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Abstract  

Aim: Determine the presence of mesenchymal stem cells (MSCs) in healthy periodontal 

tissue and periodontal granulation tissue (GT) and explore associations between immuno-

regulatory molecules and select subgingival microorganisms.  

Methods: Mesenchymal stem cells were isolated, propagated and characterised by flow 

cytometry from a region of healthy gingival tissue and inflamed GT of 10 systemically 

healthy non-smokers with chronic periodontitis. Tissue levels of immunoregulatory 

molecules were determined by qPCR and Gingival Crevicular Fluid (GCF) levels by ELISA. 

Subgingival plaque levels of periodontal pathogens were determined by qPCR  

Results: Cells with MSC-properties were isolated from both inflamed GT and healthy 

gingival (G) tissue. A pro-inflammatory process predominated in GT which was partly 

reflected in GCF and putative periodontal pathogens were higher at diseased sites. However, 

there was no significant difference in surface levels of mesenchymal (CD90, CD73, CD146, 

CD271, STRO-1), endothelial (CD105, CD106), hematopoietic (CD34, CD45) and 

embryonic (SSEA-4) stem cell markers between MSCs isolated from GT and G tissue.  

Discussion: Periodontal lesions, albeit inflamed, retain healing potential as inferred by the 

presence of MSC-like cells with similar immunophenotypic characteristics to those found in 

healthy periodontal tissue. Therefore, there might be merits for healing in preserving 

sufficient GT in-situ during periodontal surgery.  

  



Introduction  

In periodontal surgery, the excision of granulation tissue (GT) at intra-bony defects is aimed 

at improving wound healing and promoting new attachment.1-2 However, gingival curettage 

and GT removal did not improve periodontal clinical indices more than did scaling and root-

planing alone.3 In line with this finding, flap surgery in conjunction with GT excision was not 

a critical measure for promoting healing of periodontal tissues.4 Granulation tissue formation 

seems to be a hallmark of the pathogenesis of periodontal disease. Cells residing in GT 

release numerous mediators, which modulate the processes of osteoclastogenesis and 

osteoblastogenesis, including pro-inflammatory cytokines and anti-inflammatory mediators.5 

Mesenchymal stem cells are multipotent cells that can replicate as undifferentiated cells and 

have the potential to differentiate into several lineages of the mesenchymal tissue.6 Stem cells 

(SCs) expressing embryonic markers have been isolated from GT removed mainly from 

infrabony defects of four systemically healthy non-smokers, implying that these cells may 

contribute to periodontal healing once the infection is controlled.7 However, the role of SCs 

in gingival tissue homeostasis and/or pathologies remains unclear. Multipotent stromal SCs 

were isolated from human periodontal GT and these cells improved osseous repair in critical 

size defects in mice.8 Mesenchymal SC (MSC)-like populations have been found within 

inflamed gingival tissue to be functionally equivalent to MSCs derived from healthy gingival 

tissue9 and gingival-derived MSCs have been shown to exhibit immune-modulatory and anti-

inflammatory activity.10-11 Taken all together, it is speculated that MSC populations within 

infected GT promotes healing whilst dampening inflammation. Human MSCs were isolated 

from palatal connective tissue and periodontal GT to comparatively evaluate their 

properties.12 Despite their differences in colony-forming unit fibroblasts (CFU-Fs), 

population doubling times, migration potential and level of surface marker expression, MSCs 



from both sources were relatively uniform in their ultrastructure and successfully 

differentiated into osteogenic, adipogenic, and chondrogenic lineages.  

However, comparative studies on the characteristics of MSC populations derived from 

matched samples of healthy vs. diseased periodontal tissues of the same individuals, as well 

as correlations with the inflammatory “micromilieu” of residual periodontal pockets are 

systematically lacking. The aim of this study was to determine the presence and properties of 

cell populations with MSC characteristics in the GT of periodontal lesions compared to those 

isolated from healthy gingival tissue of the same individuals and determine whether ongoing 

bacterial driven inflammation alters their basic immunophenotypic profiles.  

