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Isometries of Grassmann spaces, II ∗†‡

György Pál Gehér §, Peter Šemrl¶

Abstract

Botelho, Jamison, and Molnár [1], and Gehér and Šemrl [4] have re-
cently described the general form of surjective isometries of Grassmann
spaces of all projections of a fixed finite rank on a Hilbert space H. As
a straightforward consequence one can characterize surjective isometries
of Grassmann spaces of projections of a fixed finite corank. In this paper
we solve the remaining structural problem for surjective isometries on the
set P∞(H) of all projections of infinite rank and infinite corank when H
is separable. The proof technique is entirely different from the previous
ones and is based on the study of geodesics in the Grassmannian P∞(H).
However, the same method gives an alternative proof in the case of finite
rank projections.

AMS classification: Primary: 47B49, Secondary: 54E40.

Keywords: Isometry, Grassmann space, projection, subspace, gap metric, geodesic
structure.

1 Introduction and statement of the main re-
sults

Let H be a (real or complex) Hilbert space and n a positive integer. We denote
by Pn(H) the set of all rank n projections on H. In the case when H is an
infinite-dimensional separable Hilbert space, the symbol P∞(H) stands for the
set of all projections whose images and kernels are both infinite-dimensional.
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By ‖ · ‖ we denote the usual operator norm on B(H), the set of all bounded
linear operators on H. The distance on the set of all projections induced by the
operator norm is usually called the gap metric.

In [1], Botelho, Jamison, and Molnár described the general form of surjec-
tive isometries of Pn(H) under some dimensionality constraints and under the
additional assumption that H is a complex Hilbert space. Their main tool was
a non-commutative Mazur–Ulam type result on the local algebraic behaviour
of surjective isometries between substructures of metric groups. The authors
of the present paper succeeded to extend this result also to the real case and
all possible dimensions [4]. They proved that if dimH > n and dimH 6= 2n,
then for every surjective isometry φ:Pn(H) → Pn(H) there exists a unitary or
an antiunitary operator (an orthogonal operator in the real case) U on H such
that φ(P ) = UPU∗, P ∈ Pn(H). In the case when dimH = 2n, we have either
the above form, or φ(P ) = U(I − P )U∗, P ∈ Pn(H).

The main idea was to show that the set of certain geometric midpoints
between two projections P and Q is a compact manifold if and only if P and
Q are orthogonal. Then the structural result for orthogonality preserving maps
on Pn(H) was used to complete the proof. This approach works in all cases but
the case when dimH = 2n. In this exceptional case orthogonality preservers
may have a wild behaviour and additional tools coming from the geometry of
algebraic homogeneous spaces were needed to complete the proof.

Using the obvious fact that for any pair of projections P,Q we have

‖P −Q‖ = ‖(I − P )− (I −Q)‖

we can also solve the problem of describing the general form of surjective isome-
tries on the set of all projections of a fixed finite corank leaving open only the
case of surjective isometries on the set of projections of infinite rank and infinite
corank.

The aim of this paper is to solve this remaining case, thus completing the
research program that started with [1].

Theorem 1.1. Let H be an infinite-dimensional complex (real) separable Hilbert
space and φ:P∞(H)→ P∞(H) a surjective map such that

‖φ(P )− φ(Q)‖ = ‖P −Q‖

for every pair P,Q ∈ P∞(H). Then there exists a unitary or an antiunitary
operator (orthogonal operator) U on H such that either we have

φ(P ) = UPU∗

for every P ∈ P∞(H); or

φ(P ) = U(I − P )U∗

is satisfied for every P ∈ P∞(H).
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It should be emphasized here that there is an essential difference between
surjective isometries of Pn(H) and P∞(H). While each surjective isometry
φ:Pn(H) → Pn(H) preservers orthogonality, that is, for every pair P,Q ∈
Pn(H) we have PQ = 0 ⇐⇒ φ(P )φ(Q) = 0, this is not true for surjective
isometries of P∞(H). Indeed, let an infinite-dimensional separable Hilbert space
H be represented as the orthogonal direct sum of three copies of a Hilbert space
K, H = K ⊕ K ⊕ K, and let φ:P∞(H) → P∞(H) be a bijective isometry
defined by φ(P ) = I − P , P ∈ P∞(H). Then for P,Q ∈ P∞(H) that have
matrix representations

