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Abstract:  We study the ability of subjects to transfer principles between related coordination 
games.  Subjects play a class of order statistic coordination games closely related to the well-
known minimum (or weak-link) and median games (Van Huyck, Battalio, and Beil, 1990 and 
1991).  When subjects play a random sequence of games with differing order statistics, play is 
less sensitive to the order statistic than when a fixed order statistic is used throughout.  This is 
consistent with the prediction of a simple learning model with transfer.  If subjects play a series 
of similar stag hunt games, play converges to the payoff dominant equilibrium when a 
convention emerges, replicating the main result of Rankin, Van Huyck, and Battalio (2000).  
When these subjects subsequently play a random sequence of order statistic games, play is 
shifted towards the payoff dominant equilibrium relative to subjects without previous experience.  
The data is consistent with subjects absorbing a general principle, play of the payoff dominant 
equilibrium, and applying it in a new related setting. 
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Author’s Note:  The research in this paper is the result of a wager.  In 1997 – 1998, John Van 
Huyck visited the University of Pittsburgh where I was an assistant professor.  He gave a talk 
about the experiments subsequently published in Rankin, Van Huyck, and Battalio (2000).  This 
paper is concerned with the emergence of conventions in stag hunt games.  Standard wisdom 
held that repeated play of a fixed stag hunt game leads to emergence of the risk dominant 
equilibrium as a convention.1  Rankin et al. studied play in a series of closely related stag hunt 
games.  While the games were similar, the location of equilibria and payoffs were randomized 
with the intent of making the direct relationship between actions less salient.  Subjects were 
instead forced to rely on general features of the games like security, payoff dominance, and risk 
dominance.  The surprising result is that the payoff dominant equilibrium emerges as a 
convention if any convention emerges. 

During John’s lecture I asked whether this result would extend to other coordination games.  
For example, what would happen if a group which had converged to the payoff dominant 
equilibrium in the stag hunt games was then asked to play a minimum game (Van Huyck, 
Battalio, and Beil, 1990)?  John felt that such groups would successfully coordinate on the 
payoff dominant equilibrium while I conjectured that play would collapse to the secure 
equilibrium as is typical for minimum games with large groups.  We bet $5 on who was correct. 

The bet was settled by running a single experimental session at Texas A&M.  Two groups of 
eight subjects played the same series of closely related stag hunt games used by Rankin et al. and 
then played a series of eight person minimum games.  The efficient equilibrium emerged as a 
convention in the stag hunt games for both groups, but play in the minimum games rapidly 
converged to the secure equilibrium.  Although the bet was settled, John and I agreed that the 
central intellectual issue was not.  The minimum game is a demanding environment.  Even if 
most subjects learn a convention of playing the payoff dominant equilibrium in the stag hunt 
games and apply this convention in the minimum games, a few exceptions who do not learn the 
convention of playing the payoff dominant equilibrium or do not apply it in the minimum games 
are sufficient to undo the convention.  Thinking more deeply about the nature of conventions in 
coordination games, additional difficulties emerge.  Following a convention of playing the 
payoff dominant equilibrium requires that you believe others will follow the convention.  For a 
stag hunt game you only need to believe that one person, your current opponent, will follow the 
convention.  In a minimum game, you need to believe that everyone in your group will follow 
the convention.  This is a far more challenging standard.2  John and I agreed that the test we had 
run for our bet made it unlikely that transfer of conventions would be observed. 

                                                            
1 See Ochs (1995) for a summary of evidence at the time. 
2 This point is a simple matter of arithmetic.  Let p be the probability that a subject plays the payoff dominant 
equilibrium.  In choosing whether I should play the payoff dominant equilibrium in a stag hunt game, the relevant 
number is my belief about p.  In an eight person minimum game, what matters is my belief about p7 which is a much 
smaller number.  For example, suppose p = .8.  The probability the one person plays the payoff dominant 
equilibrium is 80%, but the probability that a group of seven people all play the payoff dominant equilibrium 
(assuming independence) is only 21%. 
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We therefore designed a more forgiving test of the central hypothesis that subjects would 
apply a convention learned in stag hunts to other coordination games where it is relevant.  A 
small number of initial sessions were run at Texas A&M, but life intervened and the project was 
never completed.  When John passed away, I decided that the best way to honor him would be to 
use the design we had developed and finally complete the project.  With an enormous amount of 
help from Catherine Eckel, Phil Brookins, Laura Magee, and Joe Stinn, I was able to reconstruct 
the experiments that had been run at Texas A&M and run new sessions at FSU.  The paper that 
follows presents the results of this exercise.   

Before getting to the details of the paper, I want to talk about John.  He was an exceptional 
researcher and an exceptional colleague.  He never did research as a fishing expedition.  John’s 
work was based on a clear understanding of the relevant theory.  He wasn’t interested in work 
that was flashy or trendy.  John had a deep interest in understanding how people played games, 
particularly coordination games, and did research with the aim of addressing fundamental issues.  
John understood the importance of dynamics in a way that many experimenters do not.  
Equilibrium doesn’t spring into existence like Minerva emerging from the head of Jupiter; it 
develops gradually through a dynamic process.  Much of John’s work, including this paper, is 
devoted to understanding that process.  John was an incredibly deep thinker.  He understood the 
links between games and economic settings and the relationship between game theory and 
experiments in a way that very few researchers have achieved.  He was brilliant.  John also did 
the little things right.  Everybody talks a good game about careful experimental techniques, but 
John conducted experiments with extraordinary care.  He paid attention to little details that the 
referees will never know about because it is the right way to do science.  As a person, John was a 
fascinating guy.  He was frighteningly smart, and had tremendous intensity whenever a topic of 
conversation caught his interest.  He had a wonderful sense of black humor.  He cared deeply 
about taking care of his students and even more deeply about taking care of his family.  
Academia is a demanding business and it is easy to let the job devour your life.  John was 
passionately interested in experimental economics, but he never forgot that we are more than our 
jobs.  It was an honor to be his friend and colleague. 

 
“If we rely solely on the story of directly relevant experience to justify attention to Nash 
equilibria, and if by directly relevant experience we mean only experience with precisely the 
same game in precisely the same situation, then this story will take us very little distance outside 
the laboratory.”  Kreps, 1990 

 
1. Introduction:  Nash equilibrium (Nash, 1950) is a fundamental concept in game theory.  As 
the name implies, it is an equilibrium concept and does not specify how play arrives at an 
equilibrium.  This is a critical issue in applying the theory to field settings, especially when more 
than one Nash equilibrium exists.  Learning models, which conceptualize equilibrium as the 
steady state of a dynamic process, offer a good explanation for the emergence of equilibrium.  
Theorists have enjoyed great success showing conditions under which learning processes will 



4 
 

converge to equilibrium.3  Experimenters have also studied learning in games extensively.  They 
have shown the existence of strong dynamics in game play, characterized the learning rules 
being used, and established conditions under which play converges to an equilibrium.4 

The experimental literature on learning in games typically focuses on repeated play of the 
same game.  This begs the question raised by Kreps in the opening quote.  Relatively little work 
has been done on the issue of transfer, the ability to take information learned in one game and 
apply it in another related game.5  The purpose of our experiments is to study transfer between 
games, particularly in an experimental design that forces subjects to rely on general principles 
rather structural similarity between games.  Examples of structural similarity between games 
include having the same number of actions, the same location for Nash equilibria, or the same 
locations of secure and Pareto efficient outcomes.6 

Our experiments employ two different types of coordination games, stag hunt games and 
order statistic games.  Coordination games are a good environment to study transfer.  It is simple 
to construct games that have similar structures but generate different behavior when played in 
isolation (e.g. minimum and median games).  There are general principles (payoff dominance, 
risk dominance, and security) that apply to multiple classes of coordination games with distinctly 
different structures (i.e. different number of actions, payoff structures, and/or locations of 
equilibria).  This makes it possible to study whether subjects are transferring general principles 
between games rather than merely learning an action and using it in an obviously related game. 