Materials and methods 

Study cohort and clinical interventions 

Fifteen systemically healthy non-smokers with chronic periodontitis who were scheduled to 

receive periodontal surgery were recruited at the Department of Preventive Dentistry, 

Periodontology and Implant Biology (PDP&IB), Aristotle University of Thessaloniki 

(AUTh), Greece. The study was approved by the School’s Ethical Committee (22/11-01-

2016) and all participants provided informed consent.  

Inclusion criteria: periodontal pockets of probing pocket depth (PPD) and clinical attachment 

levels (CAL) >5mm with bleeding on probing (BOP) and radiographic evidence of advanced 

bone loss. Exclusion criteria: >65 years of age, history of systemic disease, compromised 

medical conditions requiring prophylactic antibiotic coverage, antibiotic therapy within the 

last three months, bisphosphonate medication, bone metabolic diseases or disorders that 

compromise wound healing, use of anti-inflammatory drugs, radiation or immunosuppressive 



therapy, narrow zone/absence of attached gingiva, pregnancy/lactation, smoking, previous 

periodontal surgery. 

Patients were screened for eligibility by a single calibrated examiner (DAA), who also 

performed the clinical (PPD, CAL, BOP, Plaque Index) and radiographic assessment. 

Eligible subjects underwent cause-related periodontal treatment which comprised strict 

plaque control measures (re-iterated over the study period) and full-mouth hand/power-driven 

instrumentation under local anaesthesia. At 6-months, the subjects were scheduled to undergo 

periodontal surgery.13 Prior to anaesthesia, GCF and subgingival plaque samples were 

collected from a diseased and a clinically healthy (PPD ≤3mm, absence of BOP, no 

radiographic evidence of bone loss) site in each individual. The designated sites were gently 

air dried and isolated from saliva by placing cotton rolls and using a saliva ejector. 

Supragingival plaque was carefully removed and GCF samples were obtained by using paper 

strips (Periopaper, OraFlow Inc., Smithtown, NY, USA). The strips were placed in the 

periodontal pocket/sulcus until mild resistance was felt and were left in-situ for 30s, taking 

care to avoid mechanical trauma. Subsequently, subgingival plaque was collected by 

inserting two sterile paper points (ROEKO ISO-40, Coltène-Whaledent GmbH, Co. KG, 

Germany) in each site for 30s. They were then stored in Eppendorf tubes (Eppendorf, 

Hamburg, Germany) at -80oC until further processed. Granulation tissue was surgically 

harvested from the denoted sites that were preferably in the same quadrant and non-adjacent. 

An internal bevel combined with an intra-sulcural incision demarcated a collar of soft tissues 

and following flap elevation, GT was sharply excised from the apical part of the pocket; 50% 

of the tissue was used for cytokine analysis and the remaining 50% for isolation/expansion of 

MSCs. A thin zone of the soft tissues lining the designated healthy sulcus was also harvested 

and was processed in a similar manner to the GT biopsy.  



MSCs culture and characterisation 

The GT biopsy designated for MSC culture (GT-MSCs) and the analogous disease-free 

specimen (G-MSCs) were enzymatically digested as described previously,14 seeded in 25cm2 

flasks, expanded at 37oC in 5% CO2 in α-MEM (alpha-Minimum Essential Medium, Life 

Technologies, Thermo Fisher Scientific, Paisley, UK) supplemented with 15% FBS (Life 

Technologies), 100 units/ml of penicillin, 100 mg/ml of streptomycin and 0.25 mg/ml of 

Amphotericin-B (all from Life Technologies). GT-MSCs and G-MSCs were characterised by 

mesenchymal (CD90, CD73, CD146, CD271, STRO-1), endothelial (CD105, CD106), 

hematopoietic (CD34, CD45) and embryonic (SSEA-4) SC-markers at passage-2 by flow 

cytometry, using a Guava® easyCyte-8HT Benchtop Flow Cytometer (Merck Millipore, 

Billerica, Massachusetts, U.S.A).14 A total of 50,000 events were acquired per sample. Data 

were analysed using GuavaSoft-3.1.1 and Summit-5.1 software.  