P =

 I 0 0
0 0 0
0 0 0

 and Q =

 0 0 0
0 I 0
0 0 0


with respect to the above direct sum decomposition of H, we have PQ = 0,
while

φ(P ) =

 0 0 0
0 I 0
0 0 I

 and φ(Q) =

 I 0 0
0 0 0
0 0 I


are obviously not orthogonal.

This difference indicates that the structural problem for isometries of P∞(H)
might be more difficult and that the methods used in the case of isometries on
Pn(H) do not work in the present case. However, a careful reader will notice
that the proof techniques we will use here to prove the above theorem work also
for isometries on Pn(H).

The main motivation for studying this kind of problems comes from math-
ematical physics. The Grassmann space P1(H) is used to represent the set
of pure states of the quantum system, and the quantity tr (PQ) is the so-
called transition probability between two pure states. The famous Wigner’s
unitary-antiunitary theorem describes the general form of transformations of
P1(H) which preserve the transition probability. One can easily verify that
‖P−Q‖ =

√
1− trPQ holds true for every pair P,Q ∈ P1(H). Hence, Wigner’s

theorem can be interpreted as the structural result for isometries of P1(H). For
more detailed explanation with many other references, other motivations, and
some recent related results we refer ro [1, 3, 4, 6].

Let H be an infinite-dimensional separable Hilbert space and n a positive
integer. We will use the notation N0 = {0, 1, 2, . . .}. By Pn(H) we denote the
set of all projections on H whose kernel is n-dimensional, and by P (H) the set
of all projections on H. We further set P0(H) = {0} and P 0(H) = {I}. Then
clearly, P (H) is a disjoint union of subsets of projections

P (H) =

( ∞⋃
n=0

(Pn(H) ∪ Pn(H))

)
∪ P∞(H).

After having a full understanding of the structure of isometries of Pn(H), n =
1, 2, . . ., and P∞(H) one may ask what are all surjective isometries of P (H). As
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we shall see this is a rather easy question once we observe that

‖P −Q‖ = 1

whenever P and Q belong to two different subsets Pn(H), Pn(H), n ∈ N0∪{∞},
while in the case that P and Q both belong to the same subset there exists a
finite sequence of projections P = P0, P1, . . . , Pk = Q such that

‖Pj−1 − Pj‖ < 1, j = 1, . . . , k.

Using this simple observation it will be easy to prove the following.

Theorem 1.2. Let H be an infinite-dimensional separable Hilbert space and
φ:P (H)→ P (H) a surjective map such that

‖φ(P )− φ(Q)‖ = ‖P −Q‖

for all pairs P,Q ∈ P (H). Then the set N0 can be written as a disjoint
union N0 = M ∪N , and there exists a system of operators U0, U1, U2, . . . ;U∞;
W0,W1,W2, . . . such that each of them is a unitary or an antiunitary operator
on H (orthogonal operator in the real case) and that we have

φ(P ) = UnPU
∗
n and φ(Q) = WnQW

∗
n

for every n ∈M , P ∈ Pn(H) and Q ∈ Pn(H);

φ(P ) = Un(I − P )U∗n and φ(Q) = Wn(I −Q)W ∗n

for every n ∈ N , P ∈ Pn(H) and Q ∈ Pn(H); and we have either

φ(P ) = U∞PU
∗
∞

for every P ∈ P∞(H), or

φ(P ) = U∞(I − P )U∗∞

for every P ∈ P∞(H).

