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Role of magnetic and diamagnetic interactions in molecular optics and scattering
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This paper aims to explicitly clarify the role and interpretation of diamagnetic interactions between molecules
and light in quantum electrodynamics. In contrast to their electric and magnetic counterparts, the diamagnetic
couplings between light and matter have received relatively little interest in the field of molecular optics. This
intriguing disregard of an interaction term is puzzling. The diamagnetic couplings possess unique physical
properties that warrant their inclusion in any multiphoton process, and the lack of gauge invariance for
paramagnetic and diamagnetic susceptibilities necessitates their inclusion. Their role and importance within
nonrelativistic molecular quantum electrodynamics in the Coulomb gauge is illuminated, and it is highlighted
how for any multiphoton process their inclusion should be implicit. As an indicative example of the theory
presented, the diamagnetic contributions to both forward and nonforward Rayleigh scattering are derived and
put into context alongside the electric and magnetic molecular responses. The work represents clarification of
diamagnetic couplings in molecular quantum electrodynamics, which subsequently should proffer the study of
diamagnetic interactions in molecular optics due to their unique physical attributes and necessary inclusion in
multiphoton processes.
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I. INTRODUCTION

Electromagnetic interactions with matter permeate through-
out the natural sciences, ranging from being responsible for
a plethora of biological processes, such as vision and pho-
tosynthesis [1,2], to the van der Waals interactions that give
rise to intermolecular forces [3,4]. Contemporary utilization
includes the burgeoning fields of photonics [5] and plasmonics
[6,7]. Light-matter interactions pervade virtually all of science
to most of our daily lives, and their importance cannot be
overemphasized.

It can therefore be argued that being able to understand the
underlying physical mechanisms behind these interactions, and
the subsequent manipulation and exploitation, is paramount.
The problematic issues of studying light-matter interactions
using classical methods is well known, the discrete nature of
molecular transitions being incompatible with the theory of
light acting as a wave. One of the most obvious examples
of this failure of classical methods is the explanation of
spontaneous emission [8]. The logical step to apply to this
semiclassical theory, where the material component of the
light-matter system is quantized, but the radiation field is not,
is to use a fully quantized theory of the electrodynamics. The
most suitable theoretical framework to account for light-matter
interactions is therefore quantum electrodynamics (QED) [9].
In contrast to its semiclassical predecessor, in QED not only is
the material part of the total system subjected to the postulates
of quantum mechanics, but the electromagnetic field and
its interaction with the matter is also quantized [8]. This
quantization process leads to the concept of the photon [10], so
prevalent in science that a multitude of research fields hinges
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upon its existence [5]. Justification of adopting the theory is
straightforward as not only has it proven remarkably adept at
giving pronounced physical insight and unrivaled precision in
matching experimental data [11–13], it sits at the forefront of
being able to predict and explain certain physical phenomena
[14], and in specific cases it appears to have no rival in this
regard [15,16].

The work presented herein is concerned with the electro-
magnetism of molecules, and as such the most suitable theory
to adopt is molecular quantum electrodynamics (MQED) [9].
In this theory, the coupling of photons with charged particles
is derived in a noncovariant formulation because the nuclei
and outer electrons of atoms and molecules are of low energy,
and therefore a nonrelativistic approach leads to convenient
methods for calculating photon-molecule interactions. The
Hamiltonian used to describe the electrodynamics is cast in
a form that couples the fundamental electric and magnetic
fields to the molecule’s electric polarization, magnetization,
and diamagnetization fields. It is the latter two of these
interactions between the molecules and the electromagnetic
field with which this paper is concerned. Recent work [17] has
identified that the less-well known diamagnetic couplings to
the radiation field lead to interesting and unique characteristics
to optical rates in nonlinear and scattering processes. This
insight invites an appraisal and clarification of diamagnetic
interactions in molecular optics: they are either unknown or
not fully understood.

The aim of this work is to establish the physically unique
diamagnetic coupling between molecules and photons. When
studying magnetic interactions in molecular optics their inclu-
sion is necessary if one is to calculate gauge-invariant optical
rates and energy shifts that depend on the total magnetic
susceptibility. The work also provides further evidence of the
efficacy of the Power-Zienau-Woolley (PZW) Hamiltonian
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in molecular optics [18], explicitly showing that the theory
accounts for even the more subtle aspects of electromagnetic-
molecule interactions. The paper begins with an outline of the
general MQED theory, PZW Hamiltonian, and diamagnetic
couplings; this is followed by a discussion of molecular suscep-
tibility tensors; and finally the total magnetic contributions to
both forward and nonforward Rayleigh scattering are derived,
explicitly highlighting the diamagnetic coupling.