Our experiment contains three treatments.  The main treatment grew directly out of the bet 
between John and me.  Subjects initially play the series of 75 similar stag hunt games used by 
Rankin et al. in fixed cohorts of eight subjects.  They then play a series of 14 “random order 
statistic” games with their cohort.  These are eight player coordination games where subjects 
simultaneously choose a number between 1 and 7. A subject’s payoff is maximized if he matches 
the OSth lowest number chosen by the other seven members of his group (OS stands for “order 
statistic”).  The value of OS ranges between 1 and 7 and is randomly drawn for each game.  If 
OS = 1, this is almost the same as the well-known minimum game.7  Likewise, OS = 4 is 
(almost) a median game.  The structures of the random order statistic games are similar to each 
other but quite different from the stag hunt games.  General principles like payoff dominance and 
risk dominance apply to both the stag hunt and random order statistic games.   

                                                            
3 See Fudenberg and Levine (2009) for a recent survey. 
4 See chapter 6 of Camerer (2003) and Erev and Haruvy (forthcoming) for surveys. 
5 A related issue is the effect of spillover, the effect on play of participating in related games simultaneously 
(Bednar, Chen, Liu, and Page, 2012; Cason, Savikhin, and Sheremeta, 2012; Savikhin and Sheremeta, 2013; Cason 
and Gangadharan, 2013).  Because play is simultaneous, effects in one game cannot rely on feedback about play or 
outcomes in the other.  Hence, learning does not play a role in spillover effects. 
6 A major difficulty in the literature on transfer is the absence of any clear metric for similarity between games.  Our 
definition of structural similarity is a little bit like Stewart’s famous definition of pornography: I know it when I see 
it.  The basic idea is that there exist elements of a game’s construction that make the similarity of two games 
transparent independent of any deeper principles. 
7 The games differ because your actions do not affect the minimum you are trying to match.  You therefore cannot 
not guarantee matching the minimum by choosing 1. 
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The other two treatments serve as controls.  In the first, subjects play a sequence of random 
order statistic games without previous experience in stag hunt games.  The second control 
treatment has subjects playing a sequence of order statistic games where OS is fixed rather than 
randomly changing.  In other words, this treatment varies OS between groups but keep it fixed 
within groups. 

A simple model of learning with transfer predicts that the response of subjects’ choices to OS 
will be flatter in the control treatment where the value of OS changes randomly than the control 
treatment where OS is fixed within groups.  Given the previous results of Rankin et al., we 
expect subjects in the stag hunt phase of the main treatment to converge to the payoff dominant 
equilibrium (subject to some convention emerging).  Assuming that the concept of payoff 
dominance transfers between games, we predict that choices in the random sequence of order 
statistic games will be shifted upward for the main treatment where subjects have previous 
experience with stag hunt games relative to the control treatment where subjects have no 
previous experience in similar games. 

The results are in line with our hypotheses.  The most important result is the presence of 
positive transfer between the stag hunt games and the random order statistic games.  Relative to 
the control treatment, choices in the random sequence of order statistic games are higher when 
subjects have previous experience in the stag hunt games.  Choices are highest in cohorts that 
had previously converged to the payoff dominant equilibrium in the stag hunt games.  A closer 
look at the data indicates that initial play in the stag hunt games has little predictive power for the 
random order statistic games.   Play in the random order statistic games depends on what 
subjects learn in the stag hunt games rather than their initial behavior.  In other words, the effect 
does not appear to be driven by subjects’ types.  Subjects’ play is consistent with them learning a 
principle (payoff dominance) and then transferring it to a different game. 

Comparing behavior in the two control treatments, the response of subjects’ choices to the 
value of OS is flatter when the value of OS changes randomly between rounds.  To our surprise, 
subjects’ use of feedback is not sensitive to how close previous values of OS are to the current 
value.  Subjects treat past experience as being more relevant to the current game than is 
warranted.  With experience, play is shifted upwards for all values of OS when the value of OS is 
fixed relative to when OS changes randomly.  This shift is extremely large for high values of OS.  
There is strong transfer between games when subjects play randomly changing order statistic 
games, but this transfer does not lead to more efficient outcomes. 

Our experimental results make a valuable contribution to the literature on transfer in games.  
Two strands of the literature are particularly relevant for our work.  The first concerns the role of 
precedence in coordination games.  Van Huyck et al. (1991) study whether a precedent 
established in one version of a median game would carry over to another version of the median 
game.  They find little evidence of transfer.  Other studies have yielded more positive results.  
Devetag (2005) studies transfer from critical mass games to minimum games.  The critical mass 
game typically yields efficient coordination while play in the minimum games usually collapses 
to the secure equilibrium.  Devetag finds that a precedent of efficient play in the critical mass 
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game carries over to the minimum games with play shifting toward the payoff dominant 
equilibrium.  Brandts and Cooper (2006) study a design where subjects initially play a minimum 
game with payoffs very unfavorable to coordination above the minimum.  Players are then 
switched to a version of the game with favorable payoffs for coordination at higher effort levels.  
If the payoff table is returned to the original harsh environment, play does not collapse back to 
the minimum effort level.  Instead, there is a persistent positive effect from having experienced 
coordination at high effort levels.  Weber (2006) studies the precedent established in moving 
from minimum games with a small number of players (where efficient coordination is common) 
to games with larger numbers of players.  He finds that efficient coordination is maintained as 
the group size grows.  Cason, Savikhin, and Sheremeta (2012) study transfer between median 
and minimum games.  They find strong positive transfer from the median games to subsequent 
play in minimum games.  Interestingly, no such transfer is found from minimum games to 
subsequent median games and there is little spillover when the games are played simultaneously.  
Overall, the bulk of the evidence points to positive transfer between coordination games with a 
precedent of efficient play carrying over to environments where efficient play is more difficult.   

A second strand of the literature looks at whether subjects can transfer general principles.  
The evidence on this count is mixed.  Ho, Camerer, and Weigelt (1998) find positive transfer, but 
of an odd variety.  Subjects are switched between different p-beauty contest games, with iterated 
removal of dominated strategies being the relevant strategic concept in all cases.  Subjects 
switched to a new game initially play no differently from inexperienced subjects but learn faster.  
Cooper and Kagel (2005 and 2008) study the ability of subjects to take principles learned in one 
signaling game and apply them in another.  The action space and general principles are the same 
across games, but the form of the equilibrium (pooling vs. separating) and the actions used in 
equilibrium differ.  The results are mixed, with negative transfer reported in the 2005 paper and 
positive transfer reported in the 2008 paper.  Subsequent work (Cooper and Kagel, 2009) shows 
that the differing results can be attributed to the use of abstract versus meaningful context to 
frame the games.  Haruvy and Stahl (2012) study play in a series of dissimilar 4 x 4 normal form 
games.  They find that subjects learn rules and transfer these rules between games.8   

The papers studying transfer between games share several common features: (1) With the 
exception of Haruvy and Stahl, the games being played are structurally similar.  There are 
obvious cues that the games are related and obvious mappings of actions from one game into the 
other.  (2)  For papers studying transfer of general principles, the principles involved are strategic 
principles such as not playing dominated strategies, rather than principles of equilibrium 
selection such as choosing a payoff dominant equilibrium.  (3) Little attention is paid to 
determining what features make subjects treat games as more or less similar to each other. 

Our work makes several contributions to the existing literature.  We find that precedents 
transfer between coordination games, as in previous papers, but with two important differences.  

