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Abstract: The paper describes an in-depth and systematic analysis of a pseudo direct drive 

permanent magnet machine in closed loop control. Due to the torque being transmitted 

from the high-speed rotor (HSR) to the low-speed rotor (LSR), through a relatively low 

stiffness magnetic gear with non-linear characteristics, speed oscillations appear in the drive 

output with a conventional proportional integral (PI) controller. Therefore two candidate 

controllers have been proposed as an alternative to the PI control and all controllers have 

been optimally tuned with a genetic algorithm against a defined criterion. Furthermore, 

closed loop models are established in the complex frequency domain to determine the system 

damping and the cause of the oscillations. Consequently, the best controller structure that 

improves the dynamic behaviour of the system in terms of speed tracking and disturbance 

rejection could be identified, based on the frequency domain analysis. Experimental results 

are presented to validate the analysis and the proposed control technique. 

Keywords: permanent magnet machines; electric drives; genetic algorithm; stability;  

state feedback controller; pseudo direct drive; PDD 

 

1. Introduction 

High torque, low speed machines have increasingly been used in wind turbines, ship propulsion 

systems and traction applications. Various designs and concepts have been employed to achieve high 
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torque density or air-gap shear stress [1]. It has been shown that a Pseudo Direct Drive (PDD), realised 

by mechanical and magnetic integration of a permanent magnet (PM) machine and a magnetic gear, 

can achieve torque densities in excess of 60 kNm/m3 [2]. In addition, for large PDDs a torque density 

of 110 kNm/m3 is attainable as reported in [1] with a power factor greater than 0.9, with low cogging 

torque and natural air-cooling. In contrast Vernier and Transverse flux PM machines (TFM) [3–5] may 

exhibit higher torque densities at the expense of an inherently low power factor. Indeed, the power 

factor of a TFM may be lower than 0.5, resulting in very large converter volt-ampere (VA) ratings and 

requiring significant converter overhead.  
The PDD alleviates the problems associated with mechanical gearboxes, such as acoustic noise, 

vibrations, the need for lubrication and maintenance, as well as low reliability due to wear and tear [2]. 

Figures 1 and 2 show the schematic of a PDD design. The electromagnetic torque is produced by 

the interaction of the 2 pole-pair permanent magnets (݄  = 2) on the high-speed rotor (HSR) with the 

currents in the stator winding. This torque is transmitted to the low-speed rotor (LSR), with a gear ratio ݎܩ  = ݄/ݏ݊   , by the interaction of the 21 pole-pair (݈  = 21) stationary permanent magnets and the 

21st space harmonic, which results from the modulation of the 2 pole-pair magnetic field on the HSR 

by the 23 (݊  .ferromagnetic pole-pieces of the LSR (23 = ݏ

Figure 1. Radial cross-section of the Pseudo Direct Drive (PDD). 

 

Since the torque is transmitted to the load through a relatively low stiffness magnetic gear, speed 

and position oscillations are present with conventional PI speed control and better control strategies are 

required. In addition, although the load is connected to the LSR, accurate position information about 

the HSR is also required for electronic commutation purposes. Inferring one rotor speed/position to 

another through the gear ratio alone is not possible due to the factor that the angular displacement 

between the two rotors varies with transmitted torque. 

Furthermore, overload protection is a significant advantage of a PDD, since when subjected to a 

load torque greater than its pull-out torque, it should harmlessly slip. However, this may lead to a 

pulsating torque which can induce noise and vibration. Although this may not result in any physical 

damage, the time taken for the machine to recover and resume normal operation after the transient 

overload torque disappears, will depend on how fast the slip can be detected and how the control 

strategy adapt when the transient overload torque occurs [6]. 
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Figure 2. Axial cross-section of the PDD. 

 

The servo control which includes two inertias connected by a compliant mechanical coupling has 

been studied in [7–9]. It is shown that the ratio of load inertia to motor inertia directly affects the 

performance of the controller in terms of suppressing resonance oscillations in the load. A drive train 

composed of a motor and load connected through a 1:1 magnetic coupling, where the inertia ratio is 

close to unity, has been reported in [10,11]. Since the magnetic gear is far more (mechanically) flexible 

than a classical mechanical coupling and has medium torsional stiffness, an integral proportional (IP) 

controller is employed to reduce the speed oscillations on the load. In contrast the PDD drive train 

contains not only a low stiffness coupling but also a gearing mechanism which has a significant 

influence on the damping and the inertia ratio between the two rotors. 

