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Electron–Hole Bilayer Tunneling Field-Effect Transistors are typically based on band-to-band

tunneling processes between two layers of opposite charge carriers where tunneling directions and

gate-induced electric fields are mostly aligned (so-called line tunneling). However, the presence of

intense electric fields associated with the band bending required to trigger interband tunneling,

along with strong confinement effects, has made these types of devices to be regarded as theoreti-

cally appealing but technologically impracticable. In this work, we propose an InAs/GaSb hetero-

structure configuration that, although challenging in terms of process flow design and fabrication,

could be envisaged for alleviating the electric fields inside the channel, whereas, at the same time,

making quantum confinement become the mechanism that closes the broken gap allowing the device

to switch between OFF and ON states. The utilization of induced doping prevents the harmful effect

of band tails on the device performance. Simulation results lead to extremely steep slope characteris-

tics endorsing its potential interest for ultralow power applications. Published by AIP Publishing.
https://doi.org/10.1063/1.5012948

Electron–Hole Bilayer Tunneling Field-Effect Transistors

(EHBTFETs) were originally proposed1 aiming to exploit the

benefits of dimensionality for band-to-band tunneling (BTBT)

between 2-D electron and hole gases.2 They were also con-

ceived to profit from the advantages of line tunneling (BTBT

direction aligned with the gate-induced electric field) versus

point tunneling (both directions mutually perpendicular) con-

trolling the band bending processes giving rise to the interband

tunneling phenomena.3,4 In order to keep a better electrostatic

control on the channel and prevent DOS tails inside the gap,

the highly populated electron and hole layers inside the chan-

nel were engineered so that they were formed by an appropri-

ate workfunction choice and/or gate biasing.

However, it was systematically argued that due to size and

bias-induced quantization issues, EHBTFETs would require

prohibitively high voltages leading to unacceptably high elec-

tric fields, causing oxide reliability concerns.5 Moreover,

the consideration of quantum confinement effects showed the

appearance of parasitic diagonal leakage tunneling between

regions with different degrees of quantization.6 To overcome

this parasitic leakage, a heterogate EHBTFET (HG-EHBTFET)

was proposed,6 along with a solution to alleviate the large elec-

tric fields through the utilization of asymmetric configurations7

and pseudo-bilayer structures.8

Notwithstanding the foregoing solutions that showed

improved performance, there was still the issue of low ON cur-

rent levels reported from indirect materials like germanium. In

this work, we propose an EHBTFET based on an ultrathin

body (UTB) InAs/GaSb single channel. Experimental UTB

InAs/GaSb bilayers on silicon were investigated for single

structure CMOS.9 Simulation results for our proposed device

feature electric fields below the typical levels traditionally

associated with EHBTFETs along with the advantages of the

utilization of direct tunneling materials. Moreover, the most

interesting particularity of this device is that, considering the

band structure parameters of InAs and GaSb,10 this device

would not allow the switching between OFF and ON states

without the interplay of quantum confinement effects given

that, semiclassically, the conduction band of InAs and the

valence band of GaSb would always have a certain energy

overlap. It is important to notice that, although the idea of clos-

ing the broken gap at the InAs/GaSb heterojunction by means

of quantum confinement effects is not new,11 our proposal of

InAs/GaSb EHBTFET allows us to avoid the utilization of

pþ doped GaSb layers as done so far11,12 and the subsequent

risk of band tails associated with high doping concentrations.

The analyzed device structure is depicted in Fig. 1. It

features a pþ GaSb source region (1019 acceptors/cm3), an

intrinsic GaSb bottom channel region (1015 acceptors/cm3),

an intrinsic InAs top channel region (1015 donors/cm3), and

an n-doped InAs drain region (1019 donors/cm3). Top and

bottom gate dielectrics are 3 nm-thick HfO2 layers. Two

HfO2 spacers have been placed at the top left side and bottom

FIG. 1. Schematic representation (not to scale) of the InAs/GaSb

Heterostructure EHBTFET considered in this work. Top left and bottom right

HfO2 spacers in the channel prevent parasitic source-to-channel and channel-

to-drain BTBT from degrading the switching performance of the device.a)Electronic mail: jluispt@ugr.es
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right side of the channel with thicknesses equal to tInAs and

tGaSb, respectively, to avoid parasitic source-to-channel and

channel-to-drain BTBT. Top and bottom gate workfunctions

are chosen to be /tg¼ 4.4 eV and /bg¼ 5 eV and play an

important role so that subband alignment can take place with

no bottom gate bias applied, VBG¼ 0V, and very low top gate

voltage, VTG. Although the device structure representation in

Fig. 1 is 3D for a better perception of the proposed design,

the results presented throughout our work correspond to

simplified 2D simulations where the transport occurs in the

x-direction.

