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Abstract. Model selection in Gaussian Process Regression (GPR) seeks to determine the 

optimal values of the hyper-parameters governing the covariance function, which allows 

flexible customization of the GP to the problem at hand. An oft-overlooked issue that is 

often encountered in the model process is over-fitting the model selection criterion, typi- 

cally the marginal likelihood. The over-fitting in machine learning refers to the fitting of 

random noise present in the model selection criterion in addition to features improving 

the generalisation performance of the statistical model. In this paper, we construct several 

Gaussian process regression models for a range of high-dimensional datasets from the UCI 

machine learning repository. Afterwards, we compare both MSE on the test dataset and the 

negative log marginal likelihood (nlZ), used as the model selection criteria, to find 

whether the problem of overfitting in model selection also affects GPR. We found that the 

squared exponential covariance function with Automatic Relevance Determination (SEard) 

is better than other kernels including squared exponential covariance func- tion with 

isotropic distance measure (SEiso) according to the nLZ, but it is clearly not the best 

according to MSE on the test data, and this is an indication of over-fitting problem in 

model selection. 
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1 Introduction 

 
Supervised learning tasks can be divided into two main types, namely classifi- cation and regression 

problems. Classification is usually used when the outputs are categorical (discrete class labels), 

whereas, regression is concerned with the prediction of continuous quantities. Gaussian process is 

defined as a distribution over functions, and inference takes place directly in the space of functions, 

i.e. the function-space view. Gaussian process regression is not a new area of study, it has been 

extensively used in research areas such as machine learning, statistics and engineering. In the literature, 

Gaussian process regression has been widely used for many real-world problems, including time 

series analysis. For instance, Duvenaud et al. (2013) applied GPR to the total solar irradiance 

dataset and 
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obtained good results, and Williams and Rasmussen (2006) also used GPR for modelling 

atmospheric CO2 concentrations. 

Model selection approaches for GPR seek to determine good values for the hyper-parameters 

of the model, typically via maximising the marginal like- lihood or via cross validation 

(Williams and Rasmussen 2006). Cawley and Talbot (2007) discusses an over-fitting issue that 

arises in model selection with Gaussian processes classification. They claim that for GP 

classification, covari- ance functions with large parameters clearly demonstrate the over-fitting issue, 

where reducing the value of the model selection criterion results in a model with worse generalisation 

performance. This is because the model selection criterion is evaluated over a finite set of data, and 

hence is a performance estimate with a non-negligible variance. 

In this paper, we first describe the background methodology for applications of Gaussian progress 

regression, and then give some examples of covariance func- tions commonly used in GPR. The 

reminder of the paper the describes model selection practices for GPR, and the causes of over-fitting 

in model selection, how one can detect it, and how this issue can be avoided. Finally we present 

empiri- cal results using UCI benchmark datasets (2013), showing that over-fitting the model 

selection criterion is a potential pit-fall in practical applications and GPR, and present our 

conclusions. 

 
2 Background 

 
Regression analysis is a vital tool in applied statistics as well as in machine learning. It aims to 

investigate the influence of certain variables X on a certain outcome y (Walter and Augustin 

2010). 

The linear regression model is one of the most common models used to study the linear relationship 

between a dependent variable y and one or more indepen- dent variables X. The reason for its 

popularity is due to both the conceptual and computational simplicity of fitting a linear model. 

However, linear regression is dependent on some assumptions (Briegel and Tresp 2000), for example, 

the true relationship in the data must be approximately linear for good prediction using a linear 

model, but unfortunately this often is not the case for real-life data. Therefore, standard linear 

regression is generalized in many ways and here we use Bayesian linear regression as a treatment to the 

linear model (the following exposition is based on that given by Williams and Rasmussen 2006). 

In Bayesian linear regression, we need to have a prior belief regarding the values of the model 

parameters that is combined with the likelihood function, describing the distribution of the data, to 

find the posterior distribution over the parameters. We can write down a generative model for 

our data. 

f (x)= xT w, y = f (x)+ ε, 

where f (x) is our modelling function, ε is some form of additive noise, and y is the observed 

target values. The input vector is defined as x and parameter vector of the linear model as w. We 

also assume that ε are an independent 



 

Σ
− x  w) 

2 2σ 

p 

∫ 
p(y | X, w)p(w)dw 

| 

σ 

n σ2 

n n 

(2πσn) 2 2σn 
n 2 n 

(2π) 2 |Σp| 2 p 

2 p 

2σ2 2 p 

2 2 
n 

p 

i 

n 

n 

and identically distributed (i.i.d.) sample from a zero-mean normal distribution, 

i.e. N (0, σ2). It follows that y = xT w + ε : ε ∼ N (0, σ2). Both noise and 

model assumptions enable us to identify the probability density of the observa- tions given the 

parameters which is known as the Likelihood function, which is given by 

p(y | X, w)= 
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In Bayesian linear regression, we assume that a prior distribution over the para- meters is also given. 

