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Abstract. We present a new approach to the theory of asymptotic properties of solutions
to discrete Volterra equations of the form

∆mxn = bn +
n

∑
k=1

K(n, k) f (k, xσ(k)).

Our method is based on using the iterated remainder operator and asymptotic differ-
ence pairs. This approach allows us to control the degree of approximation.
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1 Introduction

Let N, R denote the set of positive integers and real numbers respectively. Let m ∈ N. We
consider the nonlinear discrete Volterra equations of non-convolution type

∆mxn = bn +
n

∑
k=1

K(n, k) f (k, xσ(k)), (E)

bn ∈ R, f : N×R→ R, K : N×N→ R, σ : N→N, σ(k)→ ∞.

By a solution of (E) we mean a sequence x : N→ R satisfying (E) for every large n. We say that
x is a full solution of (E) if (E) is satisfied for every n. Moreover, if p ∈ N and (E) is satisfied
for every n ≥ p, then we say that x is a p-solution. In this paper we regard equation (E) as a
generalization of the equation

∆mxn = an f (n, xσ(n)) + bn. (1.1)
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Indeed, if K(n, k) = 0 for k 6= n, then denoting an = K(n, n) we may rewrite (E) in the form
(1.1). Hence the ordinary difference equation (1.1) is a special case of (E).

Volterra difference equations appeared as a discretization of Volterra integral and integro-
differential equations. They also often arise during the mathematical modeling of some real
life situations where the current state is determined by the whole previous history. Therefore,
many papers have been devoted to these types of equations during the last few years. For
example, the boundedness of solutions of such equations was studied in [6,12,17–22,25,39–41,
44]. Some results on the boundedness and growth of solutions of related difference equations
were proved also in [45–47]. The periodicity was investigated, e.g., in [1, 9–11, 16, 22, 37, 43].
Several fundamental results on the stability of linear Volterra difference equations, of both
convolution and non–convolution type, can be found in [7,8,15]; see also [2,5,23,24,26,40,48].
Some related results on dynamic equations can be found in [3] and [4].

In recent years the first author presented a new theory of the study of asymptotic proper-
ties of the solutions to difference equations. This theory is based mainly on the examination
of the behavior of the iterated remainder operator and on the application of asymptotic differ-
ence pairs. This approach allows us to control the degree of approximation. The theory was
formed in three stages:

(S1) the approximation of solutions with accuracy o(1), (papers [27, 28]),

(S2) the approximation with accuracy o(ns), s ∈ (−∞, 0], (papers [29, 30, 32, 34, 35]),

(S3) the approximation with accuracy determined by a certain asymptotic difference pair
(papers [33, 36]).

In papers [34, 35] this new theory was applied to the study of neutral type equations. The
application to the discrete Volterra equations was presented in [38] (stage (S1)) and in [37]
(stage (S2)). In this paper we continue those investigations by applying asymptotic difference
pairs and we generalize the main results from [27–31,33,37,38]. Moreover, we generalize some
earlier results, for example, from [13, 14, 25, 42, 49].

The paper is organized as follows. In Section 2, we introduce notation and terminology. In
Section 3, in Theorems 3.1 and 3.2, we obtain our main results. In Section 4, we present some
consequences of our main results. These consequences concern asymptotically polynomial
solutions. In the next section we use our results to investigate bounded solutions. In Section 6,
we give some remarks. In particular, we present some tests that are helpful in verifying
whether a given kernel K fulfills the assumptions of the main theorems. In the last section we
present some applications.

2 Notation and terminology

In the paper we regard N×R as a metric subspace of the Euclidean plane R2. The space RN

of all real sequences we denote also by SQ. Moreover

SQ∗ = {x ∈ SQ : xn 6= 0 for any n}.

For integers p, q such that 0 ≤ p ≤ q, we define

N(p) = {p, p + 1, p + 2, . . . }, N(p, q) = {p, p + 1, . . . , q}.
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We use the symbols
Sol(E), Solp(E)

to denote the set of all solutions of (E), and the set of all p-solutions of (E) respectively. If x, y
in SQ, then

xy and |x|

denotes the sequences defined by xy(n) = xnyn and |x|(n) = |xn| respectively. Moreover

‖x‖ = sup
n∈N

|xn|.

If there exists a positive constant λ such that xn ≥ λ for any n, then we write

x � 0.

Let a, b, w ∈ SQ, p ∈N, t ∈ [1, ∞), X ⊂ SQ. We will use the following notations

Fin(p) = {x ∈ SQ : xn = 0 for n ≥ p}, Fin =
∞⋃

p=1

Fin(p).

o(1) = {x ∈ SQ : x is convergent to zero}, O(1) = {x ∈ SQ : x is bounded},

o(a) = {ax : x ∈ o(1)}+ Fin, O(a) = {ax : x ∈ O(1)}+ Fin,

O(w, σ) = {y ∈ SQ : y ◦ σ ∈ O(w)},

A(t) :=

{
a ∈ SQ :

∞

∑
n=1

nt−1|an| < ∞

}
, A(∞) =

⋂
t∈[1,∞)

A(t),

∆−mb = {y ∈ SQ : ∆my = b}, ∆−mX = {y ∈ SQ : ∆my ∈ X},

Pol(m− 1) = Ker∆m = ∆−m0.

Note that Pol(m− 1) is the space of all polynomial sequences of degree less than m. Moreover
for any y ∈ ∆−mb we have

∆−mb = y + Pol(m− 1).

Note also that ⋃
λ∈(0,1)

O(λn) ⊂ A(∞) ⊂
⋂

s∈R

o(ns).

For L : N×N→ R, A ⊂ SQ, and t ∈ [1, ∞] we define

L′ ∈ SQ, L′(n) =
n

∑
k=1
|L(n, k)|, K(A) =

{
L ∈ RN×N : L′ ∈ A

}
, K(t) = K(A(t)).

For a subset Y of a metric space X and ε > 0 we define an ε-framed interior of Y by

Int(Y, ε) = {x ∈ X : B(x, ε) ⊂ Y}

where B(x, ε) denotes a closed ball of radius ε centered at x. We say that a subset U of X
is a uniform neighborhood of a subset Z of X, if there exists a positive number ε such that
Z ⊂ Int(U, ε). We say that a function h : N×R→ R is unbounded at a point p ∈ [−∞, ∞] if
there exist sequences x : N→ R and n : N→N such that

lim
k→∞

xk = p, lim
k→∞

nk = ∞ and lim
k→∞

h(nk, xk) = ∞.
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Let h : N×R→ R, x ∈ SQ. We will use the following notations

U(h) = {p ∈ [−∞, ∞] : h is unbounded at p},

L(x) = {p ∈ [−∞, ∞] : p is a limit point of x}.

Let g : [0, ∞)→ [0, ∞) and w ∈ SQ∗, we say that f is (g, w)-dominated if

| f (n, t)| ≤ g(|tw−1
n |) for (n, t) ∈N×R. (2.1)

We say that a function g : [0, ∞)→ [0, ∞) is of Bihari type if

∫ ∞

1

dt
g(t)

= ∞. (2.2)

2.1 Remainder operator

Let

S(m) =

{
a ∈ SQ : the series

∞

∑
i1=1

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

aim is convergent

}
.

For any a ∈ S(m) we define the sequence rm(a) by

rm(a)(n) =
∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

aim .

Then S(m) is a linear subspace of o(1), rm(a) ∈ o(1) for any a ∈ S(m) and

rm : S(m)→ o(1)

is a linear operator which we call the remainder operator of order m. The value rm(a)(n) we
denote also by rm

n (a) or simply rm
n a. If a ∈ A(m), then a ∈ S(m) and

rm(a)(n) =
∞

∑
j=n

(
m− 1 + j− n

m− 1

)
aj. (2.3)

for any n ∈ N. The following lemma is a consequence of [31, Lemma 3.1, Lemma 4.2, and
Lemma 4.8].

