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A B S T R A C T

Iron and steel plants producing steel via the blast furnace-basic oxygen furnace (BF-BOF) route constitute among
the largest single point CO2 emitters within the European Union (EU). As the iron ore reduction process in the
blast furnace is fully dependent on carbon mainly supplied by coal and coke, bioenergy is the only renewable
that presents a possibility for their partial substitution. Using the BeWhere model, this work optimised the
mobilization and use of biomass resources within the EU in order to identify the opportunities that bioenergy can
bring to the 30 operating BF-BOF plants.

The results demonstrate competition for the available biomass resources within existing industries and eco-
nomically unappealing prices of the bio-based fuels. A carbon dioxide price of 60 € t−1 is required to substitute
20% of the CO2 emissions from the fossil fuels use, while a price of 140 € t−1 is needed to reach the maximum
potential of 42%. The possibility to use organic wastes to produce hydrochar would not enhance the maximum
emission reduction potential, but it would broaden the available feedstock during the low levels of substitution.

The scope for bioenergy integration is different for each plant and so consideration of its deployment should
be treated individually. Therefore, the EU-ETS (Emission Trading System) may not be the best policy tool for
bioenergy as an emission reduction strategy for the iron and steel industry, as it does not differentiate between
the opportunities across the different steel plants and creates additional costs for the already struggling European
steel industry.

1. Introduction

The European Union (EU) has set climate targets for 2020, 2030 and
2050 to progressively reduce greenhouse gas emissions up to 80%, by
increasing the share of renewable energy in the energy mix and im-
proving energy efficiency [1]. These strict targets, however, require
decreasing reliance on fossil fuels from all sectors – not only for elec-
tricity, heat and transport. For example, around 18% of all coal con-
sumed in the EU, by countries part of the OECD, is used by the in-
dustrial sector – and mostly by iron and steel plants using the blast
furnace-basic oxygen furnace (BF-BOF) route [2]. Substituting the coal
used for the iron ore reduction by renewables is challenging, as the steel
production process from raw materials is mainly dependent on the solid
carbon that the coal-based fuels provide. Biomass is the only renewable
feedstock that can provide such carbon and at the same time could be

upgraded to have similar (although not identical) characteristics to
fossil fuels [3]. The iron and steel industry is therefore contemplating
the viability of the use of biomass [4], from a technical as well as from
the resource availability point of view, as European biomass resources
are greatly limited, and it would be desirable to avoid the emissions
associated with the long-distance transport of biomass.

The present paper undertakes a study that focuses simultaneously
on the availability of biomass resources that are also in demand for
other applications, their cost and potential environmental benefits, as
well as technical restrictions related to fuel switching. Our intent is to
identify the extent to which biomass has the potential to meet the needs
of the different stakeholders involved, i.e. the decision makers from the
iron and steel industry as well as policy makers interested in reducing
the fossil fuel use in the sector.
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Steel Production [5] has already suggested that biomass integration for
European steelmaking “should be seriously considered”, but only when
its sustainable sourcing is ensured. The European project called Ultra-
Low CO2 Steelmaking (ULCOS) [6] has focused on the compatibility of
bio-based reducing agents with conventional as well as emerging iron
and steel making technologies, such as HISARNA or ULCORED [7]. The
different properties of biomass to fossil fuels (such as mechanical
strength, reactivity, chemical composition and heating value) would
allow only partial substitution of coal used across the ironmaking
process of the BF-BOF route [8]. However, pre-processed biomass, for
example in the form of charcoal, could still offset up to 57% of the CO2

emissions occurring on-site [9], which would be a significant reduction
of national emissions for any country that has an operating BF-BOF
steel plant.

The most appealing biomass pre-treatment for iron and steel
making, from the technical point of view, is by slow pyrolysis, as the
resulting charcoal can have properties close to the conventional coal
[10]. Certain plants in Brazil are already fully operating with charcoal
in small blast furnaces [11], but as European blast furnaces are gen-
erally larger in size (both in diameter and height), stricter requirements
on fuel properties take place and charcoal therefore presents opportu-
nities only for partial substitution. Other bio-based products (e.g. wood
pellets) could also contain sufficiently high carbon content [12], but
their characteristics present even lower fossil fuel substitution possibi-
lities than charcoal [13]. On the other hand, those bio-based products
might present better bioenergy opportunities for European steel in-
dustry from the biomass availability, cost and supply aspect.