For example, a typical choice is w : N (0, Σp) 

p(w) = 
  1  
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Now, by using Bayes’ rule, we can obtain the posterior distribution for the para- meters, which is 

given by 

p(w | y, X )=
   p(y | X, w)p(w) 

.
 

The denominator is known as the marginal likelihood p(y X) and does not involve the 

parameters (weights), hence it can often be neglected. In the following steps, we get closer to the 

computation of the posterior distribution for the parameters. 
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Therefore, the posterior is recognised as a Gaussian distribution with w̄ = σn
−2 

A−1Xy as a mean and as a covariance matrix A−1 = ( 1  XXT + Σp
−1)−1, i.e. 

p(w | y, X) : N (w̄, A−1). 

Having specified w, making predictions about unobserved values, f (x∗ ), at coor- dinates, x∗ , is then 

only a matter of drawing samples from the predictive distri- bution p(f∗  | x∗ , X, y) which is defined 

as: 

p(f∗  | x∗ , X, y) = 

∫  

p(f∗  | x∗ , w)p(w | y, X)dw. 

n n 
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The predictive posterior is once again Gaussian: 

p(f∗  | x∗ , X, y) ∼  N (σn
−2xT A−1Xy, xT A−1x∗ ). 

In fact, both the parameter posterior and posterior predictive distribution pro- vide a useful way to 

quantify our uncertainty in model estimates, and to exploit our knowledge of this uncertainty in 

order to make more robust predictions on new test points (Do 2007). 

 
2.1 Gaussian Processes in Regression 

Over the past few years, there has been a tremendous interest in applying non-parametric 

approaches to real-world problems. Numerous studies have been devoted to Gaussian processes (GPs) 

because of their flexibility when compared with parametric models. These techniques use Bayesian 

learning, which usually leads to analytically intractable posteriors (Csató 2002), however that is not 

the case for GPR. 

A Gaussian distribution is a distribution over random variables, x Rn, 

which is completely specified by a mean vector μ and a covariance matrix Σ, 

p(x; μ, Σ )=
  1 

exp 

Σ

− 
1 

(x − μ)T Σ−1(x − μ)

Σ 

. 
 

 

We can write this as x tt(μ, Σ). Gaussian random variables are very useful in statistics and 

machine learning because they are very commonly used for modelling noise in statistical 

algorithms (Do 2007). 

According to Rasmussen (2004), a Gaussian process (GP) is defined as “a collection of 

random variables, any finite number of which have (consistent) joint Gaussian distributions”. A 

Gaussian process is a distribution over functions which is fully specified by the mean function, m(x), 

and a covariance function, k(x, xj), of a process f (x), where 

m(x)  = E[f (x)], (1) 

k(x, xj)  = E[(f (x) − m(x))(f (xj) − m(xj))]. (2) 

We can now obtain a GP from the Bayesian linear regression model in which, f (x)= φ(x)T w, with 
w : (0, Σp). Both mean function and covariance function are obtained as 

E[f (x)]  = φ(x)T E(w) = 0, (3) 

E[f (x)f (xj)]  = ϕ(x)TE[wwT ]ϕ(x)T Σpϕ(xj). (4) 

Hence, f (x) and f (xj) are jointly Gaussian with zero mean and covariance func- tion ϕ(x)T Σpϕ(xj). 

The mean function is commonly defined to be zero, “which is not a strong limitation if the 

data is centred in preprocessing” (Blum and Riedmiller 2013). The covariance function defines the 

similarity between values of the function 
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as a function of the data points and plays an important role in controlling the properties of 

Gaussian Processes (Williams and Rasmussen 2006). Gaussian processes are a technique for 

expressing prior distributions over functions for one or more input variables. Given a set of 

inputs, x ( 1 ) , . . . ,  x(n), we can draw samples f (x(1)),...,f(x(n)) from the GP prior: 

f (x(1)),...,f(x(n )): (0,K). 