Lemma 2.1. Assume a ∈ A(m), u ∈ O(1), k ∈ {0, 1, . . . , m}, and p ∈N. Then

(a) O(a) ⊂ A(m) ⊂ o(n1−m), |rm(ua)| ≤ ‖u‖rm|a|, ∆rm|a| ≤ 0,

(b) |rm
p a| ≤ rm

p |a| ≤ ∑∞
n=p nm−1|an|, rka ∈ A(m− k),

(c) ∆mrma = (−1)ma, rmFin(p) = Fin(p) = ∆mFin(p).

For more information about the remainder operator see [31].
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2.2 Asymptotic difference pairs

We say that a pair (A, Z) of linear subspaces of SQ is an asymptotic difference pair of order m
or, simply, m-pair if

Fin + Z ⊂ Z, O(1)A ⊂ A, A ⊂ ∆mZ.

We say that an m-pair (A, Z) is evanescent if Z ⊂ o(1). If A ⊂ SQ and (A, A) is an m-pair, then
we say that A is an m-space. We will use the following lemma.

Lemma 2.2. Assume (A, Z) is an m-pair, a, b, x ∈ SQ, and W ⊂ SQ. Then

(a) if Z + W ⊂W and b− a ∈ A, then W ∩ ∆−mb + Z = W ∩ ∆−ma + Z,

(b) if a ∈ A and ∆mx ∈ O(a) + b, then x ∈ ∆−mb + Z,

(c) if Z ⊂ o(1), then A ⊂ A(m) and rm A ⊂ Z.

Proof. Let y ∈W ∩ ∆−ma. Then

∆my− b = a− b ∈ A ⊂ ∆mZ.

Hence ∆my− b = ∆mz for some z ∈ Z. Therefore ∆m(y− z) = b and we obtain y− z ∈ ∆−mb.
Moreover y− z ∈W + Z ⊂W. Hence y− z ∈W ∩ ∆mb. If z1 ∈ Z, then

y + z1 = y− z + z + z1 ∈W ∩ ∆−mb + Z

and we obtain
W ∩ ∆−ma + Z ⊂W ∩ ∆−mb + Z.

Since A is a linear space, the reverse inclusion follows by interchanging the letters a and b in
the previous part of the proof. Hence we get (a). For the proof of (b) see [33, Lemma 3.7]. (c)
is a consequence of [33, Remark 3.4].

Example 2.3. Assume s ∈ R, (s + 1)(s + 2) . . . (s + m) 6= 0, and t ∈ (−∞, m− 1]. Then

(o(ns), o(ns+m)), (O(ns), O(ns+m)), (A(m− t), o(nt))

are m-pairs.

Example 2.4. If λ ∈ (1, ∞), then o(λn) and O(λn) are m-spaces.

Example 2.5. If k ∈N(0, m− 1), then (A(m− k) , ∆−ko(1)) is an asymptotic m-pair.

Example 2.6. Assume s ∈ (−∞,−m), t ∈ (−∞, 0], and u ∈ [1, ∞). Then

(o(ns), o(ns+m)), (O(ns), O(ns+m)), (A(m− t), o(nt)), (A(m + u), A(u))

are evanescent m-pairs.

Example 2.7. If λ ∈ (0, 1), then o(λn), O(λn), and A(∞) are evanescent m-spaces.

For more information about difference pairs see [33].
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2.3 Fixed point lemma

We will use the following fundamental lemma.

Lemma 2.8. Assume y ∈ SQ, ρ ∈ o(1), and

S = {x ∈ SQ : |x− y| ≤ |ρ|}.

Then the formula d(x, y) = supn∈N |xn − yn| defines a metric on S such that any continuous map
H : S→ S has a fixed point.

Proof. The assertion is a consequence of [32, Theorem 3.3 and Theorem 3.1].

3 The set of solutions

In this section, in Theorems 3.1 and 3.2, we obtain our main results.
For a sequence x ∈ SQ we define sequences F(x) and G(x) by

F(x)(k) = f (k, xσ(k)), G(x)(n) =
n

∑
k=1

K(n, k) f (k, xσ(k)). (3.1)

Let K ∈ K(m) and p ∈ N. We say that a sequence y ∈ SQ is (K, f , p)-regular if there exist a
subset U of R and M > 0 such that

y(N) ⊂ Int(U, Mrm
p K′), | f (n, t)| ≤ M for any (n, t) ∈N×U, (3.2)

and the restriction f |N×U is continuous. We say that y is f -regular if there exist a uniform
neighborhood U of y(N) such that the restriction f |N×U is continuous and bounded.

We say that a subset W of SQ is ( f , σ)-ordinary if for any y ∈ W the sequence F(y) is
bounded. If any y ∈W is f -regular, then we say that W is f -regular.

Theorem 3.1. Assume (A, Z) is an m-pair, K ∈ K(A), and W ⊂ SQ. It follows that

(A1) if W is ( f , σ)-ordinary, then W ∩ Sol(E) ⊂ ∆−mb + Z.

Moreover, assume that the pair (A, Z) is evanescent, y ∈ ∆−mb, and p ∈N. It follows that

(A2) if y is (K, f , p)-regular, then y ∈ Solp(E) + Z,

(A3) if y is f -regular, then y ∈ Sol(E) + Z,

(A4) if W is f -regular and Z + W ⊂W, then W ∩ Sol(E) + Z = W ∩ ∆−mb + Z,

(A5) if Z + W ⊂W and f is continuous and bounded, then

W ∩ Sol1(E) + Z = W ∩ Sol(E) + Z = W ∩ ∆−mb + Z.

Theorem 3.2. Assume (A, Z) is an m-pair, K ∈ K(A), w ∈ SQ∗, g : [0, ∞) → [0, ∞), and f is
(g, w)-dominated. It follows that

(B1) if g is locally bounded, then O(w, σ) ∩ Sol(E) ⊂ ∆−mb + Z,

(B2) if g is nondecreasing, σ(n) ≤ n for large n, K ∈ K(1), b ∈ A(1), w−1 ∈ O(n1−m), and g is
of Bihari type, then

Sol(E) ⊂ ∆−mb + Z.
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Moreover, assume that the pair (A, Z) is evanescent, y ∈ ∆−mb, W ⊂ O(w, σ), L, M > 0, p ∈ N, f
is continuous, and Z + W ⊂W. It follows that

(B3) if g[0, L] ⊂ [0, M] and |y ◦ σ| ≤ L|w| −Mrm
p K′, then y ∈ Solp(E) + Z.

Moreover, assume that g is locally bounded and |w| � 0. It follows that

(B4a) W ∩ ∆−mb + Z = W ∩ Sol(E) + Z,

(B4b) O(w, σ) ∩ ∆−mb + Z = O(w, σ) ∩ Sol(E) + Z,

(B4c) if w ◦ σ ∈ O(w), then O(w) ∩ ∆−mb + Z = O(w) ∩ Sol(E) + Z.

Moreover, assume that g is bounded. It follows that

(B5a) W ∩ ∆−mb + Z = W ∩ Sol(E) + Z = W ∩ Sol1(E) + Z,

(B5b) O(w, σ) ∩ ∆−mb + Z = O(w, σ) ∩ Sol(E) + Z = O(w, σ) ∩ Sol1(E) + Z,

(B5c) if w ◦ σ ∈ O(w), then O(w) ∩ ∆−mb + Z = O(w) ∩ Sol(E) + Z = O(w) ∩ Sol1(E) + Z.

