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ABSTRACT: A lack of viable hits, increasing resistance, and limited knowledge on mode of action is hindering drug discovery
for many diseases. To optimize prioritization and accelerate the discovery process, a strategy to cluster compounds based on
more than chemical structure is required. We show the power of metabolomics in comparing effects on metabolism of 28
different candidate treatments for Leishmaniasis (25 from the GSK Leishmania box, two analogues of Leishmania box series, and
amphotericin B as a gold standard treatment), tested in the axenic amastigote form of Leishmania donovani. Capillary
electrophoresis−mass spectrometry was applied to identify the metabolic profile of Leishmania donovani, and principal
components analysis was used to cluster compounds on potential mode of action, offering a medium throughput screening
approach in drug selection/prioritization. The comprehensive and sensitive nature of the data has also made detailed effects of
each compound obtainable, providing a resource to assist in further mechanistic studies and prioritization of these compounds
for the development of new antileishmanial drugs.

Due to a lack of viable hits or increasing resistance to
currently available treatments, the bottleneck in research

toward new therapies for many different diseases is a growing
concern. Limited knowledge on the mode of action (MoA) or
polypharmacological effects of existing treatments could be
hindering the discovery of new compounds. Studying
compound MoA is valuable to understand how they could be
improved, to propose combination therapies looking for
synergistic actions and also to determine possible toxic effects.
For diseases where drug repurposing is a popular approach, e.g.,
for neglected tropical diseases, MoA studies are specifically
important since compounds were not originally designed to
target the new disease type. Untargeted approaches to study

MoA are useful when compounds are suspected to have
polypharmacy effects beyond known targets and to cluster
compounds with the same MoA for improving the selection for
further in vivo studies. Metabolomics offers a valuable approach
to clustering compounds on MoA.1

Neglected tropical diseases are a prime example where
resistance to current treatments is problematic, funding is
limited, and drug repurposing is popular. There is a
requirement for novel strategies in the drug discovery pipeline
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for medium throughput screening that combines a balance on
breadth and depth of knowledge on drug MoA. The
leishmaniases are a spectrum of neglected tropical diseases
caused by protozoa of the genus Leishmania. Leishmania
donovani provokes one of the most severe forms, that is, visceral
leishmaniasis,2 and existing therapeutic options for this are
limited.3 From a recent screening of 1.8 million compounds
against the three kinetoplastid parasites most relevant to human
disease (Leishmania donovani, Trypanosoma brucei, and
Trypanosoma cruzi), 192 noncytotoxic active hits against
Leishmania donovani were selected to be included in the so-
called Leishmania box.2 While some general hypotheses were
generated relating to compound structure, suggesting that
many of them could target kinases, proteases, cytochromes, and
host−pathogen interactions, the MoA of each is still unknown.
Classification into MoA is an important element in analyzing
activity data. To optimize prioritization and accelerate
discovery, a strategy to cluster compounds based on more
than chemical structure is required. Metabolomics and other
hit-to-screen assays can be powerful tools in the analysis of
MoA.4

The metabolomics approach to study the MoA of
compounds for drug discovery purposes has been successfully
applied in many fields. For recent reviews, see Vincent and
Barrett5 for parasitology, Armitage and Southam6 for oncology,
Rankin et al.7 for cardiology, Adamski8 for diabetes, Atzori et
al.9 for perinatology, Gennari et al.10 for osteoporosis drug
discovery, dos Santos et al.11 for antibacterial MoA of plant
derived products, Mikami et al.12 for updates specific to MS-
based metabolomics, and Hoerr et al.13 for updates specific to
NMR-based metabolomics.
Studying compound MoA can be challenging, especially since

it is difficult to distinguish drug effects from generic stress
responses. A way to overcome this is to study many compounds
in the same organism in parallel so that generic stress responses
can be identified in all drug treated samples (therefore, not
drug specific). Different approaches can be taken to study MoA,
and the “omic” approaches can be particularly attractive due to

their medium-high-throughput screening capabilities combined
with high sensitivity and coverage. Moreover, integration of
omic data with in silico network analysis is a systems
pharmacology approach that can be used to identify compound
MOA on a multiscale.14