II. THEORY

A. Quantum electrodynamics

To describe the coupling between photons and molecules,
we start with the multipolar PZW interaction Hamiltonian
[19–26].

Hint =
∑
ξ

[−ε−1
0 μ(ξ) · d⊥(Rξ) − ε−1

0 Qij (ξ)∇j d
⊥
i (Rξ)

− m(ξ) · b(Rξ)
]

+ e2

8m

∑
ξ,α

[(qα(ξ) − Rξ) × b(Rξ)]2 + ..., (1)

where for a molecule ξ positioned at Rξ, μ is the electric
dipole moment operator; Q is the electric quadrupole moment
operator; m is the magnetic dipole moment operator; the final
term in (1) is the leading-order diamagnetic interaction term:
D1 term. In (1), qα(ξ) is the position vector of an electron
α possessing a charge −e and mass m. The first term in (1)
is the E1 coupling, the second is the E2, and the third is the
M1; d⊥(Rξ) is the electric displacement field and b(Rξ) is the
magnetic field, whose vacuum mode expansions are given as

d⊥(r) = i
∑
k,η

(
h̄ckε0

2V

)1/2

× [e(η)(k)a(η)(k)eik·r − ē(η)(k)a†(η)(k)e−ik·r ], (2)

and

b(r) = i
∑
k,η

(
h̄k

2ε0cV

)1/2

× [b(η)(k)a(η)(k)eik·r − b̄
(η)

(k)a†(η)(k)e−ik·r ], (3)

respectively. In (3), e(η)(k) and b(η)(k) are the generalized
electric and magnetic polarization unit vectors, respectively,
and V is an arbitrary quantization volume defined as containing
n number of photons; for a photon in a mode (η,k), where η

designates the polarization state and k the wave vector, a(η)(k)
and a†(η)(k) are photon annihilation and creation operators,
respectively.

This fully quantized Hamiltonian provides distinct ad-
vantages over other frameworks, such as the well-known
minimal coupling method, due to being cast in transverse
electromagnetic fields which directly couple to matter through
the electric polarization, magnetization, and diamagnetization
fields [9,27]. Since there are no terms in (1) dependent on the
electromagnetic scalar and vector potentials, the Hamiltonian

is independent of gauge; the coupling due to transverse electro-
magnetic fields gives interactions between molecules through
the exchange of transverse photons propagating with speed
c, and as such the Hamiltonian gives fully retarded results.
There is also no separate term accounting for the intermolec-
ular Coulomb interactions, as these are fully accounted for
through the exchange of transverse photons. The multipolar
Hamiltonian and minimal coupling Hamiltonian are related by
a canonical transformation [18], and for any optical processes
or phenomena that conserve the energy of the total system
(i.e., on the energy shell) they give the exact same quantum
amplitude. However, describing interactions between photons
and molecules is best suited to working within the Coulomb
gauge, and dealing with retardation in this gauge with the
minimal coupling Hamiltonian is laborious and cumbersome.
For this reason, and the others stated above, the multipolar
Hamiltonian offers distinct advantages in MQED.

It is worth emphasizing that the mode expansions in (2) and
(3) are cast in their vacuum forms, where the quantum field de-
scription applies only to the molecule that is directly interacting
with the photons, and no other matter is present. However, in
general, interacting molecules are surrounded by other atoms
and molecules, whose electronic properties modify the fields
experienced and produced by the interacting optical center of
interest. In the quantum electrodynamical theory, the influence
of the surrounding medium is naturally accommodated for
within the field operators d⊥ and b [28–31]. This is in contrast
to the semiclassical formalism, where material-induced field
corrections are accommodated for within the macroscopic
susceptibilities in an ad hoc approach [32]. Through a rigorous
theory describing QED couplings in terms of polaritons, the
modifications of the electromagnetic fields in the condensed
phase due to refractive and dissipative effects are explicitly
taken account of.