The following, final, theorem is a curiosity. It concerns all the solutions of equation (E);
moreover there are no conditions placed on the function f . This theorem generalizes [33,
Theorem 4.2].

Theorem 3.3. Assume (A, Z) is an m-pair, K ∈ K(A), and x ∈ Sol(E). Then

x ∈ ∆−mb + Z or L(x) ∩U( f ) 6= ∅.

3.1 The proof of Theorem 3.1

(A1) Assume W is ( f , σ)-ordinary and x ∈ W ∩ Sol(E). Let M = ‖F(x)‖. By (3.1), |G(x)| ≤
MK′. Hence

∆mx ∈ G(x) + b + Fin ⊂ O(K′) + b + Fin = O(K′) + b.

Moreover K′ ∈ A. Therefore, using Lemma 2.2, we obtain x ∈ ∆−mb + Z.

(A2) Choose a positive constant M and a subset U of R such that (3.2) is satisfied and f is
continuous on N×U. Let a = K′. Define ρ ∈ SQ and S ⊂ SQ by

ρn =

{
Mrm

n a for n ≥ p,

0 for n < p,
S = {x ∈ SQ : |x− y| ≤ ρ}. (3.3)

Since the sequence rm|a| is nonincreasing, we have ρn ≤ ρp for any n. Assume x ∈ S. If k ∈N,
then |xσ(k) − yσ(k)| ≤ ρσ(k) ≤ ρp and we obtain

xσ(k) ∈ B(yσ(k), ρp) ⊂ U.

Hence | f (k, xσ(k))| ≤ M. Therefore, for n ∈N, we get

|G(x)(n)| =
∣∣∣∣∣ n

∑
k=1

K(n, k) f (k, xσ(k))

∣∣∣∣∣ ≤ n

∑
k=1
|K(n, k)|| f (k, xσ(k))| ≤ Man.
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Thus, for any x ∈ S, we have Gx ∈ O(a) ⊂ A ⊂ A(m). Let

H : S→ SQ, H(x)(n) =

{
yn for n < p

yn + (−1)mrm
n Gx for n ≥ p.

(3.4)

If x ∈ S and n ≥ p, then

|H(x)(n)− yn| = |rm
n Gx| ≤ rm

n |Gx| ≤ Mrm
n a = ρn.

Hence HS ⊂ S. Let ε > 0. Choose q ∈N and β > 0 such that

M
∞

∑
n=q

nm−1an < ε and β
q

∑
n=p

nm−1an < ε. (3.5)

Let
D = {(n, t) ∈N×R : n ∈N(p, q) and |t− yσ(n)| ≤ ρn}.

Then D is a compact subset of R2. Hence f is uniformly continuous on D and there exists
δ > 0 such that if (n, s), (n, t) ∈ D and |s− t| < δ, then

| f (n, s)− f (n, t)| < β.

Let x, z ∈ S, ‖x− z‖ < δ. Using Lemma 2.1 we obtain

‖Hx− Hz‖ = ‖rm(Gx− Gz)‖ = sup
n≥p
|rm

n (Gx− Gz)| ≤ sup
n≥p

rm
n |Gx− Gz|

= rm
p |Gx− Gz| ≤

∞

∑
n=p

nm−1|G(x)(n)− G(z)(n)|

≤
q

∑
n=p

nm−1|G(x)(n)− G(z)(n)|+
∞

∑
n=q

nm−1|G(x)(n)− G(z)(n)|

≤ β
q

∑
n=p

nm−1an +
∞

∑
n=q

nm−1|G(x)(n)|+
∞

∑
n=q

nm−1|G(z)(n)|

≤ ε + M
∞

∑
n=q

nm−1an + M
∞

∑
n=q

nm−1an ≤ 3ε.

Hence the map H : S → S is continuous. By Lemma 2.8, there exists an x ∈ S such that
Hx = x. Then, for n ≥ p, we get xn = yn + (−1)mrm

n Gx. Hence

x− y− (−1)mrmGx ∈ Fin(p). (3.6)

Therefore, by Lemma 2.1,

∆mx− b− Gx ∈ ∆mFin(p) = Fin(p).

Thus x ∈ Solp(E). Moreover, Gx ∈ O(a) ⊂ A. By (3.6), we have

y ∈ x + rm A + Fin(p) ⊂ x + Z ⊂ Solp(E) + Z.

(A3) Now, we assume that y is f -regular. Choose a uniform neighborhood U of y(N) such
that the restriction f |N×U is continuous and bounded. There exists a positive constant c
such that y(N) ⊂ Int(U, c). Let

M = sup{| f (n, t)| : n ∈N, t ∈ U}.
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Since rmK′ ∈ o(1), there exists an index p such that Mrm
p K′ ≤ c. Then

y(N) ⊂ Int(U, c) ⊂ Int(U, Mrm
p K′) ⊂ U.

This means that y is (K, f , p)-regular. By (A2), we get y ∈ Solp(E) + Z ⊂ Sol(E) + Z.

(A4) Now, we assume that W is f -regular and Z + W ⊂W. Let

S = Sol(E), Y = ∆−mb.

Obviously, W is ( f , σ)-ordinary. If w ∈ W ∩ S, then, by (A1), w = y + z for some y ∈ Y and
z ∈ Z. Hence y = −z + w ∈ Z + W ⊂W. Therefore w = y + z ∈W ∩Y + Z and we obtain

W ∩ S + Z ⊂W ∩Y + Z.

If w ∈ W ∩ Y, then, by (A3), w = x + z for some x ∈ S and z ∈ Z. Hence x = −z + w ∈
Z + W ⊂W. Therefore w = x + z ∈W ∩ S + Z and we obtain

W ∩Y + Z ⊂W ∩ S + Z.

(A5) Now we assume that f is continuous and bounded and Z + W ⊂W. By (A4) we have

W ∩ Sol(E) + Z = W ∩ ∆−mb + Z.

Since Sol1(E) ⊂ Sol(E), we get

W ∩ Sol1(E) + Z ⊂W ∩ ∆−mb + Z.

Let M = sup{| f (n, t)| : (n, t) ∈N×R} and let U = R. Then for any y ∈ SQ we have

y(N) ⊂ R = Int(U, Mrm
1 K′).

Since f is continuous on R, any y ∈ SQ is (K, f , 1)-regular. Hence, by (A2), we obtain

W ∩ ∆−mb + Z ⊂W ∩ Sol1(E) + Z.

3.2 The proof of Theorem 3.2

We will use the following three lemmas.

Lemma 3.4 ([35, Lemma 4.1]). Assume α, u ∈ SQ are nonnegative, p ∈N, g : [0, ∞)→ [0, ∞),

0 ≤ c < β, g(c) > 0, un ≤ c +
n−1

∑
j=p

αjg(uj) for n ≥ p,
∞

∑
j=1

αj ≤
∫ β

c

dt
g(t)

,

and g is nondecreasing. Then un ≤ β for n ≥ p.

Lemma 3.5 ([30, Lemma 7.3]). If x is a sequence of real numbers, m ∈N and p ∈N(m) then there
exists a positive constant L = L(x, p, m) such that

|xn| ≤ nm−1

(
L +

n−1

∑
i=p
|∆mxi|

)
for n ≥ p.
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Lemma 3.6. Let w ∈ SQ

(1) if |w| � 0, then O(w) + O(1) ⊂ O(w), and O(w, σ) + O(1) ⊂ O(w, σ),

(2) if y ∈ O(w, σ), then O(y) ⊂ O(w, σ),

(3) if w ◦ σ ∈ O(w), then O(w) ⊂ O(w, σ).