Although drawing random functions from the prior is important, we want to extract the 

information that the training data delivers about the function. 

Given a noise-free training data, 

D = {(x(i), y(i)) | i = 1 , . . . ,  n} = {X, f }. 

according to GP prior, the joint distribution of the training outputs, f , and the test outputs f∗  is 

given by 
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In order to make predictions, we need to obtain the posterior distribution over functions. It is also 

necessary to restrict the prior to contain only functions which agree with D. The posterior distribution 

is obtained from the condition  X∗ , f∗  on D = X, f , and it is Gaussian. 

 
f∗  | X∗ , X, f : N (K(X∗ , X)K(X, X)

−1
f, K(X∗ , X∗ ) − K(X∗ , X)K(X, X)

−1
K(X, X∗ )) 

However, the data of real world problems are typically noisy. Thus we need to define a GP for 

noisy observations. 

D = {X, y}, where y = f + s. 

We assume additive noise, s ∼  N (0, σ2I), and can derive the predictive distrib- ution by conditioning 

on D = {X, y} that gives a Gaussian with 

μ   = K(X∗ ,X)[K(X, X )+ σ2I]−1y, (5) 

Σ   = K(X∗ , X∗ ) − K(X∗ ,X)[K(X, X )+ σ2I]−1K(X, X∗ ). (6) 

Now if we give a new ‘test’ input x∗ , the predictive distribution of the corre- sponding f (x) is 

readily obtained. In practice, the predictive mean, denoted μ, of the GP is used as a point estimate 

for the function output, while the vari- ance can be interpreted as uncertainty bounds ( 2σ error-

bars) on this estimate (Girard and Murray-Smith 2005). 

The main aim of using Gaussian processes regression is for prediction. In the case of having D-

dimensional input vector x mapped onto an N -dimensional feature space, m is an n 1 vector and 

Σ is an n n matrix. More computational power is needed for implementing Gaussian processes 

regression when we have multivariate inputs. 
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The covariance function of the Gaussian process, that allows the model to find the high-level 

description of the data properties, can be specified as a hierarchical prior. For example, covariance 

function is used to identify the inputs that are useful in predicting the response. Inference for these 

covariance hyper-parameters can be performed using Markov chain sampling (Bernardo et al. 

1998). 

 
2.2 The Covariance Functions 

There are three main concerns in Gaussian processes regression, namely the choice of the 

covariance function, the selection of variables, and the choice of good values of hyper-parameters which 

effectively control the complexity of the model (Shi and Choi 2011). Choosing a suitable covariance 

kernel is crucial because it determines almost all generalization properties of a Gaussian processes 

model (MacKay 1999). 

There are a variety of different covariance functions that can be used in a Gaussian processes 

regression model, including stationary and non-stationary covariance functions. Stationary covariance 

functions, which are invariant under translation, are the most often used in GPR. One can simply 

assume that the mean is constant (zero), which means the process is stationary (Shi and Choi 

2011). Stationary covariance functions depend only on the distance between the inputs, x, such that 

the covariance function expresses the covariance between yp and yq (Williams and Rasmussen 

2006). The formula is written as, 

cov(f (x ), f (x )) = k(x , k ) = exp 

.   
1 

x  − x |2
Σ

. 
 

1. Squared Exponential Covariance Function (SE): 

This function is a smooth function of the inputs and is a common choice of covariance 

function because it has some nice properties, namely it can be integrated against most 

functions that we need in Gaussian processes. 

The form is given by 

 
kSE(xp, xq)= σ2 exp 

(x x )2
 

− 
2r2 

 
+ σ2δpq, 

where σ2 is the magnitude, r is the length scale that characterize variation, and σ2 represents 

noise. 

2. Automatic Relevance Determination Covariance Function (SE-ARD): 
The SE-ARD covariance function for multi-dimensional inputs is considered as a more general 

form of the squared exponential kernel: 
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The parameter rd is the characteristic length scale of dimension d. The rel- evancy of input 

feature can be determined by rd, for instance, If rd is very large, then the feature is irrelevant 

(Snelson 2006) 
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3. The Mat́ern Covariance Function: 

The formula of this type of covariance function is given by 

 
kMatérn(x, xj) =  

21−v 
. √

2v|x − xj| 
Σv . √

2v|x − xj| 
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, 
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where both v and r are positive parameters, v determines the smoothness and Kv is an 

amended Bessel function (Abramowitz 1966). When v , 

then kMat´ern(x, xj) becomes squared exponential covariance function. 

