order spin-difference effects. For the two lower panels, data points for
low η are outside the displayed range, but the error bars are huge and hence this region
does not contribute significantly to the weighted per-mass-ratio fits. In the direct 3D
fit to the full data set, however, low-η information can be better incorporated, leading

to the somewhat different shape of the mixture-term fit.
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We then collect the coefficients of each of these fits and use them as data Ai(η) to be

fitted as functions of mass ratio (see the ’per-mass-ratio data’ in Figure 4.11), using as

weights the fit uncertainty from each mass ratio rescaled by the average data weight

for that mass ratio. We also apply what we know about the extreme-mass-ratio and

equal-mass limits: all three Ai(η) have to vanish in the limit η = 0, and the A1, A3

linear in ∆χ have to vanish for η = 0.25. We thus choose ansätze of the form

Ai = di0 η
pi
(√

1− 4η
)qi

(1 + di1η) (4.33)

for Ai=1,3 linear in ∆χ, where the factor
(√

1− 4η
)qi is motivated from post-Newtonian

(PN) results [20, 52], and

A2 = d20 η
p2
(

1 + d21

(√
1− 4η

)q2)
(4.34)

for the term quadratic in ∆χ. We find that the data can be well fit without any higher-

order terms and by reducing some of the freedom of these three terms exploratory fits

keeping all coefficients free give results close to integer numbers for the pi, qi = 1 and

d21 = 0. Hence we choose the three parsimonious ansätze

A1(η) = d10(1− 4η)0.5η2 (d11η + 1) (4.35a)

A2(η) = d20η
3 (4.35b)

A3(η) = d30(1− 4η)0.5η3 (d31η + 1) . (4.35c)

The blue points and lines in Figure 4.11 show these per-mass-ratio results. The shape

and numerical results of the dominant linear term A1 are quite stable under adding one or

two of the other terms. Fitting two terms, either linear+quadratic or linear+mixture,

yields quadratic/mixture effects of very similar magnitude, with the quadratic term

following the same basic shape (an intermediate-mass-ratio bulge) as the other two.

However, combining all three terms, the results match better with the expectations

from symmetry detailed before, with the bulge shape limited to the linear and mixture

terms while the quadratic term provides a correction mostly at similar masses.

Using again the q = 1, Ŝ = 0 and η → 0 constraints on the general ansatz from (4.32),

we end up with a total of nine free coefficients in this final step. We now fit to 298 cases

with arbitrary spins not yet used in the 1D fits, with results given in Table 4.5. Together

with the coefficients from Tables 4.1–4.3, these fully determine the fit. To convert back

from our fit quantity L′orb to the actual dimensionless final spin χf , just add the total

initial spin S = m2
1 χ1 +m2

2 χ2.
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Estimate Standard error Relative error [%]

d10 0.322 0.020 6.2
d11 9.33 0.87 9.3
d20 −0.0598 0.0021 3.5
d30 2.32 0.28 12.1
d31 −3.26 0.20 6.1
f12 0.512 0.085 16.7
f22 −32.1 3.6 11.3
f32 −154 10 6.5
f51 −4.77 0.34 7.1

Table 4.5: Fit coefficients for the final 3D step of the L′orb fit to 298 cases not yet
used in the 1D fits of 4.2.3.

We find that the data set is sufficiently large and clean, and the equal-spin part modeled

well enough from the 2D step, to confidently extract the linear spin-difference term

and its η-dependence, which is stable when adding the other terms; and to find some

evidence for the combined mixture and quadratic terms, whose shape however is not

fully constrained yet.

4.2.5.2 Unequal-spin contributions and 3D fit: energy radiated

The spin-difference dependence of unequal-spin residuals is less clear here than for the

final spin: As seen in the examples of Figure 4.12, the general trend is the same with a

quadratic dependence on ∆χ at equal masses and more dominant linear effects as η de-

creases, but the distributions are generally noisier and the second-order terms (quadratic

and mixture ∝ Ŝ∆χ) cannot be as cleanly separated.

For both the per-mass-ratio-step analysis and the direct 3D fit, we use the same general

functional forms for possible linear, quadratic and mixture terms as in Eqs. (4.31), (4.33)

and (4.34). After fixing ill-constrained coefficients to integer values, these reduce to

A1(η) = d10(1− 4η)0.5η2 (d11η + 1) (4.36a)

A2(η) = d20η
3 (4.36b)

A3(η) = d30(1− 4η)0.5η (d31η + 1) . (4.36c)

Figure 4.13 shows that the linear term is again robustly determined and does not change

shape much when adding the two additional terms, but already the per-mass-ratio and

direct-3D fits for this term do not agree quite as closely as in the χf fit. The quadratic

term is more noisy, and for the mixture term the results are rather uncertain, with an

apparent sign change in the effect over η, but the stepwise cross-checks at least agreeing
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Figure 4.12: Examples of spin-difference behavior of the radiated energy at fixed

mass ratios, for residuals ∆Erad after subtracting the two-dimensional Erad

(
η, Ŝ

)
fit.

Top row: q = 1 (mirror-duplicated data points shown in gray); lower row: q = 4; left

column: surfaces in
(
Ŝ,∆χ,∆Erad

)
space; right column: projections unto the ∆χ axis

with linear and quadratic fits. At equal mass, the linear term and mixture term vanish,
but the expected quadratic dependence (parabolic surface) is less clearly pulled out
from rather noisy residuals than for the final spin (cf. Figure 4.31). At q = 4 and other
intermediate mass ratios, the surface is not as close to flat as in the final-spin case, and

the noisy data still shows some quadratic dependence.d

on the overall shape. Still, we will see below that inclusion of both these effects is

statistically justified.

The full 3D ansatz for Erad

(
η, Ŝ,∆χ

)
is then built up as

Erad

(
η, Ŝ,∆χ

)
= Erad

(
η, Ŝ

)
+ ∆Erad

(
η, Ŝ,∆χ

)
, (4.37)

and this time has eight free coefficients (three from the 2D ansatz and five from the

spin-difference terms). Results for the fit to 298 NR cases not previously used in the 1D

fits are listed in Table 4.6.



Chapter 4. Phenomenological fitting of the BBH final state 107

Figure 4.13: Spin-difference behavior of radiated-energy data after subtraction of

the two-dimensional Erad

(
η, Ŝ

)
fit, for the three ansatz functions Ai(η) from (4.36),

with the same mass-ratio steps and fits as in Figure 4.11. Top-left panel: linear term
A1 only. The remaining panels are for the combined linear+quadratic+mixture fit,
in clockwise order: linear term A1, quadratic term A2 and mixture term A3. The
A1 results from the combined fit are very similar to those from the linear-only fit,
demonstrating the robustness of extracting leading-order spin-difference effects. For
the two lower panels, results are much more uncertain, and the error bars for low η go
far outside the displayed range, so that this region does not contribute significantly to

the weighted per-mass-ratio fits.

Estimate Standard error Relative error [%]

d10 −0.098 0.011 11.3
d11 −3.23 0.18 5.6
d20 0.0112 0.0012 10.5
d30 −0.0198 0.0036 18.4
d31 −4.92 0.19 3.9
f11 15.7 1.2 7.9
f31 −243.6 8.0 3.3
f51 −0.58 0.13 21.6

Table 4.6: Erad fit coefficients for the final 3D step, using 298 cases.
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4.2.6 Fit assessment

In Figures 4.11 and 4.13 we compare the spin-difference terms for the final spin and

radiated energy from the final “direct 3D” fit to those obtained from the per-mass-

ratio residuals analysis. In both cases, the linear term is fully consistent, confirming

that it is well determined by the data, while for the quadratic and mixture terms both

approaches agree on the qualitative shape, but do not match as closely. Under the chosen

ansätze, the 3D fit coefficients even for those terms are tightly determined (see Tables

4.5 and 4.6). However, we have explicitly chosen the spin-difference terms in (4.35) to

achieve this goal, while several other ansatz choices (changing the fixed exponents of the

multiplicative η or
√

1− 4η terms, or adding more terms with free coefficients in the η

polynomials) can produce fits that are indistinguishable by summary statistics (AICc,

BIC, RMSE). Still, most of these have some strongly degenerate and underconstrained

coefficients, while the reported fit has the desirable property of sufficient complexity

to be within the plateau region of summary statistics while not having any degenerate

coefficients.

Yet, the shape of the functions A2(η) and A3(η) for the mixture and quadratic terms

is not actually as closely constrained from the current data set as the coefficient uncer-

tainties alone seem to imply, due to this ambiguity in ansatz selection. This becomes

clear from the comparison of direct 3D fit and per-mass-ratio analysis in Figure 4.11 and

Figure 4.13. The per-mass-ratio analysis also demonstrates that the data at mass ratios

η < 0.16 are not yet constraining enough to help characterize these terms. (The error

bars are so large, and hence the weights so low, that they effectively do not contribute

to the fit.) It also becomes clear that additional unequal-spin data at intermediate mass

ratios would be very useful in constraining the A2,3(η) functions. Meanwhile, it is im-

portant to note again that the leading linear spin-difference term is already determined

much more narrowly and robustly with the current data set.

We can further assess the success of the hierarchical 3D fitting procedure by comparing

• a 2D fit (equal-spin physics only) to equal-spin NR cases only (same as in Figure 4.8

and Figure 4.9),

• a 2D fit (equal-spin physics only) to all NR data,

• and the 2D part of the full 3D fit.

As shown in Figure 4.14 and Figure 4.14, fitting the 2D equal-spin ansatz to the full

data set induces strong curvature in the (η, Ŝ) plane, which the full 3D fit is able to

correct by the additional degrees of freedom in the spin-difference dimension. This is

how it was possible to pull out the subdominant spin-difference effects with this enlarged
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Figure 4.14: Green: Difference ∆L′orb (left panel) and ∆Erad (right panel) of a
2D fit (equal-spin physics only) to the full data set minus the 2D fit to equal-spin
cases only, both including extreme-mass-ratio constraints. The strong curvature at
intermediate mass ratios and nonzero spins is due to the equal-spin-physics-only fit

trying to compensate for the addition of unequal-spin NR cases.
Orange: Difference ∆L′orb (left panel) and ∆Erad (right panel) of the 2D part of the
3D fit to the full data set minus the 2D-only fit to equal-spin data. The bulk of
the parameter space is no longer distorted, and only at high effective-spin magnitudes
a small opposite effect to the η-dependent behavior of the spin-difference terms (cf.

Figure 4.11) can be seen.

Ndata Ncoeff RMSE AICc BIC

1D η 92 3 : 3 (9.41 : 4.14)× 10−5 −(1590.8 : 1705.7) −(1580.7 : 1695.6)

1D Ŝ 37 4 : 4 (2.05 : 1.51)× 10−4 − (563.6 : 577.3) − (555.5 : 569.3)
2D (χ1 = χ2) 60 4 : 3 (3.90 : 2.67)× 10−4 − (880.5 : 875.3) − (870.8 : 867.4)
2D all 298 4 : 3 (8.05 : 0.43)× 10−3 −(2247.4 : 4070.9) −(2229.0 : 4070.9)
3D lin 298 6 : 5 (9.20 : 3.24)× 10−4 −(3628.4 : 4282.9) −(3602.9 : 4282.9)
3D lin+quad 298 7 : 6 (8.28 : 2.72)× 10−4 −(3765.0 : 4391.9) −(3735.8 : 4391.9)
3D lin+mix 298 8 : 7 (8.11 : 2.91)× 10−4 −(3693.4 : 4339.3) −(3660.6 : 4339.3)
3D lin+quad+mix 298 9 : 8 (6.10 : 2.62)× 10−4 −(4087.3 : 4417.8) −(4050.9 : 4417.8)

Table 4.7: Summary statistics for the various steps of the hierarchical final-spin
fit. Note that it is not meaningful to compare AICc and BIC between data subsets of
different sizes. For each column, the left value is for the final spin while the right one
is for the energy radiated. Thus, for both quantities, there is statistical preference for
the 3D fit including all three linear+mixture+quadratic terms, although many different
choices of the Ai(η) ansatz functions yield similar results with just ± a few percent in
RMSE and ± a few in AICc/BIC, so that the shape of the mixture and quadratic terms

is not yet fully constrained.

data set. The same conclusion is supported by the comparison of summary statistics

between the various steps and 2D/3D fit variants in Table 4.7, showing that the RMSE

only increases by 50% from the 2D equal-spin case to the full 3D fit using all data.

The distribution of fit residuals with other previously published fits, over the calibration

data set of the current work, is shown as histograms in Figure 4.15 and Figure 4.16

and summarized in Table 4.8 and Table 4.9 along with AICc and BIC metrics. The

shape of the distributions is consistent, and for all fits the means are much smaller

than the standard deviations, showing no evidence for any systematic bias. Our new

fit improves significantly over the previous fit [38] used in the calibration of the IMR-

PhenomD waveform model [39], and also yields some improvement over recent fits from

other groups [92, 151], even when those ansätze are refit to our present NR data set.
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Figure 4.15: Fit residuals of the final spin χf , for this work and for previously pub-
lished fits [38, 92, 151], evaluated over the set of 427 NR simulations shown in Figure 4.5.
Main panel: histograms, with 102 outliers for PhenomD with |NR− fit| > 0.0075 out-

side of the plot range. Inset: cumulative distributions over the same range.