Proof. Let y ∈ O(w) and u ∈ O(1). Choose positive δ, L, M ∈ R such that

|wn| ≥ δ, |un| ≤ L, and |yn| ≤ M|wn|

for any n. Then

|yn + un| ≤ |yn|+ |un| ≤ M|wn|+ L = M|wn|+ Lδ−1δ ≤ M|wn|+ Lδ−1|wn| = (M + Lδ−1)|wn|

for any n. Hence O(w) + O(1) ⊂ O(w). Similarly O(w, σ) + O(1) ⊂ O(w, σ). Assume
y ∈ O(w, σ) and x ∈ O(y). There exist positive constants M, P such that

|y(σ(n))| ≤ M|wn|, |xn| ≤ P|yn|

for large n. Then |x(σ(n))| ≤ P|y(σ(n))| ≤ PM|wn| for large n. Hence x ∈ O(w, σ) and we
get (2). (3) is a consequence of (2).

Now we start the proof of Theorem 3.2.

(B1) Assume g is locally bounded. Let P be a positive constant. For any t ∈ [0, P] there exist
a neighborhood Ut of t and a positive constant Qt such that |g(s)| ≤ Qt for any s ∈ Ut. By
compactness of [0, P] we can choose t1, t2, . . . , tn such that [0, P] ⊂ Ut1 ∪Ut2 ∪ · · · ∪Utn . Then

g(s) ≤ Q = max{Qt1 , . . . , Qtn} (3.7)

for any s ∈ [0, P]. Let y ∈ O(w, σ). Then y ◦ σ ∈ O(w). Since w ∈ SQ∗, there exists a positive
constant P such that

|yσ(n)| ≤ P|wn| (3.8)

for any n. Using (2.1), (3.8), and (3.7) we get

|F(x)(n)| = | f (n, yσ(n))| ≤ g

(
|yσ(n)|
|wn|

)
≤ Q.

Hence the set O(w, σ) is ( f , σ)-ordinary and, by Theorem 3.1 (A1), we obtain

O(w, σ) ∩ Sol(E) ⊂ ∆−mb + Z.

(B2) Assume x is a solution of (E). Since K ∈ K(1), we have K′ ∈ A(1). Hence

∞

∑
i=1

∞

∑
j=1
|K(i, j)| =

∞

∑
i=1

i

∑
j=1
|K(i, j)| =

∞

∑
i=1

K′(i) < ∞.

Choose M > 0 such that |w−1
n | ≤ Mn1−m. For j ∈N let

uj =
∣∣∣xσ(j)w

−1
j

∣∣∣ , αj = M
∞

∑
i=j
|K(i, j)|.
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Using the condition: K(i, j) = 0 for i < j we obtain

∞

∑
j=1

αj = M
∞

∑
j=1

∞

∑
i=j
|K(i, j)| ≤ M

∞

∑
j=1

∞

∑
i=1
|K(i, j)| = M

∞

∑
i=1

∞

∑
j=1
|K(i, j)|

= M
∞

∑
i=1

i

∑
j=1
|K(i, j)| = M

∞

∑
i=1

K′(i) < ∞.

By Lemma 3.5, there exists a positive constant L such that

|xσ(n)| ≤ σ(n)m−1

(
L +

σ(n)−1

∑
i=p
|∆mxi|

)
≤ nm−1

(
L +

n−1

∑
i=p
|∆mxi|

)
.

Let c = ML + M ∑∞
i=1 |bi|. Then

un =
∣∣∣xσ(n)w

−1
n

∣∣∣ ≤ ML + M
n−1

∑
i=1
|∆mxi| = ML + M

n−1

∑
i=1

∣∣∣∣∣bi +
i

∑
j=1

K(i, j) f
(

j, xσ(j)

)∣∣∣∣∣
≤ ML + M

∞

∑
i=1
|bi|+ M

n−1

∑
i=1

i

∑
j=1
|K(i, j)|g(uj) = c + M

n−1

∑
i=1

n−1

∑
j=1
|K(i, j)|g(uj)

= c + M
n−1

∑
j=1

n−1

∑
i=1
|K(i, j)|g(uj) ≤ c + M

n−1

∑
j=1

∞

∑
i=1
|K(i, j)|g(uj)

= c +
n−1

∑
j=1

∞

∑
i=j

M|K(i, j)|g(uj) = c +
n−1

∑
j=1

αjg(uj).

Hence, by Lemma 3.4, the sequence u is bounded. Therefore, there exists a constant Q > 1
such that g(ui) ≤ Q for any i and we get∣∣∣ f (i, xσ(i))

∣∣∣ ≤ g
(∣∣∣xσ(i)w

−1
i

∣∣∣) = g(ui) ≤ Q

for any i. Hence ∣∣∣∣∣ n

∑
i=1

K(n, i) f (i, xσ(i))

∣∣∣∣∣ ≤ Q
n

∑
i=1
|K(n, i)| = QK′n.

For large n we have

∆mxn = bn +
n

∑
i=1

K(n, i) f (i, xσ(i)).

Hence ∆mx ∈ b + O(K′) and K′ ∈ A. By Lemma 2.2, we have x ∈ ∆−mb + Z.

(B3) Let a = K′. Define ρ and S by (3.3). Let x ∈ S. Using the inequality

|y ◦ σ| ≤ L|w| −Mrm
p a, we get∣∣∣∣ xσ(n)

wn

∣∣∣∣ = ∣∣∣∣ xσ(n) − yσ(n) + yσ(n)

|wn|

∣∣∣∣ ≤ |xσ(n) − yσ(n)|+ |yσ(n)|
|wn|

≤
Mrm

p a + |yσ(n)|
wn

≤ L

for any n. Using (2.1) and inclusion g[0, L] ⊂ [0, M], we have

|F(x)(n)| = | f (n, xσ(n))| ≤ g

(
|xσ(n)|

wn

)
≤ M
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for any n. Therefore

|G(x)(n)| =
∣∣∣∣∣ n

∑
k=1

K(n, k)F(x)(k)

∣∣∣∣∣ ≤ n

∑
k=1

M|K(n, k)| ≤ Man.

Now, repeating the second part of the proof of Theorem 3.1 (A2), we obtain

y ∈ Solp(E) + Z.

(B4a) Now, we assume that g is locally bounded, |w| � 0, W ⊂ O(w, σ), and Z +W ⊂W. Let
y ∈W ∩ ∆−mb. Choose positive constants P, λ such that |y ◦ σ| ≤ P|w| and |w| > λ. Let

L1 = P + 1 and α = inf{L1|wn| − |yσ(n)| : n ∈N}.

Then
L1|wn| − |yσ(n)| = P|wn| − |yσ(n)|+ |wn| ≥ P|wn| − |yσ(n)|+ λ ≥ λ

for any n. Hence α ≥ λ > 0. Similarly as in (3.7) there exists a positive constant M1 such that
g[0, L1] ⊂ [0, M1]. Since lim

n→∞
rm

n |a| = 0, there exists an index p such that

M1rm
p |a| ≤ α.

Then M1rm
p |a| ≤ L1wn − |yσ(n)| for any n. Hence, by (B3), y ∈ Solp(E) + Z and we obtain

W ∩ ∆−mb ⊂ Sol(E) + Z.

By (B1), we have W ∩ Sol(E) ⊂ ∆−mb + Z. Using [33, Lemma 4.10] we obtain

W ∩ ∆−mb + Z = W ∩ Sol(E) + Z.

(B4b) Since Z ⊂ o(1), by Lemma 3.6 (1), we have O(w, σ) + Z ⊂ O(w, σ). Hence, by (B4a), we
get

O(w, σ) ∩ ∆−mb + Z = O(w, σ) ∩ Sol(E) + Z.

(B4c) By Lemma 3.6 (1) and (3) we have

O(w) + Z ⊂ O(w) and O(w) ⊂ O(w, σ).