The biomass availability and its sustainable sourcing for the
European iron and steel making has been among the main arguments
against the technology progression [14]. Currently, 800 kt of charcoal is
yearly consumed in Europe, primarily by the barbecue market, where
70% is already imported mainly from Africa [15]. Substituting 5% of
the fossil fuels used by even a small European size BF-BOF plant of a
production output of 3 million tonnes of crude steel per year would

require roughly 120 kt of charcoal (assuming 1:1 substitution of coal by
charcoal, where 0.8 t of coal is used to produce 1 t of crude steel [16]).
This raises questions about the sufficiency of EU resources for deploy-
ment of this solution. On the other hand, the enhanced forest man-
agement within the EU and commercial forest growth being around
36% bigger than current EU sourced wood consumption [17] might be
able to supply the possible new demand from this industry. Ad-
ditionally, even though charcoal is the most common form of biomass
studied for the iron and steel industry, other progressing technologies
are showing potential to create sufficiently high quality and suitable
fuel from alternative feedstock, such as organic wastes or agricultural
residues. Those include hydrothermal carbonisation (HTC) [18] and
torrefaction [19], which are currently in pilot scale forms.

Studies on biomass availability for integrated steel plants have al-
ready been done for Finland [20], Sweden [21] and France [8]. The
findings indicate that sufficient amount of biomass for their iron and
steel plants could be supplied using their national resources, even
though competition from other industries will take place. The high cost
of the biomass product was identified as the most significant drawback,
where the current CO2 allowance prices do not make the solution
economically feasible. However, steel production from those three
countries accounts for only 15% of the EU-28 steel produced via BF-
BOF route [22]. As the EU Emission Trading System (EU-ETS) [23],
aiming to lower the overall emission in large-scale facilities by 21% by
2020 in comparison to 2005 levels, is imposed on the integrated steel
plants across the whole Europe, evaluation of biomass availability for
other European plants should also be done. The European steel industry
is currently missing the comparison of available resources for different
plants, together with different upgrading technologies. Without this
comparison, strategic use of the limited biomass resources, whilst
maximising the environmental benefit, is hard to achieve. In addition,
the policy tools imposed with motivation to achieve certain environ-
mental targets might not be effective.

The current work aims to enhance the understanding of the viability

Fig. 1. Coal-based fuel flow during the iron-making stage.

Table 1
Substitution possibilities of coal or coke by bio-based fuels.

Process Unit Fossil fuel
substituted

Heating value
(MJkg−1) [31]

CO2 emission factor for fossil
fuel (kg kg−1) [31]

Fuel cost (€GJ−1)
[31]

Possible substitution

Charcoal [29] Wood
pellets

Hydrochar Torrefied fuel

Coke oven (1) Coking coal 31.10 2.89 3.98 2-10% – – –
Sinter Plant (2) Coke Breeze 29.01 3.23 5.35 50-100% – – –
Blast furnace (3) Top charged nut

coke
29.01 3.23 5.35 50-100% – – –

(4) Pulverised coal 33.37 3.19 3.17 0-100% 20% [21] 25% [18] 22.8% [21]
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of bioenergy usage within integrated steel plants around Europe – from
the resource, emission and economic perspective. Optimisation of bio-
mass and waste resources across the EU-28 countries for the 30 cur-
rently operating integrated steel plants was done using the BeWhere

Europe model [24]. Competition for the resources from existing biomass
industries is also considered. The outcome of this study provides an
overview of the availability of biomass resources, the economic appeal
of such a solution for the plant operators as well as the potential
emission savings. Such information is essential for forming supportive
legislation as well as identifying which technologies could bring the
biggest opportunities for the biomass integration into this industry, and
hence their development should be supported. The work focuses on
biomass sourced within the EU and preferably near iron and steel
plants, both to reduce emissions from biomass transport and to facil-
itate control over the sustainability of biomass sourcing.

The next section follows with a background information on the
applied BeWhere model. Findings about the biomass availability, CO2

emission reduction potential and additional costs are then provided in
the results section, followed by a discussion about the feasibility of
bioenergy deployment within European BF-BOF plants and other op-
portunities for steel industry decarbonisation.

Table 2
List of all raw materials, technologies, bio-products and biomass demands which were optimised within the BeWhere Europe model.