The metabolomics approach has recently been applied to
study compounds of the Malaria box, another tropical disease
with similar unmet medical needs.15,16 Metabolomics screening
was applied to reveal the metabolic perturbations induced by 90
of the almost 30,000 compounds that were previously shown to
selectively inhibit growth of cultured P. falciparum asexual red
blood cell stages, in addition to samples treated with known
antimalarials. The key features of the medium-high throughput
screen were the use of the 96-well format and the use of high-
sensitivity LC-MS to reproducibly detect 460 putatively
annotated metabolites from a range of metabolic pathways.
Though the number of compounds and the number of
metabolites detected was high, authors of this study reported
significant batch effects using this experimental design that were
partially overcome by normalization of treated samples to
untreated controls on each plate, but systematic variation was
still observed in a subset of the drug treatments. Moreover,
single doses of 1 μM were studied for 5 h of exposure,
irrespective of growth inhibition rates, meaning that some
treatments did not elicit metabolic response under the
conditions tested.
The Leishmania box contains a total of 192 compounds.2 In

the present research, lead compounds of the Leishmania box
have been screened using metabolomics. Twenty-eight
compounds (27 compounds or analogues from the box in
addition to amphotericin B) have been studied in Leishmania
donovani axenic amastigotes, chosen as the most relevant in
vitro model of human leishmaniasis. Samples of parasites
exposed to each compound were prepared in parallel with
untreated control samples and analyzed using an untargeted
metabolomics approach to reveal the similarities and differences
in the metabolome following treatment. The dose of compound

Figure 1. Overview of metabolomics experimental design. Samples were collected over six separate batches. Each batch consisted of six biological
replicates of untreated axenic amastigotes and amastigotes treated with one of four or five different compounds in replicates of six. QC samples were
prepared from a pool of extra control samples collected, and the same pool was used throughout the metabolomics experiment. Metabolomics was
performed in three analytical batches of randomized samples from batch 1 and 2, then batch 3 and 4, and finally batch 5 and 6. All data were
processed together as indicated.
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and exposure time was chosen based on individual kill
kinetics.1,14

We aimed to reveal clusters of compounds with similar
action against the parasite metabolome, as shown previously for
antimalarials.15 The identification of clusters allows selection of
compounds for further consideration in the drug discovery
pipeline. Capillary electrophoresis−mass spectrometry (CE-
MS) was chosen as the analytical tool to study the
metabolomes of treated parasites, combined with definitive
identification of the majority of the metabolic profile screened
(metabolomics standards initiative (MSI) level 118). Moreover,
due to the scale of the study, analyses were performed in
batches, and data were integrated for processing. As one of the
largest scale metabolomics studies employing CE-MS,
important strategies were identified in data treatment that
build on previously observed limitations in metabolomics and
could be useful in the field beyond the scope of this research.

2. RESULTS AND DISCUSSION

2.1. Assessment of Data Quality and Overview of
Entire Analysis. Following filtration to remove features
directly associated with specific compounds and therefore
likely metabolites of the compounds themselves, in addition to
filtration by QC RSD (keeping those features with RSD <
30%), 174 features remained, and data were assessed for quality
and batch effect. Supporting Information Figure 1S shows an
overview of the analyses from three analytical batches
considering the internal standard signal, total useful signal,
and total number of features (see also Figure 1). As shown,
certain samples had particularly low numbers of features and
total useful signal. These samples corresponded to five specific
compound groups in addition to one anomalous sample from
another group. Parasite numbers calculated for each sample

before and after washing were consulted to confirm that these
lower profiles did not occur because of a lower parasite number
in those samples. Trends in signal were observed in the internal
standard and total useful signal. Three methods of normal-
ization were performed to observe how data quality could be
improved to remove this batch effect. Supporting Information
Figure 2S shows the scores plots generated for the first two PCs
before and after normalization by total useful signal, internal
standard, and a commonly used method in metabolomics
locally estimated scatterplot smoothing (LOESS). Normal-
ization by internal standard was deemed most appropriate since
it did not skew the remaining samples based on the number of
features present as total useful signal normalization did.
Batch effects are common and often unavoidable in large-

scale studies.19,20 The challenge has been addressed previously,
mainly for gas chromatography−mass spectrometry (GC-MS)
and liquid chromatography−mass spectrometry (LC-MS)
data,21,22 although to our knowledge it has not been addressed
for CE-MS based metabolomics. Moreover, CE-MS is often
discounted based on its reputation for irreproducibility,
particularly in migration time, although advancements in
technology and methodology are making CE-MS increasingly
popular.23 In our experience, careful choice of analytical
method, experimental design, and studying of raw data to
find the best parameters for alignment of analytical batches,
makes CE-MS a robust and viable choice in multiple-batch
studies, especially for ionic and polar metabolites where the
alternative mechanism would be to use HILIC based LC-MS,
that has a deeper complexity of issues surrounding robustness
and reproducibility.24