Previous work on the PDD control has been reported by Wang and Atallah in [12] where two types 

of controllers, a PI and a state feedback (SFBK) controller, have been studied. It has been shown that, 

due to the magnetic gearing and lack of damping, torsional oscillation will result with the PI controller, 

causing abrupt speed and position transients, increased copper loss in the motor, and poor overall 

performance. The SFBK tuned according to [13] has improved the performance, but not to the point 

where the oscillations are completely removed. An observer based SFBK controller has been applied 

to the PDD control in [14,15]. The feedback gains have been tuned using Genetic Algorithm (GA) [16] 

to satisfy the integral time multiplied by absolute error (ITAE) criterion given by Equation (1).  

This performance index has the advantages of producing smaller overshoots and less oscillation than 

the integral of square error (ISE) or integral of the absolute error (IAE). It is shown that the proposed 

control technique has significantly reduced torsional oscillations in the output. ܧܣܶܫ = න |(ݐ)݁|ݐ
ܶ

0

 (1) ݐ݀

This paper performs complex frequency domain analyses of the PDD in closed loop. The state-space 

equations of the closed loop system with three candidate controllers, viz., PI, IP and SFBK are 

established and the resulting eigenvalues are computed and presented in the s-plane. A relationship 
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between the poles/zeros and the system states is identified, and the effect of the controller structure  

on the system damping is quantified. This provides an in-depth understanding of how the controller 

structure and control/load parameters influence the system damping. An experimental rig has been 

developed and the simulated results were validated through systematic experimental tests. 

2. Modelling of Pseudo Direct Drive 

In a PDD, the HSR and LSR are magnetically coupled and the mechanical load is applied to  

the LSR. The torque is transmitted from the HSR to the LSR. The equations that govern their motion 

are as follows ݄݀߱݀ݐ =
ܬ݄݁ܶ െ ܶ݉ ܬ݄ݔܽ ݎܩ (݁ߠ)݊݅ݏ െ ܬ݄݄ܤ ݄߱ െ ܬ݄݀ܭ ݄݄߱)  െ ݐ݀߱݀ (2) (߱ݏ݊ =
ܶ݉ ܬݔܽ (݁ߠ)݊݅ݏ െ ܬܤ ܱ߱ +

ܬݎܩ݀ܭ ݄݄߱) െ (߱ݏ݊ െ ܬܮܶ  (3) 

where ߱ ݄ , ܬ݄ ݄ܤ,  are the angular speed, the moment of inertia and the viscous damping of the HSR 

respectively, ߱  , ܤ,ܬ  are the angular speed, the combined inertia of the LSR ܬ  and the load ܮܬ, and 

the combined damping coefficient of the LSR and the load respectively. ݎܩ = ݏ݊ Τ݄  is the magnetic 

gear ratio, where ݄  is the number of pole-pairs on the HSR and ݊ݏ  is the number of ferromagnetic 

pole pieces on the LSR. ܶܮ  is the load torque, ݉ܶ ݔܽ  is the pull-out torque reflected to the LSR and ܶ݁  is 
the electromagnetic torque produced by the q-axis current  ݅ݍ , when a surface-mounted magnet 

topology is employed for the HSR, and is given by ܶ݁ = ݍ݅ݐܭ , ݐܭ =
3

2
݄   ߮݉  (4) 

The stator flux-linkage is ߮ ݉ . The electromagnetic torque is transmitted to the LSR via an 

equivalent magnetic spring with a stiffness given with respect to LSR as ݏ݁ܭ =
ߠ߲߲ܶ = ݏ݊ × ܶ݉ ݔܽ  (5) (݁ߠ)༌ݏܿ

The referred angel ݁ߠ  is defined as the angular displacement between the HSR and the LSR,  

given by ݁ߠ = ݄ߠ݄ െ ߠݏ݊  (6) 

The angular positions of the HSR and LSR are given by ݄ߠ  and ߠ  respectively. From Equation (5) 

it can be shown that the system is stable when the stiffness ݏ݁ܭ  is positive, i.e., only when ݁ߠ  is within 
the range 2݊ߨ െ ߨ

2
> ݁ߠ > ݊ߨ2 +

ߨ
2
, ݊  is an integer number. 