Of course, one can also ask what are all isometries of P (H) in the case
when H is finite-dimensional, dimH = m. Note that this time we do not need
to assume that the isometry is surjective. The reason is that each isometry
φ:P (H)→ P (H) is an injective continuous map and since

P (H) = {0} ∪ P1(H) ∪ . . . ∪ Pm−1(H) ∪ {I}

is a finite disjoint union of Grassmann spaces and each of them is a compact
and connected manifold, we see by the domain invariance theorem that φ must
be automatically surjective. Moreover, comparing the dimensions of these man-
ifolds we see that every isometry φ:P (H)→ P (H)
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• either maps 0 to 0 and I to I; or maps 0 to I and I to 0,

• either maps P1(H) onto P1(H) and Pm−1(H) onto Pm−1(H); or maps
P1(H) onto Pm−1(H) and Pm−1(H) onto P1(H),

• either maps P2(H) onto P2(H) and Pm−2(H) onto Pm−2(H); or maps
P2(H) onto Pm−2(H) and Pm−2(H) onto P2(H),

...

We can now easily get the full understanding of the structure of isometries on
P (H) using the main theorem from [4]. In particular, one needs to know what
is the general form of all isometries from Pk(H) into Pm−k(H) when k < m/2.
All one needs to observe is that if ϕ:Pk(H) → Pm−k(H) is an isometry then
the map ξ:Pk(H)→ Pk(H) defined by

ξ(P ) = I − ϕ(P ), P ∈ Pk(H),

is an isometry, too, and hence, the main theorem from [4] implies that there
exists a unitary or an antiunitary operator (orthogonal operator) U on H such
that ϕ(P ) = U(I − P )U∗, P ∈ Pk(H).

To avoid using too much space for trivialities we leave the exact formulation
of the structural results for isometries of P (H), dimH = m, (there is a slight
difference between the cases when m is even or m is odd) to the reader. In the
rest of the paper we will often speak of unitary operators, unitary or antiunitary
operators, and unitary similarities without mentioning the real case – it will
be self-understood that this will mean orthogonal operators and orthogonal
similarities.

2 Preliminary results

One of the main tools we will need all the time is the famous Halmos’ two
projections theorem, see [2], which reads as follows.

Theorem 2.1 (P.R. Halmos). Let H be a real or complex Hilbert space and
P,Q be projections on H. Then up to a unitary similarity H can be written as
an orthogonal direct sum decomposition H = H1⊕H2⊕H3⊕H4⊕K⊕K (note
that the last two summands are equal) and the projections P and Q have the
corresponding matrix representations

P =


I 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 and Q =


0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 C2 SC
0 0 0 0 SC S2

 , (1)

where S,C:K → K are self-adjoint injective operators satisfying 0 ≤ S,C ≤ I
and S2 + C2 = I. Moreover, we have H1 = ImP ∩KerQ, H2 = KerP ∩ ImQ,
H3 = ImP ∩ ImQ and H4 = KerP ∩KerQ.
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Note that it may happen that in the above representation of P and Q some
of the subspaces H1, H2, H3, H4,K are zero subspaces. Observe also that S is
the unique positive square root of I − C2. In particular, S and C commute.

Next, using Halmos’ two projections theorem, we prove an inequality that
is probably known, however, we were not able to find it in the literature.

Proposition 2.2. Let H be a real or complex Hilbert space and P,Q ∈ P (H).
If KerP ∩ ImQ 6= {0} or ImP ∩KerQ 6= {0}, then

‖P −Q‖ = 1,

otherwise we have

‖P −Q‖ =
√
‖(I − P )Q(I − P )‖ = ‖S‖,

where S is the operator from (1) in the previous theorem. In particular, we
always have the following inequality:

‖P −Q‖ ≥
√
‖(I − P )Q(I − P )‖.

Proof. Without loss of generality we may assume that P and Q have the matrix
representations (1), in which case we have

P −Q =


I 0 0 0 0 0
0 −I 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 S2 −SC
0 0 0 0 −SC −S2

 .