                                                            
8 For additional related papers see Rick and Weber (2010) and Grimm and Mengel (2012).  More broadly, there is a 
large psychology literature on learning and transfer with generally discouraging findings.  See Gick and Holyoak 
(1983) for a classic article on the topic and Alfieri, Nokes-Malach, and Schunn (2013) for a recent meta-study. 
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First, transfer does not necessarily lead to more efficient outcomes.  In the control treatment with 
a random sequence of order statistic games there is strong transfer between games which harms 
payoffs relative to the treatment where OS is held fixed.  Second, the random order statistic 
games have a different number of actions, a different payoff structure, and different locations for 
equilibria than the stag hunt games.  Like Rankin et al., we have deliberately reduced the ability 
of subjects to rely on structural similarity rather than general principles.  The positive transfer 
between stag hunt and random order statistic games shows that structural similarity is not a 
necessary condition for precedents to influence play in coordination games.   

We also contribute to the literature on the transfer of general principles.  Our data is 
consistent with subjects learning and applying a general principle.  Transfer of general principles 
has been observed before, but our example is unusual because the stag hunt and random order 
statistic games have little structural similarity.  This should increase our optimism about the 
ability of subjects to learn and transfer general principles.   Our experiments are also novel 
because the principle being transferred is not a principle of strategic play but rather an 
equilibrium selection concept.9  Finally, our subjects are surprisingly insensitive to differences 
between games.  This suggests that a central feature of the ABEE concept (Jehiel, 2005), the 
treatment of broad classes of games as equivalent, may be realistic. 
 
2. Experimental Design and Hypotheses 
 
A.  Games:  Two types of coordination games were used in our experimental design, random 
order statistic (ROS) games and stag hunt games.  The ROS games are played in eight player 
groups.  An order statistic OS ∈ {1, 2, 3, 4, 5, 6, 7} is announced to all players prior to the start 
of the game.  Players then simultaneously choose a number X ∈ {1, 2, 3, 4, 5, 6, 7}.  The payoff 
for Player i is given by Equation 1.  The variable Xi is the number chosen by Player i and X-i is 
the vector of choices by the other seven group members.  The function EOSሺXି୧, OSሻ gives the 
OSth order statistic for the choices of the other seven people in the group, where OS = 1 yields 
the lowest choice of the other seven group members, OS = 2 yields the second lowest choice, and 
so on.  This is an “exclusive” order statistic and does not depend on the choice of Player i.  
Throughout the remainder of this paper, if we refer to the “order statistic” we mean OS, the 
parameter determining what game is being played.  If we refer to the “exclusive order 
statistic” we mean EOS, the function giving the OSth order statistic for the other seven people 
in the group. 10  The values of a, b, and c are constants.  For all of our sessions we used the 
parameters from the Γ payoff table in Van Huyck, Battalio, and Beil (1991) multiplied by a 
factor of 200: a = 20, b = 10, and c = 120.   
 

                                                            
9 See Duffy and Fehr (2015) for a case where equilibrium selection principles fail to transfer. 
10 Use of an exclusive order statistic has several advantages.  Most important, a player’s choice does not influence 
the value of EOSሺXି୧, OSሻ.  Play of the maximum game, for example, would be trivial if the player’s own choice is 
included in the calculation of EOSሺXି୧, OSሻ.  Using the order statistic also makes it possible to use the same payoff 
table for all seven games.  Otherwise the minimum and maximum games require different payoff tables.  
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(Eq 1)  πሺX୧, Xି୧ሻ ൌ aEOSሺXି୧, OSሻ െ b൫X୧ െ EOSሺXି୧, OSሻ൯
ଶ
൅ c 

 
Table 1 shows the resulting payoff table for the ROS game.  Taking the value of OS as given, 

coordinating on any of the seven possible choices is a pure strategy Nash equilibrium.  There are 
no other pure strategy equilibria.  The seven equilibria are Pareto ranked with mutual play of 7 
being the payoff dominant equilibrium.  The maximin (or secure) choice is 3 regardless of the 
value of OS. 
 

Table 1:  Payoff Table for the ROS Game 
 

  EOS (Exclusive Order Statistic, Other Seven Group Members) 
  1 2 3 4 5 6 7 

M
y 

C
ho

ic
e 

1 140 150 140 110 60 -10 -100 
2 130 160 170 160 130 80 10 
3 100 150 180 190 180 150 100 
4 50 120 170 200 210 200 170 
5 -20 70 140 190 220 230 220 
6 -110 0 90 160 210 240 250 
7 -220 -90 20 110 180 230 260 

 
To get a better idea of how play can be expected to vary as OS changes, suppose a subject 

believes the other seven group members are choosing uniformly over the seven possible choices.  
Table 2 reports the expected payoff for each possible choice as a function of OS, the order 
statistic.  The best response has been highlighted in yellow for each value of OS.  In each case 
the best response is equal to the order statistic.  In the absence of a clear historical precedent, 
there are strong incentives to move to higher choices as the value of OS increases.   
 

Table 2:  Expected Payoffs vs. Random Play 
 

  Value of OS 
  1 2 3 4 5 6 7 

M
y 

C
ho

ic
e 

1 141.7 138.5 123.7 95.4 53.4 -1.6 -61.8
2 140.9 153.6 156.2 145.5 121.0 83.4 39.1
3 120.0 148.7 168.8 175.6 168.6 148.5 120.0
4 79.2 123.8 161.3 185.6 196.2 193.5 180.8
5 18.3 78.9 133.9 175.7 203.8 218.6 221.7
6 -62.5 14.0 86.4 145.8 191.4 223.6 242.6
7 -163.4 -70.9 19.0 95.9 159.0 208.7 243.5

 
The stag hunt games used in our experiments were identical to those employed by Rankin et 

al, subject to scaling the payoffs down.  The basic payoff table is shown in Table 3.  The value of 
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w always equaled 370, y was drawn from a uniform distribution over [1, 2, …, 369], and ε was 
drawn from a uniform distribution over [1, 2, …, 50].  Subjects knew the payoff table prior to 
play.  There are two pure strategy Nash equilibria, mutual play of A or mutual play of B.  The 
former is always the secure or maximin equilibrium and the latter is the payoff dominant 
equilibrium.  The identity of the risk dominant equilibrium depends on the value of y.  If y > 
185, the risk dominant equilibrium corresponds to the secure equilibrium.  Otherwise the payoff 
dominant equilibrium is also risk dominant.   

 
Table 3: Payoff Table for Stag Hunt Games 

 
 A B 

A y + ε, y + ε y + ε, ε 
B ε, y + ε w + ε, w + ε 

 
The most important way in which the stag hunt games varied was whether risk dominance 

corresponds to security or payoff dominance, but additional steps were taken to obscure the 
relationship between the games.  The variable ε is a constant added to all payoffs.  Making the 
payoff for the payoff dominant equilibrium vary from round is designed to reduce the transparent 
relationship between games.  We also randomly flipped whether A corresponded to the first or 
second row/column.  This randomly switches the location of the secure and payoff dominant 
equilibria between the upper left and lower right corners.  As Rankin et al note, the changing 
payoffs and scrambled locations of the equilibria are “an effort to blunt the salience of 
retrospective selection principles.” 

 
B.  Treatments:  The design contains three treatments.  Subjects participated in one of the three 
treatments.  In other words, this is a between subjects design. 
 
Random Order Statistic (ROS) Treatment:  Subjects were formed into fixed groups of eight 
subjects (“cohorts”) and played 42 rounds of the ROS game.  There were six blocks of seven 
games, with each value of OS ∈ {1, 2, 3, 4, 5, 6, 7} used once in each block.  The order of values 
for OS was randomly scrambled within each block.  The order was drawn in advance and the 
same order was used in all cohorts.  The order for the first and sixth blocks was forced to be 
identical.  The instructions state, “The order statistic will change from period to period.”  No 
details were given to subjects about how the order statistic would be changing.  Subjects knew 
the number of rounds in the experiment. 
 