RMi Raw materials Techj Technologies BPk Bio-product Dm Demand

1 Stumps 1 Preparation technology for pulp and paper 1 Bio-product for pulp and paper 1 Pulp and Paper
- nonconifer trees (RM 3 to 6) (Tech 1) (BP 1)

2 Stumps 2 Preparation technology for heat and power
plants

2 Bio-product for heat and power
plants

2 Heat and power plants

- conifer trees (RM 1,2, 5 to 10) (Tech 2) (BP 2)
3 Stemwood from final fellings 3 Preparation technology for sawmills 3 Bio-product for sawmills 3 Sawmills

- nonconifer trees (RM 3,4) (Tech 3) (BP 3)
4 Stemwood from final fellings 4 Pyrolysis 4 Charcoal 4 Steel plants (coking coal)

- conifer trees (RM 1 to 10) (Tech 4) (BP 4)
5 Stemwood from thinnings 5 Peletization 5 Wood pellets 5 Steel plants (coke)

- nonconifer trees (RM 1 to 10) (Tech 5) (BP 4)
6 Stemwood from thinnings 6 Hydrothermal carbonization 6 Hydrochar 6 Steel plants (PCI)

- conifer trees (RM 11 to 14) (Tech 6) (BP 4,5,6,7)
7 Logging residues from final

fellings
7 Torrefaction 7 Torrefied fuel

- nonconifer trees (RM 1 to 10) (Tech 7)
8 Logging residues from final

fellings
- conifer trees

9 Logging residues from thinnings
- nonconifer trees

10 Logging residues from thinnings
- conifer trees

11 Green waste
12 Industry food waste
13 Municipal waste
14 Organic sludges

Fig. 2. Modified structure of the BeWhere Europe model, as used for the current work. Details on the possible combinations is given in Table 2.

Table 3
Physical and chemical properties used for the waste-based feedstock.

Green
Waste

Industrial
Food Waste

Municipal
Organic Waste

Common
Sludges

Density (kgm−3)
[37]

148 593 178 721

Energy content
(MJkg−1)

11.9 6.0 [38] 11.4 [38] 10.8 [39]

Cost (€ t−1)a,b 75 85 35 5

a Estimated based on the final cost of the hydrochar product defined by
Wang et al. [18] and assuming the production cost of 75 € t−1 calculated from
Ref. [40].

b Cost of each type of waste is scaled for each country based on its
Purchasing Power Parity [41], where the EU-28 average is taken as the base
value.
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2. Methodology

Biomass use by integrated steel plants can significantly impact
biomass availability and cost. The smallest possible impact can be as-
sumed to occur when all industries across the EU-28 countries use
biomass strategically. One way to define the strategic use of biomass is
to treat the situation as an optimisation problem and the obtained so-
lution as the optimal biomass use across European industries, based on
cost. In this study, the optimal biomass use was defined using the
spatially explicit BeWhere Europemodel. The BeWheremodel, developed
initially at IIASA [24], has been extensively adapted to analyse, for
example, optimal locations for bioenergy production technologies
[25,26], decreasing energy costs [27] or examining feasibility of new
technologies [28] on national as well as continental levels. The flexible
model structure presented opportunities for adopting the model to also
study possibilities for biomass utilisation within integrated steel plants,

which has been the task for this work. In addition, the model had al-
ready incorporated input data related to biomass availability and de-
mand, which allowed detailed evaluation of the potential impact of iron
and steel plants on biomass use in Europe.

2.1. Biomass opportunities within iron and steel making

Modelling substitution of fossil fuels by bio-based fuels within an
integrated steel plant is complex due to multiple possibilities as well as
technical restrictions. Four main coal-based inputs within the iron-
making process are present, which can be fully or partially substituted
by bio-based fuel [20]. Those coal-based inputs are (1) coking coal used
in the coke ovens, (2) coke breeze used at the sinter plant, (3) nut coke
charged at the top of the blast furnace and (4) pulverised coal injected
(PCI) via tuyeres in BF, as shown in Fig. 1. Table 1 summarises the
substitution possibilities of coal or coke by bio-based fuels. The most

Fig. 3. Spatial distribution of the modelled availability of bio-based resources within the EU-28 countries.

Fig. 4. Demand for woody biomass from existing industries in (a) and locations of the integrated steel plants within the EU-28 countries in (b).

H. Mandova et al. Biomass and Bioenergy 115 (2018) 231–243

234



conventional use of biomass within the BF-BOF steelmaking route is in
the form of charcoal [29], which requires upgrading using pyrolysis
process. Certain studies [21,30] also considered PCI substitution by
biomass in the form of wood pellets and torrefied fuel, or by hydrochar
produced via HTC from various organic waste-based feedstocks [18].
All of those fuels, however, allow much smaller substitution possibility,
as Table 1 shows.

2.2. BeWhere Europe for iron and steel

The BeWhere Europe model development, in the present work, for
integrated iron and steel plants followed its previous grid-based struc-
ture, objective function and constraints. In detail, the objective of the
model is to minimise the cost of the studied system. This cost is defined
as

+ ×TotCost TotEmissions CarbonPrice,

where TotCost is the total cost of the system in M€, TotEmissions is the
CO2 emissions from fossil fuel use within integrated steel plants in Mt

and CarbonPrice is the CO2 price1 in € t−1. The total cost TotCost in-
cludes:

• cost of feedstock and its transport,

• cost of biomass upgrading,

• cost of fossil-based reducing agents used within the iron and steel
plants, including a constant price for its transport to the plants.

