
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Ahsan Manzoor

socialAWARE: Mobile Wireless Sensing Network

Master’s Thesis
Degree Programme in Computer Science and Engineering

December 2017

Manzoor A. (2017) socialAWARE: Mobile Wireless Sensing Network. University
of Oulu, Degree Programme in Computer Science and Engineering. Master’s thesis,
48 p.

ABSTRACT

This thesis presents a software tool for Android smartphones called socialAWARE,
a mobile wireless sensing network. socialAWARE uses zeroconf networking to
discover other mobile devices and their connection information on a local area
network. It uses built-in mobile sensors to collect data and transmit it in real time
using CoAP’s machine-to-machine protocol. SocialAWARE aims at helping users
to quickly deploy a wireless sensor network without an emphasis in configuration
or technical background.

socialAWARE is implemented as plug-in for AWARE framework [1], which uses
diverse protocols to enhance its capabilities. Together, socialAWARE plug-in and
AWARE allows for data collection and real time sharing of sensor data between
different devices (LAMP server, smartwatch, Android, iOS). After the implemen-
tation of the plug-in, the performance of the protocols were evaluated by conduct-
ing several experiments. We also compare CoAP with MQTT with respect to their
technical performance in terms of latency, throughput and network usage. Based
on the experimental results, we discuss the advantages and limitations of the sys-
tem. Finally, we conclude this thesis by discussing a number of improvements for
future iterations of socialAWARE, based on the literature survey and experiment
results.

Keywords: smartphones, wireless sensor network, zeroconf, coap, context-awareness,
IoT.

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION 7
1.1. Web Services . 7
1.2. Representation State Transfer . 8
1.3. Internet of Things . 8
1.4. Machine-to-Machine Protocols . 9

1.4.1. Constrained Application Protocol (CoAP) 9
1.4.2. Bonjour / Network Service Discovery 9
1.4.3. Message Queue Telemetry Transport (MQTT) 10

1.5. AWARE . 10
1.6. Thesis Structure . 11

2. RELATED WORK 12
2.1. Constrain Application Protocol (CoAP) 12
2.2. Zero-Configuration networking . 13
2.3. Wireless Sensor Network . 15
2.4. Overview . 17

3. DESIGN AND IMPLEMENTATION 18
3.1. System Design . 18
3.2. Requirements . 19
3.3. System Architecture . 20

3.3.1. Subsystem Architecture . 21
3.4. Implementation . 22

3.4.1. Device Discovery . 22
3.4.2. CoAP Resource Registration and Discovery 24
3.4.3. Transfer protocol . 25

3.5. Class Diagram . 26
3.6. User Interface . 27

4. EVALUATION 29
4.1. Setup . 29

4.1.1. Service Discovery . 29
4.1.2. Comparison between CoAP and MQTT 30

5. RESULT 32
5.1. Service Discovery . 32
5.2. Comparison between CoAP and MQTT 33

5.2.1. Latency . 33
5.2.2. Throughput . 35
5.2.3. Network Usage . 37

6. DISCUSSION AND LIMITATIONS 38
6.1. Device Discovery . 38
6.2. CoAP . 38

7. CONCLUSION 40

8. REFERENCES 41

9. APPENDICES 47

FOREWORD

This thesis was completed at Center for Ubiquitous Computing at the University of
Oulu, Finland. I would like to thank my supervisor, Dr. Denzil Ferreira for his contin-
uous support during my studies and thesis. Without his supervision this work would
not have happened. I would also like thank Dr Xiang Su and Teemu Leppänen for
their supervision. I am also grateful to the Center for Ubiquitous Computing, which
provided a platform to learn and improve my skills. I would like to thank my family
for their love and support, my friends, Yasir, Hamza and Hamid for their company and
fun provided throughout my master’s journey. At last, I am also grateful to Finland to
provide me the opportunity to pursue my master’s degree.

Oulu, 27-11-2017.

Ahsan Manzoor

ABBREVIATIONS

API Application programming interface

CoAP Constrained Application Protocol

DNS Domain Name System

DNS-SD Domain Name System - Service Discovery

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IP Internet Protocol

Kbps Kilo-Bits per Second

LAN Local Area Network

M2M Machine-to-Machine

MQTT Message Queue Telemetry Transport

MWSN Mobile Wireless Sensor Network

mDNS multicast Domain Name System

NSD Network Service Discovery

OS Operating System

QoS Quality of service

REST Representational State Transfer

SOAP Simple Object Access Protocol

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identifier

WSDL Web Service Definition Language

WSN Wireless Sensor Network

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

WAN Wide Area Network

Zeroconf Zero-Configuration Networking

7

1. INTRODUCTION

The main goal of this Master’s Thesis is to build a system that allows the mobile device
to recognize each other on a network without manual configuration and exchange valu-
able information between them. We also investigate the performance of the system and
compare them with other protocols used for the machine to machine communication.

The evolution of connected computing has seen a dramatic increase in recent years.
Majority of the Internet connections are devices used directly by the humans such as
mobile phones and computer [2]. In near future, most of the devices and objects can
be connected and they can exchange information by themselves and number of devices
communicating will be much larger than the number of people [3]. We are entering a
new era of ubiquity where machines will be communicating with other machines on the
behalf of the people [2]. The main challenge will be to connect them in a meaningful
way to deliver the information.

Mobile phones are not only used as communication device but it comes with num-
ber of sensors. In recent times, these sensors were mainly used to enhance the user
experience. But with the more availability of mobile phone and increase number of
sensors these mobile phone has been used for research purposes. It has given rise to
a new area of research called mobile phone sensing. Today’s mobile phone continue
to provide more computation, memory and sensing capabilities but they still remain a
resource-constrained device. Therefore, we provide an application for deployment of
a mobile sensing network with zero-configuration capabilities and transfer of the data
using constrained protocol.

The application developed in this thesis is an extension to AWARE framework[1].
The application will use zero-configuration to register the device as a web service
on the local network. After the discovery of device, the host mobile will offer its
different senors as a service to the connected mobile and RESTful API will expose
those services to access and manipulate the data. In the end, machine-to-machine
protocol will be used to transfer the sensor values between the devices.

1.1. Web Services

According to World Wide Web Consortium (W3C), web service is a software system or
a function that is identified by the URI, accessed through the XML encoded messages
and transmitted using Internet protocols [4, 5]. Web services can be divided into three
main components - SOAP that enables communication, WSDL that provides service
description and UDDI for service discovery [6]. Web services provide a framework
for application-application interaction, without the knowledge of each other systems.
It allows different application from various sources to communicate to each other and
share data and services among themselves. It makes the application, platform and
technology independent e.g. Java web service can talk with Perl and vice versa.

8

1.2. Representation State Transfer

Representation State Transfer (REST) is a software architecture style and approach to
communication often used in web services [7]. REST is easier to use and consume
less bandwidth compared to SOAP which makes it more suitable for Internet usage. In
order to be considered RESTful, the application should have following characteristics
[8]:

• Functionality divided into distributed resources

• Every resource is uniquely addressable using specific command (GET,POST,PUT
or DELETE)

• Protocol is stateless, client / server, layered and support cache.

RESTful API is application program interface (API) that exposes the web services
by using HTTP request of GET, PUT POST and DELETE for retrieving, creation,
mutation and deletion of data. RESTful API makes an application modulator, thus
providing developer with a lot of flexibility and creating programmable web.

1.3. Internet of Things

Internet of Things (IoT) can be defined as “a global infrastructure for the Information
Society, enabling advanced services by interconnecting (physical and virtual) things
based on, existing and evolving, interoperable information and communication tech-
nologies” [9]. Some researchers have also defined IoT in terms to internet related
aspects, such as internet protocols and network technologies. The vision of IoT is
the integration of billions of smart objects for interaction, that will lead to network
devices communicating and exchanging data with humans and between other devices
[10]. In order to achieve ubiquitous and autonomous connectivity between IoT de-
vices, researchers have come up with new Machine-to-Machine (M2M) communica-
tion paradigm. These M2M communications are the enabling technologies for the
practical realization of IoT. However, IoT still lacks worldwide accepted and standard
protocols [11].