The equivalent inertia of the HSR with the magnetic gear seen by the LSR is obtained by ݁ܬ = 2ݎܩ ܬ݄  (7) 

The damping coefficient ݀ܭ  is associated with the referred angular speed 
ݐ݀݁ߠ݀  between the HSR and 

LSR due to eddy current loss in the HSR and iron loss in the LSR. Since the damping effect, ݀ܭ  is very 

small it is assumed that ݀ܭ = 0. The nonlinear transfer function block diagram of the PDD is shown in 

Figure 3. The linearized representation of the PDD transfer function is shown in Figure 3. 



Machines 2014, 2 162 
 

 

Figure 3. The transfer function block diagram 

 

The transfer function of the mechanical system in Figure 3 becomes [12] ߱(ݏ)ݎܶ(ݏ)ݎ
=  

2ݏ + ܬ2݁ܽ߱ 2ݏ)ݏ + ߱݊2)
, ߱ܽ = ඨܬݏ݁ܭ  

(ݏ)ݎܶ(ݏ)߱
=  

ܬ݁ܽ߱ 2ݏ)ݏ + ߱݊2)
,߱݊ = ߱ܽඨ1 +

ܬ݁ܬ  

(8) 

The un-damped natural frequencies ߱݊  and ߱ ܽ  of the pole and zero pairs in Equation (8) are 

referred to as the resonant and anti-resonant frequencies [17]. As can be seen, both transfer functions 

contain an un-damped mode, and hence oscillation may occur if this mode is not adequately damped. 
With  ݁ܬ ب ݊߱ ,ܬ = ߱ܽ , oscillations occur on the LSR at the resonant frequency ߱݊  but are filtered by 

the relatively large equivalent inertia seen by the HSR. With   ݁ܬ ا ݊߱ the resonant frequency given by ,ܬ ൎ ඥݏ݁ܭ Τܬ݁   is dictated by the equivalent inertia and the equivalent stiffness. 

Table 1. PDD parameters. ݄ܬ (݇݃݉2) 3.8 × 10െ3 2.5 (2݉݃݇)ܬ × 10െ3 0.59 (ܾܹ)݉߮ 2 (ߗ)ܴ 0.28 (2݉݃݇)ܮܬ ܶ݉ ݔܽ 32.6 (ܪ)݀ܮ 135 (݉ܰ) × 10െ3 32.6 (ܪ)ݍܮ × 10െ3 1.0 (݀ܽݎ/ݏ݉ܰ)݄ܤ × 10െ4 2.0 (݀ܽݎ/ݏ݉ܰ)ܤ × 10െ4 0.5 (݀ܽݎ/ݏ݉ܰ)݀ܭ × 10െ4 ߱ݔܽ݉ ݔ݄ܽ݉߱ 30 (ݏ/݀ܽݎ) ܷܿ݀ 345 (ݏ/݀ܽݎ) ݍ݅ 435 (ܸ) ݔܽ݉   9 (ܣ)

The electrical dynamics of the PDD is similar to that of the conventional surface mounted brushless 

permanent magnet machine. They are given in term of the d-q axis currents by 

  ࢋࢀ ࢚
-

+
-

+

 ࢎ ࢎ࣓

 ࢙

࢙ࢎ  

࢙ 

 ࡸࢀ

-
+

࢙ࡶ ࣓ +  
࢙ࢎࡶ +  (ࢋࣂ)࢙.࢞ࢇࢀ ࢎ
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ݐ݀݀݅݀ = െܴ݀ܮ ݅݀ +
ݍܮ݁߱ ݀ܮݍ݅ +

݀ܮ݀ݒ ݐ݀ݍ݅݀  = െܴݍܮ ݍ݅ െ߱݁݀ܮ ݍܮ݀݅ +
ݍݒ െ ݍܮ݄߱݁ܭ  

(9) 

݀ܮ (10)  and ݍܮ  are the d- and q-axis motor inductances, respectively; ܴ  is the motor winding resistance per 

phase; ݐܭ  and  ݁ܭ  are the motor torque and back-emf constants, respectively. ݀ݒ  and ݍݒ  are d- and  

q-axis voltages, respectively, and ߱݁ =  × ݄߱ is the electric angular frequency of the PDD. The 

parameters of the PDD are given in Table 1. 