The core of the model is described in detail in the work done by
Leduc [32] and Wetterlund [33]. The model is developed in the com-
mercial software GAMS [34], uses a CPLEX solver and the studied
problem is expressed via Mixed Integer Linear Programming (MILP).

The variety of feedstock, bio-products and coal substitution oppor-
tunities within integrated steel plants required a structural change of

Fig. 5. Comparison of the considered biomass supply and existing demand from sawmills, pulp and paper mills, heat and power plants on country level.

1 The present authors report the carbon price based on the carbon dioxide mass
equivalent throughout the text. In order to calculate the actual carbon price, the reader
must increase the value by the ratio of 3.67, i.e. the molecular mass of carbon dioxide
divided by the atomic mass of carbon.
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the BeWhere Europe model. The new structure contains a linear flow of
raw materials ( ∈ …RM i, {1, , 14}i ), upgrading technologies
( ∈ …Tech j, {1, , 7}j ), bio-based products ( ∈ …BP k, {1, , 7}k ) to meet the
final demand ( ∈ …D m, {1, , 6}m ) for all industries, and their full list is
given in Table 2. For industries that in the previous model did not re-
quire any upgrading technology (e.g. pulp and paper mills), an artificial
technology – where input is the same as output – was created to follow
the structure of the model. The schematic of modified model is shown
in Fig. 2.

Due to the variety of technical restrictions associated with the use of
different bio-products within the integrated steel plants, specific-steel
industry constraints and relationships had to be defined within the
BeWhere Europe model. In detail, rather than one fuel input, the mod-
ified model considers fossil fuels use and their corresponding substitu-
tion as three different coal-based fuels: coking coal, coke (including
coke breeze) and PCI, where their corresponding limitations for the
specific bio-product substitution have been listed in Table 1. In addi-
tion, as coke consumption comes from the coking coal input, the model
ensures that the substitution happens either for coke or coking coal, as
consideration of both would cause double counting of the off-set
emissions as well as of the energy use. Detailed description of the model
development for the steel industry is provided in the supplementary
material.

2.3. Input data

2.3.1. Spatial input
The area across the EU-28 countries was aggregated according to a

grid of 40 km×40 km resolution. Each grid point contains information
about the type and amount of biomass available as well as the demand
for specific bio-products from each industry. In total, 14 types of bio-
based feedstock were considered. Ten of those can be classified as
conventional woody biomass (stem wood and logging residues from
thinning and final felling, and stumps from final felling, for conifer and
non-conifer wood) giving a total theoretical potential within EU in 2020
of 8.53 EJ year−1, as sourced from the S2BIOM project [35]. In order to
account for the sustainability aspects, the potential for each woody
biomass feedstock was scaled by a factor of 0.7. The other four feed-
stock types were newly included waste types (green waste, industrial
food waste, municipal organic waste and common organic sludges),
collected from the Eurostat database [36].

The physical and chemical properties for the waste-based feedstock
used for the conversion are summarised in Table 3. The spatial dis-
tribution of woody biomass and waste in EU-28 is then presented in
Fig. 3. Details of the input feedstock data for each country – availability
and cost – can be found in the supplementary material.

Feedstock was able to be transported within the country of origin as
well as imported to other EU-28 countries. The transportation cost was
considered independently for each type of feedstock, same as in the
previous studies [26]. Maximum transport distance of 100 km and no
trade opportunities between countries were assumed for the waste-
based materials, to consider only local use of such feedstock. As a result,
the transport costs for the newly added waste-based materials were
rather considered as directly proportional to the distance, i.e. 0.10 €
t−1km−1 for solid waste [42] and 0.34 € t−1km−1 for sludge [43] and
scaled based on the Purchasing Power Parity [41] within the EU-28,
taking the EU-28 average value as a base.

Spatial input also considered data on existing biomass demand for
raw material. In total, annual biomass demand of 1.41 EJ for pulp and
paper mills [44], 1.03 EJ for heat and power producing plants [45] and
1.58 EJ for sawmills [46], split across the corresponding locations, had
to be met before allocating biomass to any of the steel plants. The
spatial locations of the 30 currently operating BF-BOF integrated steel
plants in EU-28 were also considered explicitly. The existing biomass
demand and the location of each integrated steel plant are plotted in
Fig. 4.