In IoT, most of the devices used are low power short range wireless devices with a
specific purpose e.g. sensors. Because of this, the current internet communication pro-
tocols cannot be used and new M2M protocols are designed to cater the requirements
of these IoT devices. These protocols have small payload enabling faster communica-
tions and uses less power for longer battery timings. Some of the widely used protocols
for machine-to-machine communication are 6LowPAN, multicast-DNS, DNS-Service
Discovery, CoAP, MQTT etc.

9

1.4. Machine-to-Machine Protocols

1.4.1. Constrained Application Protocol (CoAP)

CoAP is a REST based transfer protocol developed to use with constrained networks
[12]. It includes several HTTP functionalities that have been redesigned to suit the
M2M and IoT applications [13]. CoAP uses a server / client model like HTTP and can
act as both in M2M interaction. Some of the other key features of CoAP are:

• HTTP like methods: GET, POST, PUT and DELETE.

• User Datagram Protocol (UDP) allows multicast and has lower overhead.

• 4 message types: Confirmable, Non-confirmable, Acknowledgement and Reset.

• Block-wise transfers to support large files [14].

• Resource discovery allows the user to discover the resources offered by server
[15].

• Resource observation allows the user to subscribe to resource and notified when
it changes [16].

• Universal Resource Identifiers (URI) based resource representation [15].

• 3 Response codes: 2.xx (success), 4.xx (Client error) and 5.xx (Server error).

CoAP is a platform independent approach and can be easily integrated with the cur-
rent web technologies. As CoAP is still under development, there exist some limitation
that needs to be addressed. Brachmann et al. have identified two problems with CoAP
in his work [17]. The first is to provide end-to-end secure connection and second to
provide secure multicast communication.

CoAP have many implementations in different programming languages with differ-
ent features. Libcoap [18] and Californium [19] are the most mature and easy-to use
implementations of the CoAP [20].

1.4.2. Bonjour / Network Service Discovery

Bonjour is the implementation of zero configuration networking (zeroconf) [21] by
Apple. Inc. [22] while Network Service Discovery is developed by Google [23]. They
discover devices and services on the local area network using IP protocols, without
requiring the user to configure them manually. Both of them uses the same technology,
a combination of mDNS with DNS service discovery . Multicast DNS [24] sends UDP
request using port 5353 to all devices connected to the network and other services reply
with their IP address and name. They both provide the following features [22, 25]:

• Allocating of IP addresses through IPv4 Link-Local Addressing (IPv4LL)

• Naming of the host through mDNS.

10

• Service discovery through mDNS / DNS-SD.

Zeroconf helps the user to see what services are available on the network, and can
choose from the list. On the other hand, it helps the developers to build the applications
that can detect other services over the network, and can communicate without user
intervention.

Bonjour was introduced in 2002 as part of Mac OS X but now it works on many
other operating systems like Linux, Windows, and Solaris. It is widely used by Apple
software to share resources or locate servers. Bonjour provides easy-to-use program-
ming interface with implementations in multiple languages such as Python, Ruby, and
Cocoa.

NSD was made available in 2012 starting from Android 4.1 and support multiple
devices like printer, web-cams, and mobile. It is mostly used in the development of
the Android application. NSD is also compatible with bonjour running on any other
system. It provides all the functionalities of bonjour except sharing of the meta-data
about the service.

1.4.3. Message Queue Telemetry Transport (MQTT)

MQTT is a messaging protocol that uses publish / subscribe pattern to work with con-
strained devices and unreliable networks [26]. It is designed to work with minimum
device resource and network bandwidth while ensuring reliable delivery. These fea-
tures of MQTT make it ideal for the IoT and mobile devices. MQTT consist of three
components: publisher, subscriber and broker. Some of the main features of MQTT
are [27]:

• Multiple communication paradigm: one-to-one, one-to-many, many-to-many

• Three QoS levels.

• Last Will and Testament” to signal device disconnection.

• Security by checking authorization of subscriber and publisher [28].

• Persistence Message support

1.5. AWARE

AWARE is an Android framework that can be used for capturing, inferring and gen-
erating mobile context information [29]. AWARE can be used by developers to create
context aware applications or researchers can run their studies that involve mobile de-
vices or smart phone users can use the client to record their own data. AWARE captures
hardware, software, and human-based data. AWARE allows the users to create plug-
ins that can record the data from multiple sensors, analyze them and transform them
into information the user can easily understand.

AWARE is currently available as a regular mobile application on Google Android
and Apple iOS. It is an open source platform that enables users to save time and effort

11

to develop context aware application. AWARE shifts the focus from software develop-
ment to data analysis and can be used from small to large scale deployments [1].

1.6. Thesis Structure

The organization of the thesis is as following: Chapter 2 provides a comprehensive
look at the background of Internet of Things protocols and wireless sensor networks.
Chapter 3 presents the detailed information about the system design, architecture and
implementation of the application. Chapter 4 contains a detailed description of the
evaluation and comparison of the implemented protocols with other IoT protocol.
Chapter 5 provides results and analysis of the evaluation performed in the previous
chapter. In the last, Chapter 6 provides a conclusion based on the findings. It also
provides limitation and summary of the work done.

12

2. RELATED WORK

This section presents a quick overview of the related applications in this thesis. As
the thesis focuses on CoAP, Zero-Configuration Networking and Wireless Sensor Net-
work, this section is categorized in the similar format.

2.1. Constrain Application Protocol (CoAP)

The research on the CoAP has mainly focused on the performance of the protocol,
its user interaction and auto-configuration of the network [30]. Amaran et al. [31]
evaluated the performance of CoAP with MQTT and proved that MQTT perform 30
% better. Colitti et al. in their work have provided an evaluation of the CoAP com-
pared to HTTP [13]. They came to the conclusion that CoAP has a compact packet
overhead allowing CoAP server to spend less time and making it energy efficient and
lower response time compared to HTTP. They also verified that CoAP is not sensitive
to increase of client request interval time. Another work [32] verifies that the CoAP
uses less energy when compared to HTTP. Bormann et al. [33] in their article explain
the inter-working of the CoAP with HTTP. As both uses REST architecture, it enables
this communication through proxies, which behave like a server to a client and play a
client toward another server. The illustration of the inter-working can be seen in Figure
1. Kovatsch et al. [34] implemented CoAP for Contiki [35] operating system and eval-
uated the performance of the protocol. The authors demonstrate that the performance
of CoAP over radio duty-cycle decreases the energy consumption at the cost of higher
latency.

Figure 1. CoAP and HTTP work together [33]

Kovatsch [36] in his work has focused on the two main challenges faced by the
Internet of Things (IoT): a scalable application layer for interoperability and reliable
programming model. He proposed the solution to these challenges with the use of
CoAP, allowing for interoperability and a common programming model along with
other benefits of CoAP for the Internet of Things. Lerche et al. [37] discuss the re-

13

sults of the first formal interoperability, organized by the European Standards Institute
(ETSI) in March 2012. At the meeting, 16 clients and 16 server implementations were
tested against each other in 27 different test cases and the result implies a high inter-
operability between implementations.

Researchers have come up with different ways to interact with the devices in the
IoT and CoAP being the transfer protocol for IoT [15] lacks user interaction and pre-
sentation. Kovatsch developed Copper [38] (Figure 2), a web browser integrated with
CoAP protocol suite. Copper allows the user to observe and control the devices in a
constrained environment and help in network management. Schor et al. have proposed
a web service based solution to integrate and manage these devices [39].

Figure 2. Copper - Firefox plug-in for CoAP [38]

CoAP has been recently used for smart grids and building automation applications
[30]. Rahman et al. have proposed another use of the CoAP, group communication by
using the multicast feature of the protocol [40]. This group communication can help
in building management application as they allow one device to communicate with
several others.

The authors of [41] came up with new approach of binding SOAP to the CoAP pro-
tocol. They were able to reduce round trip timing up to 43 % compared to widespread
TCP over HTTP binding. This approach can be used to deploy SOAP Web services in
a constrained environment.