3. Complex Frequency Domain Analysis of the Pseudo Direct Drive 

Figure 4 represents the PDD under a generic speed controller. The field oriented control is used to 

control the currents in the d-q axis reference frame. The gains of the PI current controllers for ݅݀   
and ݅ݍ  are designed for a bandwidth of 400 Hz. The generic speed controller represents one of the 

following controllers: PI, IP or SFBK controller. A derivation of the system states in closed loop is 

obtained for each controller structure. The gains of the three speed controllers have been tuned with 

GA in Simulink to satisfy the ITAE performance index defined in [15] against a complete closed-loop 

model comprised of the PDD dynamics, a pulse width modulation (PWM) block, the current 

controllers and the speed controller. The set of gains obtained by GA are used for the frequency 

domain analysis and time domain simulations as well as for validation of the system in real  

time implementation. 

Figure 4. Schematic of the Pseudo Direct Drive under a speed controller. 

 

The SFBK structure described in Figure 5 represents one of the generic controllers of the system in 

Figure 4, where the feedback signal ߱  is taken from the observer. The controller has four proportional 

gains and one integral gain. Three proportional gains are related to the feedback of the system states, 

viz., the speed of the HSR, ݄߱ , the speed of the LSR, ߱  and the referred load angle ݁ߠ . The fourth 

gain ݏܭ  is employed to correct any deviation from synchronization that may occur in the speeds of the 
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two rotors. The gains obtained by GA tuning are given in Table 2, full details of GA tuning and 

implementation of this system is provided in [14]. 

Table 2. Gains of the implemented controllers. 

Proportional Gain(s) 

PI ܭ = 0.8386 

IP ܭ = 0.3469 

 

SFBK 

݄߱ܭ = ߱ܭ 1.765 = ݁ߠܭ 1.699  = ݏܭ 9.7856   = 0.1122 

Integral Gain ITAE 
PI ݅ܭ = 6.863 2.03 

IP ݅ܭ = 235.01 1.80 

SFBK ݅ܭ = 5132.8 1.67 

Current Controller Gains ݍܭ = ݀ܭ  = ݍ݅ܭ 81.93   = ݀݅ܭ  = 5026.5 

Figure 5. State Feedback Controller Structure. 

 

In the frequency domain analysis, the observer dynamics are neglected, as the estimation error of 

the observer is very small compared to direct measurements. The observer has been linearised around 

the rated torque of 100 Nm resulting in ݁ߠ ൎ 0.8 rad. The design of the observer and sensitivity 

analysis has been reported in [15].   

The closed-loop system may be represented as follows ࢄሶ = ݂(ܺ,ܷ) (11) 

where X and U are the vectors of the state variables and inputs, respectively, and ݂(ࢁ,ࢄ) is the vector 

of the non-linear functions of X and U [18]. They are given by ࢄ = ൣ݅݀ ݍ݅    ܦݔ    ܳݔ    ݄߱   ݔ    ߱    ܷ ,൧ܶ݁ߠ    = ߱݀   

+

+

 ࢘ࡳ+

+
+

+          -

 ࣓ ࢙ࡷ

 ࢋࣂ

Observerࢋࣂࡷ 

 ࢎ࣓ࡷ

 ࣓ࡷ

࢙ࡷ ࢊ࣓  

 

-
+-

+

 ࢎ࣓ ࢋࢀ

 ࢇࢍࡿ  ࢚࢘
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The components of the vector function ݂(ࢄ,ࢁ) for the SFBK controller are given in Equation (12), 
where ܦݔ and ܳݔ are the internal states of the d- and q-axis current PI controllers, respectively; ݔ is the 

internal state of the SFBK speed controller. ݀ܭ  and ݍܭ  are proportional gains of the d- and q-axis 

current controller, respectively; ݀݅ܭ  and ݍ݅ܭ  are the integral gains of the d- and q-axis current 

controllers, respectively. For a given value of the inputs ߱݀  it can be shown that in steady state, the 
operating points of the state variables are obtained as ݅݀0 = 0, 0ܦݔ = 0, ݄߱0 = ߱݀ , 0ݔ =  the DC ,0ݍ݅

supply voltage, ܷ݀ܿ , only varies over a small range so the ratio ܷ݀ܿ Τכܷܿ݀  ൎ  1. ݅݀כ  is set to zero for 

maximum torque per Ampere operation since flux weakening is not required. 