2.2. Identification of Leishmania donovani Axenic
Amastigote Metabolic Profile. Before further multivariate
analysis, identification of the entire CE-MS profile was

Figure 2. Metabolic network of identified metabolites in untreated Leishmania donovani axenic amastigotes. Metabolites in bold have been
definitively identified to metabolomics standards initiative (MSI) level 1 through the analysis of authentic standards and standards spiked into
samples. All other metabolites are annotated to MSI level 2. KEGG enzyme EC numbers are given for direct reactions. In black are those possible
according to KEGG maps for Leishmania donovani. In blue are those possible specifically in this species according to KEGG, although the reactions
are not provided in KEGG maps, and in red are reactions not known for Leishmania donovani. Yellow dots indicate proximal metabolites in the
biochemical pathway to detected metabolites but that were not detected themselves.
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performed for untreated parasite samples. The 174 peaks
following filtration and normalization were first annotated, and
from this 105 were found to be unique features. The remaining
features were identified as fragments, dimers, or artifacts of
other metabolites present in the data and were therefore
removed in all further multivariate analysis. All features passed
filters for presence in untreated parasites and as such this
identified profile serves as the first complete metabolic profile
of Leishmania donovani axenic amastigotes in CE-MS. A total of
36 metabolites could be definitively identified to MSI level 1,
determined through analysis of authentic standards, and a
further 10 were identified to level 2. A network showing
metabolic interactions is shown in Figure 2, where MSI level 1
identified metabolites are highlighted in bold. KEGG enzyme
numbers are shown. Yellow dots indicate metabolites closely
relating detected metabolites but that were not detected
themselves. Supporting Information Table 2 details the
experimental m/z, migration time, and MSI level of
identification for all 105 uniquely distinguished metabolites.
2.3. Metabolic Clustering Analysis by Principal

Components. Multivariate analysis of data using PCA can
be challenging, especially when the experimental and biological
complexity increases. For example, in the related study of
metabolomics on Malaria box compounds, the first two PCs
revealed only stochastic biological/experimental variation, while
usable information was embedded in PC3 onward,15 represent-
ing a low proportion of total variability in the model. To
explore this in our data, two approaches of metabolic clustering
were employed to study the similarities and differences in
parasites treated with one compound compared with untreated
cells. These approaches together revealed complementary
information on the likely MoA of different compound clusters
that could be used to select a subset of compounds for further
analysis in the drug discovery pipeline for leishmaniasis. In both
cases, all features (identified, annotated, or unidentified, as
detailed in Supporting Information Table 1) were included in
the multivariate analyses. In the first approach, a further filter to
keep only those features with RSD < 40% in untreated, control
parasite samples was applied to reduce intragroup variation.
This resulted in 94 metabolic features in total.

The first approach was through analysis of sequential
principal components (PCs) to study the different degrees of
variation among the compounds. The scores for the first four
PCs are shown in Figure 3. The first PC in this model showed
the variation due to total useful signal and number of features.
This, as previously mentioned, was not associated with parasite
number, nor to the analysis itself. Therefore, although it cannot
be discounted since it accounts for almost 50% of the total
variation in the model, it does not show the most informative
separation for interpretation and is representative of stochastic
biological/experimental variation as seen previously.15 The
variation of biological interest is shown in PCs two, three, and
four (collectively accounting for around 40% of the total
variation). The idea is that this type of model can be used to
assess the distance between different compounds on the scores
plots to observe which compounds share similar effects on the
metabolome of parasites and which are more unique. In terms
of the drug discovery process for selecting a subset of
candidates for further analysis, it may not be necessary to
perform a deeper analysis of which metabolites contribute to
the separation. The initial conclusions that can be drawn at this
stage are that compounds 5, 6, 20 (amphotericin B), 22, and 26
form a very tight cluster of compounds exhibiting an extreme
effect on CE-MS detected metabolites (decreasing most
internal metabolites, mainly amino acids and derivatives).
Relative to other experimental groups, the profiles were
generally lowered in abundance, although on assessment of
parasite number, this was not due to a lower number of
parasites in the sample, which were counted at the time of
harvesting and washing cells prior to extraction. It is known that
the MoA of amphotericin B is to create pores in the membrane,
and therefore it is likely that these other compounds cause a
similar effect and the low profile observed in internal
metabolites is due to leakage through these pores. It remains
to be seen in a lipidomic analysis if there are any biochemical
changes in the membrane associated with the MoA or if this is
entirely structural.
Aside from those compounds which appear to damage the