Gene expression in tissue  

The section of the biopsy sample was placed into RNA-later (Sigma–Aldrich, Dorset, UK), 

immediately after collection and stored at -20ºC until required. Tissue was cut into 1.0mm 

pieces and transferred into buffer-RLT (Qiagen, Crawley, UK) and homogenised for 1min 

with a disposable pestle. RNA was extracted from tissue using the RNeasy® mini kit for 

fibrous tissue (Qiagen, UK), the yield was assessed spectrophotometrically and 1.0µg of 

RNA was converted to cDNA using the SuperScriptTM First-Strand Synthesis Kit (Life 

Technologies) according to the manufacturers’ instructions. Real-time PCR analysis of the 

expression of IL-1β, IL-6, IL10, TNF-α, IL-17A, IL-17E, TGF-β and two reference genes, 

GAPDH and RNA polymerase-II, was performed using TaqMan assay on demand assays 

(ABI/Life Technologies). The PCR efficiency was determined using a previously described 

method15 and all primer-probe sets exhibited efficiencies of 0.90-1.05. For each gene, the 



level of expression was adjusted by the geometric mean of the two-reference gene critical 

threshold-values.  

Cytokine levels in GCF 

Enzyme-linked immunosorbent assay and specific kits for IL-1β, IL-6, IL-10, TNF-α, IL-

17A, IL-17E (Pepro Tech, London UK), TGF-β (Mabtech AB, Stockholm Sweden) were 

used for cytokines measurement in GCF. Minimum detection limits were: IL-1β, IL-6, IL-10, 

TNFα and IL-17A, all 1.9pg/ml; IL-17E and TGF-β, both 3.9pg/ml. 

Quantities of subgingival plaque microorganisms  

The Epicentre Masterpure Gram-positive DNA isolation kit (Cambio, Cambridge, UK) was 

used to prepare genomic DNA from the plaque samples and from known quantities of 

laboratory strains of the target microorganisms. The amount and purity of DNA was checked 

spectroscopically. Real-Time-PCR analysis was used to determine copy numbers of P. 

gingivalis,16 A. actinomycetemcomitans, F. nucleatum, T. forsythia,17 T. denticola18 and 

Streptococcus mitis19 in subgingival plaque. Known numbers of the target microbes were 

used to create standard curves from which copy numbers of unknown samples were 

determined.  

Statistical analyses  

Statistical power calculation was based on the assumptions that the data were dependent and 

either normally distributed or log-normally distributed. For an effect size of 1, utilising the 

paired t-test the estimated minimum number per group required to exceed 80% statistical 

power (α=0.05) were n=10. Q-Q plot analysis for each parameter determined that data were 

not normally distributed. To facilitate non-parametric analyses and multiple comparisons in 

cytokines/bacteria and to allow for covariates the sample size was increased to n=15. All 30 



GCF and plaque samples were analysed for cytokine measurements and quantification of 

select bacteria, respectively, 30 tissue specimens were analysed for cytokine gene expression 

but MSCs could only be isolated/expanded from 20 specimens (NGT=Ndisease-free=10), 

resulting in samples not being perfect pairs. Analysis of this data set was performed using 

1000 random data combinations in a Permutation test based on the Wilcoxon test20 using R-

Project for Statistical Computing. Otherwise the paired data sets (GT and disease-free tissues) 

were analysed using SPSS Inc. version 21 (IBM, Chicago, USA and Graphpad Prism V5, La 

Jolla, USA). Correlation between the biochemical and microbial parameters were evaluated 

with the Kendal Tau test. Biological specimens and clinical data were coded, so that the 

laboratory analysis was blind to the clinical details.   

Results  

Clinical data  

All periodontal defects (N=15) were located in posterior segments. Demographic details of 

the participants and clinical data are shown in Table 1.  