Hence (B4c) is a consequence of (B4a).

(B5a) Since Sol1(E) ⊂ Sol(E) we have

W ∩ Sol1(E) + Z ⊂W ∩ Sol(E) + Z. (3.9)

Choose M, δ ∈ (0, ∞) such that |g| ≤ M and |w| ≥ δ. Let y ∈ W ∩ ∆−mb. Since y ∈ O(w, σ),
there exists a positive P such that |y ◦ σ| ≤ P|w|. Let

L = P + δ−1Mrm
1 K′.

Then
|y ◦ σ| ≤ P|w| = L|w| − δ−1|w|Mrm

1 K′ ≤ L|w| −Mrm
1 K′.

Moreover g[0, L] ⊂ [0, M]. Hence, by (B3), y ∈ Sol1(E) + Z and we obtain

W ∩ ∆−mb ⊂ Sol1(E) + Z



Approximation of solutions to discrete Volterra equations 13

Let w ∈W ∩ ∆−mb. Choose x ∈ Sol1(E) and z ∈ Z such that w = x + z. Then

x = w− z ∈W + Z ⊂W.

Hence w ∈W ∩ Sol1(E) + Z and we obtain

W ∩ ∆−mb ⊂W ∩ Sol1(E) + Z. (3.10)

By (B4a) we have
W ∩ ∆−mb + Z = W ∩ Sol(E) + Z (3.11)

Using (3.9), (3.10), and (3.11) we obtain (B5a).
(B5b) Analogously to the proof of (B4b), we can see that (B5b) is a consequence of (B5a).
(B5c) The assertion is a consequence of (B5a) and Lemma 3.6 (1) and (2).

3.3 The proof of Theorem 3.3

Assume
L(x) ∩U( f ) = ∅. (3.12)

We will show that the sequence F(x) is bounded. If

lim sup
n→∞

F(x)(n) = lim sup
n→∞

f (n, xσ(n)) = ∞,

then there exists an increasing sequence (nk) of natural numbers such that

lim
k→∞

f (nk, xσ(nk)) = ∞.

Let yk = xσ(nk) and let p ∈ L(y). There exists a subsequence (yki) of (yk) such that

lim
i→∞

yki = p.

Then limi→∞ f (nki , yki) = ∞. Hence p ∈ U( f ). Since yk = xσ(nk) and σ(n) → ∞, we have
L(y) ⊂ L(x). Therefore p ∈ L(x) which contradicts (3.12). Analogously lim inf F(x)(n) > −∞
and so F(x) is bounded. Since x ∈ Sol(E) we have

∆mx ∈ aF(x) + b + Fin ⊂ O(a) + b + Fin = O(a) + b

and, by Lemma 2.2 (b), we obtain x ∈ ∆−mb + Z.

4 Asymptotically polynomial solutions

In this section we apply our main results to investigate asymptotically polynomial solutions
of equation (E). We assume that g : [0, ∞)→ [0, ∞) and w ∈ SQ∗.

Let k ∈N(0, m). We say that a sequence ϕ is asymptotically polynomial of type (m, k) if

ϕ ∈ Pol(m) + o(nk).

Moreover, if
ϕ ∈ Pol(m) + ∆−ko(1),

then we say that ϕ is regularly asymptotically polynomial of type (m, k). Note that, by [30,
Lemma 3.1 (b)], we have

∆−ko(1) = {x ∈ o(nk) : ∆px ∈ o(nk−p) for any p ∈N(0, k)}.
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Corollary 4.1. Assume (A, Z) is an m-pair, K ∈ K(A), b ∈ A, and x is an ( f , σ)-ordinary solution
of (E). Then

x ∈ Pol(m− 1) + Z.

Proof. By Theorem 3.1 (A1), we have x ∈ ∆−mb + Z. Since b − 0 ∈ A, taking W = SQ in
Lemma 2.2 (a), we obtain ∆−mb + Z = ∆−m0 + Z = Pol(m− 1) + Z.

Note that if k ∈ N(0, m − 1) and Z ⊂ o(nk), then by Corollary 4.1, any ( f , σ)-ordinary
solution of (E) is asymptotically polynomial of type (m− 1, k).

Corollary 4.2. Assume s ∈ (−∞, m− 1], K ∈ K(m− s), b ∈ A(m− s), and x is an ( f , σ)-ordinary
solution of (E). Then

x ∈ Pol(m− 1) + o(ns).

Proof. By Example 2.3, (A(m − s), o(ns)) is an asymptotic m-pair. Hence the assertion is a
consequence of Corollary 4.1.

Corollary 4.3. Assume k ∈ N(0, m − 1), K ∈ K(m − k), and b ∈ A(m − k). Than any ( f , σ)-
ordinary solution x of (E) is regularly asymptotically polynomial of type (m− 1, k).

Proof. By Example 2.5, (A(m− k), ∆−ko(1)) is an asymptotic m-pair. Hence, by Corollary 4.1
we obtain

x ∈ Pol(m− 1) + ∆−ko(1).

Corollary 4.4. Assume s ∈ (−∞, m − 1], K ∈ K(m − s), b ∈ A(m − s). Then for any ( f , σ)-
ordinary solution x of (E) there exist a sequence ϕ ∈ Pol(m− 1) and z ∈ o(ns) such that x = ϕ + z
and ∆pzn = o(ns−p) for any p ∈N(1, m).

Proof. By [33, Example 5.3], (A(m − s), rmA(m − s)) is an m-pair. Hence, by Corollary 4.1,
there exist a sequence ϕ ∈ Pol(m − 1) and z ∈ rmA(m − s) such that x = ϕ + z. By [30,
Lemma 4.2], we have ∆pzn = o(ns−p) for any p ∈N(0, m).

Corollary 4.5. Assume K ∈ K(1), b ∈ A(1), and x is an ( f , σ)-ordinary solution of (E). Then there
exists a constant λ ∈ R such that

lim
n→∞

∆m−p−1xn

np =
λ

p!
(4.1)

for any p ∈N(0, m− 1).

Proof. Taking k = m− 1 in Corollary 4.3 we obtain

x ∈ Pol(m− 1) + ∆−m+1o(1). (4.2)

The existence of λ follows from [30, Lemma 3.8].

Note that if condition (4.1) is satisfied, then by (4.2), x is regularly asymptotically polyno-
mial of type (m− 1, m− 1).

Corollary 4.6. Assume (A, Z) is an m-pair, K ∈ K(A), b ∈ A, g is locally bounded, and f is
(g, w)-dominated. Then

O(w, σ) ∩ Sol(E) ⊂ Pol(m− 1) + Z.
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Proof. Note that b− 0 ∈ A. Let W = SQ. By Lemma 2.2 (a), we have

∆−mb + Z = W ∩ ∆−mb + Z = W ∩ ∆−m0 + Z = Pol(m− 1) + Z.

Hence the assertion is a consequence of Theorem 3.2 (B1).

Corollary 4.7. Assume s ∈ (−∞, m− 1], K ∈ K(m− s), b ∈ A(m− s), g is locally bounded, and f
is (g, w)-dominated. Then

O(w, σ) ∩ Sol(E) ⊂ Pol(m− 1) + o(ns).

Proof. Since (A(m− s), o(ns)) is an asymptotic m-pair, the assertion is a consequence of Corol-
lary 4.6.

Corollary 4.8. Assume s ∈ (−∞, m− 1], K ∈ K(m− s), b ∈ A(m− s), k ∈ [s, m− 1] ∩N(0),
wn = nk, σ(n) = O(n), g is locally bounded, and f is (g, w)-dominated. Then

O(nk) ∩ Sol(E) ⊂ Pol(k) + o(ns).

