
ConfMVM: A Hardware-Assisted Model to Confine Malicious VMs

Zirak Allaf
zirak.allaf@port.ac.uk

Mo Adda
mo.adda@port.ac.uk

Alexander Gegov
alexander.gegov@port.ac.uk

School of Computing
University of Portsmouth

Portsmouth, UK.

Abstract — Vulnerabilities in both hardware and software
have exposed them to the lack of managing programs securely
in the computational environment, giving hackers the means
to conduct side channel attacks with intention to steal sensitive
information, including secret encryption keys. Current
techniques enable attackers to exploit vulnerabilities at the
micro-architecture level to build side channels. A typical
example is the use of the Flush+Reload technique in the
Meltdown attack [1]. This paper proposes the detection of
malicious loop activities within the Flush+Reload programs
through the introduction of a new classification technique.
Most current detection models, approach the side channel
attacks, by relying on the correlation between attacker and
victim programs through the use of machine learning
algorithms. This paper differs from such models. It solely
analyse the malicious loop activities inside the Flush+Reload
attack program and does not seek to synchronise victim and
attacker programs. The model proposed has the ability to
classify Flush+Reload attacks with a level of accuracy
approaching 99% for native and 96% for cloud systems
without increasing the cost of detection in a cloud systems
above that in native systems.

Keywords — Side-Channel, Flush+Reload, Prime+Probe, HPC,
Machine Learning, Cloud Computing, Cryptography

I. INTRODUCTION

The use of the Internet and, in particular, cloud
computing on a wide range of mobile and desktop devices
is growing, with privacy outsourced to the providers of
cloud service. The result exposes data to a variety of
threats, making maintenance and security of data for attacks
increasingly challenging. Cryptography is the most
important element in maintaining the security of data in
every state to which it passes while being transmitted,
processed and stored. Hackers are attracted by the data’s
vulnerability and seek access to the data by using side
channel attacks to steal cryptographic components
including the secret keys. A range of sophisticated side
channel attack techniques have been put forward. Should
these techniques succeed, data protection would be
unreliable to the point where end users would be likely to
either limit the extent to which they used cloud services or
abandon cloud services altogether. Recent research has
shown side channel attacks to be in widespread use,
allowing attackers to obtain every part of a cryptographic
key in around one minute on native systems and three
minutes in a cloud system [2], [3]. A good deal of publicity

has been given to a number of hacks where large amounts
of data were stolen by hackers. Cloud service providers
claim encrypting the data will toughen the tasks of who
have unauthorised access. These tasks will involve many
years of brute force attack to identify the encryption key.
That defence is invalid when the key can be stolen in less
than three minutes, from within the system itself.

The objective of this research is the creation of a
knowledge based detection system capable of leveraging
hardware support to analyse and confine the activities in the
process with the view to detect malicious processes running
in user space. It would be necessary for such a system to
have the potential to mitigate and eliminate threats against
the security of the cryptographic algorithms. The system
uses machine learning techniques to detect a Flush+Reload
side channel attack occurring in user space without relying
on the victim and the attacker programs synchronisation.

Section 2 of this paper discusses related work both on
side channel attacks and on countermeasures against them.
Section 3 illustrates the study’s methodology, while section
4 discusses the results. A conclusion then ends the paper.

II. RELATED WORK

A number of studies have shown it is possible to carry
out side channel attacks on CPU components and sensitive
applications through the use of user credentials and
compromising technologies.

A. Side Channel Attacks

The notion of leaking data was first discussed by
Lampson [4] who illustrated the possibility that the
weakness of operating systems in protecting memory
contents could lead to leakage through hidden
communication channels. The malicious process would
encode hardware in order to uncover information about the
target processes. Lampson [5] proposed a protection
mechanism which relies on program confinements from
leaking data between two processes. Kocher et al. [6]
applied side channel attack to modern computer systems
and processes and demonstrated how sensitive data
including secret keys could be obtained from a variety of
cryptographic methods. The exploitation of hardware
contention begins with CPU components such as CPU
Cache Memory. Studies have shown the CPU to be the
resource most targeted by attackers.

2018 UKSim-AMSS 20th International Conference on Modelling & Simulation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/157862451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The CPU cache is the main source of information for
side channel attacks. In earlier days, L1 and L2 caches were
targeted by attacks [7], [8], [9] deploying as communication
channels between attack and victim processes residing on
the same core. Core migration challenged this method
through alternation of process assignment [9]. Faster, higher
bit-rate attacks than L1 were explored. Attentions were also
given to unified cache L3 across processor cores because of
its higher resolution with shorter times for recovering
sensitive information [10]. Rowhammer [11] attacks have
exploited main memory DRAM as a channel for data
leakage with a much higher bandwidth.