membrane, seemingly causing leakage of internal metabolites,
this CE-MS based metabolomic approach allowed the

Figure 3. Principal components analysis (PCA) of compound clusters considering all groups. Explained variances for each component are PC1 (R2 =
0.49), PC2 (R2 = 0.22), PC3 (R2 = 0.13), PC4 (R2 = 0.04). Scores plots for PC1 vs PC2 are shown in a and for PC3 vs PC4 in b.
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observations that compounds 9, 10, 19 and 28 form another
cluster, compounds 2 and 24 seem to be unique, as does 23,
although this has a closer neighbor in compound 14 which in
turn shares similarities with compound 12. As shown in Figure
3, the metabolic clusters show little relation to the chemical
structures of the compounds. These clusters were related
neither to the LogP nor LogD (predicted values calculated at
both pH 5.5 and 7.4 using Marvin Sketch version 15.5.25,
ChemAxon) physiochemical properties of the compounds, as
detailed in Supporting Information Table 2.
The second approach was to perform clustering analysis by

deduction of sample groups. For example, those experimental

groups from parasites treated with compounds that resulted in
low levels of all metabolites, presumed due to leakage if the
MoA involves making pores in the membrane (compounds 5,
6, 20 (amphotericin B), 22, and 26), were removed from the
analysis. Also, batches one and three that separated from the
rest were removed to be analyzed separately. This left a total of
14 compound groups and related untreated controls that could
be directly compared, and the 40% filter of RSD did not need
to be applied. Figure 4 shows the results from PCA of these
groups whereby clusters can be observed. To see whether
compound clusters were related to structure, functional
moieties were identified and colored in the structures to

Figure 4. PCA of compound clusters after removal of sample groups from batch 1, batch 3, and compound groups yielding a reduced metabolic
profile in terms of signal and number of features. Explained variances for each component are PC1 (R2 = 0.49); PC2 (R2 = 0.22); PC3 (R2 = 0.13);
PC4 (R2 = 0.04). (a) Scores plot for PC1 vs PC2. (b) Scores plot for PC3 vs PC4. (c) Scores plot for PC1 vs PC2 with compound groups overlaid.
(d) Compound structures with corresponding structural groups marked.

Figure 5. Batch 3 clustering. (a) Scores plot of PC1 (R2 = 0.44) vs PC2 (R2 = 0.29) from PCA analysis. (b) Loadings plot for PC1 vs PC2 from the
same model. (c) Zoom of central region of loadings plot in b. (d) Column plots for discriminative metabolites in the negative loadings of PC1. (e)
Column plots for discriminative metabolites in the positive loadings of PC1. (f) Column plots for discriminative metabolites in the loadings of PC2.
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classify them before comparing to the metabolic PCA. As can
be observed, separation based on metabolic profile was not
correlated with structure, further highlighting the potential of
metabolomics as a genuine contender in the drug selection
process. While the first method of clustering shown in Figure 3
offers a certain advantage in that all compounds can be
simultaneously compared in one multivariate analysis, the
deduction method allows ease of interpretation and eliminates
the skew on the data created by outlying groups and removes
the problem of stochastic biological/experimental variation that
heavily contributes to variation in the model. Thus, although
not all compounds can be directly compared using this
deduction approach, the interpretation of this subset is much
clearer. Of course, the fewer groups in a multivariate analysis,
the clearer the separations become; however it is still valid to
use this approach for three or more experimental groups. In the
first two PCs representing the largest amount of variance
between compounds, all show different profiles to the untreated
controls except compound 7 (which was not so clear in Figure
3). As before, compound 23 is still observed as a singlet, and
compound 24 separates further in PCs 3 and 4 although it is
clustered with 8, 18, 10, 19, and 28 in the first two PCs. This
indicates that these compounds share a similar effect on most
metabolites, although in certain features (responsible for less of
the total variation) compound 24 separates further from the
rest of the cluster.
To observe the metabolite-by-metabolite differences for