Similarly, the issue of the small radiative damping forces
is easily accounted for within MQED [33,34]. This is an
important aspect when dealing with scattering processes due
to the problematic infinities in the molecular response tensors
when approaching resonance frequencies. In an analogous
manner to the classical theory of harmonic oscillators, a finite
energy width of the excited electronic states of the molecule can
be incorporated into the theory, thus allowing a finite lifetime.
In this work we will persist with the vacuum formulation,
neglecting both media and radiative damping corrections on
the basis that the key physics of the work presented is not
altered by their presence, and they can easily be accounted for
within the theory.

Being derived in a nonrelativistic framework, the PZW
Hamiltonian does not account for relativistic spin. This leads to
a Hamiltonian (1) without a spin Hamiltonian for the electron.
Of course, the addition of the so-called Pauli term can be
accounted for in a phenomenological manner, allowing for the
temperature-dependent spin-paramagnetic susceptibility to be
accommodated for in molecules possessing unpaired electrons
[35]. However, in general, nonrelativistic Hamiltonians cannot
accurately model atoms and molecules possessing a degree
of spin [36]. In this work we are clearly confined to the
nonrelativistic limit by enacting the PZW Hamiltonian, dealing
with coupling energies between the molecules and radiation
that are much weaker than the Coulombic binding energies, and
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to maintain the scope originally laid out we apply the theory
to molecules with zero spin.

The method of QED theory to be implemented in this work
is often termed “diagrammatic perturbation theory”: the optical
rates and energy shifts of processes being calculated with
the aid of time-ordered Feynman diagrams [37,38]. Another
key point is that all time dependence is contained within the
states of the system, the operators being time-independent: the
representation of quantum mechanics more formally known
as the Schrödinger picture [39]. There does exist, however,
another formulation of QED—-the field-theoretic approach—
-cast in terms of the Heisenberg picture, where the states
are fixed in time, but the dynamical variables represented as
operators are dependent on time [40–47]. To this point, it is
worth stating that both theories are related to one another
through a suitable unitary transformation, and of interest to us
here is the fact that the field-theoretic viewpoint pays full heed
to diamagnetic interactions. As such, one may choose either
method to study and illuminate diamagnetic couplings in light-
matter interactions; however, we will proceed with adopting
the Schrödinger method as it leads to simpler equations that
will help to make clearer the role of diamagnetic couplings.

Although the distinct and clear advantages of the multipolar
Hamiltonian have been put forward, there still appears to be
confusion over some of the more subtle aspects of it: namely the
diamagnetic term and its application in the theory of MQED. It
is borne out at the same order of interaction as the commonly
studied magnetic M1 and quadrupole E2 interactions, and
possesses a unique quadratic dependence on electric charge and
magnetic field. It is therefore puzzling as to why it has received
relatively little interest, and the legitimacy of its inclusion in
any multiphoton processes will now be outlined.

B. Diamagnetic interactions

The physical significance of the diamagnetic term has its
origins in correctly accounting for the overall magnetic suscep-
tibility response of a molecule. The magnetic susceptibility is
a gauge-invariant property that manifests itself in two-photon
interactions and is always experimentally measurable. The
total magnetic susceptibility can be partitioned into two distinct
contributions: the paramagnetic and the diamagnetic [48–50].
The diamagnetic susceptibility, as well as the paramagnetic
susceptibility, are not independent of the gauge, and therefore
such compartmentalization has little meaning in a general
sense. However, in the Coulomb gauge they are legitimately
separable physical quantities, so long as it is understood that
only when they are combined do they give useful gauge-
invariant physical predictions. This is the main reason why
diamagnetic couplings should always be included in multi-
photon processes.

At the lowest-order diamagnetic D1 and magnetic dipole
coupling M1 for two-photon processes, we produce the leading
terms to the diamagnetic susceptibilities and paramagnetic
susceptibilities. The Dn and Mn couplings, where n > 2, give
rise to higher-order corrections to these susceptibilities, but are
so small in magnitude they warrant very little motivation for
their inclusion.