2.2. Zero-Configuration networking

As smart devices have become more popular, research has focused on ways to im-
prove the discovery of these devices without explicit human administration. Zeroconf
has multiple implementations with Bonjour [22] being most known and Avahi [42]
for Linux systems. Gwizdz in his master’s thesis demonstrate Zeroconf communica-

14

tion between Apple iOS and Android devices [43]. Both the devices automatically
discover each other using mDNS over Wi-Fi network and uses HTTP for file transfer.
Klauck et al. [44] presents a case study of using Bonjour in constrained devices and
operating systems. They showed that existing standards can be used economically on
constrained devices and these devices are aware of the topology changes. Siddiqui
et al. [45] in their work compared popular implementations of Zeroconf , Avahi and
Mono.Zeroconf. Bardin et al. [46] proposed service oriented component framework
for the discovery of the nodes with the help of residential gateway. The authors of
[47, 48] have also implemented and tested mDNS for Contiki and verifies that they are
suitable for constrained devices. Another implementation of Zeroconf for constrained
devices can be found in [49]. It implements both mDNS and DNS-SD for Arduino
board and also discover services registered by other nodes on the network.

Figure 3. Service Discovery Architecture [50]

The most visible part of Zeroconf is service discovery. Figure 3 illustrates the steps
involved in the service discovery. There have been a lot of research on integrating
protocol and services from traditional network into constrained environments and it
appears not much work has been done in service discovery [47]. Yazar et al. in their
work used web service approach to integrate sensor networks with existing infrastruc-
ture but it only works with the applications within the scope of web services [51].
The authors of [52] presents the deployment of service discovery protocol in a sensor
network using IP and Bluetooth protocols. Their experiments can verify that service
discovery of nodes in sensor network is feasible.

Zeroconf uses multicast to remove configurations in service discovery, however this
makes it difficult for Zeroconf services to reach beyond local link. Wide area Bonjour
[53] is Apples solution for global service discovery. Wide area Bonjour uses unicast

15

DNS for discovery and requires to maintain a DNS server. In summary, it requires
configuration. Cisco also provided a solution for the wide area service discovery based
on distributed and hierarchical Bonjour service learning and distribution architecture
[54]. Figure 4 displays the topology of the proposed solution by cisco. Lee et al.
[55] presents a z2z toolkit based on Bonjour and OpenDHT that extends the reach of
existing Zeroconf applications beyond local link and requires no configuration. Their
toolkit have implementation issues and it does not work behind a Network Address
Translation (NAT) gateway. Authors have also raised privacy concerns when using
this toolkit in large networks.

Figure 4. Cisco - Wide Area Bonjour Topology [54]

2.3. Wireless Sensor Network

Wireless Sensor Network (WSN) consist of huge number of nodes with sensing, com-
putation and wireless communication capabilities [56]. On the other hand, Mobile
Wireless Sensor Network (MWSN) consist of group of nodes with the ability of move
and interact with the environment [57]. They can relocate and organize themselves in
the network and can communicate with other nodes within their range.

The current trend in WSN is to move away from the closed standards and enable IP
based sensor networking [58].In this way, sensors are interconnected and can partic-
ipate to the Internet of Things. This trend is also confirmed by ZigBee alliance and
they choose IP for their smart energy 2.0 profile [59]. The introduction IPv6 over Low
power Wireless Personal Area Network (6LoWPAN) [60] enables the use of IP in con-
strained environments thus allowing to form IoT. One of the main benefits of using IP
is to enable web services on the sensor nodes. Various reseacrers have been proposed
REST framework for WSN. Dawson et al. [61] has presented their design of RESTful
web services that allows instruments and devices to directly publish their data. Ko-
vatsch et al. [62] have also proposed a REST framework for the home automation. In
[63], the authors have presented a real world implementation of RESTful WSN. They
deployed the network in various university buildings and developed services for the
university community.

16

Existing WSN technologies have high heterogeneity that has enforced the researcher
to find solution to integrate non-IP WSN to the internet. Aberer et al. [64] has pre-
sented their Global Sensor Network, an open source framework that supports fast de-
ployment, flexible integration and discovery of sensor networks using a custom middle-
ware and 6LoWPAN. Another approach to IP based WSN is presented in [58]. In their
approach they have used a middleware for the connection between IPv6 and legacy
networks to create a heterogeneous WSN. Figure 5 shows their proposed architecture.

Figure 5. Proposed architecture for heterogeneous WSN through internet [58]

Mobile WSN has several advantages over static WSN such as improved coverage,
energy efficiency and enhanced tracking [65]. Liu et al. [66] have shown that mobile
sensor nodes has an improved coverage and they also used game theoretic approach to
prove enhanced tracking in mobile WSN. The researchers [67] have calculated channel
capacity for mobile WSN and proved it to be 3-5 times better than static WSN. On the
other hand, a survey on mobile WSN [68] has listed some its challenges. Due to the
mobility, mobile WSN have a dynamic topology that causes problems in determining
the position of the node. Dynamic topology also have unreliable communication links
thus minimum Quality of Service becomes a challenge.

WSN and mobile WSN plays a key role in several applications like military, health-
care, environment monitoring and smart metering. Li at al. [69] have shown the use of
WSN as detection and surveillance in military applications. [70] shows demonstration
of multi vehicle tracking using sensor network. Sensor networks can be used to mon-
itor environment and building structures thus can be useful to inform or prevent any
disaster in advance [71, 72]. New technologies and protocols have further enhanced the
capabilities of sensor networks, allowing the researchers to make more applications.

17

2.4. Overview

It seems that there are no applications or projects strictly like ours. Most of the projects
implement zero-configuration on an intranet to configure devices or share services.
These discovery protocols are mostly implemented on computer or tiny sensor nodes.
As mentioned above, CoAP is mostly used as transfer protocol in constrained computer
devices.

In our work we will focus on implementation of socialAWARE, mobile wireless
sensing network. This application will provide an easy setup of sensor network using
mobile devices. We will use Network Service Discovery, an Android implementa-
tion of zero-configuration to discover devices over the network. socialAWARE will
use CoAP as a communication protocol to transfer real-time sensor data between the
devices.

18

3. DESIGN AND IMPLEMENTATION

This chapter describes the design and implementation of the socialAWARE, a mobile
wireless sensing network software tool. It contains the detail design of the system
which is then used to list the system requirements. It also includes the system archi-
tecture and the description about the implementation. Lastly, we showcase the user
interface of socialAWARE.

3.1. System Design

socialAWARE makes use of multiple existing systems and protocols: AWARE, CoAP,
zeroconf. We implemented the zero-configuration for mobile nodes discovery and the
use of CoAP as transfer protocol and discovery of the resources. AWARE Android
mobile application allows the user to control the sensors and plug-ins. AWARE also
allow the researchers and developers to create their own application using the AWARE
API.

In this thesis, we have developed a plug-in for the AWARE client that will further
enhance the client capabilities. The prime objective of the plug-in is to enable a system
where user can deploy a sensor network using the mobile devices and can monitor the
data remotely, in real-time. The first part of the thesis focuses on the discovery of
the mobile devices using the developed AWARE plug-in. The users should be able to
connect the mobile devices without any configuration. The second part focus on using
of a protocol for resource discovery which in this scenario can be sensors or plugins’
value. That last part focuses on using the lightweight M2M protocol for fast transfer
of the data. Figure 6 shows the model of the system

19

Figure 6. Model diagram of the system

3.2. Requirements

In this section, we provide the system requirement deduced from the design of the
system. The following requirements were set for the system.

• Any connected mobile device should act as client / server.

• Mobile device should be able to connect to another device without any configu-
ration.

• Multiple client devices should be able to connect to one device at any given time
(many-to-one).

• The mobile device should be able to register or announce itself as a service on
the connected local network.

• The mobile device should be able to discover other devices using the AWARE
plugin over the connected local network.

• The mobile device should be able to resolve and list the connection information
all the other devices with their connection information.

20

• The mobile device should keep the list of available sensors on its device and
share it with other devices.

• Upon user’s request, the client device should be able to discover the sensors
offered by the connected devices.

• Upon user’s request, the client device should be able to observe the sensor values
on connected device.

3.3. System Architecture

In this section, we explain the system architecture of the mobile sensing application.
System architecture was constructed on basis of system requirement. As this system
consist of multiple subsystems i.e. device discovery and constrained application proto-
col, both together form the entire system. Figure 7 shows the components of the main
combined architecture.