Main Memory has been exploited as a bridge across
processes to transfer large amount of data. After practising
side channel attack on the CPU cache, the researchers have
found the feasibility of transferring large amount of data
through DRAM. Gruss et al. [12] used the Flush+Reload
technique through exploitation of prefetching address
translation [13] to map virtual into physical addresses. The
paper [14] proposed a high-speed covert channel of up to
2Mb/s using a side channel attack across the CPU, without
memory sharing.

B. Mitigation and Solutions Based Hardware and Software

The developments in side channel attacks have been met
by similar developments. Countermeasures have been put
forward as a way of counteracting and mitigating side
channel attacks’ negative impact in real systems.

Earlier research has demonstrated the achievement of
high resolution [10] and very fast [3] side channel attacks
through Flush+Reload, which has the potential to exploit
the system’s page sharing characteristics. This is especially
acute cross core in cloud systems [9], through LLC. These
demonstrations of potential vulnerability presaged software
developers and cloud providers to disable page sharing
features which were previously their systems’ default
settings. The work presented in [15] suggested the kernel
space solution CACHEBAR to give concrete protection to
pages shared between cross VMs in PaaS. The drawback of
this approach is performance impairment, and this is
particularly true in cloud systems. In the drive to free space
that can be leased to more tenants, cloud providers aim to
reclaim the maximum possible amount of memory, and this
creates temporal localities (data and/or resources being
reused in a small period of time) that impacts on the system
negatively. According to the work in [3], memory page
vulnerabilities when using S$A against LLC cache in large
page settings might enable AES secret keys to be extracted.

Cleemput et al. [16] suggested that compilers could be
used against side channel attacks if execution time were
made uniform by transforming code in the in AES
algorithm. This study, however, suffers from hardware
requirements, code complexity, portability, and
performance issues. Crane et al. [17] suggested injecting
noise into program execution to achieve control-flow
diversity. This study gave solutions to limitations discussed
in [16]. However, their solutions are specific to the

application concerned, cannot be generalised and degrade
the system performance. Countermeasures proposed by
other researchers include proposal for a Sanctum protection
model that flushes the L1 cache while the host OS performs
context switching [18]. The paper in [19] suggested that a
Prime+Probe attack could be defeated by flushing L1D/I to
avoid data dependency.

On the other hand, a number of Profiling-Based
approaches have been used for side channel attack
detection. In [20] a statistical analysis to identify cache
attacks, observing CPU cycles to monitor accessed and non-
accessed cache (miss/hit) attacks was suggested. Briongos
et al. [21] proposed monitoring for Flush+Reload attacks
against the AES algorithm, and the study looked at the
clflush instruction of multiple cache lines in the core of the
attack. Detecting attacks in that case were mainly driven by
the collection of CPU cycles. Their findings are is not
efficient in for real-time systems, as unexpected workload
may trigger false positives. Machine learning has been
proposed as a way to reduce the number of false positives
and thereby increasing the detection efficiency. However
this require the involvement of more than one feature (e.g.
CPU cycle).

Hardware-based detection techniques makes use of
PMU to obtain a greater level of detail so that features can
be extracted that support higher resolution detections.
Zhang et al. [20] suggested CloudRadar, which seeks to
detect signatures and anomalies. Besides, side channel
attacks, this cloudRadar seeks to detect other forms of
attacks such as denial of service against CPU caches. HPCs
also make it possible to use machine learning algorithms for
the extraction of patterns that have not yet been heavily
explored. The results are efficient, highly accurate and
reliable. Payer [22] suggested HexPads as a way of
detecting side channel attacks by exploiting PMU through
the use of sensitive events. Thresholds were set for every
processor in the system by means of the perf tool, which
makes use of the system proc file to obtain information
about every running process. The work in [23],
demonstrated that the attackers may hide the PID of the
attack, thus evading detection when HexPads misses the
attacker’s PID and fails to monitor their activities. Instead
of monitoring PID, the proposed system monitors activities
in the processor core and this would prevent an attacker
from avoiding being profiled. An additional limitation of
HexPads is its ability to detect VMs. Our proposed
technique in this paper detects both malicious VMs and
native processes at no extra difference in cost.