MSC cultures  

Few morphological differences were observed between GT-MSC and G-MSC cultures. Both 

types of cells presented a typical fibroblast-like, spindle-shaped morphology. Phenotypic 

characterisation indicated similar profiles for GT-MSCs and G-MSCs, characterised by high 

expression (>95%) of CD73 and CD90 and low expression (<1-2%) of STRO-1, CD45, 

CD34 and CD271 in both GT-MSCs and G-MSCs (N=10) (Fig. 1). However, a high inter-

subject variability was noted in the expression of CD105, CD146, CD106, CD73, CD90 and 

SSEA-4 with no significant differences between GT-MSCs and G-MSCs (all p>0.5; Fig. 2).  

Cytokine and bacterial profiles 



The expression of several pro-inflammatory cytokines was significantly higher in GT 

compared with the disease-free biopsy tissue (IL-1β: p=0.007; TNF-α: p=0.0001; IL-6: 

p=0.011; IL-17A: p=0.0001; Fig. 3A-B-C-E, respectively). Despite the observation that 

median levels were higher for IL-10-, IL-17E-, or TGF-β mRNAs inside GT, this failed to 

reach statistical significance (all p>0.1; Fig. 3D-F-H). There was a significantly higher ratio 

of IL-17A:IL-17E mRNA in the GT compared with the disease-free tissue specimens 

(p=0.001; Fig. 3G). 

The amounts of TNF-α were significantly higher in GCF sampled from the GT-associated 

site than the disease-free site (p<0.039; Fig. 4B). Amounts of IL-17E were significantly lower 

in the GCF samples from the diseased sites, in parallel with a significantly higher IL-17A:IL-

17E ratio (p<0.0054, p=0.008, respectively; Fig. 4F-G). In contrast, there was no significant 

difference in the amounts of the other cytokines measured in the GCF of diseased sites versus 

disease-free sites (p>0.10; Fig. 4A-C-D-E-H).  

The median copy numbers of P. gingivalis (p=0.021), F. nucleatum (p=0.003), T. denticola 

(p=0.035), and T. forsythia (p=0.0052) were significantly higher in the GT-associated plaque 

samples compared to the disease-free samples (Fig. 5A-B-C-D, respectively). In contrast, the 

median copy numbers of A. actinomycetemcomitans and S. mitis tended to be lower in the GT 

samples but failed to reach statistical significance (both p>0.1; Fig. 5E-F). 

Correlation analyses  

Significant correlations were observed between cytokines in GCF and the CD markers on 

MSCs isolated from GT (Table 2). For instance, IL-6 correlated positively with CD105 

(Tau=0.556, p=0.025) and IL-17E with CD106 (Tau=0.600, p=0.016) and IL-17A with 

CD146 (Tau=0.511, p=0.04). There were also statistically significant correlations between 

gene transcript levels in the GT and CD markers; IL-17E mRNA correlated positively with 



CD105 (Tau =0.667, p=0.012) and the IL-17A:IL-17E transcript ratio negatively with CD105 

(Tau=-0.556, p=0.037).  

The bacteria F. nucleatum and T. denticola, correlated positively with CD90 (Tau=0.648, 

p=0.016; Tau=0.535, p=0.046, respectively), whereas T. forsythia and S. mitis correlated 

negatively with CD90 (Tau=-0.592, p=0.028; Tau=-0.535, p=0.046, respectively) (Table 2). 

The copy numbers of P. gingivalis correlated positively with the amounts of TGF-β and 

TNF-α in GCF of the GT-associated sites and also positively with the ratio of IL-17A:IL-17E 

mRNA (Tau=0.302, p=0.024; Tau=0.321, p=0.017; Tau=0.302, p=0.024, respectively; Table 

2), but P. gingivalis correlated negatively with TGF-β mRNA in GT (Tau=-0.368, p=0.007). 

Copy numbers of F. nucleatum and T. forsythia correlated positively with the ratio of IL-

17A:IL-17E mRNA in GT (Tau=0.296, p=0.027; Tau=0.307, p=0.022, respectively) and 

copy numbers of S. mitis correlated negatively with GCF IL-17A and with the ratio of IL-

17A:IL-17E mRNA in GT (Tau=-0.278, p=0.038; Tau=-0.278, p=0.038, respectively).  

