
DLR Secure Software Engineering
Position and Vision Paper

Rohan Krishnamurthy
German Aerospace Center (DLR)

Jena, Germany
rohan.krishnamurthy@dlr.de

Michael Meinel
German Aerospace Center (DLR)

Berlin, Germany
michael.meinel@dlr.de

Carina Haupt
German Aerospace Center (DLR)

Berlin, Germany
carina.haupt@dlr.de

Andreas Schreiber
German Aerospace Center (DLR)

Cologne, Germany
andreas.schreiber@dlr.de

Patrick Mäder
Technical University Ilmenau

Ilmenau, Germany
patrick.maeder@tu-ilmenau.de

ABSTRACT
DLR as research organization increasingly faces the task to share
its self-developed software with partners or publish openly. Hence,
it is very important to harden the softwares to avoid opening attack
vectors. Especially since DLR software is typically not developed
by software engineering or security experts. In this paper we de-
scribe the data-oriented approach of our new found secure software
engineering group to improve the software development process
towards more secure software. Therefore, we have a look at the au-
tomated security evaluation of software as well as the possibilities
to capture information about the development process. Our aim is
to use our information sources to improve software development
processes to produce high quality secure software.

CCS CONCEPTS
• Security and privacy→ Software security engineering; Sys-
tems security; • Software and its engineering→ Software devel-
opment process management;

KEYWORDS
data science, it security, secure software engineering, code analysis,
provenance
ACM Reference Format:
Rohan Krishnamurthy, Michael Meinel, Carina Haupt, Andreas Schreiber,
and Patrick Mäder. 2018. DLR Secure Software Engineering : Position and
Vision Paper. In Proceedings of First International Workshop on Security
Awareness from Design to Deployment (SEAD’18). ACM, New York, NY, USA,
Article 4, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software engineering has been a conventional methodology that is
followed for the development of software. It is still not well adopted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEAD’18, May 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

by the scientific community so far. On top of that the topic of secure
software is emerging without being handled appropriately.

Driven by the reproducible science paradigm and ever grow-
ing research networks, scientific software is made available to a
broader range of users. Despite an alarming amount of vulnera-
bilities has been made public over the last years, software is still
shared without being hardened with respect to security issues. Thus
scientific software might introduce attack vectors to target research
institutes.

Our goal is to come up with a collection of guidelines and tools
to apply during development to create secure software without
in-depth knowledge of software security.

At DLR we have access to a range of software repositories1 as
well as many ongoing research projects where software is devel-
oped.

In this paper we want to outline our research as follows:

• We characterize software development at DLR to illustrate
the context of our research (Sect. 2).

• We describe the need to address the security issues in DLR
with better insight into secure software engineering based
on data analysis (Sect. 3).

• We present our strategies to analyze software development
processes and to create a catalog with tools and guidelines
that supports secure software development (Sect. 4).

2 SOFTWARE DEVELOPMENT AT DLR
The German Aerospace Center (DLR) is one of the largest research
organizations in Germany. Over 8000 scientists are researching in
the fields of aeronautics, space, transportation and energy. In these
fields many tasks rely on computer systems. This involves individ-
ual software developed by domain experts in multiple programming
languages across different platforms.

More than 2000 people at DLR are occupied with software devel-
opment in part-time or full-time [1]. Most of the developers have
no training in software development, only very few have deeper
knowledge about systematic development of sustainable software,
the means of software engineering, or secure software. Typical

1This includes but is not limited to version control systems as well as issue trackers
and continuous integration systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/158058513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SEAD’18, May 2018, Gothenburg, Sweden R. Krishnamurthy et al.

development team sizes range from one up to 20 persons, in aver-
age being one scientist supported by interns and perhaps a Ph.D.
student.

The combination of being domain scientists and small team sizes
makes the amount of needed knowledge about software engineering
and security a disproportional overhead for a project.

3 SOFTWARE SECURITY IN DLR
As DLR is well known for its expertise we have lots of cooper-
ations with partners all over the world. Also the importance of
reproducible results has an increasing necessity to publish not only
the data but also the software used to produce the results [2]. Con-
sequently our software needs to be shared with many different
peers.

Sharing of software might open up security risks. As long as the
software, input data, and the execution environment is under control
of a single entity, security concerns are a minor issue. However as
soon as one of these three factors gets externalized, security issues
need to be considered. In many of our cases public interfaces to
software are only added after the software is already in productive
use. Known security issues are only handled in the added interfaces
and not in the software itself. Examples for issues we already faced
are: Missing validation of external datasets, information leaks over
hidden channels, and outdated dependencies.