4. The Rational Quadratic Covariance Function (RQ): 

This kernel is equivalent to adding many SE kernels together with different length-scales. The 

form of the rational quadratic (RQ) covariance function is; 

KRQ(x, xj) = 

.

1 +  
|x − xj|2 −α

 
 

 

2αr 

where α determines the smoothness and r is the characteristic length, when 

α then RQ is identical to the SE. 

5. Polynomial Covariance Function: 

The Polynomial kernel is a non-stationary kernel that takes the following form 

kPoly(x, xj)= (x · xj + σ2)p, 

where σ2 > 0 is a constant, trading off the effect of higher-order against lower- order terms in the 

polynomial, and the kernel is known as a homogeneous polynomial when σ2 = 0, p > 0 is the 

polynomial degree, which is a natural 

number. 

 
2.3 Model Selection for GP Regression 

As mentioned previously, Gaussian processes are specified by their mean and covariance 

functions. The purpose of covariance function is to determine the similarity between data points 

that involved some free parameters known as hyper-parameters. Indeed, the hyper-parameters are 

useful since they allow for flexible customization of the GP to the problem. Therefore, it is 

necessary to select the covariance functions and its hyper-parameters appropriately by the so-

called model selection process (Blum and Riedmiller 2013). 

In literature, two techniques are most often discussed for model selection in Gaussian process 

regression, namely marginal likelihood maximisation and cross validation (Williams and Rasmussen 

2006). We only describe the Marginal Like- lihood method of selecting the model for GP regression, 

as that is the approach we adopt in our experiments. 

A reliable framework for inference over the hyper-parameters is obtained via the Bayesian 

approach but good approximations are not easily derived, due to the required complex integrals over 

the hyper-parameters being analytically 
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intractable. In fact, it is not easy to know what the parameters of the model are because Gaussian 

process model is a non-parametric model. 

One can obtain the probability of the data given the hyper-parameters p(y X, θ) for GPs 

regression with Gaussian noise by marginalization over the function values f . The log 

marginal likelihood is given by 

log p(y | X, θ)= − 
1 

yT K−1y − 
1 

log |K |−  log 2π. 
 

where Ky = Kf + σ2I is the covariance function for the noisy output, y, and Kf is the covariance 

function for the noise-free latent function, f . The first term from the above equation is known as 

a data-fit term, the second term is a complexity penalty, and the last term is a normalizing 

constant (Blum and Riedmiller 2013). 

In order to tune hyper-parameters by maximizing the marginal likelihood, the derivatives of the log 

marginal likelihood with respect to the hyper-parameters are required: 

  ∂  
log p(y  X, θ)= 

1
 

∂θj 2 
tr 

Σ

(ααT − Ky 
−1

) 
∂Ky 

, where α = K−1y. 
∂θj 

From the above equation, “any gradient based optimization algorithm can be used to obtain the 

hyper-parameters that maximize the marginal likelihood of a GP. We will call this optimization 

procedure training the GP” (Blum and Riedmiller 2013). 

 
3 Over-Fitting in Model Selection with Gaussian 

Processes in Regression 

In this section, we first define an over-fitting issue that rises in the context of model selection in 

machine learning. Afterwards, the reasons for the occurrence of this problem will be discussed; we will 

also explain how one can detect this over- fitting issue in model selection with Gaussian processes 

algorithms. The methods of preventing this problem will also be described. Finally, results obtained 

on a suite of eleven real-world benchmark data sets will be demonstrated. 

 
3.1 Over-Fitting in Model Selection 

Over-fitting in machine learning refers to the fitting of a random noise in the data in addition to it’s 

underlying structure by a statistical model. Over-fitting usually occurs when a model is too 

complicated, for example, when the parameters are excessively more than the number of 

observations. The potential consequence of an over-fitted model is poor predictive performance, 

as it can amplify very small fluctuations in the data (Joshi 2013). While the dangers of over-

fitting in determining the parameters of a model (training) are well documented, the risk of over-

fitting in tuning the hyper-parameters (model selection) is less well appreciated. 

y 



 

3.2 The Causes of Over-Fitting in Model Selection 

When selecting a model, over-fitting often occurs due to the variance of the model selection criteria. 