Thus, if H1 6= {0} or H2 6= {0}, then clearly ‖P −Q‖ = 1. On the other hand,
if H1 = H2 = {0}, then we have

‖P −Q‖ =

∥∥∥∥[ S2 −SC
−SC −S2

]∥∥∥∥ =

∥∥∥∥[ S −C
−C −S

] [
S 0
0 S

]∥∥∥∥ =

∥∥∥∥[S 0
0 S

]∥∥∥∥
= ‖S‖ =

√
‖S2‖ =

√√√√√√
∥∥∥∥∥∥∥


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 S2


∥∥∥∥∥∥∥ =

√
‖(I − P )Q(I − P )‖,

where we observed that

[
S −C
−C −S

]
is a unitary operator. As we obviously

have ‖(I − P )Q(I − P )‖ ≤ 1, the stated inequality is straightforward.

From now on till the end of this section H will always denote an infinite-
dimensional real or complex separable Hilbert space.

6



Lemma 2.3. Let x ∈ H be a vector of norm one and assume that matrix
representations of P,Q ∈ P∞(H) with respect to the orthogonal direct sum de-
composition H = span {x} ⊕ x⊥ are

P =

[
1 0
0 P1

]
and Q =

[
0 0
0 Q1

]
for some projections P1, Q1 ∈ P∞(x⊥). Let θ ∈ (0, π2 ). Assume further that
R ∈ P∞(H) satisfies

‖R− P‖ ≤ sin θ and ‖R−Q‖ ≤ cos θ.

Then there exists a vector y ∈ H of norm one such that x ⊥ y and the matrix
representations of P,Q,R with respect to the orthogonal direct sum decomposi-
tion H = span {x} ⊕ span {y} ⊕ {x, y}⊥ are

P =

 1 0 0
0 0 0
0 0 P2

 , Q =

 0 0 0
0 1 0
0 0 Q2

 ,
and

R =

 cos2 θ cos θ sin θ 0
cos θ sin θ sin2 θ 0

0 0 R2


for some P2, Q2, R2 ∈ P∞({x, y}⊥). Moreover as a consequence, we have that
‖R− P‖ = sin θ and ‖R−Q‖ = cos θ.

Proof. Let the matrix representation of R with respect to the orthogonal direct
sum decomposition H = span {x} ⊕ x⊥ be

R =

[
r1 u∗

u R1

]
.

From R2 = R we get
r21 + ‖u‖2 = r1. (2)

Further, the inequality

‖R− P‖ =

∥∥∥∥[ r1 − 1 u∗

u R1 − P1

]∥∥∥∥ ≤ sin θ

yields
(r1 − 1)2 + ‖u‖2 ≤ sin2 θ (3)

and similarly,
r21 + ‖u‖2 ≤ cos2 θ. (4)

It follows from (2) and (4) that r1 ≤ cos2 θ, while (2) and (3) imply 1 − r1 ≤
sin2 θ, or equivalently r1 ≥ cos2 θ.
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Thus, r1 = cos2 θ, and consequently, by (2) we have ‖u‖2 = cos2 θ sin2 θ.
Setting y = (cos θ sin θ)−1u, the matrix representations of P,Q,R with respect
to the orthogonal decomposition H = span {x} ⊕ span {y} ⊕ {x, y}⊥ are

P =

 1 0 0
0 p2 v∗

0 v P2

 , Q =

 0 0 0
0 q2 w∗

0 w Q2

 ,
and

R =

 cos2 θ cos θ sin θ 0
cos θ sin θ r2 z∗

0 z R2

 ,
for some p2, q2, r2 ∈ [0, 1], v, w, z ∈ {x, y}⊥, and some P2, Q2, R2 ∈ B({x, y}⊥).
It follows from R2 = R that

cos3 θ sin θ + r2 cos θ sin θ = cos θ sin θ.

Therefore, r2 = sin2 θ, and then applying R2 = R once more, we conclude that
z = 0.

The inequality
‖R−Q‖ ≤ cos θ

implies that ∥∥∥∥[ cos2 θ cos θ sin θ
cos θ sin θ sin2 θ − q2

]∥∥∥∥ ≤ cos θ.