The supplementary material provides further details regarding the
split of biomass demand by each industry. Fig. 5 provides an aggregated
comparison of the woody-biomass supply and the existing woody-bio-
mass demand, per country.

2.3.2. Technical input
The work considered substitution of coking coal, coke breeze, nut

Table 4
Heating values and costs of the considered bio-based fuels. Values were scaled
for each country based its Purchasing Power Parity [41], where the listed value
in this table is taken as the EU-28 base value.

Bio-product: Commercialised
technologies

Pilot-scale technologies

Charcoal Wood pellets Hydrochar Torrefied fuel

Upgrading process: Slow
pyrolysis

Pelletisation HTC Torrefaction

LHV (MJkg−1) [47]: 31.6 19.1 22.4 [18] 21.6

Energy retention
efficiency:

0.65 [48] 1 0.6 -
averaged
[49]

0.9

Investment cost
(€ t−1):

72.6
[50]

39.1 [51] 71.4 [40] 55.2 [51]

Operation and
Maintenance
(€ t−1year−1):a

3.63 1.95 3.57 [18] 2.76

Average cost of the
final bio-
product
(€ t−1):b

255 111 120 147

a Estimated as 5% of the investment cost.
b Calculated from data within the model.

Fig. 6. Scenario construction based on commercialised and pilot-scale technologies considered within the study.
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coke and PCI by charcoal, wood pellets, hydrochar and torrefied fuel,
based on substitution possibilities listed in Table 1. Production of each
bio-product attained costs related to feedstock purchase, investments in
the technologies as well as costs for their operation and maintenance.
As the model is working on energy basis, the amount of produced bio-
products was scaled by the corresponding energy retention efficiency
value of each process. Table 4 summarises the used input values for the
bio-products production. Further details on their calculation can be
found in the supplementary material.

2.4. Model assumption

Due to the limited availability of publicly accessible data on existing
process units at each integrated steel plant around Europe, a simplified
approach was used to estimate the possible site-specific biomass sub-
stitution. The study assumed that each of the 30 steel plants contains
on-site coke ovens, sinter plant and a blast furnace using PCI. In addi-
tion, each of those process units was assumed to operate at the same
fossil fuel consumption rate per produced tonne of hot rolled coil, using
values defined within the IEAGHG report Iron and Steel CCS Study
(Techno-Economics Integrated Steel Mill) [31], and as shown in Fig. 1.
Maximum demand for biomass by each steel plant was estimated based
on the annual blast furnace output [52] and maximum potential sub-
stitution listed in Table 1. In reality, production facilities at each in-
tegrated steel plant are different. Therefore, the results obtained in this
study are to compare biomass supply opportunities across different
plants, while the actual opportunities for biomass integration by each
plant need to be evaluated individually.

2.5. Scenario construction

2.5.1. Commercialisation of pilot-scale technologies
Even though this work included four different bio-based fuels with

the potential to substitute coal used within the integrated steel plants,
HTC and torrefaction are notably still technologies in pilot-scale, which
means their bio-products are not yet on the market. To take this fact
into consideration, two different technology scenarios were considered
for the study of biomass use across the EU:

• Scenario I – where only commercialised technologies were included
(i.e., pyrolysis and pelletisation); and

• Scenario II – where commercialised as well as pilot-scale technolo-
gies were considered (i.e., also including torrefaction and HTC).

The differences in the scenarios is demonstrated in Fig. 6. The in-
corporation of this split provides insights to whether support should be
given to progressing technologies, as their commercialisation could
enhance the opportunities for reducing coal consumption of the iron
and steel industry.

2.5.2. Introduction of CO2 price
The BeWhere model finds the cost-optimal utilisation of fossil and

biomass resources in Europe based on minimisation of the total cost.
Various governmental strategies such as carbon price and ETS can
significantly impact the optimal fossil and biomass use, as the monetary
cost of the produced fossil-based emissions increases. This study eval-
uated the impact of the CO2 price on the feasibility of biomass adoption.
CO2 price values up to 200 € t−1 imposed on emissions occurring on-

Fig. 7. Optimal sourcing of biomass by each integrated steel plant, when biomass use is maximised.
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site of the iron and steel plants were considered.

3. Results

3.1. Biomass availability

The results show that the biomass potential across the EU-28
countries is sufficient to meet the domestic biomass demand from pulp
and paper industry, electricity and power generation plants, sawmills
(totalling to 4.01 EJ year−1) as well as the full potential demand for
woody-based feedstock by integrated steel plants (1.30 EJ year−1), the
value of which limited by the technical feasibility related to fossil fuel
substitution by biomass. However, when optimising the whole system
based on cost, integrated steel plants in Belgium, Germany, Spain, Great
Britain, Italy and Netherlands would heavily rely on imported biomass
from other EU countries, as can be observed from Fig. 7.