Ncoef mean stdev AICc BIC

HLZ2014 [91] 19 −4.8× 10−5 8.9× 10−4 −5141.0 −5061.7
HL2016 [92] 19 8.1× 10−7 7.9× 10−4 −5358.1 −5278.9
PhenomD [38] 11 −4.7× 10−5 7.2× 10−3 −3309.0 −3260.9
(refit) 11 −1.7× 10−4 7.0× 10−3 −3334.5 −3286.5

HBR2016 [151] 6 −1.2× 10−4 1.4× 10−3 −4717.2 −4689.0
(refit) 6 −1.4× 10−4 1.3× 10−3 −4791.4 −4763.2

HBR2016 [151] 16 −2.8× 10−4 1.2× 10−3 −4877.3 −4809.7
(refit) 16 −1.4× 10−5 1.0× 10−3 −4975.8 −4908.2

This work 16 −2.3× 10−5 5.2× 10−4 −5991.5 −5923.9
(refit) 16 −2.1× 10−5 5.1× 10−4 −6011.3 −5943.6
(uniform) 16 −1.2× 10−5 5.0× 10−4 −5240.1 −5172.5
(uniform refit) 16 −6.9× 10−6 4.9× 10−4 −5256.8 −5189.2

Table 4.8: Summary statistics for the new final-spin fit compared with previous
fits [38, 91, 92, 151], evaluated over the 427 NR simulations. For Hofmann et al. [151],
both the (nM = 1, nJ = 2) fit (6 coefficients) and the (nM = 3, nJ = 3) version (16
coefficients) are listed. We also show results for refitting previous ansätze to the present
NR data set, for a refit of our hierarchically obtained ansatz directly using the full data

set, and for the same fitting procedure, but using uniform weights.
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Figure 4.16: Fit residuals of the radiated energy Erad, for this work (cf. Table 4.6)
and for previously published fits (SEOBNRv2 2014 [63], Healy & Lousto 2016 [92],
PhenomD 2015 [38]), evaluated over the set of 427 NR simulations shown in Figure 4.5.
Main panel: histograms, with 10 outliers for SEOBNRv2 (a recalibration of the fit
from [159]) with |NR− fit| > 0.002 outside of the plot range. Inset: cumulative distri-

butions over the same range.

Ncoef mean stdev AICc BIC

HLZ2014 [91] 19 −5.4× 10−5 3.4× 10−4 −5802.5 −5723.2
HL2016 [92] 19 −4.4× 10−5 3.0× 10−4 −5909.8 −5830.5
PhenomD 10 2.5× 10−5 3.4× 10−4 −5914.9 −5870.8
(refit) 10 6.1× 10−5 3.3× 10−4 −5947.7 −5899.6

SEOBNRv2 [63] 2 −1.7× 10−4 1.0× 10−3 −5036.1 −5023.9
This work 15 4.7× 10−5 2.2× 10−4 −6454.8 −6391.0
(refit) 15 6.3× 10−5 2.1× 10−4 −6482.8 −6419.0
(uniform 15 −4.0× 10−6 2.1× 10−4 −5987.3 −5923.5
(uniform refit) 15 1.4× 10−6 2.0× 10−4 −6034.2 −5970.4

Table 4.9: Summary statistics for the new radiated-energy fit compared with previ-
ously published fits [38, 63, 91, 92], evaluated over the full set of 427 NR simulations
shown in Figure 4.5. Also listed are a refit of the PhenomD [38] ansatz to the present
NR data set, a refit of our hierarchically obtained ansatz directly to the full data set,

and results with the same fitting procedure, but using uniform weights.

Refitting our final hierarchically obtained ansatz directly to the full data set produces

slightly better summary statistics, but also allows uncertainties from the less well-

controlled unequal-spin set to influence the other parts of the fit, while the stepwise

fit gives better control over the extreme-mass-ratio behavior and better-determined co-

efficients for the well-constrained subspaces.

As a further test of robustness, we have repeated the hierarchical fitting procedure with

uniform weights instead of the weights used so far and discussed in Sec. 4.2.10. This

yields a fit consistent with our main result, though slightly less well constrained, but
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Figure 4.17: Comparison of this work with previously published fits [38, 92, 151, 159]
in the limit of extremal aligned spins, χ1 = χ2 = 1 for final spin (left) and radiated
energy (right). The shaded region shows our fit’s 90% confidence interval, which is
narrow enough (do not overlap with the other fits) to indicate that discrepancies with
the referenced fits are significant and due to the different ansatz constructions, especially

in the extreme-mass-ratio limit, and not just a consequence of insufficient data.

still improving over previous fits, thus demonstrating the robustness of the hierarchical

fit construction under weighting choice.

We have also verified that our new fit does not violate the χf ≤ 1 Kerr bound, particularly

in the extreme-spin limit (Ŝ = 1) and at low η, see Figure 4.17.

4.2.7 Precessing binaries

Precession effects are in general relevant in the computation of remnant quantities. The

final mass and final spin are used to compute the QNM frequencies that model the

ringdown regime and where precession also causes a modulation of these frequencies.

Then, we can turn the argument around: the modulation in the ringdown frequencies

must be also related to the remnant properties of the BBH merger. Indeed, whereas

precession effects are normally neglected for the final mass, they appear to be more

dominant for the final spin.

Precessing systems have been long accounted in final-spin fits [151, 182, 183] by either

calibrating the model directly to precessing cases or using a simple “augmentation” pro-

cedure [184] (see also [156]) for aligned-spin-only calibrations by adding the contribution

of in-plane spins in quadrature to the aligned-spin fit result:

χaug
f =

√(
χaligned

f

)2
+ (Sin-plane/M2)

2
. (4.38)

This procedure is known to significantly improve accuracy and reduce bias for precessing

binaries. For example, it has been applied to the aligned-spin PhenomD fit [38] for the

precessing PhenomPv2 model [166, 167], and to the RIT fit [91] in recent parameter
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estimation work of the LIGO-Virgo collaboration [24, 185, 186] (including spin evolution

according to [148]).

We have tested (4.38) to our aligned-spin fit, finding a small overshooting of the |χf | ≤ 1

Kerr bound for mass ratios q & 24, when the spin magnitude of the heavier BH is

very close to extremal, and for certain orientation angles θi of the black holes’ spins

to the angular momentum. The worst cases give an excess in χf of about 0.12% at

q ∼ 60 and intermediate opening angles, comparable to the aligned-spin fit residuals.

No overshooting occurs if only the linear-in-η term in the final spin is used. Such a

small inaccuracy when extending the aligned-spin fit to precessing cases is in principle

not surprising, as this parameter-space region is not covered with NR simulations and

hence the fit slope in this region is purely determined by extrapolation between the

NR data and the extreme-mass-ratio limit, which we have ensured to be smooth with a

flat approach to χf = 1 at (η = 0, χ1 = 1) (see Sec. 4.1.5 and Figure 4.17). Very small

inaccuracies in the intermediate-η extrapolation region can thus lead to a minimal Kerr

violation when adding the in-plane spins according to (4.38). A clean solution to this

issue would require more calibration NR simulations in the critical region and a study

of precessing spin contributions in the extreme-mass-ratio limit.

Here, we opt for truncating the augmentation from (4.38) at unity: χf = min
(
χaug

f , 1.0
)
.

This is justified as the overshooting is very small, on the order of the fit residuals, and

limited to an extremal parameter-space region. The need for this ad hoc truncation

will reduce or become obsolete when low-η-high-spin NR simulations and/or precessing

extreme-mass-ratio information become available. A detailed comparison of fit accura-

cies over a representative set of precessing NR runs is left to future work.

4.2.8 Spin parameter selection

The results of the main text are given in terms of the spin parameter Ŝ. However,

we have also tested the robustness of our hierarchical approach for two additional spin

parameters: S and χeff (Section 4.1.4).

We have redone the hierarchical ansatz construction and fitting for S and χeff , making

the same ansatz choices for χeff as we did for Ŝ in the main text, but changing the

1D spin ansatz to a polynomial P(7) for S (instead of R(3,1) for Ŝ and χeff) because

rational functions in S tend to yield singularities. Checking other possible choices, we

have not found any ansatz combination that makes these alternatives match or exceed

the performance of the Ŝ-based fits presented in the main part of this paper. Results

in terms of the RMSE, AICc and BIC are listed in Table 4.10, and residual histograms
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shown in Figure 4.18. We still obtain better results than most previous fits (see Tables 4.8

and 4.9) with any parametrization, thus demonstrating the robustness of our method.

Figure 4.18: Fit residuals for three different choices of effective spin parameter.
Right panel: final spin; left panel: radiated energy.

RMSE AICc BIC

Ŝ (5.15 : 2.24)× 10−4 −(5991.5 : 6454.8) −(5923.9 : 6391.0)
S (5.24 : 6.45)× 10−4 −(5930.9 : 5526.1) −(5863.3 : 5439.1)
χeff (5.97 : 4.23)× 10−4 −(5799.6 : 5962.7) −(5731.9 : 5898.8)

Table 4.10: Summary statistics for fits with three different choices of effective spin
parameter and ansatz choices as discussed below, evaluated over the full 427 point NR
data set. Values at left column: Final spin, Values at right column: radiated energy.

Figure 4.19: Final-state quantities in the extremal χ1 = χ2 = 1 limit for three dif-
ferent choices of effective spin parameter. Left panel: final spin, right panel: radiated

energy.

Again, we have also analyzed the fit in the extrapolation regions to detect any artifacts

not reflected by the statistical criteria (which are meaningful only in the calibrated

region). In Figure 4.19 we check the extrapolation behavior of fits with the alternative

parametrizations in the notoriously difficult χ1 = χ2 = 1 limit. The approach to this

limit is smoother for the fits using Ŝ and χeff than for that using S, which shows some

certainly nonphysical oscillations.

The conclusion is that the hierarchical fitting method is quite robust under a change

of effective-spin parametrization, and indeed we would expect full equivalence in the

limit of a huge data set with small, completely known NR errors (using appropriately

adapted ansätze for each parametrization). With the current data set, Ŝ and χeff perform
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similarly, while when using S additional high-spin data would be even more important

to ensure smooth extrapolation.

4.2.9 Apparent horizon and area theorem

In Chapter 3 we justified why the mass of a BH is defined through the area theorem and

where the area of the apparent horizon can be computed once the mass and the spin of

the BHs are known. Thus, using the new expressions obtained for the final mass and

final spin, it is also possible to compute the area of the final object and test whether

this area satisfies the area theorem A1 + A2 ≤ Af across the parameter space. Then,

taking (3.18) it is possible to get,

Aj = 16πM2
irr,j = 8πM2

j

(
1 +

√
1− χ2

j

)
, (4.39)

where j = 1, 2, f , and tagging f the final object.

Figure 4.20: Test of the area theorem on the final state fits. The blue surface shows
the equal-spin configurations while for the red one we are plotting the unequal spin

ones χ1 = −χ2. Notice that is everywhere satisfied Af ≥ (A1 +A2).

Figure 4.20 shows the profile of the ratio Af/(A1 + A2) across the two-dimensional

parameter space for the equal-spin configurations χ1 = χ2 (blue) and the unequal-spin

configurations χ1 = −χ2 (red). It is clear that both configurations satisfy everywhere

A1 + A2 ≤ Af only being equal when the η = 0. The latter can be trivially obtained

analytically taking into account that Erad(0,±χ, χ) = 0 and χf (0,±χ, χ) = ±χ. Then,
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from (4.39) we see that Af (η = 0,±χ) = A1(η = 0,±χ) and where we have fixed

A1 ≥ A2.

4.2.10 Data sets and NR uncertainties

In our calibration of final state quantities we have used data from four different codes:

BAM, SXS, RIT and GaTech. This has been done both to increase robustness against code

inaccuracies and errors in the preparation of data products (such as incorrect metadata)

and to benefit from the combined computational resources of different groups. However,

though we are almost using all the publicly available BBH data, this data set is not

sufficiently large to to make the possible outliers contributions irrelevant in the final

results. Then, we need to carefully design procedures to eliminate data points of poor

quality, to assign fit weights, and to check consistency between assumed error bars and

our fit results.

We expect two main avenues to significantly improve over the fits we have presented in

this paper: (a) providing more data points with high spins and unequal masses, in order

to improve the accuracy of the fit near the boundaries of the fitting region and to reduce

the need for extrapolation; and (b) determining more accurate and robust error bars for

NR data, which would allow one to isolate small subdominant effects. In this chapter

we address the latter point.

Figure 4.21: Differences between radiated energy computed from either horizon or
waveform data, across the parameter space. The color scale quantifies the differences
between the two computations. Differences are largest for high-mass-ratio and high-spin

cases, where high NR accuracy is more demanding.
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Final spin and final mass are usually computed as surface integrals over the apparent

horizon using the isolated-horizon formalism although they can also be computed from

the Weyl scalar as explained in (3.19). Then we can consider the differences between

radiated energy values from the horizon and from the integrated waveforms, shown in

Figure 4.21, as an estimate of NR errors. However, this will typically be a pessimistic

estimate because horizon quantities are in general more reliable and thus big differences

are typically caused by inaccuracies in the integrated emission. Thus, for SXS, RIT and

GaTech results, we take the horizon values provided in the catalogs [4, 6, 89–91] whereas

for BAM we take the horizon values when they are available and we use data computed

from the waves when the AH finder fails2. This reduces our data set to 414 cases where

we have both the waveform and AH estimate available. In Figure 4.22 we show that the

distribution of this pessimistic estimate is similar to, but much wider-tailed than, the

residuals from our radiated-energy fit.

Figure 4.22: Histograms of the differences between radiated energy computed from
either horizon or waveform data (as in Figure 4.21), compared with the residuals of the

new radiated-energy fit (as in Figure 4.16).