Denoting

A =

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ − q2

]
we have trA = 1 − q2 ≥ 0 and detA = −q2 cos2 θ. Because ‖A‖ < 1 we have
q2 6= 0, and consequently, detA < 0 which further yields that A has one positive
and one negative eigenvalue. Since the trace of A is nonnegative, the norm of
A equals the positive eigenvalue. The characteristic polynomial of A is of the
form p(X) = X2 − (trA)X + detA, and hence

2‖A‖ = trA+
√

(trA)2 − 4 detA = 1− q2 +
√

(1− q2)2 + 4q2 cos2 θ.

It is straightforward to check that the derivative of the real function f defined
on the unit interval [0, 1] by

f(t) = 1− t+
√

(1− t)2 + 4t cos2 θ

is negative, and thus the minimal value of the function f on the unit interval
is f(1) = 2 cos θ. Since 2‖A‖ ≤ 2 cos θ we conclude that q2 = 1. Then Q ≤ I
immediately yields that w = 0.

In the same way we verify that p2 = 0 and v = 0.
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For any projection P ∈ P∞(H) and any positive real number c we denote

P≤c = {R ∈ P∞(H): ‖R− P‖ ≤ c}.

Let P,Q ∈ P∞(H). Set H1 = ImP ∩ KerQ and H2 = KerP ∩ ImQ. Note
that one or both of these two subspaces might be trivial. Obviously, they are
orthogonal and both invariant for both P and Q. Hence, with respect to the
orthogonal direct sum decomposition H = H1⊕H2⊕H3 the projections P and
Q have the matrix representations

P =

 I 0 0
0 0 0
0 0 P1

 and Q =

 0 0 0
0 I 0
0 0 Q1

 ,
where P1 and Q1 are projections on H3 with the property that ImP1∩KerQ1 =
{0} and KerP1 ∩ ImQ1 = {0}.

Lemma 2.4. Let P and Q be as above and θ ∈ (0, π2 ). Let R ∈ P∞(H) and
assume that

R ∈ P≤sin θ ∩Q≤cos θ.
Then there exists a unitary operator U :H1 → H2 and a projection R1 on H3

such that

R =

 (cos2 θ)I (sin θ cos θ)U∗ 0
(sin θ cos θ)U (sin2 θ)I 0

0 0 R1

 .
In particular, if dimH1 6= dimH2, then the set P≤sin θ ∩Q≤cos θ is empty.

Proof. Take any unit vector x ∈ H1. By Lemma 2.3 we have Rx = (cos2 θ)x+v,
where v is some vector in H2 with norm cos θ sin θ. Hence, the restriction of
R − (cos2 θ)I to H1 maps H1 into H2. This restriction is a linear isometry
multiplied by cos θ sin θ. It follows that R must be of the form

R =

 (cos2 θ)I ∗ ∗
(sin θ cos θ)U ∗ ∗

0 ∗ ∗

 ,
where U is an isometric embedding of H1 into H2. In exactly the same way we
see that

R =

 ∗ (sin θ cos θ)V ∗
∗ (sin2 θ)I ∗
∗ 0 ∗


with V being an isometric embedding of H2 into H1. It follows that H1 and H2

are of the same dimension. Since R is self-adjoint, we have necessarily V = U∗.
In particular, U is surjective. It follows that R is of the desired form.

Lemma 2.5. Let P,Q,R ∈ P∞(H) with P and Q orthogonal and

‖R− P‖ = ‖R−Q‖ =
1√
2
.
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Then there exists exactly one mapping γ: [0, π2 ]→ P∞(H) such that

γ(0) = P, γ
(π

2

)
= Q, and γ

(π
4

)
= R,

and
‖γ(θ1)− γ(θ2)‖ = sin |θ1 − θ2| (5)

for all θ1, θ2 ∈ [0, π2 ].
Moreover, the exact same statement holds if I−P and I−Q are orthogonal.