Figure 7. AWARE: mobile sensing network architecture

The application will be built on AWARE framework, taking advantage of existing
AWARE APIs. As the mobile user joins the network, it will search for other available
devices with AWARE plugin. NSD will be used to discover the devices using the
multi-cast DNS messages. These messages will be broad casted over an IP network
and will use UDP as transport layer protocol. After successful discovery, AWARE

21

API will be used to offer the available sensors as resources to the connected client.
Sensor data from the mobile will be sent using the CoAP over the same network and
using same protocols. Mobile devices can act as a client or server, depending upon the
situation. Multiple devices can connect to a single device and can observe the sensor
values simultaneously.

3.3.1. Subsystem Architecture

Figure 8. Device discovery subsystem architecture

When an application starts a new service, it advertises the service to a multi-cast
address with service type and name. The advertisement of the service is done by the
multi-cast-DNS and it follows a naming convention i.e. “<Name>._<protocol>._<transport
layer>._<Domain>”. After the registration, DNS-Service discovery is used to find all
the particular type of service on the network e.g. “_http._tcp”. Multicast-DNS is then
used to return the name of the services found and add them to the cached list on the de-
vice. When an application wants to use a service, multicast-DNS resolves the chosen
service name to an IP address and port.

Figure 9. CoAP subsystem architecture

22

CoAP architecture is very simple and based on REST. Request / Response sub
layer is used for communication and RESTful interaction using GET, PUT, POST and
DELETE commands. URI and media types are also defined in this layer. The second
sub-layer is responsible for reliability and duplication of the messages. In the last,
CoAP uses UDP as transport protocol.

3.4. Implementation

This part includes the implementation process in detail. In addition, it provides the
sequence diagram to show the object interaction according to the time sequence.

3.4.1. Device Discovery

As the plug-in was created for AWARE Android client, device discovery was imple-
mented using Network Service Discovery. NSD implements mDNS and DNS-SD that
allows the application to identify the devices on the local area network. As the user
starts the plug-in, it will broadcast its name and connection information to the con-
nected local network and it will also search for the information from other devices
doing the similar work. Figure 10 shows the sequence diagram for device discovery in
AWARE plug-in.

Figure 10. Sequence diagram for NSD device discovery

23

The first step towards the implementation of device discovery requires the appli-
cation to register the device as service on the local network. In order to register the
service for the plug-in, NSD requires a unique name, service type, and port number.
The name of service should be unique for every device, so it was decided to use An-
droid ID concatenated with “AWARE” string. Android ID has a different value for
each application and each device. HTTP protocol was selected as the service type be-
cause the plug-in uses CoAP as the transport protocol which is much like HTTP. The
last parameter was to select the port number on which the plug-in will register its ser-
vices. To avoid the conflict, the dynamic port number was assigned. Every time, server
socket searches for the device’s next available port and NSD uses that port number to
register its services. The code used to register the service look like the following:

p u b l i c vo id r e g i s t e r S e r v i c e (S t r i n g ID , i n t l o c a l _ p o r t) {
N s d S e r v i c e I n f o s e r v i c e I n f o = new N s d S e r v i c e I n f o () ;
s e r v i c e I n f o . s e t S e r v i c e N a m e ("AWARE_" + ID) ;
s e r v i c e I n f o . s e t S e r v i c e T y p e (" _ h t t p . _ t c p . ") ;
s e r v i c e I n f o . s e t P o r t (l o c a l _ p o r t) ;

NSDMANAGER. r e g i s t e r S e r v i c e (s e r v i c e I n f o ,
NsdManager . PROTOCOL_DNS_SD, REGISTRATIONLISTENER) ;

}

After the device registration, the plug-in needs to search for the similar devices reg-
istered on the connected local network. Device discovery was divided into multiple
steps. The first step was to initialize a Discovery listener which starts searching names
of all the devices registered on the network. This discovery listener only searches for
devices using the HTTP service type, as their might be other services registered on the
network.

p u b l i c vo id d i s c o v e r S e r v i c e s () {
NSDMANAGER. d i s c o v e r S e r v i c e s (" _ h t t p . _ t c p . " ,
NsdManager . PROTOCOL_DNS_SD, DISCOVERYLISTENER) ;

}

Once the device service is found, the listener resolves the name and using the
“AWARE” tag, filters out the required devices. In the last, discovery listener sends
the service information to the NSD manager which then further resolves the connec-
tion information.

In the last step, NSD manager resolves the IP address and port number of the service
by looking at the multicast DNS packet. This information is then stored locally on the
mobile device using the Android content provider. The stored information is later used
to create a network connection between the mobile devices.

As device discovery is an expensive operation, it needs to be stopped when the work
is completed. It is also important to unregister the device from the connected network
as it prevent active devices to connect to the inactive ones. The developed plug-in
automatically unregisters its services and stop device discovery operation when the
user stops the application.

24

3.4.2. CoAP Resource Registration and Discovery

After the mobile device has been discovered and connection has been made between
them, the next step was to discover the resources offered by the connected device.
CoAP, which was selected as the transfer protocol also supports resource discovery.
In CoAP, a “GET” packet request is sent to the device acting as the server and it
replies with the list of their resources along with their media types. In order to dis-
cover the resources, the server device must first register these resources and maintain
a list at “/.well-known/core”, which can later be accessed by any client device. Figure
11 shows the sequence diagram for the registration and discovery of the resources.

Figure 11. Sequence diagram for CoAP Resource Registration and Discovery

The implementation of the CoAP server is vital for the device to offer its resources.
Our plug-in should search for the activated sensors on the server device and offer
them as resources to the client. AWARE platform maintains a content provider which
records the information of all the activated sensors. When the user starts the plugin,
we filter out the available sensors and register them as resources. CoAP server regis-
ters a resource when provided with a unique name. We used the name of the sensor
as resource name. After the resources are added, the CoAP server is started. In order
to add a new resource, the user needs to restart the CoAP server and register all the

25

resources again. We registered these resources as observable so it can notify the client
whenever the data from sensor changes.

p u b l i c u n i v e r s a l R e s o u r c e (S t r i n g name , C o n t e x t c o n t e x t , b o o l e a n v i s i b l e , i n t number) {
t h i s . l inkName= name ;
t h i s . mContext = c o n t e x t ;
setName (linkName) ;
s e t O b s e r v a b l e (v i s i b l e) ;
s e t O b s e r v e T y p e (CoAP . Type .CON) ; ;
g e t A t t r i b u t e s () . s e t T i t l e (l inkName) ;
g e t A t t r i b u t e s () . s e t O b s e r v a b l e () ;

}

Once the resource was registered, we needed to implement CoAP discovery for the
plug-in. CoAP discovery on the client device uses the connection information from the
NSD and sends a “GET” request to the server. The response from the server is then
listed to the user and URI link to that resource is stored temporarily.

As the plug-in should be power efficient, CoAP discovery is only active when the
user connects to a specific device. It also automatically stops the CoAP server when
the plug-in is stopped

3.4.3. Transfer protocol

The last step in the application was to implement RESTful services for the provided
resources. CoAP provides HTTP like methods for RESTful communication. CoAP
“GET” method was implemented to request data from the server and “PUT” method
for the mutation of the data. These methods should be predefined when the CoAP
server registers the resource.

AWARE framework uses broadcasts to quickly update applications with the sensor
values. As our plugin gives an option to the user to observe a specific resource, we
had to implement a broadcast receiver in the CoAP server to receive the updated value
and change it accordingly. Once the value is changed the CoAP server is then notified
which informs the client with the updated value without user request. The following
code connects to a CoAP server and observes a resource.

C o a p C l i e n t c l i e n t = new C o a p C l i e n t (URL) ;
c l i e n t . o b s e r v e (new CoapHandler () {

@Override
p u b l i c vo id onLoad (f i n a l CoapResponse r e s p o n s e) {

r e s p o n s e _ c o d e = r e s p o n s e . ge tCode () ;
r e s p o n s e _ v a l u e = r e s p o n s e . g e t R e s p o n s e T e x t () ;

}
}) ;

The combined sequence diagram of the whole system is shown in the figure 12.