Despite the surplus of biomass resources across the EU-28 countries,
the integrated steel plants will be competing for the available biomass
resources against each other as well as against already existing biomass
consumers. Fig. 8a and b shows the resulting fossil fuel substitution for
each integrated steel plant, at increasing levels of the CO2 price, for the
two considered technology scenarios. As the figure shows, each plant

reaches the maximum substitution level at a different CO2 price, even
though the cost of substituted fossil fuels was considered the same
across all plants. For example, the French plant FRA2 reaches its
maximum substitution at CO2 price of 90 € t−1 while FRA1 would need
a CO2 price of 110 € t−1 to reach its maximum substitution. Similarly,
the CO2 price required for initial fossil fuel substitution can also be
observed to differ, as is the case for e.g. the German plants.

The introduction of non-commercialised (pilot-scale technologies),
in particular HTC technology, would favour fossil fuel substitution at
lower CO2 prices for most of the plants. Comparing Fig. 8a and b, it can
be observed that 11 plants would substitute fossil fuels at a lower price
when HTC and additional waste-based feedstock is available. However,
Fig. 9 demonstrates that even though HTC can support initial sub-
stitution, charcoal will still be the most-commonly used bio-product.

3.2. CO2 emission reduction potential

Emission reduction at different levels of CO2 price is presented in
Fig. 10. As shown, substitution of fossil fuels by bio-based fuels, in
amounts close to the top end of the technical feasibility, has the po-
tential to be a significant emission reduction strategy for the European
integrated steel plants, if carbon neutrality of the bio-based fuels is

Fig. 8. Amount of fossil fuel substituted for each integrated steel plant as CO2 price increases.
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assumed. The maximum CO2 emission reduction of 91Mt can be
achieved, which is equivalent to 42% of the CO2 emissions occurring
from coal use by the iron and steel sector in Europe. However, such
maximum bioenergy use would occur at scenarios with very high CO2

price, equal to or greater than 140 € t−1. Conversely, emission reduc-
tion of 20% would be economically feasible already at around 60 € t−1.
The results thus demonstrate the need of high CO2 price in order to
achieve any significant bio-product integration, otherwise very limited
opportunities for CO2 emission reduction can occur.

Pilot scale technologies would not enhance the maximum emission
reduction potential using biomass. However, in particular HTC could
slightly increase the opportunities for bioenergy integration at CO2

prices up to 70 € t−1. This increase is equivalent to an additional annual
CO2 reduction of 1Mt. The use of hydrochar and wood pellets would be
expected to also peak at CO2 price 70 € t−1. From 80 € t−1, the use of
higher quality bio-product in the form of charcoal would be favourable
as it allows greater substitution possibilities. Torrefied fuel did not
present any additional opportunities for emission reduction within this
study.

3.3. Additional costs

Integration of biomass, with the aim to reduce CO2 emissions would
be economically feasible only after imposing a relatively high CO2

price, which would in turn significantly impact the production cost of
steel. For example, initial integration of biomass would start at hot
rolled coil production cost of 450 € t−1, which is 5% higher than the
base case scenario, the value of which was defined from the IEAGHG
report [31]. A 20% fossil fuel substitution would result in a production
price of hot rolled coil of 538 € t−1, which is equivalent to a 25% in-
crease. Fig. 11 demonstrates the sensitivity of production costs on the
CO2 price. Overall, the maximum 42% emission reduction using bio-
mass would result in a minimal steel production cost increase by 213 €
t−1, roughly 50% cost increase.

The new demand for biomass from integrated steel plants would
also influence the costs related to feedstock supply for existing in-
dustries. Fig. 12 demonstrates a gradual increase of biomass supply cost
for existing industries up to 5.6% as a result of the additional compe-
tition for woody feedstock from integrated steel plants. Scenario II
would result in slightly lower cost increase when compared to Scenario

Fig. 9. Fossil fuel substitution across integrated steel plants split by bio-based fuels.

Fig. 10. Total emission reduction across European integrated steel plants at different CO2 price values. Non-gradual increase indicates the corresponding oppor-
tunities at the given CO2 price that were identified from the modelling.
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I, which is due to the possibility for integrated steel plants to use bio-
products from waste-based feedstock, hence reducing the woody-bio-
mass demand by steel plants.