Proof. Let y ∈ O(nk) ∩ Sol(E). Choose positive constants Q and L such that

σ(n) ≤ Qn and |yn| ≤ Lnk

for large n. Then |yσ(n)| ≤ Lσ(n)k ≤ LQknk. Hence y ◦ σ ∈ O(nk) = O(wn). Therefore
y ∈ O(w, σ) and, by Corollary 4.7, we have y ∈ Pol(m− 1) + o(ns). Choose ϕ ∈ Pol(m− 1)
and z ∈ o(ns) such that y = ϕ + z. Then ϕ = y− z ∈ O(nk) and we obtain ϕ ∈ Pol(k).

Corollary 4.9. Assume k ∈N(0, m− 1), K ∈ K(m− k), b ∈ A(m− k), g is locally bounded, and f
is (g, w)-dominated. Then

O(w, σ) ∩ Sol(E) ⊂ Pol(m− 1) + ∆−ko(1).

Proof. Since (A(m− k), ∆−mo(1)) is an asymptotic m-pair and b ∈ A, we have

∆−kb + ∆−ko(1) = Pol(m− 1) + ∆−ko(1).

Hence the assertion is a consequence of Corollary 4.6.

Corollary 4.10. Assume (A, Z) is an m-pair, K ∈ K(A), b ∈ A, A ⊂ A(1), g is nondecreasing,
σ(n) ≤ n for large n, nm−1 = O(wn), f is (g, w)-dominated, and g is of Bihari type. Then

Sol(E) ⊂ Pol(m− 1) + Z.

Proof. Since ∆−mb + Z = Pol(m− 1) + Z, the assertion is a consequence of Theorem 3.2 (B2).

Corollary 4.11. If (A, Z) is an evanescent m-pair, K ∈ K(A), b ∈ A, and ϕ ∈ Pol(m − 1) is
f -regular, then ϕ ∈ Sol(E) + Z.
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Proof. Note that b ∈ A ⊂ A(m). Let z = (−1)mrmb, and let y = ϕ + z. Then

∆my = ∆m ϕ + ∆mz = 0 + b = b.

Since ϕ is f -regular, there exists a subset U of R and a positive number ε such that

ϕ(N) ⊂ Int(U, ε)

and f |N×U is continuous and bounded. Let µ ∈ (0, ε/2). Since zn = o(1), there exists an
index p such that |zn| ≤ µ for any n ≥ p. Then

(ϕ + z)(N(p)) ⊂ Int(U, µ).

Let

y∗(n) =

{
ϕ(n) for n < p

(ϕ + z)(n) for n ≥ p
, b∗(n) =

{
∆m ϕ(n) for n < p

b(n) for n ≥ p
.

Then y∗ is f -regular and ∆my∗ = b∗. Hence, by Theorem 3.1 (A3), there exists a solution x of
the equation

∆mxn = b∗(n) +
n

∑
k=1

K(n, k) f (k, xσ(k))

such that y∗ ∈ x + Z. Since b∗(n) = bn for n ≥ p, we get x ∈ Sol(E). By the definition of y∗ we
have ϕ + z− y∗ ∈ Fin(p). Hence

ϕ ∈ y∗ − z + Fin(p) ⊂ y∗ + Z ⊂ x + Z + Z = x + Z.

5 Bounded solutions

In this section we apply our main results to investigate the bounded solutions of equation (E).
We say that a function f : N×R → R is locally equibounded if for every t ∈ R there

exists a neighborhood U of t such that f is bounded on N×U. Obviously every bounded
function f : N×R→ R is locally equibounded.

Example 5.1. Let f1(n, t) = t and f2(n, t) = n. Then f1 is continuous, unbounded and
locally equibounded, f2 is continuous but not locally equibounded.

Example 5.2. Assume g1, . . . , gk : R→ R are continuous, α1, . . . , αk ∈ O(1) and let

f (n, t) =
k

∑
i=1

αi(n)gi(t).

Then f is continuous and locally equibounded.

Lemma 5.3. If f is locally equibounded, then O(1) is ( f , σ)-ordinary.

Proof. Let x ∈ O(1). Choose a, b ∈ R such that x(N) ⊂ [a, b]. For any t ∈ [a, b] there exist an
open subset Ut of R and a positive constant Mt such that

| f (n, s)| ≤ Mt

for any s ∈ Ut and any n ∈N. There exists a finite subset {t1, . . . tn} such that

[a, b] ⊂ Ut1 ∪ · · · ∪Utn .

If M = max(Mt1 , . . . Mtn), then | f (k, xσ(k))| ≤ M for any k.
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In the next corollary we identify the set R with the space Pol(0) of constant sequences.

Corollary 5.4. Assume (A, Z) is an m-pair, K ∈ K(A), w ∈ O(1), b = ∆mw, and f is locally
equibounded. Then

O(1) ∩ Sol(E) ⊂ w + R + Z.

Proof. Note that ∆−mb = w + Pol(m− 1). Since the sequence w is bounded, we have

O(1) ∩ ∆−mb = O(1) ∩ (w + Pol(m− 1)) = w + Pol(0) = w + R. (5.1)

By Lemma 5.3 O(1) is ( f , σ)-ordinary. Hence the assertion is a consequence of Theorem 3.1
(A1).

Corollary 5.5. Assume (A, Z) is an evanescent m-pair, K ∈ K(A), w ∈ O(1), b = ∆mw, and f is
continuous and locally equibounded. Then

O(1) ∩ Sol(E) + Z = w + R + Z. (5.2)

Proof. If f is continuous and locally equibounded, then O(1) is f -regular. Hence, using (5.1),
and Theorem 3.1 (A4) we obtain (5.2).

Corollary 5.6. Assume (A, Z) is an evanescent m-pair, K ∈ K(A), w ∈ O(1), b = ∆mw, and f is
continuous and bounded. Then

O(1) ∩ Sol1(E) + Z = O(1) ∩ Sol(E) + Z = w + R + Z. (5.3)

Proof. Since the set O(1) is f -regular, the assertion is a consequence of Corollary 5.5 and
Theorem 3.1 (A5).

Let k ∈N and Z ⊂ SQ. We define

Per(k) = {x ∈ SQ : x is k-periodic}, Val(k) = {x ∈ SQ : card(x(N)) ≤ k}.
Per(k, Z) = Per(k) + Z, Val(k, Z) = Val(k) + Z,

Corollary 5.7. Assume (A, Z) is an evanescent m-pair, K ∈ K(A), k ∈ N, and f is locally equi-
bounded. Then

(1) if ∆−mb ∩ Per(k, Z) 6= ∅, then O(1) ∩ Sol(E) ⊂ Per(k, Z),

(2) if ∆−mb ∩Val(k, Z) 6= ∅, then O(1) ∩ Sol(E) ⊂ Val(k, Z).

Proof. If w ∈ ∆−mb ∩ Per(k, Z), then by Corollary 5.4

O(1) ∩ Sol(E) ⊂ w + R + Z ⊂ Per(k) + Z = Per(k, Z),

and we obtain (1). Analogously we obtain (2).

Corollary 5.8. Assume f is continuous and locally equibounded, (A, Z) is an evanescent m-pair,
K ∈ K(A), and w ∈ ∆−mb. Then

(1) if w ∈ Per(k, Z), then O(1) ∩ Sol(E) + Z = Per(k, Z) ∩ Sol(E) + Z = w + R + Z,

(2) if w ∈ Val(k, Z), then O(1) ∩ Sol(E) + Z = Val(k, Z) ∩ Sol(E) + Z = w + R + Z.
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Proof. Since f is continuous and locally equibounded, the set O(1) is f -regular. Moreover,
since the pair (A, Z) is evanescent, we have Z + O(1) ⊂ O(1). Using Theorem 3.1 (A4) and
(5.1) we have

O(1) ∩ Sol(E) + Z = O(1) ∩ ∆−mb + Z = w + R + Z.