Discussion  

The healing process of a wound occurs in at least four phases, coagulation, inflammation, 

proliferation and maturation.21 Granulation tissue (GT) has a large cell-infiltrate 

incorporating fibroblasts, macrophages and leukocytes, as well as randomly organised 

collagen fibres.22 From a clinical perspective, GT excision controls bleeding locally and thus 

contributes to a more efficient debridement of a periodontal osseous lesion while allowing 

space for the placement of graft materials.23-24 In both homeostasis and disease/injury, the 

perivascular regions in the periodontal ligament are enriched with stem/progenitor cells25 that 

can migrate to the wound site, attach to the denuded root surface, proliferate and mature to 

tissue-forming cells (osteoblasts, cementoblasts and fibroblasts) and also interact with other 

host cells by releasing regenerative signals, cytokines, growth factors, chemokines, etc.26 



There is growing evidence that GT-derived MSCs possess high regenerative potential and 

may be used as autologous transplants for subsequent periodontal reconstructive operations.7-

8,12 

In this study the GT was excised from residual periodontal pockets and the inflammatory 

infiltrate and presence of MSCs observed within this infected tissue reflected a chronic 

disease state, which remained unresolved. The primary interest of the current study was to 

address the question whether following cause-related periodontal treatment and inflammation 

control the surgical retention of GT has advantages in terms of promoting the healing 

processes. The GT biopsies and the disease-free connective tissue specimens contained MSC-

like cells that expressed CD105, CD146, CD106 (MSC-markers), as well as SSEA-4 

(embryonic marker). Cells at passage 2 expressed low levels of STRO-1 (<2%)27-28 -albeit 

also found by other studies-29 and of CD105 (49.2-61.3%).28-29 The tissues demonstrated a 

high inter-subject variability regarding the expression of these markers possibly reflecting 

heterogeneity of the cell population and respective variability in “stemness”.30 This could be 

attributed to several factors, i.e. culture conditions, disease conditions,31 or reflect the 

individual genetic background and not be necessarily linked to the presence or absence of 

inflammation.32 Within the limitations of the present study this marker expression variability 

was consistent between the diseased and healthy tissue specimens failing to support the 

notion that inflammation overtly affects the immunophenotype of stem cell-like populations 

isolated from GT. Gingival-MSCs have been shown to retain their proliferative ability after 

prolonged culture, to differentiate into multiple different cell lineages and release growth 

factors and cytokines that may facilitate repair of damaged tissues, while exhibiting unique 

immunomodulatory properties suggesting that they may play a potential role in tissue 

regenerative protocols.33-34 However, while the current study did not sought to determine 

whether inflammation altered the function and properties of the stem cell populations, there 



were no apparent differences in the morphology or immunophenotype between the GT-MSCs 

and G-MSCs. This finding partially concurs with previous data demonstrating that SC 

characteristics mainly in terms of morphology,proliferation and migration rate 

anddifferentiation potential remain largely unaffected by the inflammatory processes,7,32,34-37 

although different patterns in phenotypic and functional properties of cell subsets in health vs. 

disease are also seen.12,38-39 

Inflammatory cells in periodontal GT express pro-inflammatory cytokines that are related to 

bone resorption.40 A higher level of pro-inflammatory cytokine gene expression including 

TNF-α, IL-1β, IL-6 and IL-17A was found in GT than disease-free connective tissue, 

verifying presence of inflammation at periodontitis tissue sites.41-43 Despite greater 

expression of TNF-α, IL-1β, IL-6 and IL-17A genes in inflamed GT compared to disease-free 

samples, only TNF-α was significantly increased in GCF from diseased sites. Where the 

amount of TNF-α was high, the amount of IL-17E was low. In contrast to IL-1 or IL-6, it has 

been shown that TNF-α increases the expression of SC markers on dental pulp-derived 

MSCs, telomerase activity and the capacity for migration, proliferation, and differentiation.44 

These authors suggested that during the initial stage of wound healing, the inflammatory state 

may be of fundamental importance for both the attraction of MSCs and modulation of their 