Fixed Order Statistic (Fixed) Treatment:  We were interested in how playing a sequence of 
related but different order statistic games affected convergence relative to playing the same order 
statistic game throughout.  The Fixed treatment provides the relevant point of comparison.  As in 
the ROS treatment, subjects were formed into fixed groups of eight subjects (“cohorts”) and 
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played 42 order statistic games.  Unlike the ROS treatment, the order statistic is fixed for all 42 
games.  The instructions tell subjects that, “The order statistic will be chosen by the computer at 
the beginning of the session for each group of eight participants [cohort] and will remain 
constant during the session.”  Cohorts were run using all of the order statistics except OS = 7.  
Given that play rapidly converges to the payoff dominant equilibrium (mutual choice of 7) for 
fixed order statistics of 5 or 6, there wasn’t much to be learned by running cohorts with OS = 7. 
 
Stag Hunt → Random Order Statistic (SHROS) Treatment:  This is the central treatment in our 
experimental design.  If subjects learn a convention of playing the payoff dominant equilibrium 
in a series of related stag hunt games, can they transfer that convention to the ROS game?   

At the beginning of the session, subject are formed into fixed groups of eight (“cohorts”). 
The instructions tell subjects that they will interact within their cohort throughout the 
experiment.  Subjects initially play 75 rounds of the stag hunt game.  Payoffs were perturbed as 
described above, with the order of games drawn from Rankin et al.  Subjects are matched in 
pairs to play the stag hunt games.  The match was round robin, meaning that subjects played 
each of the seven other members of their cohort once in each seven round block.11  The order 
over the pairings was randomly scrambled for each block.  The instructions for the stag hunt 
games (Part 1) inform the subjects that there will be a second part of the experiment, but give no 
details on what Part 2 will be.   

After the stag hunt games were completed, subjects played 14 rounds of the ROS game in the 
same cohorts of eight subjects.  The instructions stress that subjects will “…participate in the 
same group of eight people [cohort] as in Part 1 of the experiment.”  The order of values of OS 
was the same as the first 14 rounds of the ROS treatment.  Thus, the order of values of OS for the 
first and sixth seven round blocks of the ROS treatment was identical to the order for the first 
block of the SHROS treatment and the order for the second blocks of the ROS and SHROS 
treatments were identical.   
 
C. Procedures:  All sessions were run at the xs/fs laboratory at Florida State University.  
Subjects were recruited from the FSU undergraduate population using ORSEE (Greiner, 2015).  
Sessions were run using z-Tree (Fischbacher, 2007).  The instructions and computer interface 
were designed to mimic as closely as possible those used by John Van Huyck in the original 
sessions conducted at Texas A&M, but it was not possible to use his original software.  Subjects 
were paid their total earnings from all rounds plus a $7 show-up fee.  Payoffs were denominated 
in points, with a conversion rate of 400 points equal to one dollar.  Sessions lasted 60 – 90 
minutes and average earnings (including the show-up fee) were $28.54.  

All sessions began with detailed instructions (see online appendices for instructions from the 
SHROS treatment).  For the SHROS treatment, subjects were given two sets of instructions, one 
before the stag hunt games and one before the ROS games.  The payoff tables and the feedback 
tables are relatively complex for the ROS games, so subjects were given detailed examples 

                                                            
11 This was truncated in the final block as there were only five rather than seven rounds. 
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beyond the instructions using a script and PowerPoint slides displayed at the front of the room.  
Following the instructions (both sets for the SHROS treatment), subjects took a quiz testing their 
ability to read the payoff tables.  

The payoff table for the current round was displayed on the computer screen when subjects 
were making choices.  After all choices were made, subjects were given detailed feedback on the 
outcome for the round.  This included a summary of all eight choices for the ROS games.  
Subjects were shown a history table when making choices which gave a summary of the games 
played and outcomes for previous rounds.  Subjects did not know the identity of the other seven 
members of their cohort and feedback was given in such a way that choices could not be 
associated with any specific cohort member.  

Because subjects in the SHROS treatment had accumulated payoffs in the stag hunt games 
before beginning play of the ROS games, it is possible that any treatment effects reflect income 
effects.  To control for this, prior to play of the ROS games (and after play of the stag hunt 
games in the SHROS treatment) all subjects received a randomly determined bonus.  Bonuses 
were independently drawn across subjects and were uniformly distributed over the interval 
between 0 and 2000 points (0 and 5 dollars).  The instructions tell the subjects, “Your bonus is 
random and has no relationship to your choices in the experiment or any of your personal 
characteristics.”  We use the bonuses as an instrument for the cash balance (defined as the sum of 
the bonus and any accumulated payoffs) entering the ROS games.  Bonuses are positively 
correlated with the cash balance but independent from any individual characteristics or choices 
of the subjects. 

 
Table 4:  Summary of Treatments 

 

Treatment Order Statistic (OS)
# of Cohorts 

(Sessions) 

Random Order Statistic (ROS) Random (1 – 7) 14 (5) 

Stag Hunt → Random Order Statistic (SHROS) Random (1 – 7) 12 (5) 

Fixed Order Statistic (Fixed) 

1 3 (3) 
2 3 (3) 
3 3 (3) 
4 3 (3) 
5 3 (3) 
6 3 (3) 

 
Table 4 summarizes the data that was gathered for this project.  There were seventeen 

sessions with a total of 352 subjects.  A “cohort” is a fixed group of eight subjects.  Subjects only 
interacted with other subjects in their cohort, so cohorts are independent observations.12 
                                                            
12 For the Fixed treatment, there were seven sessions.  Each session in this treatment included cohorts with different 
values of the order statistic (OS), with no two cohorts from the same session having the same order statistic.  This 
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Two sessions had problems.  For one session of the SHROS treatment (2 cohorts), the 
payoffs for the stag hunt games were accidentally multiplied by a factor of ten.  This had no 
obvious effect on play for either the stag hunt or ROS games, so the data from this session has 
been included in the dataset.  For one session of the ROS treatment (3 cohorts), two subjects had 
to leave after the first two blocks (14 rounds) had been completed.13  Data from the two blocks 
that were successfully completed is included in the dataset.  None of our qualitative conclusions 
are affected if the data from these two problem sessions is dropped.14 

 
D. Hypotheses:  As noted in the discussion of Table 2, there are strong incentives to choose 
higher numbers in the ROS game as OS increases.  Previous evidence with related order statistic 
games (Van Huyck, Battalio, and Beil, 1990 & 1991) also suggests that higher order statistics 
will lead to convergence at higher numbers.  These observations lead to a pair of straightforward 
hypotheses. 
 
H1:  Play in the Fixed treatment will converge to an equilibrium.  The average number chosen 
will be an increasing function of the order statistic (OS) in all treatments. 
 

To form hypotheses for the ROS treatment, consider a version of the Roth-Erev learning 
model (Roth and Erev, 1995) modified to allow for transfer between similar games.  Let wijt be 
the weight put on action i, i ∈ {1,2,3,4,5,6,7}, by individual j in round t.  Let pijt, the probability 
of individual j choosing action i in round t, be given by Equation 2.   
 