A more realistic measure of NR errors is the difference between results from different

codes for equal initial parameters. With a strict tolerance requiring equal initial param-

eters to within numerical accuracy,

|λi − λj | ≤ ε = 0.0002 with λi = {ηi, χ1i, χ2i} , (4.40)

2For the BAM code, for some large-mass-ratio cases the AH finder fails due to the unfortunate choice
of a shift condition, which results in a coordinate growth in the horizon which is roughly linear in time
during the evolution. After several orbits the horizon of the larger BH is then no longer contained within
the fine grid of the mesh refinement, which may trigger a failure of the horizon finder code. Due to the
high computational cost of the simulations, we have not rerun these cases with improved parameters
for the apparent horizon finder code. But rather, we compute the final angular momentum from the
angular momentum surface integral at large radius, and the energy from the radiated GWs.
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Figure 4.23: Differences in final spin χf (right panel) and radiated energy Erad

(left panel) for equal-parameter configurations but different NR codes. Solid circles:
configurations with parameters equal to within numerical accuracy (narrow tolerance).
Open circles: similar configurations but with some deviation in the parameters (wider
tolerance, e.g. up to ∆η ≈ 0.001). Pairs of simulations are shown with a small horizontal

offset for ease of visual identification.

Figure 4.24: Differences in the final-state quantities for equal-parameter configura-
tions and different NR codes. right panel: final spin χf , left panel: radiated energy
Erad. Points here correspond to both open and solid circles from Figure 4.23 (wider

tolerance).

we find 41 such duplicate configurations out of the total of 427 cases.3 We evaluate

differences between these equal-parameter cases for final spin and radiated energy. Fig-

ure 4.23 shows that, with strict tolerance, these error estimates (standard deviations of

3.1× 10−4 for χf and 1.6× 10−4 for Erad)4 are still on the same order but smaller than

the respective fit residuals (RMSE of 5.2×10−4 for χf and 2.2×10−4 for Erad). However,

the set of true duplicates is small and mostly concentrated in equal-spin-similar-mass

regions of the parameter space (cf. Figure 4.24), preventing us from naively extrapolat-

ing this error estimate to the full parameter space. Hence we consider it as a somewhat

optimistic estimate of final-state NR errors.

We therefore have a rough expectation for the range of possible NR errors bracketed

by these pessimistic and optimistic estimates, but no detailed information for each case

3With a more relaxed tolerance, ε = 0.001 in (4.50), we find 33 duplicates and 19 sets of two or more
configurations with reasonably similar parameters, corresponding to a total of 131 cases (30% of the total
data set), compatible with the 71 “twins” out of a data set of 248 reported in [151]. The wider-tolerance
tuples are shown as open circles in Figure 4.23.

4For the relaxed tolerance, the values are 2.8 × 10−3 for χf and 3.5 × 10−4 for Erad, compatible with
the 2 × 10−3 given in [151] for χf .
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over the whole parameter space. Instead, we use simple heuristic fit weights. The

overall scale of the NR error is not relevant for determining fit weights, so we only need

to assign relative weights between the cases, emulating the usual quadratic scaling with

data errors which can also be deduced from Figure 4.21. For SXS data we down-weight

cases with η < 0.1 by a factor of 22; while for the puncture codes (BAM, GaTech, RIT)

we expect larger inaccuracies especially at low η, and so we down-weight by a factor

of 22 above η = 0.223 and 32 below that mass ratio, and a factor of 52 below η = 0.05

(including the computationally challenging q = 18 cases). As mentioned before, a more

detailed NR error study, leading to better-determined weights, would be a clear avenue

to further improve fit results.

Outliers

From the original set of NR simulations we have removed 16 cases as outliers, which

are listed in Table 4.17. For this decision, we have considered three main sources of

outliers: cases whose NR setup is not appropriate for the purpose of this study, du-

plicated configurations for which the variations in the final quantities are much larger

than the RMSE, and cases that are found to be drastically off the trend of otherwise

smooth data sets in any of the one-dimensional plots in our hierarchical fitting proce-

dure. Outliers 1,2,5,16 have rather short orbital evolutions, so that they can be used for

ringdown-only studies, but not for our purpose of predicting the final state from initial

parameters. For outliers 10–12 and 15–16 we have found large variations in the final-

state values for different codes (see Figure 4.23). Here we have used only the equivalent

SXS configuration, in each case corresponding to longer and presumably more accurate

evolutions. The remaining seven outliers have been identified after performing the step-

by-step one-dimensional analysis of the data, each deviating so clearly that there must

be an underlying systematic problem and not just a statistical fluctuation (in which case

they could not be excised from the data set). As an example, we highlight in Figure 4.25

three clear GaTech outliers found in the unequal-spin calibration step; however, it was

recently confirmed [187] that these three cases should have a negative sign of their final

spin, and with this change they are fully consistent with our fits. We note that the overall

data quality of the omitted cases may be perfectly adequate for other studies; while for

this final-state study, due to good data coverage in the corresponding parameter-space

regions and clear global trends in the full data set, the consistency requirements are

quite narrow.
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id q χ1 χ2 ω0 D0 Erad ∆Erad χf ∆χf tag code

1 1.00 -0.80 -0.80 0.060 5.88 0.0325 -0.0010 0.4122 -0.0146 D6.2 q1 a-0.8 m100 GaTech
2 1.00 -0.60 -0.60 0.058 5.93 0.0349 -0.0013 0.4876 -0.0066 D6.2 q1 a-0.6 m100 GaTech
3 1.00 0.80 -0.80 0.025 10.92 0.0491 0.0002 0.6839 -0.0000 D11 a0.8 q1.00 m103 As GaTech
4 1.00 0.80 0.80 0.024 11.07 0.0883 -0.0005 0.9086 0.0010 D11 q1.00 a0.8 m200 GaTech
5 2.50 0.60 0.60 0.051 6.27 0.0528 0.0002 0.8255 0.0004 Lq D6.2 q2.50 a0.6 th000 m140 GaTech
6 3.50 0.00 0.00 0.015 15.90 0.0258 0.0007 0.5046 0.0005 BBH CFMS d15.9 q3.50 sA 0 0 0 sB 0 0 0 SXS
7 5.00 -0.73 0.00 0.030 9.53 0.0129 0.0004 0.0222 0.0460 D10 q5.00 a-0.73 0.00 m240 GaTech
8 5.00 -0.72 0.00 0.030 9.54 0.0129 0.0004 0.0164 0.0340 D10 q5.00 a-0.72 0.00 m240 GaTech
9 5.00 -0.71 0.00 0.029 9.55 0.0130 0.0005 0.0105 0.0220 D10 q5.00 a-0.71 0.00 m240 GaTech

10 5.00 0.00 0.00 0.027 10.07 0.0176 -0.0001 0.4175 0.0009 D10 q5.00 a0.0 0.0 m240 GaTech
11 5.50 0.00 0.00 0.031 9.16 0.0161 0.0001 0.3932 -0.0002 D9 q5.5 a0.0 Q20 GaTech
12 6.00 0.00 0.00 0.027 10.13 0.0145 -0.0001 0.3732 0.0007 D10 q6.00 a0.00 0.00 m280 GaTech
13 6.00 0.40 0.00 0.026 10.35 0.0195 0.0000 0.6257 -0.0000 D10 q6.00 a0.40 0.00 m280 GaTech
14 8.00 0.85 0.85 0.048 6.50 0.0248 -0.0027 0.8948 -0.0012 q8++0.85 T 80 200 -4pc BAM
15 10.00 0.00 0.00 0.035 8.39 0.0082 -0.0000 0.2588 -0.0019 D8.4 q10.00 a0.0 m400 GaTech
16 10.00 0.00 0.00 0.035 8.39 0.0081 -0.0001 0.2665 0.0058 q10c25e T 112 448 BAM

Table 4.11: NR cases from the source catalogs not included in the fit calibration, for
reasons detailed below.

Figure 4.25: Unequal-spin effects for final spin χf at q = 5, shown as residuals against
the 2D equal-spin fit (cf. Figure 4.31). The three points highlighted in red are similar
configurations from the GaTech catalog, for which it has since been confirmed [187] that
the sign of χf should be negative instead, making L′orb fit with the trend – corrected

values are shown in green.

4.3 Hierarchical data-driven fitting: Application to peak

luminosity

The successful implementation of the hierarchical data-driven fitting on the final spin

and radiated energy motivates the testing of this methodology on other waveform-related

quantities were a calibration to NR data is also needed. The intuition and the relevant

improvements obtained with the extreme-mass-ratio limit and unequal-spin calibration

may be transferred to any other physical quantity related to the BBH mergers. In this

case we study a merger-related quantity as the peak luminosity described in Chapter 3.

The peak luminosities for the first BBH observations (GW150914, LVT151012, GW151226)

were inferred using a preliminar version of the fit methodology described in this thesis

but without considering the extreme-mass-ratio constraints [188]. Thus, we show here

an improved version of the old model but now including more unequal-spin cases and
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the calibration to the extreme-mass-ratio limit following the hierarchical data-driven

approach described in this chapter. Then, we develop a three-dimensional ansatz and

fit to 378 simulations from four separate NR codes, including more subdominant modes

than before, and to independent numerical results for large mass ratios obtained with

the perturbative scheme of Refs. [93, 95, 158]. Still, we concentrate on cases where the

spin of each BH is aligned with the system’s total angular momentum, using the di-

mensionless components χi = Si/m
2
i =

~Si
m2
i
· ~L
|~L|

of the spins ~Si projected onto the orbital

angular momentum ~L.

The results described below refer to the ones published in [8].

4.3.1 Astrophysical implications of the peak luminosity

The peak rate at which BBHs radiate GW energy makes them the most luminous known

phenomena in the universe. The source of the first GW detection GW150914 has been

inferred to be consistent with two BHs of 29+4
−4M� and 36+5

−4M� inspiralling, merging

and ringing down as described by GR. Its emission of GW energy reached, for a small

fraction of a second, a peak rate of 3.6+0.5
−0.4×1056 erg/s, equivalent to 200+30

−20M� c
2/s [3,

13, 189]. Though this peak luminosity, Lpeak, is not electromagnetic, but gravitational,

we can compare its numerical value to the photon luminosity of other astrophysical

sources to illustrate its scale: GW150914 at its peak emitted as much power as ∼1023

suns, & 1011 times more than all stars in the Milky Way, and still 60–90 times more

than the ultra-luminous gamma-ray burst GRB 110918A [190].5

Beyond using Lpeak to compare the energetics of GWs and other astrophysical events,

one can also consider its relevance for the effect of BBH coalescences on their immediate

surroundings. The influence of super-massive black hole (SMBH) mergers on circumbi-

nary accretion disks (see Ref. [191] and references therein) is determined mostly by the

integrated radiated energy of the late-inspiral and merger phase, though Refs. [192, 193]

suggested weak prompt EM counterparts sensitive to Lpeak and LGW(t). For stellar-mass

BBHs, any significant interaction with surrounding material or fields is highly specula-

tive – see e.g. the references in Sec. 4 of Ref. [194]. Still it is conceivable that an accurate

Lpeak model could be useful in constraining exotic models. Furthermore, the GW peak

luminosity Lpeak does not depend on the total mass of a BBH system: Luminosity gen-

erally scales with emitted energy over emission timescale, L ∼ Erad/∆t. But for a BBH,

both the total radiated energy Erad and the characteristic merger timescale ∆t are pro-

portional to the total mass, so that Lpeak is independent of it. Hence, the GW peak

luminosities even of SMBH binaries, observable by eLISA-like missions [175, 195, 196]

5 Assuming L� = 3.8 × 1033erg/s, LMW = 2 × 1011L� and the GRB’s estimated peak isotropic
equivalent luminosity of (4.7 ± 0.2) × 1054 erg/s [190].
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Figure 4.26: Parameter-space coverage of the combined NR data set from BAM, SXS,
GaTech, RIT, shown against the individual BH spins and the mass ratio q = m1/m2

of the system. Simulations not used in the fit (see the outliers Table 4.17) are marked
with magenta crosses.

Figure 4.27: Combined data set over the two-dimensional space spanned by sym-
metric mass ratio η and effective spin Ŝ, defined in (4.3). Left panel: peak luminosity
Lpeak, right panel: rescaled as Lpeak/η

2L0. Subsets used in the various steps of Fig-
ure 4.1 are highlighted by colors. The shaded surface is added here to guide the eye,

but is in fact the 2D projection of the new fit developed in this paper.

or by pulsar timing arrays (PTAs, [197–199]), are similar to those of stellar-mass BBHs.

The results of this work will be applicable to such systems as well.

4.3.2 NR data

We begin by considering the same 427 non-precessing NR simulations from the four

sources used for the final spin and final mass calibration (section 4.2), covering the
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parameter space illustrated in Figs. 4.26 and 4.27 and distributed:

• 45 simulations performed by the authors with the BAM code [72, 181], including

those first used in Refs. [7, 38];

• 161 simulations from the public SXS catalog [4, 89] performed with the Spectral

Einstein Code [84];

• 114 simulations from the public GaTech catalog [6, 90], performed with the MAYA

code [200–203];

• 107 simulations [5, 85, 91, 92] with the LAZEV code [204], labeled “RIT” in the

following.

We use mass and spin parameters of the component BHs after equilibration and the

initial burst of ’junk’ radiation. To compute the luminosity for BAM, SXS and GaTech

simulations, we begin with the Weyl scalar ψ4 decomposed into its spin-two spherical

harmonic multipoles following (3.19). From these spherical harmonic multipoles, we

calculate the GW strain-rate multipoles ḣ`m(t) via the FFI method described in 3 and

in Ref. [142]. We then compute the peak luminosity according to (3.20) and truncating

the sum over ` at `max = 6. For RIT simulations, we use directly the peak luminosity

values as given in Ref. [92], which again include all modes up to `max = 6.

We remove 41 cases from the initial catalog for reasons as discussed in Section 4.2, e.g.

because they are inconsistent with equivalent or nearby configurations from the same or

other codes. Thus, we perform our fit with a final set of 427 NR results.

4.3.3 Constructing the phenomenological fit

We apply the hierarchical modeling scheme for the three-dimensional non-precessing

BBH parameter space that introduced in this chapter and is summarized in Figure 4.1.