By Corollary 5.7, O(1) ∩ Sol(E) ⊂ Per(k, Z). Hence

O(1) ∩ Sol(E) ⊂ Per(k, Z) ∩ Sol(E).

Since Per(k, Z) ⊂ O(1), we get O(1) ∩ Sol(E) = Per(k, Z) ∩ Sol(E) and we obtain (1). Similarly
we obtain (2).

Corollary 5.9. Assume f is continuous and bounded, (A, Z) is an evanescent m-pair, K ∈ K(A), and
w ∈ ∆−mb. Then

(1) if w ∈ Per(k, Z), then

O(1) ∩ Sol(E) + Z = O(1) ∩ Sol1(E) + Z = Per(k, Z) ∩ Sol(E) + Z

= Per(k, Z) ∩ Sol1(E) + Z = w + R + Z,

(2) if w ∈ Val(k, Z), then

O(1) ∩ Sol(E) + Z = O(1) ∩ Sol1(E) + Z = Val(k, Z) ∩ Sol(E) + Z

= Val(k, Z) ∩ Sol1(E) + Z = w + R + Z.

Proof. By Theorem 3.1 (A5) we have

O(1) ∩ Sol(E) + Z = O(1) ∩ Sol1(E) + Z

and
Per(k, Z) ∩ Sol(E) + Z = Per(k, Z) ∩ Sol1(E) + Z.

Hence (1) is a consequence of Corollary 5.8 (1). Analogously we obtain (2).

6 Remarks

In this section, we present some examples of f -regular sets. These sets are used in Theorem
3.1. Next, we discuss the condition w ◦ σ ∈ O(w) which is important in Theorem 3.2. Fi-
nally, we present some tests that are helpful in verifying whether a given kernel K fulfills the
assumptions of Theorems 3.1 and 3.2.

Remark 6.1. If K ∈ K(m), then, by (2.3), rmK′ ∈ o(1). Hence for any f -regular sequence y
there exists an index p such that y is (K, f , p)-regular.

We say that a subset W of SQ is o(1)-invariant if

o(1) + W ⊂W.

Note that if W is o(1)-invariant and (A, Z) is an evanescent m-pair, then Z + W ⊂W.

Example 6.2. If f is continuous and bounded, then SQ is f -regular and o(1)-invariant. If f is
continuous and locally equibounded, then O(1) is f -regular and o(1)-invariant.
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Example 6.3. If f is continuous and locally equibounded, then the set of all convergent se-
quences x ∈ SQ is f -regular and o(1)-invariant. More generally, the set

{x ∈ SQ : L(x) is finite}

is f -regular and o(1)-invariant.

Example 6.4. Assume U is a uniform neighborhood of a set Y ⊂ R and f is continuous and
bounded on N×U. Then the sets

WL = {y ∈ SQ : L(y) ⊂ Y}, W∞ = {y ∈ SQ : lim y ∈ Y}

are f -regular and o(1)-invariant.

By Lemma 3.6 (3) the condition w ◦ σ ∈ O(w) implies O(w) ⊂ O(w, σ). Moreover, subsets
of O(w, σ) play an important role in Theorem 3.2. Below, we discuss the condition w ◦ σ ∈
O(w).

Example 6.5. If s ∈ (0, ∞), wn = ns, and σ(n) = O(n), then w� 0 and w ◦ σ ∈ O(w).

Justification. Obviously, w � 0. If M is a positive constant such that σ(n) ≤ Mn for any n.
then w(σ(n)) = (σ(n))s ≤ (Mn)s = Mswn. Hence w ◦ σ ∈ O(w).

Example 6.6. If O(wn+1) = O(wn), and the sequence σ(n)− n is bounded, then w ◦ σ ∈ O(w).

Justification. Choose k ∈ N such that |σ(n) − n| ≤ k for any n. Since wn+1 = O(wn), there
exists a constant M > 1 such that |wn+1| ≤ M|wn| for large n. Then

|wn+2| ≤ M|wn+1| ≤ M2|wn|, . . . , |wn+k| ≤ Mk|wn|.

Hence, for any p ∈N(0, k), we have

|wn+p| ≤ Mk|wn|

for large n. Analogously, since wn = O(wn+1), there exists a constant Q > 1 such that for any
p ∈N(0, k), we have

|wn−p| ≤ Qk|wn|

for large n. Now, if L = max(Mk, Qk), then |w(σ(n))| ≤ L|wn| for large n.

Remark 6.7. If s ∈ R and wn = ns, then O(wn+1) = O(wn). Similarly, if λ ∈ (0, ∞) and
wn = λn, then O(wn+1) = O(wn). On the other hand, if wn = nn, then (wn+1) /∈ O(wn).

In our main theorems we assume that (A, Z) is an m-pair and K ∈ K(A). The basic
example of an m-pair is (A(t), o(nm−t)). Hence in our theory, the answer to the following
question is very important: whether for a given kernel K : N ×N → R the relation K ∈
K(A(t)) = K(t) is fulfilled? Below we present some lemmas concerning this problem. These
lemmas are analogous to the classical tests for absolute convergence of series.

For n ∈N let
K∗(n) = n max{|K(n, 1)|, |K(n, 2)|, . . . , |K(n, n)|},

K∗(n) = n min{|K(n, 1)|, |K(n, 2)|, . . . , |K(n, n)|}.

Note that
K∗ ≤ K′ ≤ K∗. (6.1)
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Moreover if |K| is nondecreasing with respect to second variable, then

K∗(n) = n|K(n, 1)|, K∗(n) = n|K(n, n)|

for any n, if |K| is nonincreasing with respect to second variable, then

K∗(n) = n|K(n, n)|, K∗(n) = n|K(n, 1)|

for any n.

Lemma 6.8 (Comparison test 1). Assume a, b, c ∈ SQ, and A is a linear subspace of SQ, such that
O(1)A ⊂ A, and Fin + A ⊂ A. Then

(1) if |bn| ≤ |cn| for large n and c ∈ A, then b ∈ A,

(2) if |bn| ≥ |an| for large n and a /∈ A, then b /∈ A.

Proof. For the proof of (1) see [33, Lemma 3.8]. (2) is a consequence of (1).

Lemma 6.9 (Comparison test 2). Assume A is a linear subspace of SQ, such that

O(1)A ⊂ A, and Fin + A ⊂ A.

Moreover, let L ∈ K(A), c ∈ A, and

K′ ≤ L′ or |K| ≤ |L| or K∗ ≤ |c|.

Then K ∈ K(A).

Proof. The assertion is an easy consequence of Lemma 6.8.

Lemma 6.10 (Logarithmic test). Assume t ∈ [1, ∞),

u∗(n) = −
ln K∗(n)

ln n
, u∗(n) = − ln K∗(n)

ln n
.

Then

(1) if lim inf u∗(n) > t, then K ∈ K(t),

(2) if lim u∗(n) = ∞, then K ∈ K(∞),

(3) if u∗(n) ≤ t for large n, then K /∈ K(t),

(4) if lim sup u∗(n) < t, then K /∈ K(t).

Proof. The assertion is a consequence of (6.1), Lemma 6.8 and [33, Lemma 6.2].

Lemma 6.11 (Raabe’s type test). Assume t ∈ [1, ∞),

u∗(n) = n
(

K∗(n)
K∗(n + 1)

− 1
)

, u∗(n) = n
(

K∗(n)
K∗(n + 1)

− 1
)

.