(Eq. 2)  p୧୨୲ ൌ
୵౟ౠ౪

∑ ୵ౡౠ౪
ళ
ౡసభ

 

 
Let wij1 be the initial weight on action i for individual j.  The weights in subsequent rounds 

are given by Equation 3.  The term I(OS(t) ≠ OS(s)) is a dummy for whether the values of OS in 
rounds s and t are different, I(a(s) = i) is a dummy for whether action i was chosen in round s, 
and πjs is the payoff earned by individual j in round s.  The variable σ measures perceived 
dissimilarity between the current order statistic game and other order statistic games.  By 
assumption, 0 ≤ σ ≤ 1.  If σ = 0, past experience from all order statistic games is treated as 
equivalent.  If σ = 1, only experience with the same order statistic game is given any weight.  For 
simplicity, the dissimilarity weight σ does not vary between values of OS ≠ OS(t).  Equation 3 
says that the weight put on action i equals its initial weight plus the sum of payoffs from playing 
action i in previous rounds weighted by whether or not the same order statistic game was being 
played.  
                                                            
was done to avoid confounding any session effects with effects of the order statistic.  Table 4 shows three sessions 
for each value of OS.  This reflects the cohorts for each value of OS being spread across three sessions. 
13 One subject had an exam and one was worried about being late to his job.  Although both had been told in 
advance about the time commitment needed for the experiment, both were allowed to leave and paid for the portion 
of the experiment they had completed as per IRB regulations. 
14 The average earnings reported above do not include the two problematic sessions. 
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(Eq. 3)  w୧୨୲ ൌ w୧୨ଵ ൅ ∑ ൣ൫1 െ σIሺOSሺtሻ ് OSሺsሻሻ൯ ∗ Iሺaሺsሻ ൌ iሻ ∗ π୨ୱ൧୲ିଵ
ୱୀଵ  

 
For simplicity assume that all players have the same initial weights on the seven actions and 

assume that initial weights do not depend on the value of OS for either Round 1 or Round t.15  
Let f(EOS; OSሻ be the distribution over exclusive order statistics (EOS) for Round 1 subject to 
the value of OS used for Round 1.  If A > B, f(EOS; A) first order stochastic dominates f(EOS, 
B).  From Equation 1, it can be shown that Δπ/ΔEOS is an increasing function of Xi, player i's 
choice.  It follows that as OS increases, the expected payoffs for high actions in Round 1 are 
increased relative to low actions.  This is a fancier version of the point made by Table 2. 

What does this imply for play in Round 2?  Equation 3 implies that the expected increase in 
weight for Round 2 is proportional to the expected payoff in Round 1.  Noting that the values of 
OS must be different for Rounds 1 and 2 by design, the higher the value of OS drawn in round 1, 
the more the weights in Round 2 are biased towards higher actions.  For low values of OS in 
round 2 this implies an upward bias in the probability distribution over actions and for high 
values of OS it implies a downward bias.  The same argument follows for later rounds.  Relative 
to play with a fixed order statistic, actions should be higher for low order statistics and lower for 
high order statistics. 

The intuition is simple.  Suppose I rely on experience from games with other values of OS.  
In a game with a low value of OS, that experience probably comes from games with higher order 
values of OS where high actions tend to do well.  I will overestimate how well a high choice is 
likely to do and bias my choice for the current round upwards.  Similar logic implies that I will 
bias my choice downwards when playing a game with a high value of OS. 

 
H2:  The slope of the relationship between OS and subject choices will be flatter in the ROS 
treatment than in the Fixed treatment. 
 

For the SHROS treatment to be interesting, a necessary condition is that we replicate the 
main result of Rankin et al. 

 
H3:  If cohorts in the stag hunt portion of the SHROS treatment converge to a convention, they 
will converge to play of the payoff dominant equilibrium. 
 

There is no obvious mapping between actions in the stag hunt games and actions in the ROS 
games.  Rankin et al. changed payoffs and scrambled the locations of the equilibria to reduce the 
similarity between games, forcing subjects to rely on general principles.  Switching from the stag 
hunt games and the ROS games is a more extreme version of this.  To the extent that experience 
from the stag hunt games is applicable in the ROS games, it is through the principle of playing 
the payoff dominant equilibrium.  The payoff dominant equilibrium (mutual play of 7) is easily 
                                                            
15 These are simplifying assumptions but not critical for our conclusions. 
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identified is the ROS game, so applying this principle is not difficult.  Ideally subjects would 
play the payoff dominant equilibrium in the ROS games, but realistically we conjectured that 
prior play of the stag hunt games would shift play toward the payoff dominant equilibrium in 
subsequent plays of the ROS game.16 

 
H4:  Compared with the ROS treatment, play in the SHROS treatment will be shifted toward 
higher choices. 
 
3.  Results 
 
A.  Stag Hunt Games:  A necessary condition for the SHROS treatment to be interesting is a 
general tendency to converge to the payoff dominant equilibrium.  In other words, we want to 
confirm that the convergence to the payoff dominant equilibrium is common both 
unconditionally and conditional on convergence to some convention.  
 

Table 5:  Play in the Stag Hunt Games 
 

Cohort ID 
Rounds 1 - 15 Rounds 61 - 75 

Payoff 
Dominant 

Risk 
Dominant 

Secure 
Payoff 

Dominant 
Risk 

Dominant 
Secure 

101 0.90 0.53 0.10 1.00 0.47 0.00 
102 0.79 0.63 0.21 0.73 0.69 0.28 
501 0.86 0.61 0.14 0.89 0.57 0.11 
502 0.85 0.62 0.15 0.95 0.52 0.05 
601 0.93 0.51 0.08 1.00 0.47 0.00 
602 0.88 0.57 0.12 1.00 0.47 0.00 
603 0.75 0.70 0.25 0.79 0.66 0.21 
901 0.92 0.52 0.08 1.00 0.47 0.00 
902 0.77 0.63 0.22 0.70 0.70 0.30 
1301 0.88 0.58 0.12 0.97 0.50 0.03 
1302 0.78 0.65 0.22 0.82 0.65 0.18 
1303 0.92 0.52 0.08 0.76 0.59 0.24 

 

                                                            
16 In terms of the model, we can devise similarity functions that yield H4.  The similarity function determines how 
payoffs from past actions are weighted when determining weights over currently available actions.  For example, 
suppose payoffs from Action A in the stag hunt games reinforce only Action 3 in the order statistic games since both 
are maximin choices.  Likewise suppose payoffs from Action B in the stag hunt games only reinforce Action 7 in the 
order statistic games since both are played in the payoff dominant equilibrium.  If play in the stag hunt games 
converges to the payoff dominant equilibrium, it follows that play of the payoff dominant equilibrium is reinforced 
in the order statistic games and prior experience with the stag hunt games shifts play toward the payoff dominant 
equilibrium in the ROS games.  The preceding yields H4 as a prediction but relies entirely on the assumed form of 
the similarity function, begging the main empirical question: Do subjects use general principals such as payoff 
dominance to identify choices in different games (i.e. stag hunt and order statistic games) as being similar? 



15 
 

Table 5 summarizes play from the stag hunt games.  The data is broken down by cohort.  
Recall that a total of seventy-five rounds of the stag hunt games were played.  To allow 
comparison of the beginning and end points, data is shown for the first fifteen games (Rounds 1 
– 15) and the final fifteen games (Rounds 61 – 75).  We display the proportion of subjects whose 
play is consistent with the payoff dominant, risk dominant, and secure equilibrium.  Because the 
risk dominant equilibrium may overlap either the payoff dominant or secure equilibrium 
depending on the specific game being played, the proportion of payoff and risk dominant 
equilibrium generally sums to more than 1. 

Define a cohort as having converged to a convention if 80% or more of play is consistent 
with that convention for the final fifteen rounds.  Cases where cohorts have converged to a 
convention in the last fifteen rounds are highlighted in yellow.  Eight of twelve groups have 
converged to the payoff dominant equilibrium and a ninth group just misses.  No groups 
converge to the risk dominant or secure equilibrium.  In eleven groups, the payoff dominant 
equilibrium is played more frequently than the risk dominant equilibrium over the final fifteen 
rounds (and there is a tie for the twelfth group).  Play of the payoff dominant equilibrium 
increases with experience for all of the groups that converged to playing the payoff dominant 
equilibrium.  In contrast, play of the risk dominant equilibrium is as likely to decrease (7 of 12 
groups) as increase with experience. 