The general idea, as before, is to construct a fit ansatz that matches the structure ac-

tually seen in the data set, and to model effects in order of their importance: first fit

well-constrained subspaces as functions of the dominant parameters, then add subdom-

inant effects only to the degree that they are supported by the data. In this case the

extreme-mass-ratio limit is included by calibrating the fit to the Teukolsky and the RWZ

results (see Section 4.1.5). The parameter-space dimensionality is the same for peak lu-

minosity as for final spin or radiated energy. Hence, for non-precessing quasi-circular

BBHs, this leaves a three-dimensional parameter space: mass ratio and two spin param-

eters χ1 and χ2 or, in terms of the effective physical parameters, mass-ratio, Seff and
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∆χ. Just like the final state fits, we use Ŝ as the optimal choice for the spin parameter.

Akaike and Bayesian information criteria (Section 4.1.6), help to choose between fits

based not only on the overall goodness of fit, as measured e.g. by the root-mean-square

error (RMSE), but also penalize excessively high numbers of free coefficients.

4.3.4 One-dimensional subspace fits

4.3.4.1 One-dimensional non-spinning fit

First, we analyse 84 non-spinning cases, including 81 NR simulations as well as the

non-spinning large-mass-ratio data points. As we do in Sec. 4.2.3.1 and Sec. 4.2.3.2, we

consider several ansatz choices for the one-dimensional function L′peak(η): polynomials

up to seventh order, denoted as P(m), as well as rational functions, denoted as R(m, k)

for polynomial orders m and k in the numerator and denominator, respectively. We

construct the latter as Padé approximants from an initial polynomial fit to simplify the

handling of initial values in the fitting algorithm.

Figure 4.28: One-dimensional fits of the rescaled non-spinning peak luminosity

L′peak

(
η, Ŝ = 0

)
. Left panel: the preferred fifth-order polynomial, see (4.41), and com-

parison with the previous fit from Ref. [188]. Right panel: residuals of this fit (points)
and differences from the three next-highest-ranking fits in terms of BIC (lines).

Estimate Standard error Relative error [%]

a0 0.8742 0.0010 0.1
a1 −2.11 0.28 13.3
a2 35.2 7.0 19.9
a3 −245 64 26.0
a4 877 248 28.3
a5 −1173 354 30.2

Table 4.12: Fit coefficients for the one-dimensional non-spinning L′peak

(
η, Ŝ = 0

)
fit

over 84 data points, along with their uncertainties (standard errors) and relative errors
(std.err./estimate).

With the dominant η2-dependence already scaled out, fitting the higher-order corrections

allows us to achieve sub-percent accuracy, though the additional fit coefficients are not
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very tightly constrained. The top-ranked fit both by BIC and AICc (with marginally

significant differences) is a fifth-order polynomial

L′peak

(
η, Ŝ = 0

)
= a5η

5 + a4η
4 + a3η

3 + a2η
2 + a1η + a0 (4.41)

with its fit coefficients and their uncertainties given in Table 4.12.

Figure 4.28 shows this fit, its residuals and comparisons with both the previous fit

from Ref. [188] (“T1600018”) and the next-highest-ranked alternatives. These next-best

alternatives are all rational functions, with the next-simpler polynomial P(4) disfavored

by 7 in BIC and 20% in RMSE and the next-higher-order P(6) marginally disfavored

by 4 in BIC with almost identical RMSE. We find a clear upwards correction over the

T1600018 result at low η, and differences between highly-ranking fits that are much

smaller than this correction or the typical residuals. In the data-less region between the

lowest-η NR case (q = 18) and the perturbative results, differences between the highest-

ranking fits are larger, but still at most at the same level as the typical fit residuals at

higher η, corresponding to relative errors below 0.6%. As another comparison, refitting

the simple Lpeak(η) = a2η
2 + a4η

4 ansatz that we used in Ref. [188] (which in L′peak

corresponds to just const.+ η2) is disfavored by over 280 in BIC over this data set, and

has a four times higher RMSE.

All highly-ranked fits agree that the NR data cannot be connected to the large-mass-ratio

regime with a simple monotonic function. This behavior might seem surprising, but can

be explained by studying the individual modes: the observed behavior of the total peak

luminosity results from competing trends of modes that either fall or rise towards η → 0.

(See Figure 4.40 for details, and Refs. [128, 205–208] for previous studies of higher-mode

amplitudes.) Also we recall that the full Lpeak

(
η, Ŝ = 0

)
is of course monotonic after

the dominant η2 term has been factored back in.

4.3.4.2 One-dimensional equal-mass-equal-spin fit

Next, we consider 32 equal-mass and equal-spin NR simulations, i.e. configurations

with η = 0.25 and χ1 = χ2 6= 0, fitting the one-dimensional function L′peak

(
η = 0.25, Ŝ

)
.

We use a similar set of polynomial and rational ansätze, with the intercept fixed by

requiring consistency with the η fit in the non-spinning case, L′peak

(
η = 0.25, Ŝ = 0

)
.

The curvature of this spin dependence at equal masses is relatively mild and can be best

fit by a three-coefficient rational function ansatz

L′peak

(
η = 0.25, Ŝ

)
=

0.107b2Ŝ
2 + 0.465b1Ŝ

1− 0.328b4Ŝ
+ 1.00095 , (4.42)
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Figure 4.29: One-dimensional fits of the rescaled equal-mass-equal-spin peak lumi-

nosity L′peak

(
η = 0.25, Ŝ

)
. Left panel: best fit in terms of BIC, a rational function

R(2,1), see (4.42), and the almost indistinguishable P(5) from Ref. [188]. Right panel:
residuals of this fit (points) and differences from three next-best-ranked fits by BIC

(lines).

Estimate Standard error Relative error [%]

b1 0.9800 0.0023 0.2
b2 −0.178 0.028 15.5
b4 1.786 0.014 0.6

Table 4.13: Fit coefficients for the one-dimensional equal-mass-equal-spin

L′peak

(
η = 0.25, Ŝ

)
fit over 32 data points.

with the numerical prefactors due to constructing the ansatz as a Padé approximant to

simplify handling of initial values in the fitting code. This fit is marginally top-ranked

by both AICc and BIC; it is shown in Figure 4.29 and the coefficients bi are given in

Table 4.13. Low-order rational functions are clearly preferred over polynomials, with

the P(5) we used in Ref. [188] disfavored by +14 in BIC and having 12% higher RMSE,

and the simple R(2,1) ansatz is fully sufficient to describe the data to similar sub-

percent accuracy as the non-spinning set. Adding another term in either the numerator

or denominator is possible, but does not improve the statistics; while adding too many

terms tends to induce unconstrained coefficients or singularities within the fitting region.

4.3.5 Two-dimensional fits

In proceeding with the hierarchical modeling approach, we can now make a two-dimensional

equal-spin ansatz informed and constrained by the previous 1D steps and the large-

mass-ratio information. In Ref. [7], we constructed 2D final-state ansätze by first simply

adding the two one-dimensional fits and then generalizing each spin coefficient by a

polynomial in η. This time, we find that we need to introduce additional η-dependent

higher-order terms in Ŝ, as the curvature of L′peak along the spin dimension increases

from equal masses towards the largest mass ratios.
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Figure 4.30: Results of the two-dimensional equal-spin L′peak

(
η, Ŝ

)
fit. First panel:

comparison of the smooth fit surface with the equal-spin NR data and perturbative
results; second panel: residuals over the parameter space, color-coded by data prove-

nance.

We thus consider a 2D ansatz of the general form

L′peak

(
η, Ŝ

)
= L′peak

(
η, Ŝ = 0

)
+ R(m, k)

(
η, Ŝ

)
(4.43)

with the η fit from (4.41) and the rational function R(m, k) in Ŝ inheriting the coefficients

bi from Table 4.13 and filled up with bi = 1.0 for orders not present in L′peak

(
η = 0.25, Ŝ

)

from (4.42). We then introduce the required freedom to change the curvature along the

η dimension through the substitution

bi → bi

j=J∑

j=0

fij η
j , (4.44)

with a maximum expansion order J .

On the other hand, the number of free coefficients is reduced again by consistency

constraints with the 1D fits:

fi2 = 16− 16fi0 − 4fi1 for bi from η = 0.25 fit , (4.45a)

fi2 = − 16fi0 − 4fi1 for other bi . (4.45b)

In practice, we use R(4,2) to match the q = 103 result, thus introducing one extra power

of Ŝ in both numerator and denominator compared to L′peak

(
η = 0.25, Ŝ

)
in (4.42).

With 92 equal-spin data points not yet used in the two one-dimensional subspace fits

(including 50 NR simulations and the single-spin large-mass-ratio results, which as dis-

cussed above can be considered as effectively equal-spin), we can easily expand the
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polynomials in η from (4.44) to order J = 2, bi → bi
(
fi0 + fi1η + fi2η

2
)
, and still ob-

tain a well-constrained fit. The only further constraint is that we set the remaining

highest-order coefficient in the denominator, f71, to zero to avoid a singularity within

the physical
(
η, Ŝ

)
region, leaving 11 free coefficients.

The resulting fit and its residuals over the equal-spin data set are plotted in Figure 4.30.

We again find sub-percent relative errors over most of the calibration set, with an RMSE

of ≈ 0.0057 and only two cases over 1% relative error (both q = 8 from BAM). There

is no apparent curvature or oscillatory feature except for the large-mass-ratio region,

where the L′peak quantity plotted in Figure 4.30 over-emphasizes any remaining features

and the corresponding relative errors are below 0.5%. This accuracy is similar to that

of the large-mass-ratio-only fits, thus proving that the combined two-dimensional fit

successfully captures both the shallow spin slope at similar masses and the steep slope

in the perturbative regime. Several outliers have been removed before the fit; the 2D fit

still matches all equal-spin outliers to below 4% relative error.

As this equal-spin part of the full L′peak

(
η, Ŝ,∆χ

)
will be refitted, together with unequal-

spin corrections, in the next and final step of the hierarchical procedure, we do not

tabulate its best-fit coefficients at this point.

4.3.6 Unequal-spin contributions and 3D fit

Simply extending the 2D fit to the full 3D parameter space either by evaluating fit

errors of the equal-spin-only calibrated fit over the whole data set, or by refitting the 2D

ansatz from (4.43), more than doubles the RMSE and induces oscillations at high
∣∣∣Ŝ
∣∣∣.

But even for such a naive approach, relative errors are still limited to below 10%, so that

the effects of unequal spins can evidently be treated as subdominant corrections. We

follow here the same approach as in Ref. [7] to model spin-difference effects, constructing

a 3D ansatz as

L′peak

(
η, Ŝ,∆χ

)
= L′peak

(
η, Ŝ

)
+ ∆L′peak(η, Ŝ,∆χ) . (4.46)

We choose the correction terms ∆L′peak with guidance from (i) Post-Newtonian (PN)

analytical results and (ii) an analysis of the residuals of unequal-spin NR simulations

under the 2D equal-spin fit.

Though PN cannot be expected to be quantitatively accurate for the late-inspiral and

merger stages of BBH coalescence – where the peak luminosity emanates – it can still

give some intuition on the qualitative shape of spin and spin-difference effects. The PN

spin-orbit flux terms as given in Eq. (3.13) of Ref. [20] and Eq. (4.9) of Ref. [52] include
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Figure 4.31: Examples of spin-difference behavior at fixed mass ratios, for scaled

NR data L′peak after subtraction of the 2D
(
η, Ŝ

)
fit. Right panel: q = 1 with linear

term vanishing due to symmetry and mainly quadratic dependence; points in gray are
mirror duplicates exploiting the χ1 ↔ χ2 symmetry at equal masses. There is residual
scatter in the |∆χ| . 1 range not captured by the quadratic fit, which is however not
much larger than the scatter in equal-spin residuals, and hence probably related to the
general uncertainties in NR data quality for Lpeak. Left panel: q = 3 where the linear

term dominates and the apparent quadratic dependence likely is noise-dominated.

linear terms in ∆χ with an η-dependent prefactor that can be expressed as P(η)
√

1− 4η

with a polynomial P(η). The next-to-leading-order contributions would be quadratic in

∆χ and a mixed term proportional to Ŝ∆χ.

At equal masses (η = 0.25) BBH configurations are symmetric under relabeling of the

component BHs, so that terms linear in ∆χ must vanish; this is ensured by the
√

1− 4η

factor, which we therefore expect both in the linear and the mixture term, but not in

the quadratic term. Hence, we make the general spin-difference ansatz

∆L′peak

(
η, Ŝ,∆χ

)
= A1(η) ∆χ+A2(η) ∆χ2 +A3(η) Ŝ∆χ (4.47)

with a simple polynomial for A2(η) and A1(η), A3(η) both being a polynomial multiplied

by the symmetry factor.

To check that these up to three terms accurately describe our available set of 238

unequal-spin NR cases, and to get a handle on the functions Ai(η), we visually in-

spect the data in steps of fixed mass ratio with sufficient numbers of data points.

Examples for q = 1 and q = 3 are shown in Figure 4.31. The unequal-spin data set

appears more noisy for luminosity than for the final-state quantities studied in Ref. [7],

yet can still be analyzed following the same procedure. For each mass ratio step,

q = {1, 1.33, 1.5, 1.75, 2, 3, 4, 5, 6, 8}, we compute the residuals under the non-spinning

fit from (4.43), then perform four fits in ∆χ: linear, linear+quadratic, linear+mixed,

or the sum of all three terms. Fits of the collected coefficients, as functions of η, give

estimates of the functions Ai(η), as displayed with the “per-mass-ratio data” points and

“per-mass-ratio fit” lines in Figure 4.32.
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The scatter of fit coefficients at individual mass-ratio steps is again larger than found

for final spin and radiated energy in Ref. [7], but this procedure still yields sufficient

evidence for the existence and shape of a linear spin-difference term and some preference

for including both second-order terms, though the data is too noisy to constrain their

η-dependent shape very well. For example, there is an apparent sign switch in the linear

term at mass ratio q = 4 (η = 0.16), which is most likely due to a combination of the 2D

fit being relatively weakly constrained in this region and non-negligible errors in some

of the unequal-spin data points, which however cannot easily be discarded as outliers.