compounds in Figure 5, the abundance of each metabolite
was plotted separately and used to aid interpretation of the
figure. Supporting Information Figure 3S shows these data.
Compound 23 was found to exhibit a metabolic profile quite
different from all other groups. Relative to untreated controls
and all other treatment groups, compound 23 causes a marked
increase in the aromatic amino acids tyrosine, tryptophan, and
phenylalanine (see Supporting Information Figure 4S). Like-
wise, it causes a marked increase in lysine and methyl-lysine,
along with decreases in carnitine, acetyl-carnitine, and
pipecolate, highlighting the activity of this compound in lysine
and carnitine metabolism. On the other hand, compounds 16,
21, and 27 were observed as a cluster, having similar effects on
the metabolism of parasites. Supporting Information Figure 5S
shows the similar effect of these compounds on the metabolic
pathways detected using CE-MS. As shown, key increases were
S-adenosyl-methionine and S-adenosyl-homocysteine, while
methionine itself was decreased. A decrease in arginine,
citrulline, and ornithine was coordinated with an increase in
2-oxoarginine. A decrease in lysine was observed with a
simultaneous increase in methyl-lysine, and a decrease in
histidine was coordinated with an increase in acetyl-histidine.
To observe whether batches one and three that were

previously removed could be directly comparable, PCA was
performed on these batches, and results are shown in
Supporting Information Figure 6S. There is a clear separation
between untreated parasite controls for each, and one
compound was completely irreproducible and therefore could
not be used for clustering. This was used to confirm that batch
three should be considered in isolation (results shown in Figure
5). Compounds 12 and 14 have unique effects. Compounds 13
and 15 are somewhat similar and do not differ much from the
untreated parasites, nor does 11, which is largely similar to the
untreated metabolome. The concentration of 2-oxoarginine
distinguishes compound 12 from all other groups, while

compound 14 causes the relative increases in metabolites of
Figure 5d while decreasing metabolites of Figure 5e.

2.4. Summary of Most Notable Features of Each
Compound’s MoA. Following multivariate analysis of clusters,
each compound group was considered alone against its
respective untreated control group to observe the MoA in
more detail for each individually. Pairwise comparisons between
treated and untreated samples were performed using Student’s
two tailed t test assuming unequal variance in addition to fold
change and log 2 fold change calculations. Results from this are
detailed in Supporting Information Table 3 and can be used as
a resource to assist in further mechanistic studies and
prioritization of these compounds for the development of
potential antileishmanial drugs. To observe trends, log 2 fold
changes are highlighted in pale red for increases and pale blue
for decreases, and those fold changes of greatest magnitude
(±2-fold) are highlighted by darker red and blue for increases
and decreases, respectively.
As shown through the clustering, compound 7 caused very

little variation from the untreated controls. Compounds 3 and
4 cause an increase in hydroxy-adenine and asparagine, though
they do not cause significant decreases in any metabolite. These
increases could be indicative of an oxidative stress response.
Compound 1 causes the same 2-fold increase in hydroxy-
adenine and, along with compound 2, causes 2−3-fold
decreases in proline and aspartic acid. Compound 1 decreases
several other metabolites, most notably related to arginine
metabolism such as arginine, citrulline, and glutathionyl-
spermidine. Conversely, proline is increased by more than 2-
fold in compounds 8, 9, 10, 17, 18, 19, 23, 24, and 28, of which
10, 19, 23, and 24 simultaneously cause a greater than 2-fold
decrease in glutamate, while 17 and 23 simultaneously decrease
ornithine levels by more than 2-fold. Glutamate, proline, and
ornithine are closely related. As shown in Figure 2, glutamate-5-
semialdehyde (not detected in this study) can be produced
from ornithine and 1-pyrroline-5-carboxylate (also not
detected) from proline, both of which can be used to make
glutamate via enzyme 1.2.1.88 (known as L-glutamate gamma-
semialdehyde dehydrogenase or 1-pyrroline-5-carboxylate
dehydrogenase). An increase in proline and coordinated
decrease in glutamate and ornithine may suggest this enzyme
as a target. Compounds 11 and 12 are centered on reducing
ornithine and hydroxyprolyl-valine levels, while compound 11
also decreases proline and compound 12 arginine. Compounds
16 and 21 most notably increase acetyl-histidine and S-
adenosylmethionine, while decreasing histidine and methyl-
histidine, metabolites associated with polyamine-related metab-
olites (ornithine, glutathionyl-spermidine and arginine),
aspartic acid, and hydroxyprolyl-valine. Compounds 14 and
15 both cause a 2−3-fold increase in acetyl-histidine, and
compound 14 additionally increases lysine by more than 2-fold
along with around 2-fold reductions in threonine, glycine, and
cystathionine in addition to L-proline and glutamate related
metabolites.