Once computed, the D1 and M1M1 terms are combined
to give the overall magnetic-interaction contribution to the

specified optical process. If the D1 contribution is larger than
the M1M1, then the molecule is said to be diamagnetic: the
other way around, then it is paramagnetic. The vast majority
of molecules are diamagnetic and therein lies another reason
that in molecular QED it is extremely important to include
the diamagnetic couplings terms. Indeed, it has been shown
that a particular example where diamagnetic couplings become
important and prominent is in the Casimir-Polder dispersion
forces between ground-state molecules [51,52]. However, for
molecules that possesses a nonzero spin, the spin-paramagnetic
behavior can dominate the overall magnetic susceptibility—-of
course, the diamagnetic contributions still require accounting
for [53].

C. Molecular response tensors

A molecule exposed to external electromagnetic fields,
both static and dynamic, will respond through its molecular
susceptibilities (or response tensors), acquiring electric and
magnetic multipole moments in the process [54]. When the
electromagnetic field disrupts a charge distribution, electric
multipole moments are acquired; perturbation of current dis-
tributions produces magnetic multipole moments. The external
fields can either be in the form of free radiation as produced
by a laser, for example, or when considering intermolecular
interactions, another molecule [26]. Static response tensors
are derived through time-independent perturbation theory, due
to static electric and magnetic fields. However, for oscillating
radiation fields which vary with time, the corresponding time-
dependent theory yields dynamic polarizabilities, which are
dependent on the external field frequency. When the frequency
of the external field tends to zero, the static result is recovered.
In QED, an electrodynamical theory, the dynamic molecular
susceptibilities fall out of the theory naturally.

Using standard perturbation techniques, the quantum am-
plitude Mf i for any optical processes or phenomenon can be
calculated with the aid of Hint:

Mf i = 〈f |Hint|i〉 +
∑

r

〈f |Hint|r〉〈r|Hint|i〉
Ei − Er

+ . . . . (4)

In (4) the first term relates to processes that are first-order
in Hint; these include single-photon absorption and emission
of which diamagnetic interactions do not contribute, nor do
they directly depend on the molecular susceptibilities. The
second term corresponds to two-photon interaction processes,
which do depend on molecular susceptibilities. The molecular
response tensors can be seen to come from the transition
moment operators in (1)—μ(ξ) for example—-acting upon the
energy states of the molecule |Ei(ξ)〉. As a relevant example,
in the dipole approximation, for any two photons “a” and “b”
involved in an optical process the molecular susceptibility is
defined as

�
f i

ij (±ωa,±ωb) =
∑

r

{
τ

f r

i τ ri
j

Eri ∓ h̄ωa

+ τ
f r

j τ ri
i

Eri ∓ h̄ωb

}
, (5)

where τ ri
i represents either the electric or magnetic transition

dipole moment, and dependent on what transition moments
are calculated, �

f i

ij (±ωa,±ωb) represents the frequency-
dependent molecular susceptibility: it would be the well-
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known polarizability tensor α
f i

ij (±ωa,±ωb) if τ ri
i were electric

dipole transition moments; the orbital paramagnetic suscep-
tibility tensor χ

f i

ij (±ωa,±ωb) for magnetic dipole transition
moments; and a mixture of electric and magnetic dipole transi-
tion moments yields the mixed electric-magnetic susceptibility
tensor G

f i

ij (±ωa,±ωb), important in chiroptical interactions
[55,56].

D. Magnetic susceptibility

As discussed, the total magnetic susceptibility χtot is a com-
bination of both diamagnetic and paramagnetic contributions:

χtot = χdia + χpara︸ ︷︷ ︸
orbital

+χpara︸︷︷︸
spin

, (6)

where the first two terms are the orbital contributions to the
diamagnetic and paramagnetic susceptibilities, both of which
are derived in MQED through the method outlined above.
All molecules, regardless of their spin state, possess both
orbital contributions to their magnetic susceptibility. The final
term is the already-discussed relativistic spin-paramagnetic
susceptibility, applicable only for molecules with spin, with
which we are not concerned. The spin-paramagnetic suscepti-
bility is a temperature-dependent quantity, whereas the orbital-
paramagnetic term is not—-which is why it is sometimes called
the temperature-independent paramagnetic susceptibility (TIP
susceptibility) [57,58]. Furthermore, it is worth mention-
ing at this stage that the orbital paramagnetic susceptibility
is alternatively known as the “high-frequency” term. This
comes from the fact that, as can be seen from (5), when
the incident radiation is of a similar frequency to that of
the molecular transition, preresonance enhancement leads to
the TIP susceptibility taking on a large value. This ability
to tune the input beam into a preresonance frequency is
well exploited in laser optics, where optical rates and energy
shifts depend on molecular response tensors. However, of
interest to us here is the unique property that diamagnetic
interactions offer no such preresonance enhancement as there
forms do not possess a frequency dependence: this character-
istic will be explicitly highlighted in the proceeding sections.