Allaf et al. [24] noted that side channel attacks rely on
cache behaviour based on the attacker/target correlation.
Alam et al. [25] suggested using machine learning to extract
the patent of the attack using synchronisation to correlate
attack and target, but no correlation is required by the
proposed technique since it allows the system to detect
malicious loop activities occurring inside the Flush+Reload
program. The computational cost in the host system is
thereby saved.

III. METHODOLOGY

This work will present the use of a supervised method in
classifying the Flush+Reload side channel attack and will
then compare native system and cloud system results to
show the level of accuracy attained by the classifier in
efficient detection of side channel attacks for both native
and VM processes.

A. K-Nearest Neighbour (KNN)

The instance-based algorithm k-NN is a simple
nonparametric classification algorithm that has been around
for a long time [26]. It may be used in any classification
task using discrete data but the classification of unseen
data-sets and regression tasks to predict a continuous label
relying on datasets based on time series. Each tested data
class is predicted by measuring test data items’ similarity.
The classification process conducted on the test data-set
realised for each class on k closest neighbours. Any set of
sample data points can be classified according to its
neighbours’ majority vote. kNN makes use of a search
engine based on measurement distance functions to find
from the dataset the closest data items. k-NN has been
studied for a considerable period of time and a number of
distance measures have been used, with the most popular
being: Euclidean; Manhattan; Hamming; and Minkowski.
This study has made use of the Manhattan measure to find
the best k instance for the classification tasks in the training
data-set.

(1)

Optimal k values are found on the basis: larger values
mean better classification. Since this approach is not
reliable, this study uses the cross-validation (CV) [27] to
determine how optimised the k value is. Cross-validation
divides datasets into a number of predefined data-sets
before feeding them independently to k-NN during training
and testing tasks. The optimal k value is selected by the
search engine from a number of independent predefined
data-sets.

The k-NN algorithm measures distances between data
items in the data-set. This is why k-NN has been chosen;
the choice of data set rests on data sample similarities with
stress on features that are near neighbours. The features
chosen for this experiment include L1, L2 and LLC cache
misses, because Flush+Reload attacks work by flushing a
specific memory address from all levels of cache – that is,
L1, L2 and LLC – and, after a very short sleep, accessing
the memory address that was flushed. Three consecutive
cache access points are needed; the memory access
instruction generates an identical number of hardware
events, which in this case are cache misses, for each cache
level. k-NN is looking for data items with the smallest
distance between them, and so identifies efficiently the
malicious loop inside the Flush+Reload program.

B. Method Evaluation

When the classifier has predicted unseen data sets, its
accuracy is evaluated to test how sensitive and precise it is,
and how specific it is in identifying malicious activity.
Those three characteristics – sensitivity, specificity and
precision – are plotted along a Receiver Operating
Characteristic (ROC) curve. The ROC was put forward by
[28], [29] to enable the performance metrics of a predictive
model to be examined in visual form by drawing line
graphs connecting sensitivity and specificity. A point on the
curve will signify a ratio between 0 and 1. Since the
halfway point on this curve represents a random guess, the
diagonal connects the points (0.5,0.5). Anything above that
diagonal will be more accurate than a random guess, and
the actual position enables its accuracy to be characterised
on a continuum from good to excellent, with the very best
performance closest to the top right corner. Anything below
the diagonal is likely to be even less accurate than a random
guess.

C. Performance Monitoring Unit (PMU):

Programmers need help in debugging and locating the
bottlenecks in their programs and PMU provides this
assistance with run-time feedback. There is one PMU in
each processor core of current multicore processors, and
each has the task of capturing core activities. Each activity
is recorded as an event and it happens when use of a
component of the CPU calls for a hardware action. Among
these events are cache accesses to L1, L2 and L3, and
branch predictions. There are is detailed Intel
documentations on events and how they can be used in
chapter 18 and 19 [30]. For this paper, PMU has been used
deployed to profile attacker activities in the host operating
system using the kernel module.

D. Benchmarks

Benchmark suites of programs given by communities
and companies with agreements to be representatives and
assess the relative performance of a system. They measure
performance of a piece of code, an application or a system.
The Standard Performance Evaluation Corporation (SPEC)
CPU2006 Benchmark suite comprises a number of
programs each representing a specific program type. For
example, bzip2 represents compression programs. SPEC
can be used as a workload to detect and measure system
performance degradation. SPEC [31] is the benchmark used
most widely for system performance measurement. In this
study, we utilise SPEC CPU2006 as a workload on the host
system in regard to side channel attack with Flush+Reload
in order to stress the computational environment and to
evaluate the precision of the detection model.