The overall fits in η are reasonably robust against such problems, and in the next step

we will use not this step-by-step analysis, but a more robust fit of the full 3D ansatz

to the full data set, to judge the overall significance of spin-difference terms. A full

model selection of Ai(η) is clearly not feasible at this point without a more detailed

understanding of the point-by-point data quality. Hence, we make very simple choices

for the Ai(η) with just one power of η each:

A1(η) = d10η
3
√

1− 4η (4.48a)

A2(η) = d20η
3 (4.48b)

A3(η) = d30η
3
√

1− 4η , (4.48c)

and investigate how much improvement this can yield over the 2D fit.

We now use the full data set except for the 1D subspaces (307 data points, including

265 NR simulations) to fit the full 3D ansatz from (4.46), with the equal-spin and

spin-difference contributions from Eqs. 4.43 and 4.47+4.48, respectively. The sets of

coefficients ai, bi and fi2 are already fixed from the 1D fits and consistency constraints

(see Tables 4.12, 4.13 and Equation (4.45)), leaving between 11 and 14 free coefficients

in this final 3D stage. When including all three spin-difference terms, the full ansatz

(with the constraints from (4.45) for the fi2 still to be applied) is:

L′peak

(
η, Ŝ,∆χ

)
= a5η

5 + a4η
4 + a3η

3 + a2η
2 + a1η + a0 (4.49)

+
0.107b2Ŝ

2
(
f22η

2 + f21η + f20

)
+ 0.465b1Ŝ

(
f12η

2 + f11η + f10

)
+ Ŝ4

(
f42η

2 + f41η + f40

)
+ Ŝ3

(
f32η

2 + f31η + f30

)

−0.328b4Ŝ (f62η2 + f61η + f60) + Ŝ2 (f72η2 + f70) + 1.0

+ d20 η
3 (χ1 − χ2)2 + d10

√
1− 4η η3 (χ1 − χ2) + d30

√
1− 4η η3 Ŝ (χ1 − χ2) .

We consider residuals and information criteria, summarized in Table 4.14, to check which

spin-difference terms are actually supported by the data. These rankings depend on the

specific choice of Ai(η), but with the current parameter-space coverage and understand-

ing of NR data quality, the main goal is to find general evidence for spin-difference effects

and a general idea of their shape, not to exactly characterize them. With the choices

made in (4.48), we find a 14-coefficient fit with linear+quadratic+mixture corrections
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Figure 4.32: Spin-difference behavior of the scaled NR luminosities L′peak after sub-

traction of the 2D
(
η, Ŝ

)
fit over mass ratio η, showing the results of fits as in Fig-

ure 4.31 at η steps corresponding to q = {1, 1.33, 1.5, 1.75, 2, 3, 4, 5, 6, 8} and three
estimates for the ansatz functions Ai(η) from (4.48): (i) unequal-spin part of the final
3D fit from (4.49) (“direct 3D fit”), (ii) fit of the unequal-spin terms from (4.48) (“fit
to residuals”) to the residuals of the 2D fit from (4.43) over all mass ratios, (iii) fits of
(4.48) to the per-mass-ratio results. Top-left panel: linear term A1 only. The remaining
panels are for the combined linear+quadratic+mixture fit, in clock-wise order: linear
term A1, quadratic term A2 and mixture term A3. A1(η) from the combined ansatz
is very similar to the linear-only fit, demonstrating its robustness. Error bars for the
per-mass-ratio points include components from the fit uncertainty at that ratio (blue)
and the average data weight of the contributing NR cases (red). At the lowest η, some
points lie outside the plot range, but are so uncertain that they do not contribute sig-
nificantly to the total fit. The direct-3D and residuals-only results are consistent, while
the per-mass-ratio analysis only matches them qualitatively, which is however sufficient

since it was only used to investigate the possible shapes of Ai(η).

that has well-constrained coefficients (see Table 4.15), is evidently preferred in terms of

AICc and BIC, and reduces overall residuals by about 20% in RMSE. Different choices

for the powers of η in (4.48) yield compatible results, while polynomials in η with several

free coefficients tend to produce under-constrained fits.

4.3.7 Fit assessment

In this section, we assess in some detail the properties and statistical quality of the

new three-dimensional peak luminosity fit, with the actual non-rescaled luminosity (in

geometric units of G = c = M = 1) obtained as η2 L0 L
′
peak

(
η, Ŝ,∆χ

)
.
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Ndata Ncoeff RMSE AICc BIC

1D η 84 6 2.81× 10−3 −817.1 −801.2

1D Ŝ 32 3 2.42× 10−3 −285.8 −280.8
2D (χ1 = χ2) 92 11 5.65× 10−3 −751.7 −724.8
2D all 307 11 1.67× 10−2 −1914.2 −1870.4
3D lin 307 12 1.51× 10−2 −2008.0 −1960.6
3D lin+quad 307 13 1.39× 10−2 −2134.2 −2083.3
3D lin+mix 307 13 1.41× 10−2 −2082.6 −2031.7
3D lin+quad+mix 307 14 1.36× 10−2 −2157.8 −2103.3

Table 4.14: Summary statistics for the various steps of the hierarchical fit. Note
that it is not meaningful to compare AICc and BIC between datasets of different sizes.
There is preference for the 3D fit including all three linear+mixture+quadratic terms,
although many different choices of the Ai(η) ansatz functions yield similar results with
just ± a few percent in RMSE and ± a few in AICc/BIC, so that the shape of these

terms is not yet strongly constrained.

Estimate Standard error Relative error [%]

d10 3.79 0.28 7.5
d20 0.402 0.044 10.9
d30 4.27 0.84 19.7
f10 1.628 0.012 0.7
f11 −3.63 0.23 6.3
f20 31.7 1.3 4.2
f21 −274 29 10.4
f30 −0.235 0.011 4.7
f31 6.96 0.44 6.3
f40 0.211 0.022 10.6
f41 1.53 0.45 29.6
f60 3.090 0.044 1.4
f61 −16.7 1.7 10.0
f70 0.836 0.023 2.8

Table 4.15: Fit coefficients for the final 3D fit stage, cf. (4.49).

We compare with our previous fit [188] used for LIGO parameter estimation during

O1 [3, 13, 24, 45, 186], which used a much smaller calibration set of 89 BAM and SXS

simulations, only modes up to `max = 4 and no extreme-mass-ratio constraints; and

with the recent Healy&Lousto fit [92] based on 107 RIT simulations, using modes up to

`max = 6. We attempt to present a fair comparison by analyzing NR and perturbative

large-mass-ratio results separately, and also consider the improvement from refitting the

unmodified ansätze of Refs. [92, 188] to the present NR data set.

4.3.8 Residuals and information criteria

In Figure 4.30 we show the distribution of residuals for the 3D fit in L′peak projected to

the
(
η, Ŝ

)
parameter space. The strongest visible outliers in this scaling are at low η



Chapter 4. Phenomenological fitting of the BBH final state 133

Figure 4.33: Fit residuals of the final 3D peak luminosity fit compared with the
previous fits of LIGO-T160018 [188] and Healy&Lousto2016 [92], evaluated over the
set of 427 NR simulations shown in Figure 4.26. 6 outliers for Healy&Lousto with

|NR− fit| > 0.00006 are outside of the plot range.

Ncoef mean stdev AICc BIC

T1600018 11 3.0× 10−7 1.0× 10−5 −7732.1 −7685.6
(refit) 11 −1.8× 10−6 4.0× 10−5 −6706.0 −6659.5

HL2016 19 6.9× 10−6 1.5× 10−5 −7225.5 −7148.9
(refit) 19 −4.9× 10−7 1.0× 10−5 −7708.3 −7631.7

this work 23 −9.8× 10−7 4.8× 10−6 −8298.1 −8206.7
(refit) 23 −5.5× 10−7 4.8× 10−6 −8323.6 −8232.3

Table 4.16: Summary statistics for the final 3D peak luminosity fit compared with
previous fits with the previous fits of LIGO-T160018 [188] and Healy&Lousto2016 [92],
evaluated over the 427 NR simulations shown in Figure 4.26. The new fit has a total of
23 free coefficients, corresponding to Tables 4.12, 4.13 and 4.15. We also show results for
re-fitting the three ansätze to the full NR + large-mass-ratio data set, again evaluating

the statistics over NR only.

and correspond to mild actual deviations; of at most a 7% relative error at q = 18, with

417 of the 423 data points below 3% relative error.

For a comparison with the two previous fits, we first concentrate on the 378 NR sim-

ulations only and revisit large mass ratios in subsection 4.3.9. In Figure 4.33 we show

histograms of the residuals in Lpeak for the three fits over this data set, demonstrating

that the new fit achieves a narrower distribution. As listed in Table 4.16, the standard

deviation of residuals is only half of that for our previous fit and three times lower than

for the RIT fit. With a mean offset by only a ninth of a standard deviation, there is

no evidence for bias, though that notion is notoriously ambiguous for a data set that

samples the parameter space non-uniformly.

The same table contains AICc and BIC values evaluated over the same NR-only data
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set, which both find a very significant preference for the new fit. Note that, being

computed over a different data selection and for Lpeak instead of L′peak, these values

are not directly comparable with the previous Table 4.14. Since we have removed 41

cases from the full available data set (see Sec. 4.3.10.4), it is advisable to check that the

statistical preference still holds when including these in the evaluation set. Indeed, the

reduction in standard deviations of residuals is then less against the T1600018 and RIT

fits, but still roughly 20% and 30%, and there is still a preference of several hundreds in

both information criteria.

We also show results for re-fitting the T1600018 and RIT ansätze to the present NR +

perturbative data set, with the statistics then again evaluated over NR data only. Our

old ansatz with only 11 coefficients is not well suited to matching the large-mass-ratio

region and the large unequal-spin population in the NR data set, and the refitted version

of this 11 coefficient ansatz performs worse than the original. On the other hand, the

RIT ansatz with 19 coefficients was only weakly constrained in the original version [92]

fitted to 107 simulations, with large errors on several fit coefficients, but improves now

significantly through the refit. Yet, it does not achieve the same level of accuracy as the

new ansatz and fit developed in this paper.

As a test of robustness, we also perform a refit of our final hierarchically-obtained ansatz

directly using the full data set, instead of using the constraints from the 1D subsets.

This produces somewhat better summary statistics, but it also allows uncertainties from

less well-controlled unequal-spin data to influence the non-spinning part of the fit. The

more conservative approach is to calibrate the non-spinning part of the fit only to the

corresponding data subset. Hence we recommend the stepwise fit, with coefficients as

reported in Tables 4.12, 4.13 and 4.15, for further applications.

4.3.9 Large-mass-ratio and extremal-spin limits

In Figure 4.34, we compare our full 3D fit with the perturbative large-mass-ratio data

and find that it correctly reproduces the behavior it is meant to be constrained to. The

T1600018 fit did not predict the steep rise for positive spins, and while at negative spins

it matches the shape roughly, it is still off by about 10% in that region. The RIT fit

disagrees with the perturbative data at high spin magnitudes, either negative or positive,

and does not reproduce the increasing steepness for even higher mass ratios.

The clearest difference between this fit and the previous ones in the NR-dominated

region is for high aligned spins, which is shown in Figure 4.35 for the extremal spin

limit, χ1 = χ2 = Ŝ = 1. The RIT fit estimates a lower luminosity at equal masses, but

higher values at η < 0.16 before approaching the η → 0 limit rather flatly, as discussed
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Figure 4.34: Full NR-calibrated fits from this work and from Refs. [92, 188] evaluated
at large mass ratios, compared with the same perturbative data (circles, stars and
diamonds for mass ratios q = {103, 104, 105}). The T160018 and RIT fits are essentially
converged at q = 103 (e.g. 0.4% change at S = 1.0 for the RIT fit going to q = 104),
and the visually identical lines for higher q are not shown; our new fit still matches the

data at higher q.

before. Our older fit and the new one roughly agree at similar masses, but in the lower

panel with the rescaled L′peak it is obvious that the previous fit did not anticipate the

steep η → 0 limit that we are now implementing through fitting the perturbative data.

Figure 4.35: Behavior of the full 3D fit (4.46) in the extremal-spin limit,

χ1 = χ2 = Ŝ = 1, where there is no data available. Both panels give functions of mass
ratio η, and we again compare with the fits from Refs. [92, 188]. Left panel: in terms of
physical peak luminosity Lpeak, right panel: in terms of rescaled L′peak = Lpeak/η

2L0.

4.3.10 NR data investigations

As a first estimate of the overall accuracy of the peak luminosity data set, we study

the differences between results from different codes for equal initial parameters. We
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Figure 4.36: Relative differences in the peak luminosity for equal-parameter con-
figurations from different NR codes, shown against symmetric mass ratio η. Pairs of
simulations are shown with a small horizontal offset for ease of visual identification.

then give additional details on the possible error sources listed in Sec. 4.3.2 and on the

properties of higher modes, and discuss the 41 cases not used in the calibration set.

4.3.10.1 Comparison between different codes

To analyze typical deviations between results from different NR codes, we identify simu-

lations with initial BH parameters equal to within numerical accuracy, with a tolerance

criterion

|λi − λj | ≤ ε = 0.0002 for λi = {ηi, χ1i, χ2i} , (4.50)

as we do in Sec. 4.2.10. In Figure 4.36 we show the relative difference in Lpeak between

such matching cases, including the non-spinning q = 4 case where we have results from

all four codes and a few triple coincidences. The set of these tuples is too sparse for clear

conclusions on the parameter-space dependence of discrepancies between codes, though

there might be some indication of increasing differences at large positive spins, which

are particularly challenging to simulate due to increased resolution requirements for

capturing the larger metric gradients in the near-horizon zone. We find many pairs with

differences below 1%, but also several up to a few % even at not particularly challenging

configurations.