“stemness”, while there is evidence to support that inflammatory conditions in the culture 

conditions mildly influence the MSC properties of stem/progenitor cells residing in 

periodontal connective tissues.28 The present study showed that GCF levels of IL-6 from 

diseased sites correlated with the expression of CD105. IL-6 is thought to maintain the 

proliferative and undifferentiated state of bone marrow-derived MSCs, which secrete copious 

amounts of IL-6, until they undergo osteogenic differentiation.45 IL-6 family cytokines have 

been implemented in the maintenance of embryonic and adult SCs,46-50 and in the increase of 

the capacity for in vitro wound healing.45 



There is contradicting evidence regarding IL-17A levels in GCF,51 saliva,51-52 and serum51 of 

periodontitis patients, but these investigations were performed on samples collected from 

periodontitis patients and matched healthy controls. Of note was that in the current study the 

matched samples originated from an apparently disease-free site and a single diseased site 

from the same individual, which during the healing process may show alterations in 

inflammatory regulators before overt clinical improvement occurs. A reduction of IL-17E in 

GCF at diseased sites supports previous observations from our group that IL-17E levels in 

biofluids were reduced in periodontitis51 and increased following successful periodontal 

therapy.53 Median levels of IL-17E-, IL-10- and TGF-β mRNAs tended to be higher in GT 

than disease-free tissue. Whether this is an early indication of changes within the GT to an 

anti-inflammatory and wound healing cytokine profile is unclear. Anti-inflammatory cytokine 

levels fall immediately after and remain depressed for several days following periodontal flap 

surgery, while levels of IL-1β and TNF-α are increased during the initial phases of wound 

healing.54 Anti-inflammatory cytokines have been shown to play a key role in the disease 

process,41-42 and along with the pro-inflammatory cytokines they are also implicated in the 

healing process.55 The inflammatory phase of a wound drives tissue healing as pro-

inflammatory cytokines activate the proliferative phase of wound healing for the restoration 

of the vascular network and GT formation,56 followed by tissue maturation and remodelling 

as inflammation is regulated by pro- and anti-inflammatory cytokines.5 MSC-like populations 

may assist in maintaining a balance of pro-inflammatory and anti-inflammatory processes 

favouring an anti-inflammatory reaction that drives wound healing. MSC-like cells derived 

from inflamed gingival tissues exhibit a similar phenotypic profile -in line with current 

findings-, in vitro differentiation capacity and in vivo developmental potential to MSC-like 

cells from healthy gingival tissues,34 although it has been shown that MSCs from inflamed 

tissues can exhibit altered stemness and immunomodulatory properties57-59 that may 



contribute to an imbalance in the local immune response and advancement of alveolar bone 

loss. On the premise that MSC-like cells promote tissue healing it is proposed that retaining 

the soft tissue wall of a periodontal defect during periodontal surgery and flap elevation 

would reduce soft tissue recession and promote periodontal wound healing and regrowth of 

lost tissues. There is evidence to support the clinical superiority of tissue-friendly and patient-

centred surgical techniques that minimise tissue trauma and retain the soft tissue 

architecture.60-62 The intrinsic healing potential of a wound occurs when ideal conditions are 

provided by the surgical approach,60-61 implying that substantial periodontal clinical 

improvements are attainable without the use of any regenerative graft materials. A clinical 

study in humans (Dept. of PDP&IB; ClinicalTrials.gov ID: NCT02449005) is underway and 

is expected to complement current findings regarding the premise of periodontal GT 

preservation during flap surgery. 