�
1݂ = െܴ݀ܮ ݅݀ െ ݀ܮ݀ܭ ݅݀ +

݀ܮ1 ܦݔ
2݂ = െܴݍܮ ݍ݅ െ ݍܮݍܭ ݍ݅ +

ݍܮ1 ܳݔ +
ݍܮݍܭ ݔ െ ቆݍܮ݄߱ܭݍܭ +

ݍܮ݄݉߰ ቇ݄߱ െ ݍܮݍܭ߱ܭ ߱ െ ߠܭ ݍܮݍܭ݁ ݁ߠ
3݂ = െ݀݅ܭ ݅݀

4݂ = െݍ݅ܭ ݍ݅ + ݍ݅ܭݔ െ ݄߱ݍ݅ܭ݄߱ܭ െ ߱ݍ݅ܭ߱ܭ െ ߠܭ ݁ߠݍ݅ܭ݁
5݂ = ݅ܭ ݎܩ݀߱ െ ݄߱ݏܭ݅ܭ + ߱ݎܩݏܭ݅ܭ െ ߱݅ܭ

6݂ =
ܬ݄݁ܶ െ ܶ݉ ܬ݄ݔܽ ݎܩ (݁ߠ)݊݅ݏ

7݂ =
ܶ݉ ܬݔܽ (݁ߠ)݊݅ݏ െ ܬܮܶ

8݂ = ݄݄߱ െ ߱ݏ݊ ۙۖۖ
ۖۖۖ
ۖۘ
ۖۖۖ
ۖۖۖ
ۗ

 (12) 

The state-space equation in Equation (11) can be linearized at the steady-state operating point  

(X0, U0), and the Jacobian matrix of Equation (12) is obtained as follows 

 = �߲݂(ܺ,ܷ)߲ܺ ቤܺ=ܺ0ܷ=ܷ0

                       = �߲݂(ܺ,ܷ)߲ܷ ቤܺ=ܺ0ܷ=ܷ0

 

The matrices A, B, C and D are given by 

 =

ێێۏ
ێێێ
ێێێ
ێێێ
െܴۍێ + ݀ܮ݀ܭ 0

݀ܮ1 0 0 0 0 0

0 െܴ + ݍܮݍܭ 0 
ݍܮ1 ݍܮݍܭ െ߱ܭݍܭΰ + ݍܮΰ߰݉  െݍܮ߱ܭݍܭ െߠܭݍܭ ݀݅ܭെݍܮ݁ 0 0 0 0 0 0 0

0 െݍ݅ܭ 0 0 ݍ݅ܭ െ߱ܭݍ݅ܭΰ െ߱ܭݍ݅ܭ െ݁ߠܭݍ݅ܭ
0 0 0 0 0 െݏܭ݅ܭ െ݅ܭ + ݎܩݏܭ݅ܭ 0

0
ΰܬݐܭ 0 0 0 0 0 െ ܶ݉ ݎܩΰܬݔܽ (݁ߠ)ݏܿ

0 0 0 0 0 0 0
ܶ݉ ܬݔܽ (݁ߠ)ݏܿ

0 0 0 0 0 ΰ െ݊ݏ 0 ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ېۑ
 (13) 
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 =

ێێۏ
ێێێ
ۍێ 0

0

0

ܭ0
0݅

0

0 ۑۑے
ۑۑۑ
ېۑ

                        =

ێێۏ
ێێێ
00ۍێ
0

0

0

1

0

ۑۑے0
ۑۑۑ
ܶېۑ

ࡰ                 = [0] 

The state-space equations of the drive system with the IP and PI structures shown in Figures 6 and 7 

are obtained by replacing the generic controller of the system in Figure 4. The speed and position 

feedback signals are directly measured from a resolver mounted on the HSR. 

Figure 6. Integral and proportional controller structure. 

 

Figure 7. Proportional and integral controller structure. 

 

A detailed derivation and the resulting equations of the PI and IP controllers are given in [19]. 

From the linearized state-space equations, closed-loop transfer functions between the speed demand 

and speed output can be obtained and their poles and zeros are explicitly plotted in Figure 8, where  

the poles are marked in “x” and zeros in “o”. The overlapping poles on the negative real axis close to 

the origin are related to the electric time constant of the d- and q- axis currents. Their effects are 

cancelled by two zeros through the pole/zero cancellation in the current controller design. The complex 

conjugate poles-pair with great negative real is associated with the interaction of the SFBK control 

with the mechanical dynamics of the PDD. However, the dominant pole-pair of the closed loop system 

is the complex conjugate pole-pair with far less negative real and the imaginary close to the torsional 

resonant frequency given in Equation (8). The complex pair of zeros, representing the anti-resonant 

frequency, is very close to the dominant poles. The load torque, motor/load inertia, gear ratio, 

magnetic damping and the stiffness of the magnetic gear influence the location of the dominant  

pole-pair and hence the dynamic behaviour of the closed loop drive system. 
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Figure 8. Poles and zeros distribution for (ݏ)1ܩ =
݄߱߱݀ . 