E. Threat Model and Assumptions

The CPU is a multi-core. Each core has private caches
L1 and L2 together with a single Last Level Cache (LLC)
that is shared with other cores. This study examines side
channel attacks that mostly exploit LLC occurring both in
native and cloud systems. The assumptions are in native
systems the attackers are users and in cloud systems, the
attackers are most likely the Virtual Machines (VM). This
is particularly the case in the Infrastructure as a Service
(IaaS), where guest VMs operate in a virtualised
environment that enables the sharing of resources such as
CPU caches.

According to [2], [10], the RDTSC instruction is used to
attack the timing channel, since it can be accessed through
user space and does not require any privileges. This enables
the attacker then observes the target program’s use of
shared resources. For side-channel attacks, this study
focuses on Flush+Reload, a memory cache side channel
popular in today’s computer systems.

F. Experiments Setup

This section describes the software and hardware
components for the experiments involving online and
offline observations with a view to detect attacks.

1) Hardware Specifications: The experiment was
conducted on HP Proliant DL360 G7 with Intel Xeon
X5650 2.66GHz processor with 16 GB RAM running
Ubuntu 14.04. The various tests used SPEC cpu2006.

2) Data Collection: Data collection for this
experiment is by HPCs (Hardware Performance Counters)
that profile the execution attributes of programs for each
processor core. Events are sampled that would occur in a
Flush+Reload attack to see whether such an attack is in fact
in process. Using the available physical PMC counters is
best; there are seven of them in this experiment, and so the
PMC has monitored L1, L2 and LLC cache misses in three
fixed function counters and four programmable counters.
Profiling automatically counts the number of the selected
events for all programs assigned to the select processor
core. Each sample lasts 0.02 µs, the time needed for a single
iteration of the malicious loop in a Flush+Reload attack.
The kernel module takes from the profiling loop 4,000
samples to see whether the attacker program could have
been running more than once.

3) Data Aggregation: Aggregating mean values
allows the data-set to be fed into machine learning
algorithms. Aggregation slices the raw data-set into a series
of subsets, each containing n samples, to generate a new
time series execution data-set. n samples are combined
using the mean function, after which their average is taken
to give a sample representing the malicious process.
Malicious activities appear in the raw data as consecutive
samples in the form of time series, but grouped samples
cannot be handled in one step by k-NN, and so the
aggregation mean function makes possible the feeding of
the data-set into the k-NN algorithm so that k-NN can
perform the classification.

Fig. 1. Detection system overview

G. Detection System Overview

Figure 3 illustrates the detection systems, of which the
general concept is described in this section. Step 1, the
detection system communicates with the kernel module for
the collection of data from the PMC counters; the PMC
counters can only be written to with the kernel’s
permission. The kernel module profiles processor cores as
raw data and provide both off-line and online data. Offline
data is labelled, in step 2, to reflect attack activities and
prepare training and test data-sets. It is then fed them to the
k-NN algorithm to build a classifier, in step 3, using a cross
validation method. The online data, on the other hand, is
collected in step 4. Then, in step 5, the data must be pre-
processed to produce a new data-set from the consecutive
attack activities using the aggregation mean function. In
step 6, the new data-set is then fed to the classifier to
predict attack activities in the system in step 7.

IV. RESULT ANALYSIS AND DISCUSSION

This section addresses the success of k-NN classifier in
detecting side channel attacks in native and in cloud
systems. It goes on to discuss how the selected features of
the k-NN algorithm’s search engine finds in the dataset
indicators the presence of side channel attacks, if any.

A. Analysis

Figure 2 and 3 illustrate the use of Receiver Operating
Characteristics (ROC) metrics to quantify the classifier’s
accuracy in discriminating between two process activities
that are benign and are normal workloads, and malicious
loop activities. The classifier’s output is represented as
ROC curves, which represent the sensitivity and specificity
calculations at incremental thresholds between zero and one
across 10 folds when the same dataset is randomly shuffled,
resulting in each fold having a different spread of the data.
The Y axis plots the classifier output’s True Positives Rates
and the X axis plots False Positive Rates. Each fold is an
individual ROC and is the light blue line. It represents
detection quality. The solid blue line is the calculated mean

of 10 ROC curves. The classifier’s stability is shown by the
transparent blue area representing confidence intervals.