Models are typically trained via performance maximization based on a finite set of training data, 

the efficiency of the model on the other hand is not dictated based on the performance of the model 

using the training data. It is instead established using the success and effectiveness of the model of 

handling unseen data. The problem of over-fitting is encountered when a model begins to memorize 

training data as opposed to learning to generalize from the observed trend in the training data. For 

instance, if the number of parameters is the equal to or greater than the number of data points 

available, a basic linear model or learning process will be able to perfectly estimate the training 

data merely through memorization of the entire training data set. However, such elemental models and 

processes will frequently fail significantly when estimating new data. As the basic model has not 

learned to generalize to any degree, we experience the over-fitting problem (Joshi 2013). 

According to Dietterich (1995) the major complication of over-fitting usually emerges from the 

structure of the machine-learning tasks. A learning algorithm is trained on a training dataset, but then 

applied to provide estimations using new unseen data points. We are not necessarily concerned with 

the algorithm’s accuracy on the training data, but instead achieving optimal predictive accuracy on 

these unseen data points. The scenario of “over-fitting” arises when we try too hard to find the very 

best fit to the training data (or to the model selection criteria) and thus risk that noise will be 

consumed in the data due to the model memorizing particular characteristics of the training data 

instead of discovering a general predictive rule. 

 
3.3 Detecting Over-Fitting in Model Selection 

According to Cawley and Talbot (2010), fitting a Gaussian process with the non-ARD (Auto 

Relevance determination) equivalent covariance function (the Radial Basis Function (RBF) 

covariance function) and comparing the test error rates, would seem like the most straightforward 

progression to do. For several reasons, the ARD covariance function fails to perform as well as the 

non-ARD covariance function due to the over-fitting in tuning the hyper-parameters. The RBF is a 

special case of ARD where parameters constrained to be equal. Having fewer parameters gives less 

scope for over-fitting. 

 
3.4 Avoiding Over-Fitting in Model Selection 

Over-fitting mainly occurs when a small dataset is used. Therefore, it is always better to have a large 

data set. Thus, by using a lot of patterns the problem can potentially be avoided. However, having 

an excessively high number of data points, the algorithm is obliged to generalize and come up with a 

good model to fits all the points, without having sufficient capacity to model the noise. The 

convenience of choosing a large database does not always exist. There are 



 

times where a small database is the only available option, limiting our choice of model 

development. In such cases, a technique called cross validation can be used. This technique divides 

the dataset into training and testing datasets. The model is developed using the training dataset and 

the validity of the model is tested using the testing database. This process is then repeated using 

various partitions of training and testing datasets. As a result of this technique, a fairly good 

approximation of the underlying model is given, due to the fact that it is tested on several partitions 

to achieve generalization at the maximum possible degree (Joshi 2013). 

According to Cawley and Talbot (2010) over-fitting in model selection may seem logical, if a 

model selection criterion estimated over a specific number of data observations is directly 

optimized. For example, over-fitting in model selection, similarly to over-fitting in training, can be 

significantly harmful when the data sample is small and the population of hyper-parameters to be 

tuned is large. Similarly, under the assumption that further data are unavailable, possible solutions to 

the over-fitting the model selection criterion may be analogous to the solutions for the over-fitting 

the training criterion which has been tried and tested. 

 

4 UCI Benchmark Datasets Used in Empirical 
Demonstrations 

In this section, we use eleven benchmark data sets from the UCI machine learning repository (Bache and 

Lichman 2013) to examine the problem of over-fitting in model selection for Gaussian processes 

regression. Table 1 shows the details of the datasets, including the number of features, and test patterns 

for each dataset. 

 
Table 1. Details of data sets used in empirical comparison. 

 

Data set Training 

patterns 

Testing 

patterns 

Number of 

replications 

Input features 

Airfoil self noise 1353 150 100 5 

Community crime 1792 199 100 99 

Concrete 927 103 100 8 

dat 203 22 100 2 

Energy Efficiency 692 76 100 8 

Fertility 90 10 100 8 

Housing 456 50 100 13 

Istanbul Stock Exchange 483 53 100 8 

Mpg 359 39 100 7 

Servo 151 16 100 4 

Yacht Hydrodynamics 278 30 100 6 



 

4.1 Results and Discussion 

In order to examine whether the problem of over-fitting during model selection is encountered with 

Gaussian processes regression, we find both mean squared error (MSE) and negative log marginal 

likelihood (nLZ) of seven kernel functions over a suite of eleven benchmark datasets. MSE is found 

based on the test set as a performance evaluation criteria, while nLZ is evaluated over the training 

set and used as a model selection criteria. Afterwards, the Friedman test is used to determine 

whether there are statistically significant differences in either MSE or nLZ for different covariance 

functions. This test is illustrated by critical difference diagrams (Friedman test with Post-Hoc test) 

(Demšar 2006), which shows the average ranks of seven kernels, as shown in Fig. 1. 