26

Figure 12. Combined sequence diagram for AWARE plugin

3.5. Class Diagram

A class diagram shows the structure of a system by showing set of classes, attributes,
methods and their relationships [73]. The class diagram for the socialAWARE plug-in
is shown in Appendix 1.

27

3.6. User Interface

When creating the user interface of the application, the aim was to keep the interface
as simple and clear as possible. Another aim of the interface design was to keep it as
close as possible to the AWARE application and device design, so it does not stand out.

After installing the designed plug-in the AWARE application launches the main
plug-in page with all the installed plug-in as shown in Figure 13a. As the user ac-
tivates the plug-in (Figure 13b), a small pop-up is displayed on the bottom of screen,
indicating the start of the NSD and CoAP server (Figure 13c).

Figure 13. User Interface socialAWARE: plug-in. (From Left) (a) AWARE Plug-in
page (b) Activation of Plugin (c) Pop-up

After activation the user switches to "Stream" page, that contains the list of the de-
vices discovered using the NSD service (Figure 14a). The list is updated automatically
whenever the plug-in finds another device. A new row is added with connection details
of the discovered device (Figure 14b) and it is removed after that device is unregistered
from the network.

After selecting a device the user is navigated to another page which shows the re-
sources offered by the connected device. Once the user selects the required sensor, a
new page loads and the sensor values received from the connected device are shown
to the user in real time. In order to keep the plug-in simple, the sensor value text is
changed automatically whenever the device receives the updated value.

28

Figure 14. User Interface socialAWARE: plug-in (From Left) (a) Main Plug-in page
(b) List of devices discovered (c) List of available resources (d) & (e) Sensor Value
page

29

4. EVALUATION

This chapter describes the experiments setup to evaluate the designed application.
Seven experiments are designed to study and compare the performance and related
issues of the protocols used. The purpose of the first two experiments is to determine
the time required to discover and resolve the AWARE devices using NSD. The third
experiment is conducted to monitor the performance of CoAP protocol under different
environments (Bandwidth limitations). The next four experiments will compare CoAP
with MQTT under different scenarios which are explained in the next section.

4.1. Setup

After a working version of the application had been implemented, testing was started
to evaluate its performance. The evaluation of the plug-in was separated into different
parts. The first part was designed to evaluate the performance of the service discovery
protocol. The later part consists of multiple experiments to compare the performance
of the CoAP protocol with the MQTT. Table 1 and Figure 15 shows the list and speci-
fication of the devices used in the experiment.

Table 1. Devices used in the Experiment

Device Quantity Specification Operating System
Google Pixel XL 1 Quad-core Snapdragon 821 4GB RAM Android 8.1

Motorola Moto G3 5 Quad-core 1.4 GHz, 2GB RAM Android 6.0.1
Raspberry Pi 3 5 ARM Cortex-A53 1.2GHz, 1GB RAM Raspbian Jessie

Asus RT-AC88U 1 802.11ac dual-band Wi-Fi router NA

4.1.1. Service Discovery

The first study was designed to investigate the performance of the Network Service
Discovery. Our goal is to study the time response of the NSD. We focus on searching
the maximum response time to discover a given service and the maximum time taken
to resolve the connection information of the discovered device. In this experiment,
the first step was the registration of N number of mobile devices on the local network.
After the registration, mobile device was used to discover the registered services. The
last step was to resolve the connection information (IP and port) of the N devices. The
time taken to discover and resolve the N number of devices was recorded and each
experiment was performed five times and average was taken to reduce the effect of any
error.

In the both experiments, Google Pixel XL was used to discover and resolve the con-
nection information of the devices. In order to avoid any error, the NSD registration of
the Google pixel XL and discovery for the Motorola Moto G3 was turned off. A cus-
tom script was written on Raspberry Pi 3 to register itself as a service on the network.

30

Figure 15. Devices used in the Experiment

In order to keep the services unique MAC address of the raspberry pi was concatenated
with the AWARE String. The code for service registry is following:

<?xml v e r s i o n = " 1 . 0 " s t a n d a l o n e = ’ no ’? >
<!DOCTYPE s e r v i c e −group SYSTEM " avah i−s e r v i c e . d t d ">
< s e r v i c e −group >

<name r e p l a c e −w i l d c a r d s =" yes ">AWARE_%h </ name>
< s e r v i c e >

< type > _ h t t p . _ tcp < / type >
< p o r t >8567 </ p o r t >

</ s e r v i c e >
</ s e r v i c e −group >

4.1.2. Comparison between CoAP and MQTT

The second study was designed with multiple experiments to compare the performance
of the CoAP and MQTT. The developed AWARE plug-in was used to calculate the
bandwidth usage, latency and throughput of the CoAP in single and group communica-
tion mode. A custom application was also developed to record the same parameters for
the MQTT protocol. In order to study the behavior of the protocols at different band-
widths, the experiment was performed in three different bandwidth scenarios, limiting
the bandwidth at 128Kbps, 512Kbps and full connection. For further study, the effect
of the message size on latency and throughput was also monitored. The payload of
the sent packet was changed, ranging from 32 Bytes to 100 Kilo-Bytes. Google Pixel
XL was used as the CoAP and MQTT server in their respective experiments. Motorola
Moto G3 and Raspberry Pi 3 were used as the client. The ASUS RT-AC88U router was

31

used to limit the connection speed between the devices. The protocols were configured
with settings defined in the Table 2.

Table 2. Protocol Settings for Evaluation
CoAP MQTT

Confirmation Method CON Message QoS 0
Block Size 1024 Bytes NA

Maximum Timeout 1000 ms 1000ms

In the first experiment, latency of the CoAP protocol was calculated by recording
the time taken by a packet for the round trip between the Server and the Client device.
The time was started as the packet with a custom payload was sent from the Server and
was stopped when the confirmation of the packet was received from the client device.
The experiment was performed for three different speeds with seven different types of
payloads. Each scenario was performed three times and average was taken. Latency
of the MQTT was also calculated in the similar manner. The only difference between
the experiments was the use of Raspberry Pi 3 as the Broker for MQTT.

The second experiment was to calculate the throughput of the both protocols. Data
from the first experiments was used to calculate the throughput. The formula used to
calculate the throughput is as following
Throughput = totalNumberofbitstransfered/totaltimetaken
The third experiment was performed to study the effect of group communication

on the latency and throughput of the protocol. The experiment was setup using the
same parameters from the first experiment except different number of clients were
connected. In the first scenario, two clients were connected to the Server device and
latency was measured. In second scenario, five different clients were connected and
all were receiving the same packet from the server. The data recorded was then used
to calculate the throughput.

In the last experiment the bandwidth used by each protocol was monitored. The
server device was connected to a client and one thousand packet with a payload of 32
Bytes were sent between them. The server network usage was monitored using the
Android DDMS client. The acknowledgement packets received by the server were
also added in the calculation. The data collected was then used to calculate the average
network usage for both protocols. This experiment was also performed three times and
average value was taken.

32

5. RESULT

This chapter describes the results of the experiments performed in the previous sec-
tion. It contains the detail of the data collected during the experiment and the different
analysis done to understand the behavior and performance of the protocols.

5.1. Service Discovery

The first experiment was to determine the maximum time taken to discover a device
on the network. After the data was collected from the ten devices, it was mapped to
forecast the time it will take to discover up to thousand devices using linear regression.
Figure 16 presents the visualization of the experiment.

Figure 16. Time taken to discover AWARE devices

As seen from the graph, it takes about 300 milliseconds to discover the first device.
The later devices are discovered faster than the first device, at an average time of 7 mil-
liseconds per device. Using the linear regression, it was calculated that 1000 devices
will require altogether about 7.5 seconds to get discovered by the mobile phone.

The second experiment was performed to determine the maximum time taken for a
device to resolve the connection information of the discovered devices. The experi-
ment was conducted for ten different devices and result was mapped for 1000 devices
using linear regression. It can be deduced from the figure 17 that resolution of connec-
tion information requires more time than just discovering the service name. It takes
about 390 seconds to resolve the information 1000 devices, with an average of 400
milliseconds for single device. As resolving of host information is a two-step process,

33

Figure 17. Time taken to Resolve AWARE devices information

i.e. searching for registered service on the network and performing a DNS lookup for
connection information, it takes much more time than discovering of the service.