Unexperienced developers at DLR have seen the deployment
of software in the cloud as a solution to decouple the execution
of vulnerable code from internal resources. But this is not a se-
curity advantage. Hidden channels might be opened to internal
DLR resources that are available to the cloud-hosted code. Leakage
of information and data that was meant for internal use by the
software is also a possible risk.

The lack of IT (security) experts leads to such problems. As a
result internal software life cycles do not pay attention to basic
activities like security updates of frameworks and libraries.

4 TOWARDS SECURE SOFTWARE
DEVELOPMENT

Our focus is on improving processes and tools. We want to create
a catalog with tools and guidelines that support secure software
development. To accomplish this goal we apply methods from data
science to analyze software development processes and the result-
ing software. As data we use the software projects of DLR.

Our strategy consists of the following steps:
(1) We select a number of projects with well-defined software

engineering processes. Our position within the DLR gives
us access to more than 300 projects on different version
control systems and about 120 projects in issue trackers
that can be mined for information. We want to record the
actual processes that are carried out and compare them to
the defines processes to identify deviations. To record the
processes methods and technologies like repository mining,
key loggers, IDE extensions and conducting surveys exist.
Due to the privacy implications we refuse to use the key
logger approach.While IDE extensions are our preferred way
to capture provenance data, the variety of used IDEs at DLR,
results is a high implementation overhead for a first approach.

Hence in our first step we rely on the documented process
and incorporate easy to adapt techniques like surveys and
repository mining to augment this data.

(2) We monitor the quality of the software using manual and
automated audits. Therefore we investigate and improve
existing static and dynamic security analysis methods. The
dynamic analysis provides the most universal and versatile
way of automated security auditing, however they are mostly
very time consuming and produce rather vague results in
contrast to the static analysis approach. The static analysis
can be evaluated based on manual audits, syntax tree analy-
sis, and intermediate language analysis. We will focus on the
latter-most analysis approach as the existing vulnerabilities
from databases like CVE2 or the exploitation frameworks
can be transferred into intermediate language. These then
can be used as examples for vulnerable or exploitable code.

(3) We conduct experiments to identify process properties that
have an effect on the security of the resulting software. Fac-
tors such as security-focused requirements engineering or a
special security testing phase promise a high impact. How-
ever we also want to experiment with other approaches such
as threat modeling and special trainings for developers. To
allow comparison of software quality across projects, we
introduce a software security scoring system based on auto-
mated software analysis.

5 CONCLUSION
In order to improve software development processes we started a
new research group. Our aim is to optimize process properties using
approaches from data science. We include two main sources of data:
the provenance of software processes and a score for the software
security of that artifact.

We presented some strategies for collecting both of them:
• We plan to use repository mining as a source for process
information. This should also help to identify missing infor-
mation that needs to be recorded with another approach

• To augment the mined data, we plan to introduce developer
surveys. In a later step we also plan to implement process
recording extensions for IDEs.

• We plan to derive a common security scoring system based
on existing dynamic and static analysis techniques.

• We develop a new data driven static analysis approach based
on the intermediate language representation of source code.

We will apply these approaches in real projects in the environ-
ment of DLR, which gives us large datasets that can be used to
improve results.

REFERENCES
[1] Carina Haupt and Tobias Schlauch. 2017. The Software Engineering Community

at DLR: How we got where we are, Neil Chue Hong, Stephan Druskat, Robert
Haines, Caroline Jay, Daniel S. Katz, and Shoaib Sufi (Eds.). Proceedings of the
Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE5.1).
http://elib.dlr.de/114050/

[2] Victoria Stodden and Sheila Miguez. 2014. Best Practices for Computational
Science: Software Infrastructure and Environments for Reproducible and Ex-
tensible Research. Journal of Open Research Software 2, 1 (jul 2014). https:
//doi.org/10.5334/jors.ay

2https://cve.mitre.org/

http://elib.dlr.de/114050/
https://doi.org/10.5334/jors.ay
https://doi.org/10.5334/jors.ay

	Abstract
	1 Introduction
	2 Software Development at DLR
	3 Software Security in DLR
	4 Towards Secure Software Development
	5 Conclusion
	References