2.5. Conclusion. Using metabolomics, we have shown that
compounds with different chemical structure and physicochem-
ical properties can disturb the same metabolic pathways, while
others with more similar structures can have different
downstream effects. For that reason, novel approaches
considering the effects of drugs in real biological or clinical
settings could be highly valuable in the drug discovery pipeline,
rather than selecting compounds based only on chemical
structure. Here, we show the power of metabolomics in
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comparing different candidate treatments for leishmaniasis on
endogenous metabolism. Two approaches in clustering using
PCA have been assessed for 28 different compounds: 25 from
GSKs Leishmania box2 plus two box analogues and
amphotericin B as a gold standard treatment. To be useful as
a high-throughput screening mechanism, this metabolomics
approach does not require biological interpretation of each
compound’s MoA that can be timely to perform. Identification
of the metabolic profile to ensure separations of compound
clusters are based on biological features is enough to enable the
decision to take representative candidates from each cluster
forward for further analysis in the drug discovery pipeline. That
said, it is an advantage of this approach that this level of data
generated can be used when required to study the MoA of any
candidate further without requiring a different assay or a
repeated assay to be performed. This highlights the potential of
metabolomics over other types of assay which are neither so
sensitive nor so comprehensive. In this research, a significant
number of compounds have been simultaneously analyzed
together using metabolomics. In doing so, it has been possible
to assess different methods of data treatment in the
combination of data from several analytical batches and to
present the challenges and advantages of different approaches
for the use of PCA to analyze the separation of groups, which
can be useful in the omics wide community. Combining the
information generated from metabolomics and the clustering
techniques, the clusters depicted in Figure 6 were identified as
sharing a similar metabolic response and can be useful in the
next steps of prioritization of anti-leishmanial candidates.

3. MATERIALS AND METHODS
3.1. Compound Selection. Twenty-five compounds from the

Leishmania box2 in addition to two further analogues of this box and
amphotericin B (chosen as a “gold standard treatment” for
leishmaniasis) were selected for comparison by metabolomic analysis.
Compounds were selected to cover a range of kill-kinetics (as
determined for these compounds in Tegazzini et al.17), aiming for a
wider scope of potential action within the Leishmania box. Based on
these data,17 compounds showing the maximum activity by 6 h and 24
h as observed at 72 h were chosen to study the initial effects of them
on the parasite metabolome. Compound concentrations were 1 and 2
times the EC50 for compounds showing maximum response at 6 h and
24 h, respectively. For some slower acting compounds that only

reached maximum activity at 72 h, samples were taken at 24 h at two
times the final observed EC50. Even if the apparent final EC50 observed
at 72 h is not observed at the times the samples were collected, we
decided to use the 72 h value as we assumed that the compound was
already acting at those times even if the phenotypic response was not
reached at the time samples were collected and that the apparent EC50

observed at shorter times was due to slower MoA rather than slower
distribution or binding kinetics of the compound. A summary of
compounds selected for analysis is given in Supporting Information
Table 1.

3.2. Sample Collection and Analysis by CE-MS. Samples were
collected and analyzed using CE-MS as described. The overall design
of the metabolomics experiment is depicted in Figure 1. Stratified
randomization was used to decrease the batch effect on replicates of
the same compound treatment. In addition to the samples shown,
extra samples of untreated parasites were collected alongside each
batch and pooled to make a quality control (QC) sample that was
injected in each analytical batch as described for the analysis.