 
Conclusion 1:  When cohorts playing the stag hunt games converge to a convention, they 
converge to play of the payoff dominant equilibrium.  The majority of groups converge to this 
convention.  The data is consistent with H3 and replicates the main result of Rankin et al. 
 
B.  ROS Games:  The main results of the paper can be seen in Figure 1.  Data is shown for the 
first two blocks (14 rounds) of play in the ROS game.  Recall that all subjects played the same 
games in the same order for these fourteen rounds.  The data is broken down by treatment and by 
the order statistic (OS) being used.  The vertical axis shows the average choice by subjects.  
Recall that possible choices range between 1 and 7.  The differences between treatments are 
similar in the two blocks, albeit more extreme in Rounds 8 – 14. 

Three clear patterns can be seen in the data.  (1)  In all three treatments, the average choice is 
an increasing function of the order statistic (OS).  This is consistent with H1.  (2)  Comparing 
play in the Fixed and ROS treatments, the slope of the relationship between the value of OS and 
average choices is flatter in the ROS treatment.  This is consistent with H2.  Average choices are 
generally higher in the Fixed treatment than the ROS treatment.  (3)  Average choices are always 
higher in the SHROS treatment than the ROS treatment.  This is consistent with H4.  This shift is 
stronger for low values of OS. 
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Figure 1: Choice by Order Statistic (OS), Rounds 1 - 14 
 

 
 

The regressions shown in Table 6 establish the statistical significance of these three patterns.  
The data is taken from the first fourteen rounds of play with the ROS games.  Each observation 
is a single choice, ranging between 1 and 7, by an individual subject.  Given that the choices are 
categorical in nature and have a natural ordering, an ordered probit model is used.  Standard 
errors are reported in parentheses.  Observations from the same cohort are correlated, so standard 
errors are corrected for clustering at the cohort level.  Note that this implies that all observations 
from the same individual subject are part of the same cluster and are not treated as independent.17 

In Model 1, the independent variables are dummies for the SHROS and Fixed treatments (the 
ROS treatment serves as the base), the order statistic (OS), a dummy for the second block 
(Rounds 8 – 14), and an interaction term between the order statistic and the dummy for the 
second block.  Both treatment dummies are positive and statistically significant.  The significant 
estimate for the SHROS dummy is consistent with H4.  The estimate for OS is positive and 
significant.  Notice that the dummy for the second block is negative while the interaction term is 

                                                            
17 Both regressions are one observation short.  In the ROS treatment session that had to be cut short, there was one 
subject who never entered her final choice. 
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positive.  Both parameters are statistically significant.  The slope of the relationship between 
subject choices and OS becomes steeper with experience. 

 
Table 6:  Ordered Probits, Treatment Effects in the ROS Games 

 
Independent Variable Model 1 Model 2 

Stag hunt → ROS 0.334** 0.740*** 
 (0.143) (0.272) 

Fixed Order Statistic 0.449*** -0.915*** 
 (0.165) (0.334) 

Order Statistic (OS) 0.351*** 0.273*** 
 (0.035) (0.033) 

Block 2 (Rounds 8 – 14) -0.875*** -0.934*** 
 (0.098) (0.103) 

Order Statistic x Block 2 0.280*** 0.302*** 
 (0.026) (0.029) 

Order Statistic x Stag hunt → ROS  -0.102** 
  (0.044) 

Order Statistic x Fixed  0.395*** 
  (0.085) 

Log-Likelihood -7379.59 -7088.35 
Number of Observations (Cohorts) 4,927 (44) 4,927 (44) 

Notes: Dependent variable is row choice by subject. Standard errors are corrected for clustering at the cohort level.  
Three (***), two (**), and one (*) stars denote statistical significance at the 1%, 5%, and 10% levels respectively. 

 
Model 2 adds interaction terms between the two treatment dummies and the value of OS.  

The dummy for the Fixed treatment is now negative while the interaction between this dummy 
and OS is positive.  Both parameters are statistically significant.  Together these estimates 
indicate that the slope of the relationship between subject choices and OS is steeper in the Fixed 
treatment than the ROS treatment as predicted by H2.  The dummy for the SHROS treatment is 
positive while the interaction term between this and OS is negative.  Both parameters are 
statistically significant.  It follows that the slope of the relationship between subject choices and 
OS is flatter in the SHROS treatment than the ROS treatment.  There is only a difference 
between the ROS and SHROS treatments for the lower values of OS.  For the maximum value of 
the order statistic, OS = 7, the estimated difference is a miniscule 0.028.  This difference is not 
statistically significant.  Finally, it is worth noting that the positive relationship between OS and 
subjects’ choices is statistically significant in all three treatments.18  This is consistent with H1. 

When we designed the experiments, we were concerned that the treatment effects of the 
SHROS treatment could be due to income effects as subjects in this treatment start the ROS 

                                                            
18 To show this formally, we reran Model 2 with the SHROS treatment as the base.  The parameter estimate for OS 
is 0.171 with a standard error of 0.036, significant at the 1% level.  See Appendix A for full output (Table A.1, 
Model 2). 
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treatment with a positive cash balance due to earnings from the stag hunt games.  To control for 
this possibility we added a random shock to subjects’ cash balances prior to beginning play of 
the ROS games.  We then reran Model 1 from Table 6 with two changes.  First, we used a tobit 
rather than an ordered probit to allow us to use an instrumental variable.  Second, we added the 
starting cash balance as an independent variable.  Since this is endogenous in the SHROS 
treatment, we use the income shock as an instrument for the starting cash balance.  This has no 
impact on our conclusions.  The estimate for the starting cash balance is small and does not 
approach statistical significance.  The two treatment dummies both remain positive and are both 
statistically significant.19 

H1 predicted that play would converge to an equilibrium in the Fixed treatment.  The data 
supports this prediction.  A good measure of convergence is the absolute difference between 
subjects’ chosen numbers and the exclusive order statistic (EOS) for their group.  This statistic 
equals zero if play converges to an equilibrium.  For the final block (Rounds 37 – 42) of the 
Fixed treatment, the average absolution difference between subjects’ chosen numbers and EOS 
equals .05.  This indicates a high degree of convergence.  As a point of comparison, for the final 
block of the ROS treatment the equivalent figure is .49.  Convergence is stronger in the Fixed 
treatment than the ROS treatment. 

 
Conclusion 2:  (a) There is strong convergence to equilibrium in the Fixed treatment.  The 
average number chosen is an increasing function of the order statistic (OS) in all three 
treatments.  The data is consistent with H1.  (b)  The slope of the relationship between OS and 
choices is steeper (flatter) in the Fixed (SHROS) treatment than in the ROS treatment.  The 
relationship between the ROS and Fixed treatments is consistent with H2.  (c) Compared with 
the ROS treatment, play in the SHROS treatment is shifted toward higher choices.  This finding is 
consistent with H4.  The difference between the ROS and SHROS treatments is due to shifts at 
low values of OS.   

 
The intuition underlying H4 is that subjects in the SHROS treatment learn to play the payoff 

dominant equilibrium in the stag hunt game and transfer this convention to the ROS games.  This 
implies that there should be a positive relationship between playing the payoff dominant 
equilibrium in the stag hunt games and choices in the ROS games.  The data is consistent with 
this prediction.  For each cohort in the SHROS treatment, we calculate the proportion of choices 
consistent with the payoff dominant equilibrium in the stag hunt games and the average choice in 
the ROS games.  Figure 2 shows a scatter plot of these two variables.  The positive relationship 
between the two variables can be seen easily.   