The InAs layer thickness determines the size-induced

confinement strength at the top of the channel and thus the

separation between the forbidden edge of the conduction band

and its first subband. In principle, the strong quantization

ensued from the extremely reduced InAs electron effective

mass, meðCÞ ¼ 0:023m0, would make impractical the subband

alignment between InAs and GaSb at low VTG biases for ultra-

thin InAs slabs like those reported in experimental works9

with InAs/GaSb stacks reaching 2.5 nm for the InAs film.

Nevertheless, the reduction in the thickness of the InAs layer

combined with its well-known nonparabolic behavior causes

an increase in the electron effective mass that alleviates the

strength of confinement. Most frequently, only the effective

mass rise in the transport direction proves to be of interest; but

in our case, we also need its variation in the direction of con-

finement for solving the Schr€odinger equation employing the

effective mass approximation (EMA). In Table I, we list the

values of meðCÞ that we will use in our simulations for both

transport and confinement directions estimated by tight-

binding (TB) as a function of film thickness.13 Notice how the

growing effect on the effective masses is significantly more

relevant for the confinement direction.

The heavy hole effective mass for GaSb (mhh¼ 0.4m0)

results in weaker confinement effects at the bottom of the chan-

nel compared to the aforementioned situation at the upper slab.

Yet, it was demonstrated that in III-V compounds, the top of

the valence band is connected with the conduction band

through an imaginary branch with lower mass14 (approximately

equal to that of light holes, mlh
15) even in the presence of strong

quantization effects. In practical terms, this means that the

tunneling effective mass to be used for the contribution to

BTBT from heavy hole subbands will be the one corresponding

to light holes, i.e., mhh;imag � mlh. This anti-crossing16 of the

light hole and heavy hole branches will be beneficial for the

resulting IDS levels as lower masses provide higher tunneling

currents.

The simulation approach followed in this work differs from

that reported in others6–8 where a two-step setup integrating the

TCAD simulator Silvaco ATLAS (v.5.20.2.R)17 and

Synopsys Sentaurus (v.2014.09)18 treated BTBT as a postpro-

cessing phenomenon. That approach worked well as long as

the total injected charge via BTBT turned out to be negligible

compared to the total charge distribution obtained in the

absence of tunneling by solving in a self-consistent way the

Schr€odinger and Poisson equations employing the effective

mass approximation.15,19,20 However, in our proposed device,

the utilization of direct materials in which BTBT is not medi-

ated by phonons provides significantly higher levels of

tunneling charge, which makes the aforementioned two-step

simulation layout not suitable for our aim. Therefore, our

simulation approach will entirely make use of Synopsys

Sentaurus with an additional customization inside it which

allows us to incorporate subband discretization in a self-

consistent way. To do so, we modify the so-called Apparent
Band-Edge Shift Model, which is a user customizable model

included in the physical model interface (PMI) of Sentaurus

for bandgap editing through appropriate Cþþ functions. By

doing so, the so far semiclassical edges of the conduction and

valence bands are readjusted to make them coincident with

their first subbands21 so that BTBT can take place between

bound states and not between quantum mechanically forbid-

den states. BTBT is accounted for by means of the dynamic

nonlocal BTBT model of Sentaurus, which dynamically cal-

culates the tunneling paths based on the energy band profiles.

The band profile along a vertical cut taken at the center

of the device for tInAs¼ 3.5 nm and tGaSb¼ 4 nm is shown in

Fig. 2 for VTG¼ 0 and VTG¼ 0.2 V with VDS¼ 0.2V. We

have displayed in both cases the semiclassical edges of the

conduction and valence bands to illustrate that in the absence

of subband discretization, the switching ability of the device

would be suppressed since BTBT would always be enabled

due to the existing energy overlap between bands resulting

from the InAs/GaSb broken gap junction. On the other hand,

it is precisely the existence of quantum confinement which

allows the broken gap to become staggered and thus opens

the possibility for the proposed structure to become a feasi-

ble steep slope switch. As mentioned above, notice that the

limiting factor will be the InAs layer thickness as it shows

stronger quantization effects caused by the value of its elec-

tron effective mass. Quantum confinement for holes will also

be considered due to the reduced thickness of the GaSb layer

required to induce the doping at the bottom of the channel.