FIG. 1. Two topologically distinct time-ordered Feynman graphs
representing the scattering of an incident photon into an output photon
of the same mode (k,η). For nonforward scattering the output mode
(k′,η′) is not equal to that of the input (k,η).

III. RAYLEIGH SCATTERING

A. Forward Rayleigh scattering

To provide a demonstration of the theory outlined in the
previous section, we apply the QED calculation procedure to
the process of forward Rayleigh scattering. Optical trapping is
one of the most important tools in the field of optomechanical
forces and particle manipulation [59–61]. It allows the control
and maneuvering of particles using the noncontact forces
produced by intense laser beams. Indeed, recent theoretical and
experimental studies have looked at utilizing discriminatory
trapping forces to separate chiral molecules as an alternative
to the standard chemical methods used to resolve enantiomers
[62]. The mechanism of optical trapping is built from two
distinct photon-molecule interactions: one-photon absorption
(gradient force) and forward Rayleigh scattering (scattering
force). As stated, in one-photon absorption forces there is no
diamagnetic contributions, so we restrict our interest to the
scattering force.

We begin by computing the purely magnetic dipole con-
tribution. As a two-photon scattering process (Fig. 1), it can
be designated by the shorthand notation M1M1. In forward
Rayleigh scattering, the initial and final states of the system
are identical: |i〉 = |f 〉 = |E0; n(k,η)〉. Therefore, second-
order time-dependent perturbation theory is required, with the
perturbing radiation field causing shifts of the eigenvalues
of the unperturbed Hamiltonian. As such, the calculation of
the matrix element corresponds to the energy shift for the
phenomena:

	E =
∑

r

〈E0; n| − m(ξ) · b(Rξ)|Er ; n − 1〉〈Er ; n − 1| − m(ξ) · b(Rξ)|E0; n〉
Ei − Er

, (7)

where the photon mode is implicit. With the aid of the Feynman
graphs in Fig. 1, and carrying out the operations in (7), the
energy shift takes the form

	EM1M1 = −
(

h̄k

2ε0cV

)
nbib̄j

×
∑

r

[
m0r

i mr0
j

Er0 − h̄ck
+ m0r

j mr0
i

Er0 + h̄ck

]
, (8)

where m0r
i = 〈0|mi |r〉. The term in square brackets represents

a molecular response tensor, namely the frequency-dependent

TIP orbital paramagnetic susceptibility

χ
para(orb)
ij (ω,−ω) =

∑
r

[
m0r

i mr0
j

Er0 − h̄ck
+ m0r

j mr0
i

Er0 + h̄ck

]
. (9)

Therefore, the M1M1 contribution to forward Rayleigh
scattering can be written as

	EM1M1 = − I

2ε0c3
bi b̄jχ

para(orb)
ij (ω,−ω), (10)

where we have written it in terms of the input laser beam
intensity I = nh̄c2k/V . This contribution to the scattering
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force takes on a very similar form to that of the leading-order
E1E1 coupling:

	EE1E1 = − I

2ε0c
ei ējαij (ω,−ω), (11)

where αij (ω,−ω) is the frequency-dependent polarizability.
This connection is expected since the TIP paramagnetic sus-
ceptibility is the magnetic analog to the electric polarizability.
In general, the magnetic contribution is much smaller in
magnitude than its electric counterpart: matrix elements for
a magnetic dipole interaction are typically on the order of
the fine-structure constant smaller than the equivalent electric
dipole term. However, such magnetic interactions can be im-
portant, such as in molecules with small electric polarizabilities
and relatively large magnetic susceptibilities, for example.