5.2. Comparison between CoAP and MQTT

After the performance evaluation of service discovery protocol, the next study was to
compare the performance of the CoAP and MQTT protocols.

5.2.1. Latency

One-to-One Communication

After the collection of data, the results from the three scenarios were plotted. Figure 18
(a) and (b) shows the comparison between CoAP and MQTT at 128Kbps and 512Kbps.

Our result above shows the latency comparison at low bandwidth. It suggests that
CoAP performs better with a smaller message size in low bandwidth environment com-
pared to MQTT. CoAP packet with a payload of 32 Bytes takes around 1200 millisec-
onds to transfer from server to client at the speed of 128Kbps. It also including the
time taken to receive the acknowledgement packet by the server device. This behavior
of CoAP remains same till the packet size is 1 kilobyte after which the latency begins
to increase rapidly. On the other hand, MQTT take around 1600 milliseconds for the
same message size. Latency for the MQTT increases at a slower rate compared to
CoAP, intersecting the line at around 7.5 Kilobytes, meaning the time taken for both

34

Figure 18. Latency comparison between CoAP and MQTT (From left) (a) 128Kbps
(b) 512Kbps

protocols at this message size is same i.e. around 2700 milliseconds. After this the la-
tency for CoAP is increase at a faster rate than MQTT, making MQTT better at bigger
payload size.

A similar kind of trend can be seen in figure 18 (b), when the same experiment was
repeated at 512Kbps. Latency for the both protocols decreased but MQTT performed
better than 128Kbps. At this speed, the latency is same at around 3 Kilobytes of mes-
sage size which is also lower than the previous experiment.

Figure 19. Latency comparison between CoAP and MQTT (Full Speed)

The last scenario in this experiment was to determine latency for both protocols
without any bandwidth limitations. The above figure 19 shows the visual representa-
tion of results collected. At smaller message size CoAP is faster but as the packet size
is increased the latency for CoAP increases and overall MQTT performs much faster.

35

It took around 11 seconds for a packet of 100 kilobytes, for a round trip when using
COAP, while it took around 3 seconds for MQTT to deliver the same packet.

One-to-Many Communication

Figure 20. Latency comparison between CoAP and MQTT One-to-Many Communi-
cation (From Left) (a)128kbps (b) Full Speed

After the comparison of latency of CoAP and MQTT in one-to-one communication
mode, the next experiment was to look at one-to-many communication. Figure 20
(a) shows the latency results of one-to-many communication at 128 Kbps and full
bandwidth. Again at low bandwidth CoAP performed better when the message size is
lower than 3.5 Kilobytes but after that MQTT takes less time to deliver the message.
At faster speed (figure 20 (b)), MQTT was quicker by transferring the message of 100
Kilobytes in around 4 seconds and CoAP took around 29 seconds for similar task.

5.2.2. Throughput

One-to-One Communication

Figure 21. Throughput comparison between CoAP and MQTT (From Left) (a)128kbps
(b) 512kbps

The second experiment was conducted to compare the throughput of the both pro-
tocols. Figure 21 shows the comparison of the throughput of the both protocols at

36

low bandwidth. At 128Kbps, both protocols showed almost same kind of result with
CoAP having a higher throughput with smaller payload but MQTT performance im-
proved with the message size. On the other side, the difference between the both
protocols throughput is bigger at 512 Kbps, with MQTT achieving around 42 Kbits/s
while CoAP reached 27 Kbits/s for the payload of 10 kilobytes.

Figure 22. Throughput comparison between CoAP and MQTT (full speed)

The third scenario in this experiment was almost the replication of previous scenario
but with no bandwidth limit. As seen from the figure 22, CoAP performed better at start
by reaching the maximum throughput of 70 kbits/s but as the packet size was increased
the throughput of the CoAP remained constant. MQTT had a lower throughput in the
start but after increasing the packet size the throughput also increased. MQTT achieved
a maximum throughput of 260 Kbits/s for 100 Kilobyte and it keeps on increasing with
the packet size.

One-to-Many Communication

The third experiment in this study was done to compare the throughput of both pro-
tocols in one-to-many communication. Figure 23 shows the visual representation of
the experiment results of the one-to-many communication. At low bandwidth, CoAP
had a higher throughput till the message size reached 4 Kilobytes but after that MQTT
performed better. In the figure 23 (b), MQTT was quicker from the start, it transferred
the message of 100 Kilobytes at the rate of 220 Kbits/s while CoAP had a constant
throughput of 25 Kbits/s.

37

Figure 23. Throughput comparison between CoAP and MQTT, One-to-Many Com-
munication (From Left) (a) 128kbps (b) Full Speed

5.2.3. Network Usage

The last experiment was to compare the network usage of the CoAP with MQTT. Table
3 shows the results from the experiment performed.

Table 3. Network usage comparison
Protocol Total Packets Total Bytes Average size per packet
CoAP 1000 44720 44.72
MQTT 1000 62333 62.33

As seen from the table above, average size per packet of CoAP is lower than MQTT.
Therefore, CoAP uses less bandwidth for the same 32 byte payload.

38

6. DISCUSSION AND LIMITATIONS

The purpose of this thesis was to develop an AWARE plug-in and highlight the advan-
tages and disadvantages of the different protocols used. After the system design and
implementation of the application, multiple experiments were conducted to analyze
the performance of the protocols. This chapter discusses in detail the results of those
evaluations and some points based on the analysis. In addition, the limitations and
future work of this thesis is also presented.

6.1. Device Discovery

Our first study was to examine the performance of the device discovery protocol. In
our study we found out that the time required to discover a device using NSD takes
around 300 milliseconds. These finding verifies that NSD takes almost same time as
other zero-configuration implementations [45]. This means that tens of hundreds of
AWARE devices on any local network can be discovered with-in few seconds. The
use of service discovery helps a user with little technical knowledge in setting up,
configuring and maintaining a small wireless sensor network.

The use of NSD also arises some limitations for our application. First, NSD makes
the device visible to all the other devices on the network, raising the issue of security.
As the purpose of the application is to deploy a sensor network in closed environment,
perhaps the easiest security model for this scenario is to have no security at all and
simply rely on physical security mechanisms [74]. Second, NSD is running all the
time in background to discover new devices and keep track of the discovered ones, it
consumes a lot of battery. This limitation cannot be eliminated but its effects can be
minimized. Battery efficiency can be improved by automatic turn-off of NSD when
application is inactive for few minutes. It can also be improved by adding an option of
manually setting up the interval time between device discovery scans.

The network service discovery can be further improved by the implementation of
the service discovery capable DNS server over the internet. This will allow AWARE
devices to discover and resolve connection information of other mobiles all over the
world.

6.2. CoAP

The second study was conducted to examine the performance of CoAP and compare it
with MQTT. In terms of transferring the data, our findings from the first experiments
showed that CoAP is faster and better when the message size is small. These findings
can be verified by previous research that reports CoAP takes less time than MQTT
in start of transmission [31].Based on the results from the second experiment, it can
also be concluded that one-to-many communication between the devices in CoAP is
also slightly better than MQTT in this scenario. The finding from the experiments per-
formed at low bandwidth confirms that CoAP has lower latency and higher throughput
for smaller packets. The result from the network usage experiment proves that CoAP
is more lightweight than MQTT making it more suitable for mobile devices.

39

The limitations of CoAP are also fully acknowledged. From above analysis, it can
be deduced that CoAP is not suitable to transfer large messages or files. As the applica-
tion is used to transfer the sensor values in real time and average size of a sensor value
is less than 100 bytes, it make CoAP suitable for this application. Another problem
with CoAP is the use of UDP as communication protocol, as it does not assure reli-
able communication between devices. To tackle this problem we use the conformable
messages that retransmits the data if ACK packet is not received.

CoAP is mainly used for one-to-one communication but it also has support of ob-
serving the resources for group communication. Multiple connection to CoAP in-
creases the latency and network usage, as connection between each device is indepen-
dent. This also increases the CPU and memory usage of the application making it
energy inefficient. This can be improved in future by manually setting the connections
limit made to the host device.