Fig. 2. The distribution of ROC curves in native system.

Fig. 3. The distribution of ROC curves in cloud system.

Three highly relevant features have been chosen to
illustrate the leverage of k-NN in detecting malicious loop
activities inside a Flush+Reload attack. They were selected
from hundreds of events supported by the CPU because the
clflush instruction followed by a mov instruction to a
memory address generates the same number of cache miss
events as the host OS. Using machine learning detects a
malicious activity in a shorter time than an attacker needs to
establish covert communication channels.

Figure 2 shows the ROC metric that evaluates the
classifier’s ability to detect malicious loop activities among
normal workloads in the host system. Success in observing
program execution attributes and classifying processes as
malicious or benign as a measure of the risk of existing side
channel attack in the system is shown as estimated by AUC
of ROC. The model identifies the malicious loop in a native
system with very high accuracy (AUC=0.99 the average of
10 folds, with zero confident interval). In the cloud,
however, the same algorithm trained on a data-set that

captured VM activities was less accurate at predicting
malicious activities from among other workloads
(AUC=0.96 Confident interval=0.02). The classifier is
therefore 3% less efficient at identifying malicious loop
activities in the cloud than in a native system. This is the
result of the noise in L1 and L2 cache memories arising
from the additional translation layer imposed by Structure
as a Service (SaaS), a layer which for security reasons the
hypervisor hides across VMs. K-NN’s reliability arises
because the execution time series is sliced into proper
window-size segments, confining the malicious loop’s time-
sliced execution inside a Flush+Reload attack.

B. Discussion

The results demonstrate the ability of the k-NN
algorithm to build a classifier that is very accurate in
identifying malicious loop activities used by the
Flush+Reload attack in both native and cloud systems.
Flush+Reload frequently repeats the same task, which is
organised by executing clflush instruction to a specific
memory address of interest and then executing mov to the
same address. When it receives the memory address from
which to read the contents, mov must retrieved them from
memory pages because the previous clflush rendered the
content in hierarchical cache memory at that address
invalid, and Invalid contents are updated from main
memory leading to a sequence of hardware events. Cache
misses at L1, L2 and LLC are the events selected as
executing two consecutive instructions produces an equal
number of L1, L2 and LLC cache misses. This sets the
attack program apart from other workloads as shown in
SPEC benchmark suite including two integer applications
(bzip2 and gcc) and two floating applications (bwaves and
dealII). It is this particularity that enables the k-NN
algorithm to build a model identifying the malicious loop in
the computational environment with high accuracy. The
aggregation mean function corroborates the classifier’s
reliability by slicing the data-set into a sequence of
windows of equal size to be searched for samples of the
malicious loop. The malicious loop is then seen to be
repeating the same task of flushing and accessing the same
memory address.

K-NN is a distance-based algorithm using the search
engine to perform classification by finding the closest
samples in the data-set. These three features (L1, L2 and
LLC) have the shortest distance which, in native systems, is
zero. In cloud systems, on the other hand, the noise in L1
and L2 caches slightly reduces the classifier’s accuracy.

Another advantage found in these results is that the
profiling can record native and cloud-based activities with
no difference in cost. The same classifier does not require
training with different data-sets, and the same data-set can
be used to train the classifier to detect malicious processes
either in originate in a native or a VM process – but there
will be a 3% degradation in the classifier’s accuracy in
cloud settings due to the noise.

V. CONCLUSIONS

This paper has proposed detection of side channel
attacks through classification by using Hardware
Performance Counter (HPCs) to record hardware events in
the host system. What is proposed to be monitored is events
relevant to a Flush+Reload attack, and these improve the
accuracy of detection significantly. The paper also put
forward a new profiling technique to record activities in
processor cores to which processes are assigned. The
proposed detection model is not only reliant on the
relationship between target and attacker programs, but it
can also detect a malicious VM performing side channel
attacks with no additional cost compare to the detection of a
native process. The ROC curve is used to evaluate the
efficiency of the proposed classifier for the detection of side
channel attacks. The classifier detects side channel attacks
in both native and cloud settings with accuracy of up to
99% and 96% respectively under SPEC CPU2006
workloads.

However, the proposed method cannot detect techniques
such as Prime+Probe due to the behaviour of the malicious
loop inside the program. Also if the function is smaller than
the number of malicious loop samples, the new data-set will
be noisier and influence the classification model, causing
the attacker to be wrongly classified.