As it stands, the result (10) applies to molecules with a fixed
orientation, such as in solids, and therefore has little relevance
to standard optical trapping experiments where interest lays
in the liquid phase. To secure an energy shift applicable to
liquid (and gases) we therefore perform a rotational average
of (10), which gives the shift for a system of freely tumbling
molecules. The average entails contraction of the molecular
tensor (9) above with the corresponding isotropic tensor of
the same rank [63], namely the Kronecker delta; the result is
secured as

〈	E〉M1M1 = − I

2ε0c3
χpara(orb)(ω,−ω), (12)

where χpara(orb) is now the isotropic TIP paramagnetic suscep-
tibility, and a factor of 1/3 which comes from the averaging
that has been included within it.

The next step is to calculate the leading-order D1 diamag-
netic contribution to the energy shift. A key difference in
diamagnetic couplings compared to their magnetic and electric
counterparts is that a single D1 interaction term is quadratic in
the magnetic field and electric charge; E1 and M1 are linearly
dependent on the electric and magnetic field, respectively.
Therefore, although the E1E1 and M1M1 contributions to
two-photon processes, such as Rayleigh scattering, require
second-order perturbation theory, the D1 contributions to two-
photon processes require perturbation theory that is first order
in Hint: 	E = 〈f |Hint|i〉. Interestingly, it can be highlighted
at this point where the unique frequency independence of the
diamagnetic interactions originate from in the theory: There
are no virtual intermediate states in diamagnetic couplings,
and therefore the molecule’s response possesses no frequency
dependence through the denominator as in standard polariz-
abilities, highlighted in (5).

To make the procedure of calculating D1 couplings easier
to follow, with the aid of (a × b)i = εijkajbk we can write the
D1 interaction Hamiltonian term from (1) as

H
(D1)
int = e2

8m
εpij εpkl

∑
k,η

k′,η′

∑
ξ,α

(
h̄

2ε0cV

)
(kk′)1/2

× [qα(ξ) − Rξ]i[qα(ξ) − Rξ]k

× (bjaeik·Rξ − b̄j a
†e−ik·Rξ )

× (b′
la

′eik′·Rξ − b̄′
la

′†e−ik′·Rξ ), (13)

FIG. 2. Time-ordered Feynman graph representing the lowest-
order diamagnetic scattering of an incident photon into an output
photon of the same mode (k,η). For nonforward scattering the output
mode (k′,η′) is not equal to that of the input (k,η).

where we have used the mode expansions for the magnetic
field given by (3).

The initial and final states of the system are still equal as
in the M1M1 calculation, and as it is forward scattering k =
k′. By making use of the completeness relation to introduce
a sum over the virtual intermediate states |r〉, together with
defining the operator relation −e

∑
α [qα(ξ) − Rξ]i = μi(ξ),

the ensuing application of (13) gives the energy shift in terms
of transition dipole moments. With the aid of the Feynman
diagram in Fig. 2, and inserting (13) into the first-order time-
dependent perturbation expression leads to

	E = 1

8m
εpij εpkl

(
nh̄k

2ε0cV

)
bj b̄l

∑
r

μ0r
i μr0

k . (14)

In (14) we have invoked the standard assumption that the
photon creation and annihilation events relate to the same
electron, and that its wave function is to a first approximation
exactly separable from those of other electrons.

The energy shift can be further manipulated by using the
identity εpij εpkl = δikδjl − δilδjk and expressing it in terms of
the input beam intensity:

	ED1

= I

16mε0c3

∑
r

(
μ0r

i (ξ)μr0
i (ξ)bj b̄j − μ0r

i (ξ)μr0
j (ξ)b̄ibj

)
.

(15)

Using the same standard techniques as in the M1M1 case,
the full rotationally averaged result of (15) above is

〈	ED1〉 = I

16mε0c3

∑
r

(
μ0r

λ (ξ)μr0
λ (ξ) − 1

3
μ0r

λ (ξ)μr0
λ (ξ)

)

= I

24mε0c3

∑
r

μ0r
λ (ξ)μr0

λ (ξ)

= I

24mε0c3
D00

λλ(ξ), (16)

where we make the definition
∑

r μ0r
i (ξ)μr0

j (ξ) = D00
ij (ξ), and

it is once again highlighted that there exists no frequency
dependence in the D1 contributions. It is also worth mentioning
that with (16) being a positive quantity, the energy shift is there-
fore repulsive. Such behavior is well known for diamagnetic
materials placed in an external electromagnetic field.
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With recourse to (6), the total magnetic contribution to the
scattering trapping force is the sum of the M1M1 and D1 terms,
(12) and (16), respectively:

〈	Eχtot 〉 = − I

2ε0c3

[
χ00

λλ(ω,−ω) − 1

12m
D00

λλ(ξ)

]

= − I

2ε0c3
χ00

tot , (17)

where the energy shift is secured in terms of the gauge-invariant
isotropic total magnetic susceptibility χ00

tot . Clearly, if the sign
of (17) is positive the molecule is diamagnetic, and conversely a
negative energy shift corresponds to a paramagnetic molecule.