 

Figure 9 shows the poles/zeros of the transfer function (ݏ)2ܩ , where the distribution is similar to (ݏ)1ܩ in Figure 8 except the zeros at the anti-resonant frequency is not present in (ݏ)2ܩ in accordance 

with Equation (8). Pole-zero distributions associated with IP and PI controllers have a similar pattern 

and therefore not plotted. Their dominant poles are also associated with the torsional resonance.  

In order to compare the performance of three optimally designed controllers for suppression of  

the torsional oscillation, the dominant poles which result from the three controllers are plotted together 

in the same s-plane. 

Figure 9. Poles and zeros distribution for (ݏ)2ܩ =
݀߱߱ . 

 

Figure 10 shows the dominant poles of the three controllers in closed loop. It is evident that much 

more damping has been achieved with the SFBK controller. By using a well-tuned controller the poles 

are placed such that the ITAE is minimised, hence optimum damping and bandwidth is achieved.  

This also confirms the time domain simulation results that show the system having achieved more 

damping by reducing the oscillations in the output. 

In contrast, the PI and IP control structure results in the dominant poles being close to the imaginary 

axis and hence much lower damping. The IP can only achieve a maximum damping of ߞ = 0.13 and 

the PI exhibit very poor damping of  ߞ = 0.023, being an order of magnitude lower in comparison with 

the damping obtained by the SFBK controller. Hence both the PI and IP structures are not capable of 

improving the damping of the dominant pole-pair associated with torsional resonance in the PDD 

dynamics as compared to the SFBK. 
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Figure 10. The dominant poles for all controllers. 

 

Figure 11 shows the loci of the dominant pole-pair with increase in the load torque ܶܮ from 0 to  

the maximum load in 3 steps (0 Nm, 50 Nm, 100 Nm). As will be seen, the SFBK control exhibits 

robust performance against the load torque variations as the system damping increases and bandwidth 

is nearly constant with increase in load torque. An increase in the load torque seems to slightly 

increase the system damping under the PI albeit its damping is still significantly low. The load torque 

increase did not affect the system damping under IP controller. However, the bandwidth has been 

reduced by more than 15% with the load torque increase.  

Figure 11. Loci of dominant poles with load torque variation for PI, IP and SFBK controllers. 

 

Figure 12 shows the dominant poles of the three controllers when subjected to a load inertia 

variation, where the load to motor inertia ratio ܴ is given by ܴ =  
ܬ݁ܬ  (14) 

By changing the load inertia in four steps, ܴ varies from 0.25, 0.56, 1 to 2. It can be seen that with 

the PI control, both the system damping and control bandwidth decrease with decrease in the inertia 

ratio. The damping and bandwidth are still very poor even when the ratio is increased to ܴ =  2.  

The dominant poles of the closed loop system under the IP control show a high level of sensitivity 

to the inertia variation, and any decrease in ܴ  results in significant reduction in the damping.  

More specifically, the figure shows that the system damping can be reduced by an order of magnitude 

and the bandwidth by more than half when ܴ is varied from 0.56 to 0.125. Also the bandwidth may  

be reduced significantly when ܴ is increased to ܴ =  2 as the two real poles representing the d-q axis 
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currents are pushed further towards the origin reducing the system bandwidth as shown with  

a green arrow. 

Figure 12. Loci of dominant poles with load inertia variation for PI, IP and SFBK controllers. 

 

The SFBK controller is much robust than the other two controllers. It has been seen that the lowest 

damping which results when ܴ = 0.125 is 0.14, is still more than an order of magnitude greater than 

the damping achieved by the PI control, and much greater than that of the IP control. Moreover,  

the SFBK control bandwidth is insensitive to the inertia ratio variations. Therefore, the system with  

the SFBK control exhibits more robustness towards parameter variations.  