Then

(1) if lim inf u∗(n) > t, then K ∈ K(t),
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(2) if lim u∗(n) = ∞, then K ∈ K(∞),

(3) if u∗(n) ≤ t for large n, then K /∈ K(t),

(4) if lim sup u∗(n) < t, then K /∈ K(t).

Proof. The assertion is a consequence of (6.1), Lemma 6.8 and [33, Lemma 6.3].

Lemma 6.12 (Schlömilch’s type test). Assume t ∈ [1, ∞),

u∗(n) = n ln
K∗(n)

K∗(n + 1)
, u∗(n) = n ln

K∗(n)
K∗(n + 1)

Then

(1) if lim inf u∗(n) > t, then K ∈ K(t),

(2) if lim u∗(n) = ∞, then K ∈ K(∞),

(3) if u∗(n) ≤ t for large n, then K /∈ K(t),

(4) if lim sup u∗(n) < t, then K /∈ K(t).

Proof. The assertion is a consequence of (6.1), Lemma 6.8 and [33, Lemma 6.4].

Lemma 6.13 (Gauss’s type test). Let t ∈ [1, ∞), λ, µ ∈ R, s ∈ (−∞,−1), and

K∗(n)
K∗(n + 1)

= 1 +
λ

n
+ O(ns),

K∗(n)
K∗(n + 1)

= 1 +
µ

n
+ O(ns).

Then

(a) if µ > t, then K ∈ K(t),

(b) if λ ≤ t, then K /∈ K(t).

Proof. The assertion is a consequence of (6.1), Lemma 6.8 and [33, Lemma 6.5].

Lemma 6.14 (Bertrand’s type test). Assume t ∈ [1, ∞) and

K∗(n)
K∗(n + 1)

= 1 +
t
n
+

λn

n ln n
,

K∗(n)
K∗(n + 1)

= 1 +
t
n
+

µn

n ln n
.

Then

(1) if lim inf µn > 1, then K ∈ K(t),

(2) if λn ≤ 1 for large n, then K /∈ K(t),

(3) if lim sup λn < 1, then K /∈ K(t).

Proof. The assertion is a consequence of (6.1), Lemma 6.8 and [33, Lemma 6.7].
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7 Examples of applications

If the kernel K of equation (E) satisfies some additional conditions, then from Theorem 3.1 we
can obtain many interesting results. Some of them are presented below.

Corollary 7.1. Assume x ∈ Sol(E) is ( f , σ)-ordinary, y ∈ ∆−mb is f -regular,

s ∈ (−∞,−m), and lim sup
n→∞

n−s
n

∑
k=1
|K(n, k)| < ∞. (7.1)

Then
x ∈ ∆−mb + O(nm+s) and y ∈ Sol(E) + O(nm+s). (7.2)

Proof. By (7.1), K′ = O(ns). Using Example 2.6 and Theorem 3.1 (A2) and (A3) we obtain
(7.2).

Corollary 7.2. Assume x ∈ Sol(E) is ( f , σ)-ordinary, y ∈ ∆−mb is f -regular,

lim sup
n→∞

n

√
n

∑
k=1
|K(n, k)| < λ < 1. (7.3)

Then
x ∈ ∆−mb + o(λn) and y ∈ Sol(E) + o(λn). (7.4)

Proof. By (7.3), K′ = o(λn). Using Example 2.7 and Theorem 3.1 (A2) and (A3) we obtain
(7.4).

Corollary 7.3. Assume x ∈ Sol(E) is ( f , σ)-ordinary, y ∈ ∆−mb is f -regular,

s ∈ (−∞, 0] and lim inf
n→∞

n
(

K′n
K′n+1

− 1
)
> m− s. (7.5)

Then
x ∈ ∆−mb + o(ns) and y ∈ Sol(E) + o(ns). (7.6)

Proof. Using (7.5) and [33, Lemma 6.3], we get K′ ∈ A(m− s). Using Example 2.6 and Theo-
rem 3.1 (A2) and (A3) we obtain (7.6).

Corollary 7.4. Assume x ∈ Sol(E) is ( f , σ)-ordinary, y ∈ ∆−mb is f -regular,

s ∈ (−∞, 0], t > m− s and K(n, k) =
(n− 1)!

k(t + 1)(t + 2) · · · (t + n)
.

Then
x ∈ ∆−mb + o(ns) and y ∈ Sol(E) + o(ns). (7.7)

Proof. For any n we have

K∗(n) =
n!

(t + 1)(t + 2) · · · (t + n)
.

Hence

n
(

K∗(n)
K∗(n + 1)

− 1
)
= n

(
t + n + 1

n + 1
− 1
)
=

nt
n + 1

→ t > m− s.

By Lemma 6.11 we have K ∈ K(m− s). Using Example 2.6 and Theorem 3.1 (A2) and (A3) we
obtain (7.7).
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Corollary 7.5. Assume f (n, t) = et, s ∈ [1, ∞),

W = {y ∈ SQ : y(N) ⊂ (−∞, 1)}, U = {y ∈ SQ : lim sup
n→∞

yn < ∞},

and
∞

∑
n=3

nm+s−1
n

∑
k=1
|K(n, k)| ≤ −1 + ln 7

7
.

Then
W ∩ ∆−mb ⊂ Sol3(E) + A(s) and U ∩ ∆−mb ⊂ Sol(E) + A(s).

Proof. By assumption K′ ∈ A(m + s). Obviously, the set U is f -regular. Using Example 2.6
and Theorem 3.1 (A4) we obtain

U ∩ ∆−mb ⊂ Sol(E) + A(s).

Note that

rm
3 K′ ≤

∞

∑
n=3

nm−1K′n ≤
∞

∑
n=3

nm+s−1
n

∑
k=1
|K(n, k)| ≤ −1 + ln 7

7
.

Assume y ∈W and n ∈N. Then

f (n, yn + 7rm
3 K′) = exp(yn + 7rm

3 K′) ≤ exp(1− 1 + ln 7) = 7.

Hence any y ∈W is (K, f , 3)-regular and, by Theorem 3.1 (A1), we have

W ∩ ∆−mb ⊂ Sol3(E) + A(s).

Corollary 7.6. Assume x ∈ Sol(E) is ( f , σ)-ordinary, y ∈ ∆−mb is f -regular, and

K(n, k) = k2−
√

n

for any n ∈N and k ∈N(1, n). Then

x ∈ ∆−mb + A(∞) and y ∈ Sol(E) + A(∞). (7.8)

Proof. For any n we have K∗(n) = n22−
√

n. Hence

n ln
K∗(n)

K∗(n + 1)
= n ln

((
n

n + 1

)2

2(
√

n+1−
√

n)

)
= 2 ln

(
n

n + 1

)n

+ n
(√

n + 1−
√

n
)

ln 2→ ∞.

By Lemma 6.12 we have K ∈ K(∞). Using Example 2.7 and Theorem 3.1 (A2) and (A3) we
obtain (7.8).

Corollary 7.7. Assume u ∈ O(1), f (n, t) = e−t + un, λ ∈ (e−1, 1),

bn =
n!
nn , and K(n, k) =

(
k

n + 1

)kn

for any n ∈ N and k ∈ N(1, n). Then for any ϕ ∈ Pol(m− 1) such that limn→∞ ϕ(n) = ∞ there
exists a solution x of (E) such that

xn = ϕ(n) + o(λn).
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Proof. Note that

K∗(n) = n
(

n
n + 1

)n2

, n
√

K∗(n) = n
√

n
(

n
n + 1

)n

→ 1
e
< λ,

bn+1

bn
=

(
n

n + 1

)n

→ 1
e
< λ.

Hence K′ ∈ o(λn) and b ∈ o(λn). Moreover, ϕ is f -regular and o(λn) is an evanescent m-space.
Therefore, the assertion follows from Corollary 4.11.
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