It is interesting to speculate on a “discriminatory” trapping
force between paramagnetic and diamagnetic molecules. In the
standard discriminatory trapping force [62], the difference is
due to a chiral sensitivity to the handedness of the radiation and
molecules. However, in this case there would be a different
force acting upon paramagnetic and diamagnetic molecules
in a mixture. Although in many cases the E1E1 energy shift
(11) will dominate the magnetic contribution to scattering, it
is still interesting to speculate on this approach to molecular
separation. A further point worth bringing attention to is that,
as stated previously, but now explicitly shown, a key difference
between the M1M1 and D1 contributions to the total magnetic
response is that the M1M1 paramagnetic susceptibility is
frequency dependent, and therefore selecting a suitable input
frequency one can exploit preresonance enhancement of this
interaction term. It is therefore interesting to postulate whether
a diamagnetic molecule under resonant conditions may in fact
show paramagnetic behavior.

B. Nonforward scattering

In contrast to the well-known inelastic process of Raman
scattering, any Rayleigh scattering process is elastic due to
the energy of both the scatterer and the incident photon being
conserved in the process, that is |k| = |k′|. In the forward
Rayleigh scattering process discussed in the previous section,
k̂ = k̂′, however there exists another mechanism whereby
k̂ �= k̂′, which leads to the scattered photon being in a dif-
ferent mode from that of the incident: this process is termed
nonforward scattering. The process of nonforward scattering is
slightly more complicated than the forward analog, occurring
as an optical rate rather than an energy shift [61]. In the
forward-scattering mechanism, the initial and final quantum
states of the whole radiation-molecule system are identical, and
therefore only diagonal matrix elements arise. In nonforward
scattering, where initial and final states of the total system
differ, off-diagonal matrix elements are the contributing terms.

Calculating the quantum amplitude using second-order
perturbation theory as in the forward-scattering case, and
inserting into the Fermi rate rule yields the M1M1 contribution
in terms of the intensity of the scattered radiation:

IM1M1(k′) = NIk4

16π2ε2
0c

4
b̄′

ibj b
′
kb̄l

〈
χ00

ij (ω,−ω)χ00
kl (ω,−ω)

〉
,

(18)
where N represents the total number of molecules in the
scattering sample. The molecular average in angular brackets
in (18) once carried out using standard methods [63] is seen
to be

IM1M1(k′) = NIk4

480π2ε2
0c

4

[
Aχ00

λλχ̄
00
σσ + Bχ00

λσ χ̄00
λσ + Cχ00

λσ χ̄00
σλ

]
, (19)

where

A = 4|b · b̄′|2 − |b · b′|2 − 1, B = −|b · b̄′|2 − |b · b′|2 + 4, C = −|b · b̄′|2 + 4|b · b′|2 − 1, (20)

and the frequency dependence of the molecular tensors is assumed implicit for notational brevity. The molecular tensors in (19)
can be further manipulated and expressed as a sum of irreducible tensors [64]. The paramagnetic susceptibility tenors in (19) are
of rank 2, and can therefore be decomposed in three different weights (0), (1), and (2) as

χλσ = χ
(0)
λσ + χ

(1)
λσ + χ

(2)
λσ , χ

(0)
λσ = 1

3δλσχνν, χ
(1)
λσ = 1

2 (χλσ − χσλ), χ
(2)
λσ = 1

2 (χλσ + χσλ) − 1
3δλσχνν. (21)

Rewriting (19) in terms of the irreducible parts of χ00 we secure the following result:

IM1M1(k′) = NIk4

1440π2ε2
0c

4

[
10|b · b̄′|2χ (0)

λλ χ̄ (0)
σσ + 3(3 − 2|b · b̄′|2 + 3|b · b′|2)χ (2)

λσ χ̄
(2)
λσ

]
. (22)