3.2.1. Chemicals and Reagents. The axenic culture medium used
in all experiments was prepared as a single batch “in-house,” following
the protocol described in Peña et al.2 All methanol used was HPLC-
grade, and formic acid was analytical grade. These chemicals in
addition to formaldehyde solution and PBS were purchased from
Sigma-Aldrich, as were authentic standards used in identification.
Ultrapure water was obtained using a Milli-Qplus 185 system
(Millipore, Bilerica, MA, USA).

3.3. Sample Collection and Analysis by CE-MS. Leishmania
donovani strain 1S2D (WHO designation: MHOM/SD/62/1S-
CL2D)25 was cultured by cycling between promastigotes and axenic
amastigotes using protocols from prior work.2 Amastigote forms were
grown at 37 °C with 5% CO2 in media adapted from De Rycker et al.26

To prepare metabolomics samples for each group, Leishmania
donovani axenic amastigotes were cultured in three T75 flasks each
containing 30 mL of culture with an initial density of 6.67 × 106

parasites mL−1, and either compound in DMSO (comparable
volumes) or DMSO alone (untreated samples) was added at the
respective concentrations stated for each (Supporting Information
Table 1). After an incubation period of 5 h, two samples were obtained
from each flask by equally dividing the culture into two 15 mL falcon
tubes, resulting in six replicates for each group. Before the division, 50
μL of each culture was collected into Eppendorf tubes, to which 50 μL
of formaldehyde was mixed with each and samples were stored at 4 °C
to be counted later to record the exact number of parasites from each
flask at the time of harvesting. At the time of harvesting and
throughout the subsequent processes, samples were maintained at 4
°C.

Figure 6. Compound clusters identified using the PCA clustering techniques described. Compounds 23, 14, and 12 were identified largely as
singlets, although some metabolic similarity was found relating 23 to 14 and 14 to 12.
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After collection of culture into falcon tubes, samples were
centrifuged at 1500g at 4 °C for 15 min, after which culture medium
was decanted and parasites were resuspended in 2 mL of PBS.
Parasites were washed in PBS (maintained at 4 °C) by gentle mixing,
after which samples were transferred to 2 mL Eppendorf tubes. To
record the exact number of parasites in each sample immediately
before quenching, 10 μL aliquots were collected at this stage, were
fixed with 10 μL of formaldehyde, and were stored at 4 °C to be
counted later. Samples for metabolomics were subsequently
centrifuged at 1500g at 4 °C for 15 min. PBS was decanted, and
200 μL of ice cold methanol was added to each sample, which were
immediately stored at −80 °C until extraction and metabolomics
analysis. After storage of these samples for metabolomics analysis,
samples collected for counting were analyzed using the CASY cell
counter, and the total number of parasites in each sample was
recorded.
3.3.1. Metabolite Extraction. On the day of each analysis (three

days for each of the three analytical batches), metabolites were
extracted, and resulting extracts were analyzed by CE-MS. Samples
were evaporated to dryness using a speed vacuum concentrator
(Eppendorf, Hamburg, Germany), after which 200 mg of 425−600 μm
acid-washed glass beads was added. Then, 575 μL of 100% methanol
was added. Samples were vortex mixed for 10 min before being placed
in a tissue lyzer for 30 min at 50 Hz and were then centrifuged at
16,000g at 4 °C for 10 min. After subtraction of 80 μL from each
sample to be stored for later analyses, 165 μL of water was added;
samples were vortex mixed for 30 min and finally centrifuged at
16,000g at 4 °C for 10 min. Following centrifugation, supernatants
were collected into Eppendorf tubes for CE-MS analysis. These were
evaporated to dryness using the speed vacuum concentrator, and once
dry, 100 μL of water containing 0.2 mM methionine sulfone used as an
internal standard and 0.1 M formic acid was added to each. On the
first extraction day, all samples collected to make the QC pool were
extracted individually as described for all other samples, before being
pooled and finally aliquoted for use in each of the three analytical
batches. Extraction blanks were prepared following all steps of the
extraction.
3.3.2. Analysis of Extracts by CE-MS. Analyses were conducted

over three analytical batches as shown in Figure 1. Each batch started
with the injection of extraction blanks and 10 QCs, then samples
injected randomly with QC injections after every sixth sample
injection. At the end of each analytical batch, a representative of
each biological group was reinjected at a higher voltage to induce a
higher degree of in-source fragmentation to be used later in metabolite
identification, as described in Godzien et al.27