 
 

CD 
 

7 6 5 4 3 2 1 

 

 

 
Poly2 

SEiso 

Matérn 

SEard 

Matérn2 

Matérn3 

RQiso 

Fig. 1. Critical difference diagram showing the average ranks of seven kernels with 
using mean squared error (MSE) 

 

 
This diagram shows the bold bars that joins the lines, such that if two or more lines (representing 

models with different covariance functions) are joined by a bar, it means these models are not 

statistically significantly different from each other. It clearly shows that only poly2 is statistically 

worse than SEard, in terms of generalisation performance, and the remaining differences are non-

statically significant. 

Figure 2 shows the average ranks of seven kernels with using negative log marginal likelihood. 

For the majority of the benchmarks, the lowest negative log-likelihood is obtained using SEard 

which is not surprising because it has more hyper-parameters. However, this is not a good result 

since SEard does not always give the minimum MSE compared to SEiso. This is called “over-fitting 

in model selection”. In other words, when we have such a problem the negative log-likelihood is no 

longer a good indication of performance of the model. Indeed, 
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Fig. 2. Critical difference diagram showing the average ranks of seven kernels with using negative log 

marginal likelihood (nLZ) 

 

 
the SEiso kernel is a special case of SEard kernel because both are squared expo- nential function. 

Thus, we should always obtain better negative log likelihood for SEard than SEiso simply because 

of having a lot of different parameters to be changed. On the other hand, sometimes the choice of 

hyper-parameters will result in a model over-fitting the model selection criteria or it may result in 

under-fitting the data rather than over-fitting it. The significantly lower negative log marginal 

likelihood of the SEard covariance over the SEiso is not reflected in the statistically insignificant 

difference in generalisation performance. 

Figure 2 shows that SEiso is not significantly worse than SEard, while having fewer hyper-

parameters. This is interesting result because it suggests that unlike classification datasets investigated 

by Cawley and Talbot (2010), the regression data sets are less susceptible to be over-fitting in model 

selection. Although, there is a great difference between SEard and the rest of the kernels used, SEard 

still performs well in terms of MSE. This suggests that over-fitting is still a problem but not as much 

as a problem in classification. In brief, we found that SEard kernel is better than most other kernels 

including SEiso according to the marginal likelihood, but it is not clearly the best according to MSE 

on the test datasets, and this is an indication of over-fitting problem. It is worth mentioning that the 

datasets used in this study were all rather small, however there are algorithms for large scale GP as it 

is described in the GPML web page by Williams and Rasmussen (2006), but the problem with 

over-fitting the model selection is most apparent with small datasets, hence there is unlikely to be a 

significant problem for larger datasets. 
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5 Conclusion 
 

The contribution of this paper is to find whether the problem of over-fitting in model selection 

takes place with Gaussian processes regression, both mean squared error (cross validated MSE) and 

negative log marginal likelihood (nLZ) were found for seven kernel functions over a suit of eleven 

benchmark datasets. The negative log marginal likelihood is the model selection criteria that can be 

optimized, whereas the MSE is the test criteria. Afterwards, Friedman test was used to determine 

whether there is a statistically significant difference in either MSE or nLZ for different covariance 

functions. For the majority of the bench- marks, the lowest negative log marginal likelihood was 

obtained using SEard kernel which is not surprising because it has more hyper-parameters. We found 

that SEard kernel was clearly better than other kernels including SEiso accord- ing to the marginal 

likelihood, but it was clearly not the best according to MSE on the test datasets, and this is an 

indication of over-fitting problem. This is because the negative log marginal likelihood is the model 

selection criteria thus it is always decreasing and MSE is getting worse or not improving. We con- 

clude that over-fitting is still a problem in GPs regression but not as much as a problem in GPs 

classification. 
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