This study gives a useful overall estimate of the possible error magnitude on the NR

data set: while certainly many simulations are accurate to more than the few-% level,

in general for any given simulation that does not have a paired case from another code,

or at least nearby neighbors in parameter space, we cannot confidently assume that

the errors will be low. This affects in particular the unequal-spin cases, where due to
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Figure 4.37: Comparison of the distribution of relative fit errors (NR only, same set
as in Figure 4.33) and of differences between NR codes for equivalent parameters.

the much larger 3D parameter space very few duplicates exist. On the other hand,

for equal spins – and particularly for the densely covered non-spinning or equal-mass

subsets – we can use the duplicates analysis to make a very strict selection of calibration

points, allowing the sub-percent calibration demonstrated in Secs. 4.3.4.1 and 4.3.4.2.

The specific decisions are detailed below in Sec. 4.3.10.4.

As shown in the histograms of Figure 4.37, the overall distribution of (relative) differences

between equivalent configurations is of a similar width than that of the fit residuals. This

demonstrates that we are indeed not overfitting the data, but also that one would need

to characterize the accuracy of all NR cases to a significantly lower level to extract more

information on subdominant effects.

4.3.10.2 Extrapolation

The NR waveforms used in this paper are extracted at finite radii, which implies am-

biguities, in particular due to gauge effects. We therefore extrapolate all waveforms to

null infinity, where unambiguous waveforms can be defined. This allows us to assemble

a consistent set of peak luminosity values for different codes, and to estimate the errors

due to finite radius effects.

However, the extraction properties of the codes are not equal, and thus we have extrap-

olated the available waveforms following the following prescriptions:

• BAM: We have calculated Lpeak at each finite radius and then performed a linear-

in-1/R extrapolation using only the well-resolved extraction radii. The maximum
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used for any case is R ≤ 180M , but for some cases significantly fewer radii can be

used for a robust extrapolation, depending on simulation grid resolutions.

• GaTech: Lpeak is again calculated at finite radii and then extrapolated with a fit

quadratic in 1/R, only using up to R ≤ 100M because the slope generally changes

for higher radii; this choice of extrapolation order and radius cut yields the most

consistent results with other codes in the analysis of equivalent configurations.

• SXS: These waveforms are already provided at 2nd, 3rd and 4th order polynomial

extrapolation, and we compute Lpeak from these data products, after a correc-

tion [209–211] for center-of-mass drift, using the 2nd order extrapolation as the

preferred value following Refs. [60, 119]. We use waveforms based on the Weyl

scalar ψ4, but also compare with waveforms based on a computation of the strain.

The SXS ψ4 data use a definition of null-tetrad which is different from their Regge-

Wheeler-Zerilli strain data [134, 212–214], and from the definition used in other

codes. For the luminosity this difference corresponds to an overall scaling factor

of the lapse function to the fourth power as a consequence of the difference be-

tween Eqs. (30-33) in Ref. [72] and Eqs. (11-12) in Ref. [60]. A rough correction

for the different tetrad scaling used to compute the Weyl scalar ψ4 is to multiply

it by α4 with α = 1− 2Mf/R, where Mf is the final mass and R is an approxi-

mation to the luminosity distance using the standard relation with the isotropic

radial coordinate for the Schwarzschild spacetime. (Compare also with the anal-

ysis in Ref. [120].) Comparisons of SXS luminosities computed from ψ4, strain,

and heuristically rescaled ψ4 with data from other codes are included in Figs. 4.38

and 4.39.

• RIT: The luminosity data provided in Ref. [92] uses the extrapolation method of

Ref. [120].

In Figure 4.38 we show the only configuration, the non-spinning q = 4 case, for which

we have data from all four codes. This includes peak luminosities computed from the

finite-radius strain data available as additional data products from SXS to cross-check

the pre-extrapolated value. We see that extrapolation for R→∞ reduces discrepancies

in Lpeak between the different codes, but cannot completely alleviate it in this case.

Another similar example is shown in Figure 4.39 for a q = 2.5 non-spinning configuration

where we have three simulations from SXS, GaTech and RIT, with the GaTech and RIT

values more consistent with each other than with SXS in this case.

The uncertainties of extrapolation fis for BAM, SXS and GaTech can be estimated by the

standard deviation on the intersection parameter (equivalent to the confidence interval

on the extrapolation to 1/R = 0). For the plotted non-spinning q = 4 case, these are
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Figure 4.38: q = 4 non-spinning example of extrapolation from finite radii for BAM,
SXS and GaTech, with second-order fits for SXS and GaTech and linear for BAM; as
well as the RIT value extrapolated with the method of Ref. [120] and its error bar
also containing a finite-resolution estimate. In this case we find consistent values from
BAM, SXS and RIT, with the GaTech case an outlier. The R > 100M GaTech data
would make the trend more inconsistent, and are excluded from extrapolation. SXS
luminosities computed from strain, or from ψ4 but with the α4 rescaling discussed in the
text, show a flatter finite-R behavior more similar to the other codes, and extrapolated

values consistent with the luminosity from ψ4.

smaller than the remaining largest difference between the results from GaTech and other

codes, while for the q = 2.5 the uncertainties are almost wide enough to make the results

marginally consistent. For some other cases, these uncertainties can reach up to a few %,

especially when we want to be conservative and take the maximum of (i) the statistical

uncertainty for the standard extrapolation-order choice and (ii) the difference between

this and the closest alternative order. In general, such an uncertainty estimate cannot

provide information about any systematics present in the data from different codes, and

indeed for example we find that for BAM the purely statistical extrapolation uncertainties

are much smaller in some high-q cases than for low-q cases which are generally considered

more reliable.

Hence, a study of the extrapolation uncertainties over the whole parameter space is

useful in gaining an understanding of the properties of the different codes, but cannot

directly be used as a measure of total NR uncertainties.
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Figure 4.39: q = 2.5 non-spinning example of extrapolation behavior for SXS and
GaTech, compared with the extrapolated RIT value. In this case we find consistent
GaTech and RIT values, with the asymptotic SXS computed from ψ4 a marginal outlier.
Extrapolating the finite-radius peak luminosities computed from ψ4 with rescaling, or
from strain, seems to improve consistency in this example, which however needs further

study before applying it to the whole data set.

4.3.10.3 Mode selection

As introduced in (3.20), we compute NR peak luminosities for BAM, SXS and GaTech

waveforms as sums over all modes up to `max = 6. The RIT luminosities from Refs. [91,

92] use the same cut-off. For the perturbative data from Refs. [93, 95, 158] at large mass

ratios, we use `max = 8. These choices are based on studying the individual contribution

of each mode to the total luminosity, finding that ` > 6 contributions are sufficiently

small to be discarded for the NR data in comparison with other sources of uncertainty.

As an illustrative example, we show in the top panel of Figure 4.40 the cumulative peak

luminosity when adding modes ` by ` (including all |m| ≤ ` at each step) for the q = 10

non-spinning SXS waveform, and the per-` contributions in the lower panel. The fall-off

of the higher-` contributions to the global peak is expected to be exponential, which is

indeed found in this case.

To quantify and extrapolate the loss generally expected for non-spinning configurations,

we have estimated the relative loss in Lpeak from not including the ` = 7, 8 modes for

non-spinning SXS waveforms up to mass-ratio q = 10 (maximum loss of 0.6%) and the
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Figure 4.40: Per-mode contributions to the total peak luminosity for the same SXS
case. Top panel: cumulative sum up to `. Lower panel: Natural logarithm of the
luminosity contribution per `. Each point contains all m for the given `. Similar

behavior for large mass ratios was found in Ref. [215].

non-spinning BAM simulation at q = 18 (loss of 1%), and fit a quadratic function in η:

∆Lpeak

Lpeak
= 0.017611− 0.153760η + 0.334803η2 . (4.51)

This result is illustrated in Figure 4.41, together with a marginally consistent fit when

including the q = 103 Teukolsky result (loss of 2%). The ` > 6 contributions are smaller

for negative spins and larger for positive spins, as illustrated in the same figure with

χ1 = ±0.8 results at q = 103 and from BAM at q = 18. The largest loss for any NR

case investigated is . 2% for the q = 18, χ1 = +0.8 BAM case, which is a significant

contribution to the overall error budget but still on the level of other error sources.

For the perturbative large-mass-ratio results, with a worst-case ` > 6 of ≈ 5%, we use

`max = 8 instead, so that the loss from ` > 8 is limited to < 1%.

Another useful investigation is to consider the η dependence, and especially the η → 0

behavior, for individual modes.
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Figure 4.41: Relative loss in the peak luminosity including modes up to `max = 6
against `max = 8, for non-spinning SXS cases up to q = 10, a non-spinning BAM case
with q = 18 and the q = 103 Teukolsky result. Also shown are q = 18 and q = 103

results for χ1 = +0.8 (above the non-spinning line) and for χ1 = −0.8 (below), as well
as the quadratic non-spinning fit from (4.51) to NR data points only and a fit of the
same order including the q = 103 point, with 90% confidence intervals for both fits.

Fitting L′peak

(
η, Ŝ = 0

)
in Sec. 4.3.4.1 we found, as illustrated in Figure 4.28, that

the peak luminosity of all modes summed up to `max = 6, after scaling out the domi-

nant η2 dependence, is not a monotonic function towards low η. The increasing relative

amplitudes of higher-order modes at low η have been studied with NR results previ-

ously [128, 205–208], but with our large peak luminosity data set we can now investigate

the slope more closely.

Repeating the same comparison as in Figure 4.28 of rescaled non-spinning peak lumi-

nosities between NR (SXS+BAM non-spinning) and perturbative large-mass-ratio data,

but for individual modes, we find – as shown in Figure 4.42 for a subset of modes –

that these are all monotonic as η → 0; however, the slopes are very different, with the

dominant 22 mode falling off faster than η2 and the subdominant and higher modes

falling off much slower, consistent with the general expectation of stronger contributions

at low η. This finding of monotonicity in each mode increases our trust in the combi-

nation of NR and perturbative results, and the non-monotonicity of the rescaled peak

luminosities after summing the modes can thus be explained as a superposition of these

counteracting trends in the individual modes.
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Figure 4.42: Comparison of rescaled peak luminosities for non-spinning SXS and
BAM and perturbative large-mass-ratio data, for a small selection of modes. The points
for each mode have been scaled by the maximum for that mode, which is at η = 0.25
for the 22 mode and at η → 0 for the other modes. The connecting lines are fifth-
order polynomial fits, which were not statistically optimized and just added to guide
the reader’s eye. This can be compared with the sum over modes in Figure 4.28. As
a guide to the overall strength of the individual modes, we list the non-rescaled max-
ima maxη L

`m
peak(Ŝ = 0) of each of the displayed modes (`m) = {22, 33, 44, 55, 21, 20}:

{1.0× 10−3, 5.9× 10−5, 1.5× 10−5, 5.3× 10−6, 9.8× 10−6, 6.3× 10−7}.

4.3.10.4 Outliers

Of the full catalog of 419 NR simulations from four codes, we have only used 378 to

calibrate our new fit. 22 of the 41 removed cases are non-spinning or equal-spin configu-

rations. Of these, 17 belong to one of the pairs or groups of equivalent initial parameters

identified in Sec. 4.3.10.1, with differences between the paired results inconsistent at a

level higher than the fit residuals we can otherwise achieve in the corresponding sub-

space fit; or are individual points inconsistent with an otherwise consistent set of direct

neighbors. In these cases we removed from each tuple the case most discrepant with

the others and with the global trend. This includes for example the GaTech q = 4 and

SXS q = 2.5 non-spinning cases shown in the extrapolation comparisons of Figs. 4.38

and 4.39, or the SXS
(
q = 1, Ŝ = 0.97

)
point whose luminosity seems inconsistent with

other q = 1, high-spin SXS results.