Now concentrating on the D1 contribution to nonforward Rayleigh scattering, the rotationally averaged scattered intensity is
seen to be

ID1(k′) = NIk4

30 720m2ε2
0π

2c4

[
(14|b · b̄

′|2 − |b · b′|2 − 1)D00
λλD̄

00
σσ + (3 − 2|b · b̄

′|2 + 3|b · b′|2)D00
λσ D̄00

λσ

]
. (23)

Using the same techniques as for the M1M1 case, the scattered intensity (23) can be written in terms of the irreducible parts
of the transition moments

ID1(k′) = NIk4

92 160m2ε2
0π

2c4

[
40|b · b̄

′|2D(0)
λλ D̄(0)

σσ + 3(3 − 2|b · b̄
′|2 + 3|b · b′|2)D(2)

λσ D̄
(2)
λσ

]
. (24)
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In a similar fashion to the previous section, we can write the results in terms of the gauge-invariant total magnetic susceptibility
for each different weight contribution. For weight (0) contributions

Imag(0)(k′) = NIk4

144π2ε2
0c

4
|b · b̄

′|2
[
χ

(0)
λλ χ̄ (0)

σσ + 1

16m2
D

(0)
λλ D̄(0)

σσ

]
, (25)

while the weight (2) contributions take the form of

Imag(2)(k′) = NIk4

480π2ε2
0c

4
(3 − 2|b · b̄′|2 + 3|b · b′|2)

[
χ

(2)
λμχ̄

(2)
λμ + 1

64m2
D

(2)
λσ D̄

(2)
λσ

]
. (26)

The weight (0) contributions represent the isotropic contri-
butions from the scalar scattering terms (25), while the weight
(2) scattering contributions (26) are the anisotropic parts. The
sum of both irreducible components, (25) and (26), produces
an expression where it is possible to ascertain the scattered
intensity for varying forms of polarized or unpolarized incident
photons; such an analysis is standard for the E1E1 contribution
to scattering [9].

IV. CONCLUSION

The manifestation of the well-known fact in Coulomb gauge
molecular electromagnetism that the magnetic susceptibility
is a sum of spin and orbital contributions has been explicitly
highlighted in the framework of multipolar molecular quantum
electrodynamics. In this noncovariant formulation of QED
the spin-paramagnetic interaction Hamiltonian may be added
in an ad hoc manner if dealing with the relatively limited
examples of molecules possessing spin. For the majority
of spin-less molecules, the theory clearly produces results
dependent upon the total magnetic susceptibility which is a
sum of the M1M1 orbital paramagnetic susceptibility and D1
diamagnetic susceptibility. Only when both these contributions
are computed for any given multiphoton process do we secure
gauge-invariant results: this is the main reason why diamag-
netic couplings should be explicitly evaluated when studying
magnetic interactions.

This work complements a recent Perspective article on the
nature and validation of the multipolar PZW Hamiltonian
[18], so prevalently utilized throughout chemical and opti-
cal physics. In this work it has been explicitly highlighted

how the less well-known diamagnetic interactions take their
place in light-matter interactions, their implementation and
physical interpretation, and how the multipolar PZW takes
full account of their existence. To highlight this clarification,
the lowest-order magnetic coupling contribution to forward
Rayleigh scattering (a mechanism responsible for the optical
trapping force) was calculated, demonstrating the role that the
M1M1 and D1 couplings play in yielding a result dependent
on the total magnetic susceptibility—-a measurable physical
parameter.

Although the main aim of this work was to put the diamag-
netic and magnetic couplings in the PZW Hamiltonian on a
firmer theoretical grounding, the role of magnetic couplings
between radiation and light is fast becoming a flourishing
field of research [65], specifically with the use of optical
metamaterials leading to enhanced and observable magnetic
light-matter interactions [66,67]. It is for this reason that an
appropriate theoretical QED framework with suitable modi-
fications to account for inhomogeneous and dispersive media
[68,69], which highlights the significance of both the magnetic
and diamagnetic contributions to these interactions in photonic
nanostructures, is key to enable the further exploration in
the ever-expanding field of molecular and optical physics.
Indeed, exploratory work using macroscopic QED methods
has highlighted the importance of diamagnetic interactions in
a system of magnetodielectric bodies [70].
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