The future work will consider the accuracy
improvement of the classifier in malicious process detection
for cloud systems. Further work will be devoted to the
design of a model that can detect other side channel attacks
and improves the aggregation to avoid the possibility of
missing some forms of malicious loop activities.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
arXiv preprint arXiv:1801.01207, 2018.

[2] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute!
a fast, cross-vm attack on aes,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2014, pp. 299–319.

[3] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S $ a: A shared cache
attack that works across cores and defies vm sandboxing–and its
application to aes,” in 2015 IEEE Symposium on Security and
Privacy. IEEE, 2015, pp. 591–604.

[4] B. W. Lampson, “Dynamic protection structures,” in Proceedings of
the November 18-20, 1969, fall joint computer conference. ACM,
1969, pp. 27–38.

[5] ——, “A note on the confinement problem,” Communications of the
ACM, vol. 16, no. 10, pp. 613–615, 1973.

[6] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Annual International Cryptology
Conference. Springer, 1996, pp. 104–113.

[7] C. Percival, “Cache missing for fun and profit,” 2005.
[8] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get

off of my cloud: exploring information leakage in third-party
compute clouds,” in Proceedings of the 16th ACM conference on
Computer and communications security. ACM, 2009, pp. 199–212.

[9] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 305–316.

[10] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low
noise, l3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 719–732.

[11] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer,
2016, pp. 300– 321.

[12] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S.
O’Connell, W. Schoechl, and Y. Yarom, “Another flip in the wall of
rowhammer defenses,” arXiv preprint arXiv:1710.00551, 2017.

[13] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 368–379.

[14] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“Drama: Exploiting dram addressing for cross-cpu attacks.” in
USENIX Security Symposium, 2016, pp. 565–581.

[15] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to
defeating side channels in last-level caches,” arXiv preprint
arXiv:1603.05615, 2016.

[16] J. V. Cleemput, B. Coppens, and B. De Sutter, “Compiler
mitigations for time attacks on modern x86 processors,” ACM
Transactions on Architecture and Code Optimization (TACO), vol.
8, no. 4, p. 23, 2012.

[17] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic software
diversity.” in NDSS, 2015, pp. 8–11.

[18] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal
hardware extensions for strong software isolation.” in USENIX
Security Symposium, 2016, pp. 857–874.

[19] Y. Zhang and M. K. Reiter, “Duppel: retrofitting commodity
operating¨ systems to mitigate cache side channels in the cloud,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 827–838.

[20] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time
sidechannel attack detection system in clouds,” in International
Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2016, pp. 118–140.

[21] S. Briongos, P. Malagon, J. L. Risco-Mart´ ´ın, and J. M. Moya,
“Modeling side-channel cache attacks on aes,” in Proceedings of the
Summer Computer Simulation Conference. Society for Computer
Simulation International, 2016, p. 37.

[22] M. Payer, “Hexpads: a platform to detect “stealth” attacks,” in
International Symposium on Engineering Secure Software and
Systems. Springer, 2016, pp. 138–154.

[23] X. Wang and R. Karri, “Numchecker: Detecting kernel control-
flow modifying rootkits by using hardware performance
counters,” in Proceedings of the 50th Annual Design
Automation Conference. ACM, 2013, p. 79.

[24] Z. Allaf, M. Adda, and A. Gegov, “A comparison study on flush+
reload and prime+ probe attacks on aes using machine learning
approaches,” in UK Workshop on Computational Intelligence.
Springer, 2017, pp. 203–213.

[25] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
“Performance counters to rescue: A machine learning based
safeguard against micro-architectural side-channel-attacks,” 2017,
https://eprint.iacr.org/2017/564.

[26] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE transactions on information theory, vol. 13, no. 1, pp. 21–27,
1967.

[27] S. Arlot, A. Celisse et al., “A survey of cross-validation procedures
for model selection,” Statistics surveys, vol. 4, pp. 40–79, 2010.

[28] A. P. Bradley, “The use of the area under the roc curve in the
evaluation of machine learning algorithms,” Pattern recognition, vol.
30, no. 7, pp. 1145–1159, 1997.

[29] T. Fawcett, “An introduction to roc analysis,” Pattern recognition
letters, vol. 27, no. 8, pp. 861–874, 2006.

[30] I. Intel, “Software guard extensions programming reference, revision
2,” 2014.

[31] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006. [Online].
Available: http://doi.acm.org/10.1145/1186736.1186737