 
  

                                                            
19 See Appendix A for full output (Table A.1, Model 1). 
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Figure 2:  The Relationship between Play in Stag Hunt and ROS Games 

 
 
The regressions shown on Table 7 add more detail on this point. The dataset includes all of 

the ROS games in the SHROS treatment.  As previously, these are ordered probits.  Standard 
errors are reported in parentheses and are corrected for clustering at the cohort level.  The 
dependent variable is an individual’s choice in a single round of the ROS game.  Both 
regressions include the value of OS and a dummy for the second block (Rounds 8 – 14) as 
independent variables. 

The primary independent variable in Model 1 is the cohort’s proportion of choices consistent 
with the payoff dominant equilibrium in the stag hunt games.  In line with Figure 2, the 
parameter estimate is positive and statistically significant.   

Model 1 leaves important questions about causality unanswered.  The intuition underlying 
H4 is based on learning.  Subjects learn to play the payoff dominant equilibrium in the stag hunt 
games and then apply this principle in the ROS games.  But, looking at Table 5, play does not 
change much with experience in the stag hunt games.  Perhaps the lagged variable in Model 1 
captures an individual characteristic (e.g., an individual fixed effect that inclines subjects to 
choose the payoff dominant equilibrium) rather than an effect due to learning.  Model 2 
addresses this issue by adding two new independent variables, a dummy for whether the 
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subject’s play in the first stag hunt game was consistent with the payoff dominant equilibrium 
and the number of other subjects in the cohort whose play in the first stag hunt game was 
consistent with the payoff dominant equilibrium.  These variables cannot reflect any effects due 
to learning since only data from Round 1 is included, prior to any interactions or feedback.  
Instead, these variables should capture individual effects.  In Round 1, 51% of the choices were 
consistent with the payoff dominant equilibrium.  There is no shortage of variation. 

 
Table 7:  Ordered Probits, Effect of Play with Stag Hunt Games 

 

Independent Variable Model 1 Model 2 

% Payoff Dominant Equilibrium (Group) 2.791*** 2.789*** 
 (0.957) (0.994) 

Played Payoff Dominant Equilibrium  -0.018 
Own Play, Round 1  (0.104) 

Played Payoff Dominant Equilibrium  0.032 
Other Group Members, Round 1  (0.567) 

Order Statistic (OS) 0.308*** 0.308*** 
 (0.044) (0.044) 

Block 2 (Rounds 8 – 14) 0.142 0.142 
 (0.093) (0.093) 

Log-Likelihood -2057.06 -2056.99 
Number of Observations (Cohorts) 1,344 (12) 1,344 (12) 

Notes: Dependent variable is row choice by subject.  Standard errors are corrected for clustering at the cohort level.  
Three (***), two (**), and one (*) stars denote statistical significance at the 1%, 5%, and 10% levels respectively. 

 
The estimates for the cohort’s proportion of choices consistent with the payoff dominant 

equilibrium in the stag hunt games are virtually identical in Models 1 and 2.  The parameter 
estimates for the two new variables in Model 2 are small and nowhere close to statistical 
significance.  The inclusion of variables that should do a superior job of capturing individual 
effects adds no explanatory power.  This suggests that the effect of previous play in the stag hunt 
games reflects learning rather than individual effects.20 

 

                                                            
20 The number of clusters in the dataset for these regressions is low, only 12, biasing us in favor of finding statistical 
significance (a common rule of thumb is that you should have at least 20 clusters).  We have experimented with the 
“wild bootstrap method” developed by Cameron, Gelbach, and Miller (2008) to generate correct standard errors with 
a low number of clusters.  This isn’t perfect, since we have to use a linear probability model, but gives a sense of 
whether our result is driven by the low number of clusters.  The statistical significance of the parameter estimate for 
“% Payoff Dominant Equilibrium (Group)” is lower (p = .06) as expected, but our qualitative conclusions are 
unchanged.  (Oddly, the change in p-values is more due to use of a linear probability model than the method used to 
generate standard errors.)  Play consistent with the payoff dominant equilibrium in the stag hunt games has 
significant explanatory power for play in the ROS games, and adding the two first Round 1 variables has a 
negligible effect. 
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Conclusion 3:  Subject in cohorts that converged to play of the payoff dominant equilibrium in 
the stag hunt games choose higher actions in the ROS games.  This positive correlation cannot 
be attributed to uncontrolled individual effects. 
 

Table 8:  Ordered Probits, Effect of Lagged OS and EOS 
 

Independent Variable Model 1 Model 2 
Order Statistic (OS) 0.428*** 0.432*** 

 (0.041) (0.040) 
Lagged Order Statistic 0.071***  

 (0.007)  
Lagged Exclusive Order Statistic (EOS)  0.115*** 

  (0.023) 
Lagged Exclusive Order Statistic (EOS)  -0.002 

x |OS – Lagged OS|  (0.003) 
SHROS Treatment 0.345** 0.309** 

 (0.146) (0.127) 
Block 2 (Rounds 8 – 14) 0.213*** 0.224*** 

 (0.044) (0.046) 
Log-Likelihood -4134.80 -4104.58 

Number of Observations (Cohorts) 2,703 (26) 2,703 (26) 
Notes: Dependent variable is row choice by subject.  Standard errors are corrected for clustering at the cohort level.  
Three (***), two (**), and one (*) stars denote statistical significance at the 1%, 5%, and 10% levels respectively. 

 
The intuition underlying H2 was simple.  Suppose I draw on my experience with the other 

games when playing in the ROS treatment.  If OS is low, most of my experience will come from 
games with higher order statistics.  Since higher choices tend to do better in games with higher 
order statistics, this biases upwards my estimate of how effective higher choices are likely to be 
and hence makes me more likely to choose a high choice.  Similar logic applies when OS is high, 
biasing choices downward.  This led to a prediction that the relationship between choices and OS 
would be flatter in the ROS treatment than the Fixed treatment. 

Not only does the data support this prediction, the regressions in Table 8 show that the data 
provides evidence in line with the underlying explanation.  The dataset includes the first fourteen 
ROS games of the ROS and SHROS treatments.  The first round is dropped to allow use of 
lagged variables.  Once again these are ordered probits, standard errors are reported in 
parentheses, and standard errors are corrected for clustering at the cohort level.  The dependent 
variable is an individual’s choice in a single round of the ROS game.   

Model 1 has three independent variables: the order statistic (OS), the lagged value of OS, and 
a dummy for the second block (Rounds 8 – 14).  The variable of interest is the lagged value of 
OS.  If subjects ignore information from similar games or accurately correct for the differences 
between games, the lagged order statistic should not affect current behavior.  Instead, the 
parameter estimate is positive and strongly significant.  This implies that subjects who have seen 
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a relatively high (low) value of OS in the previous round will be biased upwards (downwards) in 
their current choice.  This is consistent with the intuition underlying H2.21 

Model 2 looks directly at subjects’ responses to feedback.  As independent variables we now 
include the lagged value of the exclusive order statistic (EOS) and an interaction between the 
lagged EOS and the absolute value of the difference between the current and lagged order 
statistics (OS).  We expect the response to the lagged EOS to be positive.  If subjects put more 
weight on experience from games with greater similarity to the current game, we also expect the 
effect to be smaller when the difference between the current and lagged games is increased.  In 
other words, the first parameter should be positive and the second negative.  The predicted signs 
are correct but the parameter estimate for the interaction term is tiny and nowhere close to 
statistical significance.  Subjects do not appear to account for similarity or lack thereof between 
different order statistic games when responding to recent experience.  This helps explain the 
results of Model 1. 

 
Conclusion 4:  Subject are sensitive to the lagged value of the order statistic, consistent with the 
intuition underlying H2.  Subjects’ responses to feedback are not sensitive to the similarity 
between the current and previous order statistic game. 