Note that, in contrast to our work, hole confinement need not

be considered in highly doped GaSb bulk devices like those

so far reported in the literature.11

The main agent pushing away the first electron subband,

Ee1, from the conduction band edge comes from size-

induced confinement imposed by tInAs. Therefore, it is a mat-

ter of making an adequate slab thickness choice so as to

obtain the OFF state when VTG¼ 0V. Figure 3 shows the top

gate voltage at which first subbands align, VTG,align, for dif-

ferent combinations of tInAs and tGaSb. Observe how, for a

chosen value of VTG,align, the effective mass increase in the

confinement direction allows us to envisage thinner InAs

films inside the channel. Once that the slab choice has been

made ensuring that the broken gap is closed at VTG¼ 0V, it

is the turn of the bias-induced contribution to confinement

through increasing values of VTG —within the allowed range

TABLE I. Electron effective masses corresponding to the C-valley in transport

and confinement directions, me;xðCÞ and me;yðCÞ, for different InAs thicknesses.

Interpolated values from those herein displayed will be used in our work.

InAs layer thickness me;xðCÞ me;yðCÞ a(eV�1) me;bulkðCÞ

10 nm 0.033 0.043

7 nm 0.038 0.055

5 nm 0.047 0.068 2.6 0.023

3 nm 0.066 0.102

2 nm 0.086 0.155
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of VTG (0 < VTG < VDD)—so that Ee1 is lowered till the

moment when alignment with the first GaSb heavy hole sub-

band, Ehh1, is attained. This alignment is achievable by

applying positive VTG values, provided that the top gate effi-

ciency (mathematically defined as dEe1=dVTG) is negative,

as seen in Fig. 4 (left axis), indicating that the bigger the

VTG, the lower the Ee1 in the InAs layer. Absolute values of

the top gate efficiency extracted from Fig. 4 prove to

be� 0.5, being consistent with the reported effect22 of quan-

tum confinement making the gate efficiencies lie consider-

ably below 1 for bilayer TFETs.

The electric fields at the channel-to-dielectric interfaces

at the center of the device are shown in Fig. 4 (right axis) fea-

turing reduced values compared to those traditionally

obtained for ultrathin bilayer TFETs and remaining below the

breakdown levels for HfO2 that usually lie over 106 V/cm.23

We have displayed the electric fields at both sides of the

interface: inside the oxide (Fbott;HfO2
; Ftop;HfO2

) and inside the

channel (Fbott;GaSb; Ftop;InAs). Figure 5 (top) shows the transfer

characteristics of the proposed InAs/GaSb Heterostructure

EHBTFET corresponding to tGaSb ¼ 3; 4; 5; 6; 7 nm, adjust-

ing in each case the InAs slab thickness so that VTG;align

� 0:07 V. It can be seen how, as mentioned before, the steep

slope switching behavior is attainable, thanks to the size-

induced subband discretization which suppresses BTBT in

the OFF state by eliminating the semiclassical energy overlap

between the conduction band in the InAs layer and the

valence band in the GaSb layer. Variations of the InAs thick-

ness for a fixed tGaSb allow us to control the Ee1 level and

therefore to adjust the onset of BTBT at different values of

VTG. The fact that some of the displayed curves feature

numerical convergence issues when current levels escalate is

possibly due to the extremely reduced spatial region where

BTBT takes place between both films. The maximum attain-

able currents for the affected curves might be inferred extrap-

olating their behavior from the points where the simulations

start to fail converging. If we did so, their values would

presumably range from �100lA=lm (for tGaSb ¼ 6 nm)

to �600lA=lm (for tGaSb¼ 3 nm) at VTG¼VDS¼ 0.2V.

Observe how slimming down the GaSb slab reveals itself as

an appealing means to enhance the ON-state current. This

happens because the thinner the GaSb layer, the stronger the

confinement effects at the bottom of the channel, leading to

lower energy levels for Ehh1 and to shorter tunneling lengths

between Ee1 and Ehh1 subbands.