While there is no direct link between the microbes at the sulcus or periodontal pocket they 

probably contributed to the inflammatory response in the tissues, as there appears to be some 

correlation between certain microbes and cytokine expression, the cytokines, in turn could 

have had an impact on the SC population. In vitro experiments have shown that dental stem 

cells are less likely to interact directly with putative periodontal pathogens regarding 

adherence and internalization than differentiated cells in an anaerobic environment.63 Key 

periodontal pathogens were higher at the GT-sites compared to the disease-free sites as is in 

accord with the literature,64-65 whereas A. actinomycetemcomitans and S. mitis were similar at 

GT and disease-free sites. A. actinomycetemcomitans appears to be less prevalent in deep 

periodontal pockets66 and Streptococci are suggested to attenuate the pro-inflammatory 

response,67-69 while the literature suggests that MSCs may contribute to microbial defense.70 



F. nucleatum, T. denticola, and S. mitis correlated positively with CD90, whereas T. forsythia 

correlated negatively with this marker. Depressed expression of CD90 antigens associated 

with a diminished immunosuppressive activity of MSCs71. GCF IL-17E was correlated with 

the proportion of MSCs expressing CD106, an immunomodulatory molecule on the surface 

of MSCs.72 The associations between the microbes and local cytokines with the markers on 

MSCs detected in this investigation should be explored further. Although in comparisons of 

cells isolated from GT and disease-free tissue samples factors measured in this study had no 

detectable effect on the morphology and expression of CD markers on MSC-like cells. 

Further studies are required to document whether chronic inflammation alters the properties 

of MSCs isolated from periodontal GT and also to isolate and thoroughly characterise 

potential MSCs residing in periodontal GT before any therapeutic intervention is initiated 

Conclusion 

Periodontal lesions, albeit inflamed, retain healing potential as inferred by the presence of 

MSC-like cells with similar immunophenotypic characteristics to those found in clinically 

healthy periodontal tissues. The bacterial-driven inflammation and cytokine expression both 

in GCF of residual periodontal pockets and within the GT appears to correlate with SC 

markers of MSCs-like populations isolated from the GT; current data suggest there might be 

merits for healing in preserving sufficient GT in-situ during periodontal surgery, but the 

mode of healing and whether the process of healing would be repair or regeneration remains 

to be elucidated. 
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Figure legends  

Figure 1.   

Representative flow cytometry parameter diagrams showing percentage MSC surface 

epitopes in granulation tissue (GT-MSC) and in disease-free gingival connective tissue (G-

MSC) specimens of a single patient. Green line represents marker of interest and red line 

isotype control   

Figure 2.   

Summary data of flow cytometry, for stem cell markers expressed in granulation tissue (GT-

MSC) and in disease-free gingival connective tissue (G-MSC) specimens of ten patients.  

Large inter-subject variability is noted and no apparent dissimilarities between the GT-MSC 

and G-MSC cultures for any of the markers tested according to a permutation test with a 

Monte Carlo simulation: CD105, p=0.231; CD146, p=0.503; CD73, p=0.654; CD106, 

p=0.256; CD90, p=0.686; SSEA-4, p=0.506; CD271, p=0.179; CD34, p=0.563; CD45, 

p=0.128. 

Figure 3.   

Quantification of cytokine gene expression in granulation tissue (GT) and in disease-free 

tissue specimens (H) in the same individuals (n=15). Statistical significant differences are 

shown in asterisks (*p<0.05; **p<0.01; ***p<0.001). 

Figure 4.   

Cytokine levels in gingival crevicular fluid (GCF) associated with the granulation tissue sites 

(GT) and with the disease-free sites (H) in the same individuals (n=15). Significant 

differences are shown in asterisks (*p<0.05; **p<0.01; ***p<0.001). 



 

Figure 5.   

Quantification of S. mitis and putative periodontal pathogens in subgingival plaque samples 

at sites associated with the granulation tissue biopsies (GT) and disease-free sites (H) in the 

same individuals (n=15). Significant differences are shown in asterisks (*p<0.05; **p<0.01; 

***p<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables and Figures 

 

Table 1.  Patient clinical data and demographic details (N=15) 

 

Gender Age No of Teeth  Full-mouth 

PPD (mm) 

Full-mouth 

CAL (mm) 

5-7mm sites 

(%) 

>7mm sites 

(%) 

7F / 8M 51.66 (7.33) 26.27 (3.06) 3.40 (0.75) 4.33 (1.16) 17.69 (12.22) 3.52 (5.21) 