In the last, our implementation of CoAP works only in local area network, needing a
proxy server to connect it with other devices outside the network. A good improvement
for our plug-in will be the implementation of universal proxy server for all the AWARE
devices to communicate with other devices beyond the local network.

40

7. CONCLUSION

To conclude, the work presented in this thesis focuses on the implementation of an
AWARE plug-in that helps the user to discover the devices using AWARE. It also fo-
cuses on using the CoAP protocol for efficient machine-to machine communication
between the discovered devices. The plug-in was designed to run with AWARE ap-
plication on Android mobiles. We have discussed the underlying architecture and the
building blocks of the plug-in. In our implementation, we also discussed about the use
of different parameters and the sequence flow of the plug-in. We kept the user interface
of the plug-in as simple as possible so that all users can use it easily.

After the implementation, we conducted multiple experiments to evaluate the per-
formance of the plug-in on different metrics. We later analyzed the data collected
from the experiments. Our finding showed that service discovery require few hundred
milliseconds to establish a connection between devices. The detailed performance
analysis of the device discovery and resolution proved that the zero-configuration can
be adapted with reasonable performance latencies on mobile devices, paving the way
for the mobile sensor network.

As a transfer protocol, CoAP and MQTT both shows promising result in terms of
performance. The experiments showed that CoAP was better suited for low latency
networks. It performs better than MQTT when the message size was small making it
suitable for the transfer of the sensor data. On the other hand, MQTT performs better at
faster bandwidths and group communications. In addition, network usage experiment
showed that CoAP was more lightweight than MQTT. Both protocols have been shown
to be viable alternatives as transfer protocols for mobile sensor networks.

The developed AWARE plug-in provides great utility and can offer many research
possibilities. It can help users to setup a wireless sensing network without much tech-
nical capabilities. The work also provides an insight of the IoT protocols and their
comparison in different scenarios. We hope our findings would be of significant im-
portance and will help in further improvements of the AWARE application.

41

8. REFERENCES

[1] (Accessed: 19.10.2017), What is aware. URL: http://www.
awareframework.com/what-is-aware/.

[2] Tan L. & Wang N. (2010) Future internet: The internet of things. In: Advanced
Computer Theory and Engineering (ICACTE), 2010 3rd International Confer-
ence on, vol. 5, IEEE, vol. 5, pp. V5–376.

[3] IBM (2009), Smart china report.

[4] (Accessed: 17.05.2017), Web services architecture requirements. URL: https:
//www.w3.org/TR/wsa-reqs/.

[5] Zeng L., Benatallah B., Ngu A.H., Dumas M., Kalagnanam J. & Chang H. (2004)
Qos-aware middleware for web services composition. IEEE Transactions on soft-
ware engineering 30, pp. 311–327.

[6] Curbera F., Duftler M., Khalaf R., Nagy W., Mukhi N. & Weerawarana S. (2002)
Unraveling the web services web: an introduction to soap, wsdl, and uddi. IEEE
Internet computing 6, pp. 86–93.

[7] Fielding R.T. (2000) Fielding dissertation: Chapter 5: Representa-
tional state transfer (rest). http://www. ics. uci. edu/˜ fielding/pubs/disserta-
tion/rest_arch_style. htm .

[8] (Accessed: 26.10.2017), Representational state transfer (rest). URL:
https://www.service-architecture.com/articles/web-
services/representational_state_transfer_rest.html.

[9] (Accessed: 10.10.2017), Internet of things global standards initiative. URL:
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.
aspx.

[10] Xia F., Yang L.T., Wang L. & Vinel A. (2012) Internet of things. International
Journal of Communication Systems 25, p. 1101.

[11] Jabbar S., Ullah F., Khalid S., Khan M. & Han K. (2017) Semantic interoperabil-
ity in heterogeneous iot infrastructure for healthcare. Wireless Communications
and Mobile Computing 2017.

[12] Shelby Z., Hartke K. & Bormann C. (2014) The constrained application protocol
(coap) .

[13] Colitti W., Steenhaut K., De Caro N., Buta B. & Dobrota V. (2011) Evaluation
of constrained application protocol for wireless sensor networks. In: Local &
Metropolitan Area Networks (LANMAN), 2011 18th IEEE Workshop on, IEEE,
pp. 1–6.

[14] Bormann C. & Shelby Z. (2011) Blockwise transfers in coap. draft-ietf-core-
block-04 (work in progress) .

42

[15] Shelby Z. (2012) Constrained restful environments (core) link format .

[16] Hartke K. & Shelby Z. (2011) Observing resources in coap. draft-ietf-core-
observe-02 (work in progress) .

[17] Brachmann M., Garcia-Morchon O. & Kirsche M. (2011) Security for practical
coap applications: Issues and solution approaches. GI/ITG KuVS Fachgesprch
Sensornetze (FGSN). Universitt Stuttgart .

[18] (Accessed: 08.10.2017), Libcoap: C-implementation of coap. URL:
https://libcoap.net/.

[19] (Accessed: 08.10.2017), Californium (cf) coap framework in java. URL:
https://eclipse.org/californium/.

[20] Iglesias-Urkia M., Orive A. & Urbieta A. (2017) Analysis of coap implementa-
tions for industrial internet of things: A survey. Procedia Computer Science 109,
pp. 188–195.

[21] (Accessed: 08.10.2017), Zero configuration networking (zeroconf). URL:
http://www.zeroconf.org/.

[22] (Accessed: 08.10.2017), Bonjour for developers. URL:
https://developer.apple.com/bonjour/.

[23] (Accessed: 26.10.2017), Using network service discovery. URL:
https://developer.android.com/training/connect-
devices-wirelessly/nsd.html.

[24] Cheshire S. & Krochmal M. (2013) Multicast dns. Tech. rep.

[25] Srinivasan S. & Schulzrinne H. (2007) Bonswing: A gui framework for ad-hoc
applications using service discovery. In: Proceedings of the 2007 ACM CoNEXT
conference, ACM, p. 36.

[26] (Accessed: 09.10.2017), Mqtt. URL: http://mqtt.org/.

[27] Al-Fuqaha A., Guizani M., Mohammadi M., Aledhari M. & Ayyash M. (2015)
Internet of things: A survey on enabling technologies, protocols, and applica-
tions. IEEE Communications Surveys & Tutorials 17, pp. 2347–2376.

[28] Hunkeler U., Truong H.L. & Stanford-Clark A. (2008) Mqtt-s—a publish/sub-
scribe protocol for wireless sensor networks. In: Communication systems soft-
ware and middleware and workshops, 2008. comsware 2008. 3rd international
conference on, IEEE, pp. 791–798.

[29] Ferreira D., Kostakos V. & Dey A.K. (2015) Aware: mobile context instrumenta-
tion framework. Frontiers in ICT 2, p. 6.

[30] Villaverde B.C., Pesch D., Alberola R.D.P., Fedor S. & Boubekeur M. (2012)
Constrained application protocol for low power embedded networks: A survey.
In: Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
2012 Sixth International Conference on, IEEE, pp. 702–707.

43

[31] Amaran M.H., Noh N.A.M., Rohmad M.S. & Hashim H. (2015) A comparison of
lightweight communication protocols in robotic applications. Procedia Computer
Science 76, pp. 400–405.

[32] Colitti W., Steenhaut K. & De Caro N. (2011) Integrating wireless sensor net-
works with the web. Extending the Internet to Low power and Lossy Networks
(IP+ SN 2011) .

[33] Bormann C., Castellani A.P. & Shelby Z. (2012) Coap: An application protocol
for billions of tiny internet nodes. IEEE Internet Computing 16, pp. 62–67.

[34] Kovatsch M., Duquennoy S. & Dunkels A. (2011) A low-power coap for contiki.
In: Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International
Conference on, IEEE, pp. 855–860.

[35] Dunkels A., Gronvall B. & Voigt T. (2004) Contiki-a lightweight and flexible op-
erating system for tiny networked sensors. In: Local Computer Networks, 2004.
29th Annual IEEE International Conference on, IEEE, pp. 455–462.