We emphasize that in the one-dimensional fits for non-spinning and equal-mass-equal-

spin BBHs we calibrate the fits to sub-percent accuracies, so that this is a very strict

criterion for removing cases, which mainly serves to guarantee a very clean calibration

of the well-covered subspaces and dominant effects so that in the later steps we have
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a better chance of isolating and extracting subdominant effects from the general, more

noisy data set. In terms of total absolute or relative errors compared with the whole

NR data set, several of these cases are not overly inaccurate, and we do not imply that

necessarily there are data quality issues with the waveforms from which the luminosities

are calculated.

q χ1 χ2 Lpeak ∆Lpeak ∆Lpeak/Lpeak tag code

1 1.00 0.20 0.80 0.00133540 −0.00001456 −0.011 Q1.00 0.20 0.80 RIT
2 1.00 0.25 0.25 0.00114910 −0.00001078 −0.009 Q1.0000 0.2500 0.2500 RIT
3 1.00 0.40 0.80 0.00143030 −0.00001617 −0.011 Q1.00 0.40 0.80 RIT
4 1.00 0.50 0.50 0.00132610 −0.00002155 −0.016 Q1.0000 0.5000 0.5000 RIT
5 1.00 0.80 0.80 0.00165190 −0.00005163 −0.031 Q1.0000 0.8000 0.8000 RIT
6 1.00 0.97 0.97 0.00185963 −0.00017055 −0.092 d15 q1 sA 0 0 0.97 sB 0 0 0.97 ecc6e-4 SXS
7 1.00 −0.80 −0.80 0.00075683 −0.00000522 −0.007 d15 q1 sA 0 0 -0.8 sB 0 0 -0.8 SXS
8 1.00 −0.95 −0.95 0.00071785 −0.00001083 −0.015 d15 q1 sA 0 0 -0.95 sB 0 0 -0.95 SXS
9 1.10 0.00 0.00 0.00102562 0.00000646 0.006 D9 q1.1 a0.0 m160 GaT
10 1.33 0.50 0.50 0.00127610 −0.00001496 −0.012 Q0.7500 0.5000 0.5000 RIT
11 1.33 0.80 −0.80 0.00113510 0.00001336 0.012 Q0.7500 -0.8000 0.8000 RIT
12 1.33 0.60 0.80 0.00144390 −0.00002266 −0.016 Q1.33 0.80 0.60 RIT
13 1.50 0.00 0.00 0.00092086 −0.00000929 −0.010 Q0.6667 0.0000 0.0000 RIT
14 1.67 0.00 0.00 0.00089059 0.00001118 0.013 Q0.6000 0.0000 0.0000 RIT
15 2.00 0.85 −0.85 0.00104805 −0.00005372 −0.051 q2 -85 85 0.2833 it2 T 96 468 BAM
16 2.00 0.60 0.60 0.00113005 −0.00001154 −0.010 D11 q2.00 a0.60 m200 GaT
17 2.00 0.85 0.00 0.00119969 −0.00004465 −0.037 q2 0 85 0.566667 T 80 360 BAM
18 2.00 0.80 0.80 0.00133220 −0.00004371 −0.033 Q2.00 0.80 0.80 RIT
19 2.00 0.60 0.50 0.00109870 −0.00002568 −0.023 Q0.5000 0.5000 0.6000 RIT
20 2.00 0.80 0.00 0.00115110 −0.00004828 −0.042 Q0.5000 0.0000 0.8000 RIT
21 2.50 0.00 0.00 0.00064369 0.00000637 0.010 BBH CFMS d16.9 q2.50 sA 0 0 0 sB 0 0 0 SXS
22 3.00 0.50 −0.50 0.00067168 −0.00002270 −0.034 q3 -50 50 0.25 T 80 400 BAM
23 3.00 0.00 0.00 0.00051866 −0.00000761 −0.015 D10 q3.00 a0.0 0.0 m240 GaT
24 3.00 0.40 0.00 0.00065030 −0.00001591 −0.024 D10 q3.00 a0.4 0.0 m240 GaT
25 3.00 0.50 0.80 0.00074376 −0.00001267 −0.017 Q0.3333 0.8000 0.5000 RIT
26 3.00 0.60 0.00 0.00074392 −0.00003003 −0.040 D10 q3.00 a0.6 0.0 m240 GaT
27 3.00 0.67 0.00 0.00078909 −0.00002904 −0.037 Q3.00 0.00 0.67 RIT
28 3.00 0.80 −0.80 0.00084159 −0.00002278 −0.027 Q3.00 -0.80 0.80 RIT
29 3.00 0.85 0.85 0.00107685 0.00003335 0.031 BBH SKS d13.9 q3 sA 0 0 0.850 sB 0 0 0.850 SXS
30 4.00 0.75 0.75 0.00069840 0.00001188 0.017 q4a075 T 112 448 BAM
31 4.00 0.75 0.00 0.00063280 −0.00002841 −0.045 Q4.00 0.00 0.75 RIT
32 4.00 0.00 0.00 0.00037948 0.00000782 0.021 D10 q4.00 a0.0 0.0 m240 GaT
33 4.30 0.00 0.00 0.00034217 0.00000421 0.012 D9 q4.3 a0.0 m160 GaT
34 4.50 0.00 0.00 0.00031462 −0.00000329 −0.010 D9 q4.5 a0.0 m160 GaT
35 5.00 0.80 0.00 0.00052483 −0.00000926 −0.018 Q5.00 0.00 0.80 RIT
36 5.00 0.00 0.00 0.00026999 −0.00000480 −0.018 D10 q5.00 a0.0 0.0 m240 GaT
37 5.00 0.40 0.00 0.00034792 −0.00001784 −0.051 D10 q5.00 a0.4 0.0 m240 GaT
38 6.00 0.00 0.00 0.00020707 −0.00000395 −0.019 Q0.1667 0.0000 0.0000 RIT
39 6.00 0.00 0.00 0.00021325 0.00000234 0.011 D10 q6.00 a0.00 0.00 m280 GaT
40 6.00 0.20 0.00 0.00023419 −0.00000829 −0.035 D10 q6.00 a0.20 0.00 m280 GaT
41 18.00 −0.80 0.00 0.00006179 0.00003868 0.626 q18a0aM08c025 96 fine BAM

Table 4.17: NR cases from the source catalogs not included in the fit calibration, for
reasons detailed below.

The remaining cases were identified as strong outliers outside of the main distribution

in visual inspection of the two-dimensional equal-spin fit (4.3.5) and the per-mass-ratio

analysis of residuals of unequal-spin cases against the 2D fit (4.3.6). For these simula-

tions, there are no equivalent or nearby comparison cases, so that it cannot be said with

certainty if they would still be outliers in a more densely covered future data set; and at

the same time a small residual for any given point is no guarantee for its absolute accu-

racy when there are no equivalent comparison points. Hence, we have made much less

strict exclusions in the sparsely covered unequal-spin range, which limits the accuracy

to which we can extract the subdominant spin-difference effects (which are of a similar
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scale as the remaining scatter in the data set), but also reduces the risk of overfitting to

spurious trends in a more strongly-trimmed data set.



Chapter 5

A phenomenological

frequency-domain model:

PhenomD

In this thesis, the major part of the research has been orientated towards the calibration

and upgrading of the phenomenological inspiral-merger-ringdown waveform models [38,

39, 53, 54, 69, 70, 148, 166, 167] by:

1. Setting up and running nonprecessing BBH NR simulations with a special emphasis

in unequal-spin configurations.

2. Performing detailed NR data studies in order to calibrate the quality of the NR

runs.

3. Developing an optimised fitting strategy to better match the extreme-mass-ratio

limit and that facilitates the inclusion and calibration of subdominant terms as

the unequal-spin effects.

The forthcoming LIGO and Virgo upgrades will make them more sensitive to the last

orbits and merger-ringdown phases of BBH mergers. This will help to better constrain

the physical parameters of future GW observations, which at the same time motivates

the continuous improvement of our waveform models. In this work I have contributed to

the development of the last phenomenological model PhenomD [38, 39, 70] and, based

on the hierarchical data-driven studies, to its upgrade by treating in a similar way the

unequal-spin terms and the extreme-mass-ratio limit than for the final state and peak

luminosity models. Then, in this last chapter of the thesis I give a general overview

of the so called PhenomD model [38, 39, 70], with a particular interest in the sections
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that I contributed to, while adding some preliminary results based on the hierarchical

data-driven fitting methodology that will result in a future upgraded version of the

model.

5.1 Overview of the phenom-based models

In Chapter 2 I have briefly summarised the progress on the phenomenological waveform

modelling since its first version PhenomA [68] to the most recent updated PhenomD

model [38, 39, 70]. The evolution of the models has been sustained on the optimization

of the analytic and pseudo-analytic models and the growth of the NR field. I here

summarise some of the key points on the construction of the last phenomenological

model.

5.1.1 Some notes on the PhenomD construction.

The goal is to formulate a model of the quadrupolar radiation in the frequency domain,

which can be used for LIGO and Virgo data analysis pipelines, and covers the complete

coalescence, from inspiral to merger-ringdown regimes. To do so, the frequency domain

signal is split into its amplitude and phase, sectioned in three regimes morphologically

different: Region I, capturing the inspiral and part of the merger, Region IIa, formed

by an incomplete merger and finally Region IIb composed by the late merger and the

ringdown, being the different sections fitted by different ansaetze. This morphology is

illustrated in Figure 5.1, which shows the amplitude and phase evolution of a SXS q = 1,

χ1 = χ2 = −0.95 case sectioned as it is shown in [39]. Both amplitude and phase are

obviously defined by a different profile. Though they are split in a similar way, the

frequency range of each section varies, with the intermediate region of the phase being

broader than for the amplitude.

Figure 5.1: PhenomD amplitude and phase derivative as shown in [39] for a SXS case
with q = 1, χ1 = χ2 = −0.95.
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Phase

The phase of Region I is modelled considering the TaylorF2 approximant where the late

regimes (purple Figure 5.1) are calibrated through SEOBv2-NR hybrids (see Sec. 5.2)

which correct the higher order secular deviations of the approximant.

Region I, IIa and IIb fit the phase derivative φ′(f) instead of the phase φ(f). This is

done for two main reasons: to eliminate the propagation of any phase shift when going

to the Fourier domain but mainly motivated by the properties of the dip observed in

Region IIb of Figure 5.1. This region is particularly well fitted by a Lorentzian-based

ansatz where the position of the minimum and the width are consistent (within numerical

accuracy) with the values of the ringdown fRD and damping fdamp frequencies. These

are computed from ringdown fits [128] once the final mass and final spin are known and

allow to reduce the number of parameters used in the calibration while at the same

time includes more physical insight to the waveform anatomy. Equation (5.1) shows the

ansatz chosen for Region IIb.

η φ′MR = α1 + α2f
−2 + α3f

−1/4 +
α4fdamp

f2
damp + (f − α5fRD)2

. (5.1)

The explicit expressions for Region I and Region IIa are given in Equations (28) and

(15) of [39].

Amplitude

The strategy for the amplitude is similar. Region I is modelled also using a reduced form

of the TaylorF2 expressions and calibrating the higher order parameters to NR data (see

equation 4.8 of [38]) through hybrid waveforms. Region IIa is modelled by an O(f4)

polynomial where the free parameters are constrained to satisfy the differentiability in

the boundaries with Region I and Region IIb. Finally, Region IIb is represented by

Lorentzian function coupled to an exponatinally decaying function (Equation 4.5 of

[38]).

Mapping the parameters to the physical space

Then, the simplified idea behind a phenomenological model relies on inspecting the

morphology of a given waveform, split it in different domains considering the patterns

observed in its evolution and then, assume some ansätze and fit the region considered.

If one extends this analysis across the parameter space it becomes evident that the

morphology is quite well preserved. This means that the ansätze proposed are also valid
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for other physical configurations although, obviously, the values obtained for the free

parameters will be different in each case, i.e., we can express the coefficients of (5.1) as

α(η, Seff ). Here, Seff takes again the role of an effective spin parameter that results

from the linear combination of the two spins (see Chapter 2 and Chapter 4). In the old

PhenomD the physical dependence of the ansätze coefficients was fitted through:

Λi =

n=3,m=2∑

m,n

(λimnη
m)Ŝn , (5.2)

where the Λi terms represent each one of the coefficients used for both amplitude and

phase fits. While this has been shown to be sufficient in the calibration region when

compared to NR data [39], the unequal-spin effects, the approach to the extreme-mass-

ratio limit and all the other considerations studied in Chapter 4 are not included in

(5.2). Then, the intuition gained through the final state and peak luminosity studies

has been also propagated to the re-calibration of the PhenomD coefficients. In Sec. 5.4

we show some of the preliminary results of this upgrading.

5.2 Hybrids

The model presented in the last section has been calibrated by matching the reliable part

of the PN-EOB evolution to the corresponding NR waveforms, building the so called

IMR hybrid waveforms. This is motivated by the impossibility of covering the low LIGO

frequency band with NR simulations. The potential increasing of the time to simulate

one orbit in the inspiral phase (Chapter 3) added to the global computational cost of

the NR runs lead sometimes to high values of the initial GW frequency f0. For instance,

the first GW frequency for the q = 10 non-spinning SXS waveform (SXS:BBH:0303 from

[4]) is f0 ∼ 0.048Mf which implies that for M = 100M�, f0 ≈ 100Hz thus loosing a

significant part of the waveform.

Here we briefly illustrate the key points of the hybrid construction. For a more detailed

description see [57, 216].

Construction of a hybrid

Let me represent a general GW strain by hX(t) = AX(t)eiφ
X(t) where A(t) and φ(t) refer

to the amplitude and phase respectively and both defined in [0, tX ], where X =PN/NR

denotes the PN/NR versions of a given physical case. We also need to define the gravita-

tional wave frequency as ωX = dφX/dt which for quasi-circular orbits is a monotonically
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increasing function of t. Then, ideally we can find a time interval where both represen-

tations satisfy that:

hNR(t) = eφ0eh
PN (t+τ) ωNR(t) = ωPN (t+ τ) , (5.3)

ψ0 =
hNR(ω0)

hPN(ω0)
, (5.4)

where τ = tPN(ω0) − tNR(ω0), ω0 is some matching frequency, ψ0 is a constant phase

offset between the two representations and tX(ω0) = tX0 . Then the procedure would be

the following:

a) Select a matching frequency ω0 and align the waveform through (5.3).

b) Correct the phase offset through (5.4).

c) Build a waveform such that h = hPN (t) for t ≤ τ and h = hNR(t) for t ≥ τ .

However, in a real case both representations may be affected by errors and (5.3) may

be never fulfilled over any interval. For instance, a hNR(t) with a residual eccentricity

e that makes the frequency oscillate it would make difficult to fix a unique correspon-

dence tNR(ω0) = tNR0 . To resolve this issue ω0(τ) is chosen to minimise the following

expression:

∆(τ, tPN0 ,∆t) :=

∫ tPN0 +∆t

tPN0

(
ωPN (t)− ωNR(t− τ)

)2
dt (5.5)

where tPN0 denotes a chosen PN matching time and ∆t a certain time interval that

defines a window where we compare the two representations. Then:

h(t) =





eiϕ0hPN (t+ τ) if t < t0 − τ
w−(t)eiϕ0hPN (t+ τ) + w+(t)hNR(t) if t0 − τ < t < t0 − τ + ∆t

hNR(t) if t0 − τ + ∆t < t

(5.6)

where w± are blending functions that connect the two regimes. In Figure 5.2 we show an

example of the resulting hybrid for a SEOBNRv4/BAM hybrid with parameters q = 1

and χ1 = −χ2 = 0.50. In this work we had to automatize the process of the hybrid

construction for the new set of BAM waveforms and the nonprecessing SpEC used for the

calibration. Thus, the same algorithm have been applied to a set of 362 waveforms

collected from the BAM and SpEC codes, extreme mass-ratio data and purely SEOBNRv4

data. The choice of t0 (ω0) and ∆t (∆ω) will vary across the parameter space, thus

being also essential a proper estimate of the first clean frequency ω0. This value is

usually defined about two cycles after the emission of the junk radiation, where its effect

has been normally dissipated. In Figure 5.3 where we illustrate the physical parameter
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space in terms of η, Seff and ∆χ. To cover the regions with lower density of points, we

have also used non-hybrid SEOBNRv4 data.
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Figure 5.2: h+ polarization of a 22 mode hybrid with q = 1 and χ1 = −χ2 =
0.50. In yellow we show the shifted TaylorT1 approximant that is matched to the NR
representation (in green). The dotted line is a down-sampled version of the resulting

hybrid. The NR waveform was computed with the BAM code [72].