4. Discussion

4.1. Feasibility of bioenergy deployment within European integrated steel
plants

The work has evaluated the techno-economic potential to use
European biomass resources to substitute coal used for ironmaking,
while still ensuring the supply for the existing biomass users is pre-
served. The input woody feedstock values considered in this study
(5.97 EJ year−1≡681 hm3, after re-scaling the initial values by sus-
tainability factor 0.7) were very close to raw feedstock potential at
2020 medium mobilisation scenario value 678 hm3 given in Ref. [53].
Estimates by Mantau et al. [53] for demand by sawmills (219 hm3),
heat and power plants (242 hm3), and pulp and paper industry
(168 hm3) at the 2020 IPCC scenario also correspond to data used by
this work for the annual demand of the specified industries
(1.58 EJ≡216 hm3, 1.03 EJ≡140.7 hm3 and 1.41 EJ≡193 hm3, re-
spectively). Note, the units used by Mantau et al. [53] have been cor-
rected in the data shown above. When comparing the results for the
Finnish integrated steel plant obtained in this work, they are largely
found to agree with a previous country specific study on Finland only
[20]. Suopajarvi and Fabritius [20] estimated breakeven CO2 price for
metallurgical coke substitution already at 16 € t−1 and for PCI at 50 €
t−1, while this work resulted in initial substitution at 50 € t−1, which
can be due to the lower metallurgical coke price considered in this
study. Findings of sufficient biomass availability in this paper also
agreed with a previous country specific study for Sweden [54]. The
compliance of the model values and previous literature strengths con-
clusions on the given biomass potential.

However, even though this study has identified relatively large
amounts of available biomass, it does not indicate that this will be the
case also at the time of its potential implementation. First, the study has
not considered the planned as well as potential increase of biomass use
in the other sectors, for production of electricity, heat and transport
fuels, which are also aiming to use bioenergy to meet their emission
reduction targets. Second, meeting the economic potential does not
mean that all sustainability criteria are met. Despite considering only

70% of the theoretical potential for estimation of the economic po-
tential, the data on biomass availability considered in this study does
not necessarily reflect the amount of biomass which use would not
conflict with other environmental quality objectives, like forest pro-
tection and preservation of biodiversity, as has been discussed e.g. for
Swedish conditions by de Jong et al. [55].

In addition, using up to 1.30 EJ of biomass, out of the full theore-
tical potential of 8.53 EJ only for the purpose of iron and steelmaking is
recognisably a significant share. In other words, 15% of the theoretical
biomass potential would have to be set aside to meet biomass demand
by only 30 plants across the whole of Europe. This could negatively
impact the European biomass market and also significantly limit the
opportunities for bioenergy deployment and associated CO2 emission
reduction in other industries or sectors. Therefore, even though this
work has identified sufficient biomass availability, further work is re-
quired to ensure that the solution supports strategic biomass use in
Europe and all potential end uses are sustainable in the long run.

Lower impact on existing biomass market was observed when the
iron and steel plants had the option to also use the HTC technology,
which uses waste-based feedstock. This study, however, did not con-
sider the high competition for waste from e.g. waste incineration,
biogas production and other energy-from-waste plants, which all have
to meet their capacities. On the other hand, use of waste-based feed-
stock in steel plants would be particularly appealing in locations where
waste is mainly landfilled, specifically for the ones which have not
achieved reduction of biodegradable waste to the amounts set by the EU
Landfill Directive (1991/31/EC) [56]. Landfilling biodegradable waste
produces large amounts of methane, the main component of landfill
gas, which has a high global warming potential (GWP). Lee et al. [57]
estimated production of CO eq2 emissions from dry food waste as
2.71 t t−1, which can be reduced to 1.52 t t−1 if the landfill gas is used
for electricity production. Utilising food waste for hydrochar used in
ironmaking can offset those CO2 emissions from dry food waste by an
additional 1.02 t t−1.2

Lastly, the economic viability of bioenergy deployment across the

Fig. 11. Change of production cost of hot rolled coil with increasing CO2 price.

2 Obtained from using CO2 emission factor of PCI coal of 3.19 kg kg−1 and heating
value of 33.4MJ kg−1 [31], heating value of dry food waste of 19.5 MJ kg−1 [58], 0.6 as
the energy retention efficiency of the HTC process listed in Table 4 and 1.1 is the sub-
stitution equivalency of hydrochar and PCI [18].
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European integrated steel plants constitutes a significant barrier. An
increased production of bio-products resulting from a new demand by
the steel industry might decrease the bio-product production costs, due
to technological learning and technology scale-up. However, even with
decreased production costs, the bio-products are unlikely to become
cost-competitive to fossil fuels within the foreseeable future.