[36] Kovatsch M. (2011) Firm firmware and apps for the internet of things. In: Pro-
ceedings of the 2nd Workshop on Software Engineering for Sensor Network Ap-
plications, ACM, pp. 61–62.

[37] Lerche C., Hartke K. & Kovatsch M. (2012) Industry adoption of the internet of
things: A constrained application protocol survey. In: Emerging Technologies &
Factory Automation (ETFA), 2012 IEEE 17th Conference On, IEEE, pp. 1–6.

[38] Kovatsch M. (2011) Demo abstract: Human-coap interaction with copper. In:
Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011 Inter-
national Conference on, IEEE, pp. 1–2.

[39] Schor L., Sommer P. & Wattenhofer R. (2009) Towards a zero-configuration
wireless sensor network architecture for smart buildings. In: Proceedings of the
First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Buildings, ACM, pp. 31–36.

[40] Rahman A., Dijk E. et al. (2012) Group communication for coap. draft-ietf-core-
groupcomm-00 (work in progress) .

[41] Moritz G., Golatowski F. & Timmermann D. (2011) A lightweight soap over
coap transport binding for resource constraint networks. In: Mobile Adhoc and
Sensor Systems (MASS), 2011 IEEE 8th International Conference on, IEEE, pp.
861–866.

[42] (Accessed: 11.10.2017), Welcome to avahi. URL: http://avahi.org/.

[43] Gwizdz G. (2013) Zero configuration networking and communication using ios
and android .

[44] Klauck R. & Kirsche M. (2012) Bonjour contiki: A case study of a dns-based dis-
covery service for the internet of things. Ad-hoc, Mobile, and Wireless Networks
, pp. 316–329.

44

[45] Siddiqui F., Zeadally S., Kacem T. & Fowler S. (2012) Zero configuration net-
working: Implementation, performance, and security. Computers & electrical en-
gineering 38, pp. 1129–1145.

[46] Bardin J., Lalanda P. & Escoffier C. (2010) Towards an automatic integration of
heterogeneous services and devices. In: Services Computing Conference (AP-
SCC), 2010 IEEE Asia-Pacific, IEEE, pp. 171–178.

[47] Siljanovski A., Sehgal A. & Schonwalder J. (2014) Service discovery in resource
constrained networks using multicast dns. In: Networks and Communications
(EuCNC), 2014 European Conference on, IEEE, pp. 1–5.

[48] Schönwälder J., Tsou T. & Sarikaya B. (2011) Protocol profiles for constrained
devices. In: Proceedings of the IAB Workshop on Interconnecting Smart Objects
with the Internet (February 2011).

[49] (Accessed: 11.10.2017), Arduino ethernet bonjour. URL: http://gkaindl.
com/software/arduino-ethernet/bonjour.

[50] (Accessed: 26.11.2017), Zero-configuration. URL: http://slideplayer.
com/slide/7456746/.

[51] Dunkels A. et al. (2009) Efficient application integration in ip-based sensor net-
works. In: Proceedings of the First ACM Workshop on Embedded Sensing Sys-
tems for Energy-Efficiency in Buildings, ACM, pp. 43–48.

[52] Östmark Å., Lindgren P., Halteren A.v. & Meppelink L. (2006) Service and de-
vice discovery of nodes in a wireless sensor network. In: IEEE Consumer Com-
munications and Networking Conference: 08/01/2006-10/01/2006, IEEE Com-
munications Society, pp. 218–222.

[53] Steinberg D.H. & Cheshire S. (2005) Zero Configuration Networking: The
Definitive Guide: The Definitive Guide. " O’Reilly Media, Inc.".

[54] (Accessed: 26.11.2017), Cisco wide area bonjour application. URL:
https://www.cisco.com/c/en/us/td/docs/cloud-systems-
management/application-policy-infrastructure-
controller-enterprise-module/1-5-x/bonjour/b_Cisco_
Wide_Area_Bonjour_User_Guide/b_Cisco_SD_Bonjour_
Solution_Guide_chapter_01.html.

[55] Lee J.W., Schulzrinne H., Kellerer W. & Despotovic Z. (2007) z2z: Discover-
ing zeroconf services beyond local link. In: Globecom Workshops, 2007 IEEE,
IEEE, pp. 1–7.

[56] Al-Karaki J.N. & Kamal A.E. (2004) Routing techniques in wireless sensor net-
works: a survey. IEEE wireless communications 11, pp. 6–28.

[57] Yick J., Mukherjee B. & Ghosal D. (2008) Wireless sensor network survey. Com-
puter networks 52, pp. 2292–2330.

45

[58] Mainetti L., Patrono L. & Vilei A. (2011) Evolution of wireless sensor networks
towards the internet of things: A survey. In: Software, Telecommunications and
Computer Networks (SoftCOM), 2011 19th International Conference on, IEEE,
pp. 1–6.

[59] Alliance Z. (2010), Zigbee smart energy 2.0 draft 0.7 public application profile.

[60] Kushalnagar N., Montenegro G. & Schumacher C. (2007) Ipv6 over low-power
wireless personal area networks (6lowpans): overview, assumptions, problem
statement, and goals. Tech. rep.

[61] Dawson-Haggerty S., Jiang X., Tolle G., Ortiz J. & Culler D. (2010) smap: a sim-
ple measurement and actuation profile for physical information. In: Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems, ACM,
pp. 197–210.

[62] Kovatsch M., Weiss M. & Guinard D. (2010) Embedding internet technology for
home automation. In: Emerging Technologies and Factory Automation (ETFA),
2010 IEEE Conference on, IEEE, pp. 1–8.

[63] Castellani A.P., Bui N., Casari P., Rossi M., Shelby Z. & Zorzi M. (2010) Ar-
chitecture and protocols for the internet of things: A case study. In: Pervasive
Computing and Communications Workshops (PERCOM Workshops), 2010 8th
IEEE International Conference on, IEEE, pp. 678–683.

[64] Aberer K., Hauswirth M. & Salehi A. (2006) A middleware for fast and flexible
sensor network deployment. In: Proceedings of the 32nd international conference
on Very large data bases, VLDB Endowment, pp. 1199–1202.

[65] Munir S.A., Ren B., Jiao W., Wang B., Xie D. & Ma J. (2007) Mobile wireless
sensor network: Architecture and enabling technologies for ubiquitous comput-
ing. In: Advanced Information Networking and Applications Workshops, 2007,
AINAW’07. 21st International Conference on, vol. 2, IEEE, vol. 2, pp. 113–120.

[66] Liu B., Brass P., Dousse O., Nain P. & Towsley D. (2005) Mobility improves
coverage of sensor networks. In: Proceedings of the 6th ACM international sym-
posium on Mobile ad hoc networking and computing, ACM, pp. 300–308.

[67] Chen C. & Ma J. (2006) Memosen: multi-radio enabled mobile wireless sensor
network. In: Advanced Information Networking and Applications, 2006. AINA
2006. 20th International Conference on, vol. 2, IEEE, vol. 2, pp. 5–pp.

[68] Rezazadeh J. (2012) Mobile wireles sensor networks overview. International
Journal of Computer Communications and Networks (IJCCN) 2.

[69] Li D., Wong K.D., Hu Y.H. & Sayeed A.M. (2002) Detection, classification, and
tracking of targets. IEEE signal processing magazine 19, pp. 17–29.

[70] Sinopoli B., Sharp C., Schenato L., Schaffert S. & Sastry S.S. (2003) Distributed
control applications within sensor networks. Proceedings of the IEEE 91, pp.
1235–1246.

46

[71] Rytter A. (1993) Vibrational based inspection of civil engineering structures.
Ph.D. thesis, Dept. of Building Technology and Structural Engineering, Aalborg
University.

[72] Kintner-Meyer M. & Brambley M.R. (2002) Pros & cons of wireless. ASHRAE
journal 44, p. 54.

[73] (Accessed: 17.11.2017), Class diagram. URL: https://en.wikipedia.
org/wiki/Class_diagram.

[74] Toivanen H. (2001), Secure zero configuration.

47

9. APPENDICES

Appendix 1. Class Diagram of socialAWARE

48

Fi
gu

re
24

.C
la

ss
D

ia
gr

am
fo

rs
oc

ia
lA

W
A

R
E

pl
ug

in