The displayed IDS–VTG curves feature subthreshold

swings ranging between 4 and 6 mV/dec over 7 decades of

FIG. 3. Impact of the InAs layer thickness variation on the top gate voltage

at which first subbands align, VTG,align, due to the resulting electron effective

mass variation in the confinement direction. VDS ¼ 0.2V.

FIG. 4. (Left axis) Dependence of the first electron subband vs. VTG for dif-

ferent InAs and GaSb thicknesses showing a negative value of dEe1/dVTG

��0.5. (Right axis) Electric field values at the top and bottom sides of the

channel. VDS ¼ 0.2V.

FIG. 2. Band profiles across a vertical cut taken at the center of the device

for tInAs ¼ 3.5 nm and tGaSb ¼ 4 nm along with the corresponding quantized

carrier concentrations. For VTG ¼ 0V (top), subband alignment has not been

reached yet, in contrast to what happens for VTG ¼ 0.2V (bottom).
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current with acceptable ON state levels for ultralow VDD

operation (VTG¼VDS¼VDD¼ 0.2V). The reason for the

apparent kink located around VTG � 0.09 V comes from the

fact that the quantization strength inside the GaSb film

proves to be different when this layer is sandwiched by HfO2

and InAs (center of the channel) or entirely by HfO2 (left

side of the channel). As a result of this, the Ehh1 subband lies

slightly above in the left side, and therefore, the first BTBT

events are triggered when ramping VTG is diagonal from the

bottom left side of the channel to the top center. When verti-

cal BTBT arises a bit later in the center of the channel, the

current is boosted due to the associated shorter tunneling

lengths. Overall, the appealing behavior reported in the sub-

threshold region must be understood in the appropriate con-

text, which is that of an ideal scenario where potential

sources of degradation such as tunneling leakage through the

gates or the appearance of native oxide species at the high-j/

III-V interface have not been considered. The rationale

behind such a choice, at a first stage of analysis of the pro-

posed device, is to assess its optimal behavior and to evalu-

ate its best expectable degree of performance.

In Fig. 5 (bottom), we present the output characteristics

of the analyzed device taking the adjusted values for the dif-

ferent slab thicknesses. VTG has been fixed to 0.1 V and not

to 0.2 V due to the lack of numerical convergence encoun-

tered when the current values scaled above a certain level as

mentioned above. In any case, for tGaSb � 4 nm, the numeri-

cal issues still remain. The displayed curves that are com-

plete show the expected transition between a superlinear

regime and a saturation region where the thinner the channel,

the higher the drain current attained.

A last consideration should also be made with respect to

the potential impact associated with the mobility reduction

entailed by the increasing effect of the interface roughness

scattering when the channel thickness is scaled down. In

Fig. 6, we show the variation of the transfer and output char-

acteristics for a conservative mobility of 5� 103 cm2/Vs

according to experimental results from InAs/GaSb quantum

well structures.24 It can be seen how the steepness of the sub-

threshold slope is not affected by the mobility decrease as it

is mainly conditioned by the BTBT phenomena. However,

the ON-state current levels show a certain reduction that

might be estimated to be around 20% for the aforementioned

mobility value at 300 K.

In this work, we have proposed an InAs/GaSb hetero-

structure EHBTFET that utilizes the subband quantization

ensued from size-induced confinement as the mechanism that

closes the broken gap at the InAs/GaSb heterojunction and

blocks the otherwise always enabled vertical band-to-band

tunneling. The presence of induced doping profiles inside the

channel due to the utilization of an electron-hole bilayer

structure prevents the band tails associated with heavily

doped materials. We have shown that an appropriate slab

thickness choice makes the device behave as a steep slope
FIG. 5. (Top) Transfer characteristics of the InAs/GaSb Heterostructure

EHBTFET with tGaSb¼ 3,4,5,6,7 nm, along with the adequate selection of

the InAs layer thickness inside the channel so that the VTG value for the ver-

tical BTBT onset takes place around 0.07V. (Bottom) Output characteristics

corresponding to VTG ¼ 0.1V.

FIG. 6. Effect of the mobility reduction on the transfer (top) and output (bot-

tom) characteristics of the InAs/GaSb Heterostructure EHBTFET.
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switch suitable for ultralow power applications with simu-

lated ON current levels comparable to experimental results

from InAs/GaSb TFETs11 with highly doped substrates.
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