4.2. Roadmap for reducing environmental impact of the iron and steel
production

Biomass integration would significantly increase the production cost
of steel in Europe. As the results show, the maximum 42% attainable
fossil fuel substitution by biomass would increase the steel production
cost by a minimum of 50%. Indeed, iron and steel production is highly
CO2 intensive and, depending on the political development, the sector
could be forced to internalise a larger share of their environmental
impact, compared to today. However, steel is also an internationally
traded material so any additional costs (either due to emissions or to
purchasing alternative fuels) could significantly impact its competi-
tiveness, which is already struggling against cheap steel imports from
countries outside Europe, for instance China.

Even though some studies have argued that the CO2 price, presented
across Europe as the EU-ETS, should not have a major impact on the
productivity and competitiveness of this industry [59], the EU-ETS still
might not be the best way to reduce fossil fuels use by its substitution by
biomass in this sector. In addition, Schwaiger et al. [60] also pointed
out that the price fluctuations of the allowances do not encourage long
term investments into bioenergy technologies in general. Further, the
results demonstrated a large difference in the introduction and use of
bio-products between countries as well as between individual plants.
Therefore, alternative policy instruments, such as subsidies or tax relief,
might be better incentives. However, those types of governmental
strategies may conflict with the current EU policy direction, where
certain policy instruments can be considered as state aid [61], which
risks leading to market distortions. Therefore any state aids are strictly
regulated [62].

In addition, the maximum emission reduction of 42% indicates that
bioenergy should not be relied upon in isolation as the sole long-term
emission reduction strategy for the iron and steel making in Europe.
Instead, bioenergy needs to be integrated with other strategies. For
example, its co-application with CCS (known as BECCS), which on its
own can avoid up to 60% CO2 emissions [31], could theoretically

achieve carbon neutrality of European iron and steel making without
needing to significantly change the existing process plants. However,
the CCS application also has high CO2 avoidance cost starting from 60 €
t−1 [31], which would add further costs to the steel production in
Europe, with associated effects on its competitiveness on the global
market.

Biomass, in the form of charcoal, has been also tested for HIsarna
(direct reduced iron process, using smelting reduction) to partially
substitute coal. HIsarna is expected to be able to reduce CO2 emissions
by 20%, which can be increased to up to 80% with the addition of CCS
[63]. With additional bioenergy utilisation, the emissions in both cases
can be further reduced. HIsarna is, however, still in the demo-pilot scale
state and its full-scale application is undetermined yet [64].

5. Conclusion

This study evaluated the viability of bioenergy usage within in-
tegrated steel plants around Europe, from the resource, CO2 emission
and economic perspective, in order to increase the knowledge regarding
the potential role of bioenergy in European integrated steel plants. The
results demonstrated that sufficient biomass resources exist to meet the
maximum technical biomass demand by all steel plants, but that steel
plants in Belgium, Germany, Spain, Great Britain, Italy and Netherlands
would be highly reliant on cross-border biomass trading. On the other
hand, deployment of biomass within integrated steel plants would re-
quire a large share of the total biomass potential in the EU, which
would in turn significantly impact the potential for biomass deployment
in other sectors.

Pilot scale technologies, particularly HTC, would not enhance the
maximum potential emission reduction, and would only slightly con-
tribute to the total fossil fuel use reduction across the integrated steel
plants. This case would be even when waste-based feedstock is trans-
ported more than 100 km, as use of such feedstock is limited by technical
rather than supply aspects. On the other hand, the possibility to use waste
would broaden the feedstock base for the iron and steel plants and thus to
some extent reduce the impact of increased biomass competition for ex-
isting users. In addition, using bio-degradable waste within iron and steel
making could, apart from offsetting the use of coal and the corresponding
emissions, also offset emissions resulting from landfill gas production, if
the waste would have otherwise been landfilled.

In total, bioenergy can reduce the CO2 emissions resulting from coal
use in iron and steel making by up to 42%. The maximum achievable

Fig. 12. Impact of bioenergy utilisation within integrated steel plants (influenced by varying CO2 price) on feedstock supply costs of existing biomass industries.
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emission reduction is capped by technical limitations, not biomass
availability. However, such emission reduction would require a CO2

price of 140 € t−1, while a 20% emission reduction could be attained
already at a CO2 price of 60 € t−1. When no CO2 price is imposed, no
substitution can be expected. It is concluded that the main barriers for
biomass deployment in Europe are related to supply costs of the bio-
products, not necessarily biomass availability. The EU-ETS can con-
tribute to the introduction of biomass in steel making, but this would
significantly impact the production cost of steel in Europe. Therefore
the EU-ETS might not be the best tool for bioenergy integration, and
other measures such as subsidies or tax relief might need to be con-
sidered to also retain competitiveness of the European steel products on
the global market. This could, however, risk conflicting with the current
EU policy direction.
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