 
Our analysis thus far has only looked at the first fourteen ROS games, the time period that 

overlapped in all three treatments.  The ROS and Fixed treatments included 42 rounds of play.  
Figure 3 examines what happens as subjects become very experienced.  Data is shown from the 
first block of ROS games (Rounds 1 – 7) for all three treatments and the final block of the ROS 
and Fixed treatments (Rounds 35 – 42).  Recall that the order of games is the same for the first 
and last blocks of the ROS treatment. 

Two important points can be taken away from Figure 3.  (1)  With experience in the ROS 
treatment (blue lines), the relationship between OS and subject choices becomes steeper.  There 
is no generic shift upwards, with the average choice across all values of OS decreasing slightly 
between the first and final blocks (4.22 vs. 4.12).   Instead, choices become lower for low values 
of OS and higher for high values.  The difference between the first and last blocks of the ROS 
treatment do not mirror the differences between the first blocks of the ROS and SHROS 
treatments.  In the latter case, choices are higher in the SHROS treatment for low values of OS 
and virtually identical for high values.  Previous experience with the stag hunt game has a 
different effect on choices in the ROS game than previous experience with the ROS game.  We 
conjecture that in the former case subjects are transferring a general principle while in the latter 
they are learning actions rather than principles. (2)  The effect of experience differs for the Fixed 
and ROS treatments.  In the Fixed treatment there is a clear shift upwards over time.  The 
average choice across all values of OS rises substantially between the first and final block (4.27 

                                                            
21 Model 1 pools data from the ROS and SHROS treatments.  If the model estimates separate responses to the lagged 
order statistic, the parameter estimates are virtually identical for the two treatments (0.071 and 0.072 respectively). 
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vs 5.16) with play converging to the payoff dominant equilibrium for OS = 4, 5, and 6.22  Even 
for lower values of OS the general trend is upwards, albeit weakly.  The difference between the 
ROS and Fixed treatments becomes more extreme with experience. 

Figure 3: Comparison of Early and Late Play in ROS Games 

 
 
Based on data from the first two blocks (Rounds 1 – 14), Conclusions 2a and 2b state that the 

data support H1 and H2.  The same holds if we consider the data from the final block (rounds 37 
– 42) displayed in Figure 3.  Consistent with H1, there is a strong positive relationship between 
average choices and the order statistic in both the Fixed and ROS treatments.  The slope of the 
relationship between OS and subject choices remains steeper in the Fixed treatment than the 
ROS treatment, subject to the caveat that choices hit a ceiling for the higher values of OS in the 
Fixed treatment.  The data from the final block support H2. 
 

                                                            
22 Running a Wilcoxon matched pairs signed rank test, the difference between the first and last blocks in the Fixed 
treatments is significant at the 5% level (z = 2.42; p = 0.02).  Each observation is the average over a cohort for the 
seven round block.  Oddly, the decrease in the ROS treatment is also significant (z = -2.31; p = 0.02).   

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

A
ve

ra
ge

 C
ho

ic
e

Order Statistic (OS)

ROS, Block 1 SHROS, Block 1 Fixed, Block 1

ROS, Block 6 Fixed, Block 6



24 
 

4.  Conclusion:  We study the ability of subjects to transfer precedents learned in one 
coordination game to other related coordination games.  Our subjects exhibit strong transfer 
between related games.  On the positive side, the strong transfer observed in the SHROS 
treatment indicates that transfer can take place even when games are not structurally similar.  
The ability of subjects to learn a general principle and apply it appropriately in another game is 
surprisingly strong.  That said, comparing play in the ROS and Fixed treatments indicates that 
transfer of precedents does not always lead to more efficient outcomes in coordination games.   

The latter finding contrasts in particular with the results of Cason et al.  They observe 
positive transfer from median to minimum games, where transfer is efficiency enhancing, but no 
transfer from minimum to median games (which presumably would harm efficiency).  It remains 
to be explained why transfer is biased in favor of efficiency in their experiments but not in ours.  
We conjecture that this is due to the structure of the experiments.  In the ROS treatment, subjects 
see an ever-changing sequence of games.  There is never an obvious break as in the SHROS 
treatment or the Cason et al. experiments where the game is changed after a long run of similar 
games.  The strong break may stimulate subjects to think about general principles rather than 
using a more mechanical rule. 

One of the more surprising features of our data is the insensitivity of subjects in the ROS 
game to differing values of OS when drawing on past experience.  The choices induced by OS = 
2 and OS = 6, for instance, are quite different, but subjects treat past experience from these two 
games almost identically when deciding on current actions.  This is consistent with the primary 
assumption underlying analogy-based expectations equilibrium (Jehiel, 2005) – subjects will 
treat broad classes of games as equivalent when making choices.  A high priority for future 
research is work that better identifies how subjects perceive similarity between games. 

All of the games in our experiments are coordination games with a payoff dominant 
equilibrium and a secure equilibrium.  We observe positive transfer across games that are less 
similar than is typical in experiments studying transfer, but it is reasonable to ask if we could 
have gone farther and observed positive transfer across games that were even less related.  Along 
similar lines, our subjects remain in the same cohort throughout.  They know that their opponents 
have received similar experience to their own and are likely to have absorbed the same general 
principles.  It is reasonable to ask whether we would observe transfer in the SHROS treatment if 
the cohorts were not fixed. 

Much of our discussion has revolved around the ability of subjects to learn and apply general 
principles.  That said, it is not clear precisely what principle is being learned in our experiments.  
Are subjects learning to play a payoff dominant equilibrium, or are they learning something 
more akin to a norm such as choosing an efficient outcome regardless of whether or not this is 
consistent with an equilibrium.23  The answer to this question is linked to the process underlying 

                                                            
23 Peysakhovich and Rand (2016) provide an example of cross-game transfer between repeated prisoners’ dilemma 
games and various one shot games.  They show that the transfer is driven by a norm of pro-social behavior rather 
any notion of equilibrium selection, as transfer occurs for non-strategic settings such as the dictator game. 
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transfer.  Is it more deliberative in line with equilibrium selection, or emotive in line with 
acquisition of a norm?  This is an important issue for future research. 

It says something negative about the state of the literature that this paper could add 
significantly to the literature a good fifteen years after it was conceived.  Learning in games is a 
central issue for our understanding of how equilibrium emerges, and our understanding of 
learning is incomplete without an understanding of transfer.  There is an urgent need to answer 
questions such as the circumstances under which transfer will occur, how similarity is mapped 
between games, and precisely what is being transferred between games.  John Van Huyck was 
keenly interested in these questions and made pioneering contributions to answering them.  
Hopefully this paper will play a small role in stimulating further work that builds on his legacy. 
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Appendix A 
 

Table A.1:  Additional Regressions on Treatment Effects in the ROS Games 
 

Independent Variable Model 1 Model 2 
Stag hunt → ROS .876**  

 (.388)  
Fixed Order Statistic .794*** -1.655*** 

 (.288) (.374) 
Random Order Statistic  -0.740*** 

  (0.272) 
Order Statistic (OS) .587*** 0.171*** 

 (.074) (0.036) 
Block 2 (Rounds 8 – 14) -1.548*** -0.934*** 

 (.169) (0.103) 
Order Statistic x Block 2 .512*** 0.302*** 

 (.057) (0.029) 
Order Statistic x ROS  0.102** 

  (0.044) 
Order Statistic x Fixed  0.497*** 

  (0.083) 
Starting Balance / 100 -.012  

 (.010)  
Log-Likelihood -38,542.81 -7088.35 

Number of Observations (Cohorts) 4,927 (44) 4,927 (44) 
Notes: Dependent variable is row choice by subject.  Model 1 is a tobit with the bonus used as an instrument for the 
starting balance.  Model 2 is an ordered probit.  Standard errors are corrected for clustering at the cohort level.  
Three (***), two (**), and one (*) stars denote statistical significance at the 1%, 5%, and 10% levels respectively. 
 

 