The instrument consisted of capillary electrophoresis (7100
Agilent) coupled to a TOF Mass Spectrometer (6224 Agilent)
equipped with an ESI source, whereby the CE mode was controlled by
ChemStation software (B.04.03, Agilent) and MS mode by Mass
Hunter Workstation Data Analysis (B.02.01, Agilent). The separation
occurred in a fused-silica capillary (Agilent; total length, 100 cm; i.d.,
50 μm). All separations were carried out in normal polarity with a
background electrolyte containing 0.8 M of formic acid solution in
10% methanol (v/v) at 20 °C. In our laboratory, new capillaries are
preconditioned with a flush of 1.0 M NaOH for 30 min followed by
Milli-Q water for 30 min and background electrolyte for 30 min
(although only one capillary was used in the analysis of all samples for
this research). Before each analysis, the capillary was conditioned with
a flush of background electrolyte for 5 min. The sheath liquid (6 μL
min−1) was MeOH/H2O (1:1) containing 1.0 mM formic acid with
two reference masses: m/z 121.0509 ([C5H4N4 + H]+) and m/z
922.0098 ([C18H18O6N3P3F24 + H]+), which allowed correction and
higher mass accuracy in the MS. Samples were hydrodynamically
injected at 50 mBar for 50 s. The stacking was carried out by applying
background electrolyte at 100 mBar for 10 s. The separation voltage
was 30 kV. The internal pressure was 25 mBar, and the analyses were
carried out in 35 min. The MS parameters were fragmentor, 100 V;
skimmer, 65 V; octopole, 750 V; drying gas temperature, 200 °C; flow
rate, 10 L min−1; and capillary voltage, 3500 V. Data were acquired in
positive mode with a full scan from m/z 85 to 1000 at a rate 1.41 scan

s−1. For the samples run at higher voltage, all parameters described
here were maintained the same, except for the fragmentor voltage that
was set at 175 V.

3.4. Data Treatment and Feature Identification. Data from all
batches were processed together using recursive analysis in Mass
Hunter Profinder (B.06.00, Agilent) software. Data were reprocessed
considering ions [M + H]+, [M + Na]+, and [M + K]+ and neutral
water loss. The maximum permitted charge state was double.
Alignment was performed based on m/z and RT similarities within
the samples. Parameters applied were 1% for the RT window and 20
ppm for mass tolerance. These were selected based on assessment of
raw data of all three analytical batches to align all data together into
one set.

Data were filtered to remove those features consistently present in
certain compound samples (one to three groups at most) and
consistently absent in all others, which were presumed to be masses
representing individual compounds and their metabolites rather than
molecules from the parasite metabolome. All remaining features were
present in all untreated control samples in addition to QCs. These
data were refiltered based on relative standard deviation (RSD) in QCs
to retain only those with less than 30% RSD. A total of 174 features
remained.

Identification was performed across the entire profile of 174 features
by searching m/z against Metlin (http://metlin.scripps.edu) and
considering the same adducts as those described for data reprocessing.
Putative identities were assigned to m/z values for metabolite features
considering (i) mass accuracy (maximum mass error 10 ppm), (ii)
isotopic pattern distribution, (iii) possibility of ion formation, and (iv)
adducts formation. For as many metabolites as possible, authentic
standards were analyzed, both separately and spiked into quality
control samples to definitively identify them. All features identified as
fragments, dimers, or ringing artifacts as described in Godzien et al.27

were removed from the data set. This resulted in a peak table of 105
features, including those definitively identified with standards (MSI
level 1), those remaining putatively identified (MSI level 2), and those
unidentified (MSI level 4), according to the metabolomics standards
initiative.18

Data normalization was performed separately for comparison, by
total useful signal (dividing each signal by the sum of signals for each
of the features for the corresponding sample) and by dividing each
signal by the signal analyzed for the internal standard in each sample.
Metabolic clustering analysis was performed using principal
components analysis (PCA) in SIMCA-P 12.0 software (Umetrics,
Umea, Sweden).
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