Figure 5.3: Left panel: Parameter space covered for the new PhenomD upgrade in
terms of η and the effective spin Seff . Right panel: Same parameter space but now
in terms of η and the spin difference ∆χ. The points denote a hybrid waveform of the
given legend with the SEOBNRv4 approximant and build with the procedure outlined in

this chapter. SEOBNRv4 legend refers to full SEOBNRv4 waveforms.

5.3 Inspection of the PN approximants

The goodness of the model also depends on the PN-EOB approximants used for building

the hybrids. It is well known that some of them present secular deviations at frequencies

compatible with the initial frequency of the NR runs which may also variate across the

parameter space. Typically, the analytic models are more satisfactory for low mass-ratio

and low and equal-spin configurations than for more demanding configurations. This

may affect not only the model itself but also the hybridization process by matching the

two evolutions (PN-EOB and NR) when the analytic models are no longer valid. Thus,
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Figure 5.4: Left panel: time shift according to (5.7) as a function of ω for the case of
mass ratio 18 with spins {0.4, 0} where SEOBNRv2 is chosen as the reference waveform.
Right panel: Same analysis for q = 1 with equal spins = 0.98. The NR waveform is
SXS:BBH:0172 from the SXS catalogue [4]. SEOBNRv1/SEOBv1 are not shown for
this case, since the model is not valid for high spins parallel to the orbital angular

momentum.

we have tested the quality of the analytic approximants by first aligning them at an early

enough time-frequency point in order to get diminished any possible drift in relatio to

NR data. This is, we compute the hybridization time shift as a function of the matching

frequency by inverting the functions t(ωPN ) and t(ωNR) so

∆t = tPN (ω)− tNR(ω) . (5.7)

We have repeated this analysis for several configurations trying to get the best ana-

lytic approximant. The approximants considered are the ones referenced in Chapter 2:

TaylorT1, TaylorT2, TaylorT3 (the 3PN and 3.5PN versions), TaylorT4, and the two

uncalibrated EOB models SEOBv1 and SEOBv2 which are nothing more than different

versions of [56] with no calibration to NR waveforms. The results are displayed in Fig-

ure 5.4. In this figure we see that EOB approximants match better the NR data profile

by showing in general a diminished secular trend in relation to PN approximants. In

particular, SEOBv2 agrees surprisingly well with the NR data. Notice that these cases

represent rather extreme parameter configurations (one with q = 18 and the other with

χ = 0.98) where the calibration to NR effects should be more dominant. This moti-

vated the choice of SEOBv2 for building the hybrids in the PhenomD model, allowing

to perform a clean calibration of the Region I and avoiding any interaction with an

early calibration of the approximant. For the high-spin case (right panel), the SEOBv1

approximation and its calibrated version SEOBv1 are not shown since they are not valid

for high-spin configurations.
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5.4 Unequal-spin effects on the PhenomD coefficients

One key motivation of the phenomenological fits to final state quantities and peak lumi-

nosity has been to extend the calibration of the PhenomD coefficients to an unequal-spin

model. In forthcoming work with the UIB group, we will apply the same hierarchical

machinery explained in Chapter 4 to PhenomD waveforms, that is; we will build up a fit

from the one-dimensional regions to the full three-dimensional fits in a hierarchical way,

we will use rational functions to capture the steep slope of the positive spins, we will

allow for different ansätze choices ranking them in terms of the BIC and AICc values

and we will use the extreme mass-ratio waveforms for calibrating the extreme-mass-ratio

limit. The first results obtained evince the effect of the unequal-spin terms in some of

the coefficients λi listed in (5.2) in all the three regimes considered for the previous

PhenomD model.

Figure 5.5: Top panel: unequal-spin linear terms on two of the PhenomD phase
coefficients . We show the inspiral σ4 coefficient on the left panel and the ringdown
related ones α3 on the right panel (equations (14) and (28) of [39]). Bottom panel:

unequal-spin quadratic terms on the same two PhenomD phase coefficients.

In Figure 5.5, we show the unequal-spin effects on two different phase coefficients, split

all over the three regimes considered in Sec. 5.1. In particular, here we show σ4 and

α3 of equations (14) and (28) of [39] which are related to the inspiral (region I) and

ringdown (region IIb) regimes. Then, it is clear that the consideration of these terms

as a linear plus higher order perturbations of the main f2D(η, Seff ) ansätze is still valid

here. The linear terms are adjusted as well with the same sort of ansatz A1(η) =
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d10(1 − 4η)0.5η2 (d11η + 1) used in Sec. 4.2.5.2 and 4.3.4, providing a similar match

between the per-mass-ratio analysis (blue) and the direct three-dimensional results (red).

Moreover, we see the same profile along the different frequency points of the waveform

(different coefficients) thus giving some more credibility to this effect. Regarding the

quadratic terms, we have to deal with the same problem as in the final state and peak

luminosity fits. These terms are again shown to be subdominant in relation to the linear

corrections but also compatible with the NR inaccuracy of the waveforms. Then, as in

the previous fits, the statistical support for the higher order terms is very weak. This

is also consistent with Figure 5.5 where despite we find some weak but similar profile

as for the quadratic terms shown in Chapter 4, the noise uncertainty is still too high to

consider a proper calibration of these terms. With increasingly more and more accurate

NR cases we expect to capture these quadratic effects with more statistical support.



Chapter 6

Conclusions and outlook

In this thesis I have treated several topics related with BBH waveform modelling, from

the NR perspective by devising and performing a novel set of BBH simulations to the

phenomenological modelling by prescribing a general hierarchical fitting procedure tested

in final state quantities and peak luminosity. The same methodology is also intended to

be a pillar for further upgrades of the waveform models. To this end, I have simulated

the dynamics of nonprecessing BBH systems by means of the BAM code. This needed

the appropriate calibration of the gauge quantities across the parameter space, dealing

with a proper choice of the PN-EOB initial parameters, solving the initial data, the

evolution and eccentricity reduction, the extraction of the radiation, the computation

of final state quantities, the extrapolation of the waveforms and the conversion from

ψ4 to strain and luminosity. All this way right to the final product needed a careful

postprocessing of the data to not affect its final quality. This becomes more relevant

when aiming to incorporate subdominant effects as the unequal-spin effects. All these

issues have been addressed in Chapter 3 with a particular interest on questions related

to NR data quality studies. Then, in Chapter 3 I show all the way up from the initial

setup of a BBH system to the final product for a set of 23 BBH simulations performed

with BAM. In Chapter 4 I use this data to define a new fitting strategy based on a

hierarchical inclusion of the physical effects which has been successfully tested for the

fitting of the final mass, final spin and peak luminosity and that looks promising for

the further upgrading of the PhenomD model. Finally in Chapter 5 I illustrate the

procedure to build 22 mode hybrids, I show some tests performed on the PN-EOB

approximants in order to assess its correspondence with NR waveforms [38] and I add

some preliminary but promising results on the hierarchical fitting methodology applied

to the phenomenological coefficients. In this conclusion, I divide the results in two main

blocks: NR results and phenomenological modelling results.
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NR results

I have performed a set of 23 unequal-mass unequal-spin nonprecessing simulations with

the BAM code that I had to devise, evolve and postprocess. I detail below some of the

most important aspects studied in Chapter 3.

- I have obtained a fitting formula for estimating the apparent horizon radius rAH

for the pair of BHs simulated. An estimator of this quantity allowed us to optimise

the grid configuration avoiding any initial test runs. This led to the reduction of

the computational cost per run in about 2× 103 CPU hours. Extrapolated to the

total amount of simulations, involved an approximate reduction of ∼ 6× 104 CPU

hours.

- I have reduced the residual eccentricity by more than one order of magnitude

for those cases were initially e ∼ 0.01. To do so, I defined a simplified strategy

based on [141] by determining the amplitude of the oscillations. Then, I related

them with the λ correction to be applied to the physical tangential momentum

pt. I have found a trivial relation relying on the Newtonian two body problem to

connect the NR eccentricity with PN-EOB deviations. This simplified estimator

has been shown to be sufficient for an appropriate reduction (e ∼ 10−3) in one

single step.

- The radiation of all these simulations have been extracted at finite radii using

the Newman-Penrose formalism. I have carefully studied the extrapolation effects

trying to minimise the gauge effects in our data. Then, all the waveforms have

been converted to strain through the fixed-frequency integration (FFI) method

[142], which involved a careful tuning of the cutoff frequency f0 and through the

Exponential Fit (EF) that I developed in this thesis and that avoids the tuning of

any free parameter. The results between the two methods looked consistent.

- Also in Chapter 3 I show the basic equations for computing the final mass and the

final spin. These have been computed in two ways; using horizon information by

means of the AHFinder implemented in BAM and through radiation quantities. For

the latter we had to compute the missing PN radiation using the analytic 3.5PN

for the energy evolution until the initial orbital frequency of the NR runs. The

results are shown in Chapter 4.

- The peak luminosity was computed using Equation 3.20 of Chapter 3. Then, for

all the 23 cases I had to postprocess the ψ4 and compute the maximum of the

combined luminosity, i.e., with the higher modes (HM) included. Thus, the NR
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quality studies were not applied only to the dominant quadrupolar radiation but

they have been extended to the HMs.

- The BAM data set is not sufficiently large to populate the parameter space. This led

us to collect data from three more BBH codes; LAZEV [85], MAYA [6] and SpEC [84]

plus an extra set of 37 extreme-mass-ratio waveforms [95, 158] . Although it is

clear that this helps to better calibrate the fits, it also includes an extra source

of error driven by the particular NR systematics of each code. First I studied the

contribution to the error of the extrapolation effects for the SpEC, BAM and MAYA

codes (we did not have all the LAZEV data to do so). In general, we have seen

that the extrapolation effects seem to dominate the resolution errors although still

being smaller than the residuals obtained. To have a more reliable estimate of the

error, I have compared the values between twin cases (cases with the same physical

parameters). In general, we have seen that these errors are compatible with the

residuals thus showing up as the dominant ones. However, I could not extrapolate

these estimates across the parameter space due to the small number of twin cases

found.

Phenomenological modelling

The results of the different NR codes have been essential to devise and further calibrate

phenomenological fits for the final mass (energy radiated), final spin and peak luminosity

while they will also play a key role for the further calibration of the PhenomD model.

In this line, with my collaborators I have obtained the following results:

- We have devised a novel strategy for calibrating higher than two dimensional

fits where the contributions can be separated in order of importance. We called

that a hierarchical data-driven fit methodology and it has been used in the main

publications obtained throughout this thesis [7, 8, 188] for the calibration of new

fits for the energy radiated, final spin and peak luminosity. This is shown in

Chapter 4.

- One of the key points of the new methodology has been the use of the information

criteria (AICc, BIC) to better justify the ansatz selection and avoid overfitting.

This allowed us to consider a wider range of ansätze than in the previous phe-

nomenological calibrations [38] and which helped to gain statistical significance in

relation to the old models. The robustness of the procedure was also tested by

using different spin parametrizations and where the results were compatible with

the optimal choice of Seff .
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- We calibrated the subdominant unequal-spin effects through a simple order two

polynomial in ∆χ where the linear influence has been clearly captured. We leave

for the future a better calibration of the higher than linear perturbations when

cleaner and larger data sets are expected.

- In addition, we have also constrained the extreme-spin approach thus avoiding

any overshooting of the Kerr limit while the extreme mass-ratio limit has been

accounted from two different perspectives: by adding the known analytic formulas

(final spin and energy radiated) and including explicit extreme mass-ratio data

[153, 154] (peak luminosity).

- All this machinery is being used for the imminent PhenomD re-calibration. The

preliminary results look promising and compatible with the predictions obtained

from the final state and peak luminosity peaks.

Outlook

Subdominant effects

One of the main achievements of this step by step hierarchical methodology is that it

helped to understand how the subdominant effects may be included in future gravi-

tational wave models. Thus, there are some other effects that act on the same level

as precession and eccentricity and which could be now considered in a similar way as

the unequal-spin terms. Although its calibration is highly tied to how populated is our

parameter space, the number of publicly available BBH simulations is increasing rapidly.

Quantification of the errors on the Phenom coefficients and derived quantities

As we have referred to throughout this thesis, there was no quantification of the errors

on the old phenom models. With this new detailed strategy the error estimates come

out more naturally than in the old studies helped by the ranking statistics developed in

this work. One immediate application would be its implementation into the waveform

models that would also help to better understand the parameter estimation results and

constrain the physical parameters of future observations.

NR data quality and future models

The detailed NR data quality studies helped us to better understand the requirements

for the gauge and grid choices across the parameter space. This was not restricted to
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only the dominant (22) mode but also for the higher modes (HM). This is relevant for

the calibration and modelling of (HM) models where the contribution of the modes may

be comparable with the NR uncertainties of the non-quadrupolar modes.
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