4. Experimental Results and Discussion 

The findings of the above analysis have been validated with a specially designed and built test  

rig as shown in Figure 13. The PDD control, including the PI, IP and, the SFBK and observer, is 

implemented in a dSPACE real-time hardware platform at sampling frequency of 10 kHz with PWM 

of the drive machine set at 8 kHz. The resulting torque command is fed to a commercial drive in torque 

control mode. The PDD operates in speed control mode and is loaded by the PM machine in torque 

control mode. The PM load machine is coupled to the PDD via a 10:1 inline gear box in order to 

provide sufficient load torque for the PDD operation. The speed/position of the HSR is measured with 

a resolver, and an encoder is placed on the LSR for the purpose of monitoring its speed/position only. 

The load torque is inferred from the current in the load machine and the relationship between the 

current and the torque has been determined using torque transducer. 

Figure 13. The Pseudo Direct Drive test Rig. 
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To test the speed response with one of the controllers PI, IP, and SFBK, the LSR of the PDD is 

accelerated from standstill to 100 rpm, and at 2 s a load torque of 100 Nm is applied by the load 

machine for duration of 3 s. Simulated and experimental results are shown in Figures 14–16 for the 

three controllers together with the load torque waveform.  

Figure 14 shows the simulation and measured PDD responses under the PI control. It can be seen 

that whilst the simulated and measured speed responses agree very well, undesirable oscillations which 

result from the poor damping in both rotor speeds are very significant. 

Figure 14. PDD speed responses under PI. (a) Simulated; (b) Measured. 

  
(a) (b) 

Figure 15 shows the PDD speed responses under the IP controller, where an improved speed tracking 

and disturbance rejection is achieved in comparison with the PI control. However, oscillations still 

appear when the load is applied or removed. 

Figure 15. PDD responses under IP. (a) Simulated; (b) Measured. 

  
(a) (b) 

Figure 16 shows the response of the PDD under SFBK control, where the controller exhibits good 

disturbance rejection and speed tracking, with no visible oscillations in the output. 

The SFBK is realized using a reduced order observer. Figure 17 shows the measured speed ߱  

against the estimated speed ෝ߱  from the reduced order observer in real time. 

 

0 1 2 3 4 5 6
0

100

160

50

Time (s)

S
pe

ed
 (

rp
m

)

0

100

25

Lo
ad

 T
or

qu
e 

(N
m

)

ω
h
 ÷10

ω
o

Load Torque (Nm)

0 1 2 3 4 5 6
0

100

160

50

Time (s)

S
pe

ed
 (

rp
m

)

0

100

25

Lo
ad

 T
or

qu
e 

(N
m

)

ω
o

Load Torque

ω
h
 ÷10

0 1 2 3 4 5 6
0

100

50

Time (s)

S
pe

ed
 (

rp
m

)

0
25

100

Lo
ad

 T
or

qu
e 

(N
m

)

Load Torque (Nm)

ω
h
 ÷10

ω
o

0 1 2 3 4 5 6
0

100

50

Time (s)

S
pe

ed
 (

rp
m

)

0
25

100

Lo
ad

 T
or

qu
e 

(N
m

)

Load Torque

ω
h
 ÷10ω

o



Machines 2014, 2 171 
 

 

Figure 16. PDD responses under SFBK. (a) Simulated; (b) Measured. 

 
 

(a) (b) 

Figure 17. Measured and estimated LSR and HSR speeds. 

 

Figures 18–20 show the measured d-q axis currents of the three controllers PI, IP and SFBK. 

Figure 18. Measured currents iq  and id  under PI control. 
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Figure 19. Measured currents iq  and id  under IP control. 

 

Figure 20. Measured currents iq  and id  under SFBK control. 

 

Figures 21 and 22 show the PDD operated at ±50 and ±150 rpm with load torque of 100 and 50 Nm 

applied to the LSR from time 2 to 5 s and 10 to 13 s respectively. 

Figure 21. LSR under SFBK control and 100 Nm load torque. 
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Figure 22. LSR under SFBK control and 50 Nm load torque. 

 

5. Conclusions 

The complex frequency domain analysis has provided an in-depth understanding of the behaviour 

of the Pseudo Direct Drive with three candidate controllers. A closed loop model of the PDD under 

three controller structures PI, IP, SFBK has been established and the influence of the control structures 

and parameters, such as the load torque, load inertia on the system damping and the controller 

bandwidth have been investigated. It has been shown that the state feedback controller tuned with a 

genetic algorithm provides the best damping and robustness to parameter changes and uncertainties 

compared to the PI and IP. Experimental results have validated the findings of the theoretical analysis. 
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