Mean (SD) 

All participants were non-smokers and of Caucasian origin and had full-mouth plaque scores <20% 6-months 

following cause-related periodontal treatment. F: female; M: male; GT site: the periodontal defect from where 

granulation tissue and other samples (GCF, subgingival plaque) were collected; H-site: disease-free site from 

where a connective tissue specimen and other samples were collected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.  Kendal Tau correlations between subgingival plaque micro-organisms, GCF and mRNA 

levels of cytokines associated with diseased sites in 15 patients and correlations with CD markers in 

10 patients  

  

IL-17A 

in GCF 

TGF-β 

in GCF 

TNF-α 

in GCF 

IL-17A:IL-17E 

mRNA in GT 

TGF-β 

mRNA in GT 

F.n. T.d. T.f. S.m. 

P.g. Tau= 

 

0.302 0.321 0.302 -0.368 

   

 

 

p= 

 

0.024 0.017 0.024 0.007 

   

 

F.n. Tau=  -0.268 

  

0.296 

  

0.698 0.856  

 

p= 0.046* 

  

0.027 

  

<0.001 <0.001  

T.d. Tau= 

   

 

 

0.698 

 

0.72  

 

p= 

   

 

 

<0.001 

 

<0.001  

T.f. Tau= 

   

0.307 

 

0.856 0.720   

 

p= 

   

0.022 

 

<0.001 <0.001   

S.m. Tau=  -0.278 

  

-0.278 

 

-0.841 -0.803 -0.744  

 

p=   0.038 

  

0.038 

 

<0.001 <0.001 <0.001  

CD90 Tau=      
0.648 0.535 -0.592 -0.535 

 p=      
0.016 0.046 0.028 0.046 

CD105 Tau=    -0.556  
    

 p=    0.037  
    

CD146 Tau= 0.511     
    

 p= 0.040     
    

Additional significant correlations: CD105 correlated with IL-17E mRNA in GT (Tau =0.667, p=0.012); CD105 
correlated with IL-6 in GCF (Tau = 0.556, p=0.025); CD106 correlated with IL-17E in GCF (Tau=0.600, p=0.016).  

*Significant correlations (Tau) p value is in bold. 

P.g. = P. gingivalis, F.n.=  F. nucleatum, T.d. = T. denticola, T.f.= T. forsythia, S.m.= S. mitis. 



Figure 1.  Representative flow cytometry parameter diagrams showing % expression of MSC surface 

epitopes in granulation tissue (GT-MSC) and in disease-free gingival connective tissue (G-MSC) 

specimens of a single patient. Green line represents marker of interest and red line isotype control   

 

 

 

 



Figure 2.  Summary data of flow cytometry for stem cell marker expression in granulation tissue (GT-

MSC) and in disease-free gingival connective tissue (G-MSC) specimens of ten patients 
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Large inter-subject variability is noted and no apparent dissimilarities between the GT-MSC and G-MSC 

cultures for any of the markers tested according to a permutation test with a Monte Carlo simulation: CD105, 

p=0.231; CD146, p=0.503; CD73, p=0.654; CD106, p=0.256; CD90, p=0.686; SSEA-4, p=0.506; CD271, p=0.179; 

CD34, p=0.563; CD45, p=0.128.   



Figure 3.  Quantification of cytokine gene expression in granulation tissue (NGT=15) and in disease-

free tissue specimens (NH=15); statistical significant differences are shown in asterisks (*p<0.05; 

**p<0.01; ***p<0.001) 
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Figure 4.  Cytokine levels in gingival crevicular fluid (GCF) associated with the granulation tissue sites 

(NGT=15) and with the disease-free sites (NH=15); significant differences are shown in asterisks 

(*p<0.05; **p<0.01; ***p<0.001) 
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Figure 5.  Quantification of S. mitis and putative periodontal pathogens in subgingival plaque 

samples at disease-free sites ((NH=15) and at sites associated with the granulation tissue biopsies 

(NGT=15); significant differences are shown in asterisks (*p<0.05; **p<0.01; ***p<0.001) 
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