Proof. Since P and Q are orthogonal we have an orthogonal direct sum decom-
position H = H1 ⊕H2 ⊕H3 (with H3 possibly a zero subspace) such that the
corresponding matrix representations are

P =

 I 0 0
0 0 0
0 0 0

 and Q =

 0 0 0
0 I 0
0 0 0

 .
We need to prove the existence and the uniqueness of γ with the above proper-
ties. By (5), we will have

γ(θ) ∈ P≤sin θ ∩Q≤cos θ (6)

for all θ ∈ [0, π2 ] and thus, by Lemma 2.4, we will further have

γ(θ) =

 ∗ ∗ 0
∗ ∗ 0
0 0 T


for some projection T on H3. But T has to be zero. Indeed, if T was nonzero
we would have ‖γ(θ) − P‖ = 1 = ‖γ(θ) − Q‖. Hence, all projections γ(θ) will
have nonzero entries only in the upper-left 2 × 2 corner. In other words, there
is no loss of generality in assuming that H3 = 0, and then

P =

[
I 0
0 0

]
and Q =

[
0 0
0 I

]
.

Also, since H1 and H2 are of the same dimension, they can be identified, and
thus, H can be considered as the orthogonal direct sum of two copies of H1.

Using Lemma 2.4 once more we see that R must be of the form

R =

[
1
2I

1
2U

1
2U
∗ 1

2I

]
for some unitary operator U on H1. Replacing P , Q, and R by WPW ∗, WQW ∗,
and WRW ∗, where W is the unitary operator given by

W =

[
I 0
0 U

]
,
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we may assume that

R =

[
1
2I

1
2I

1
2I

1
2I

]
.

It is an elementary linear algebra exercise to show that the map γ: [0, π2 ]→
P∞(H) defined by

γ(θ) =

[
(cos2 θ)I (cos θ sin θ)I

(cos θ sin θ)I (sin2 θ)I

]
, θ ∈

[
0,
π

2

]
,

satisfies (5). Thus, the proof will be completed if we show that for any θ ∈ (0, π2 )
the projection γ(θ) above is the unique projection satisfying (5) with θ1 = θ
and θ2 = 0, π4 ,

π
2 .

So, choose θ ∈ (0, π2 ) and assume that S ∈ P∞(H) is a projection such that

S ∈ P≤sin θ ∩Q≤cos θ

and ‖S −R‖ = sin |π4 − θ|. Then, by Lemma 2.4 we have

S =

[
(cos2 θ)I (cos θ sin θ)V ∗

(cos θ sin θ)V (sin2 θ)I

]
for some unitary operator V . We will complete the proof by showing that
‖S −R‖ = sin |π4 − θ| implies that V = I.

Observe that[
1√
2
I 1√

2
I

− 1√
2
I 1√

2
I

]
R

[
1√
2
I − 1√

2
I

1√
2
I 1√

2
I

]
=

[
I 0
0 0

]
,

and [
1√
2
I 1√

2
I

− 1√
2
I 1√

2
I

]
S

[
1√
2
I − 1√

2
I

1√
2
I 1√

2
I

]
=

[
∗ ∗
∗ 1

2 [I − cos θ sin θ(V + V ∗)]

]
,

and therefore, by Proposition 2.2 we have

sin
∣∣∣π
4
− θ
∣∣∣ = ‖S −R‖ =

∥∥∥∥[ I 0
0 0

]
−
[
∗ ∗
∗ 1

2 [I − cos θ sin θ(V + V ∗)]

]∥∥∥∥
≥

√∥∥∥∥1

2
I − 1

2
cos θ sin θ(V + V ∗)

∥∥∥∥ ≥
√

1

2
− cos θ sin θ = sin

∣∣∣π
4
− θ
∣∣∣ .

Since all inequalities are actually equalities, we have V = I, as desired.
For the case when I − P and I −Q are orthogonal we only have to observe

that P 7→ I − P is a bijective isometry of P∞(H).
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Lemma 2.6. Let L be a Hilbert space (finite or infinite-dimensional) having
the orthogonal direct sum decomposition L = K ⊕ K and assume that P,Q ∈
PdimK(L) have the corresponding matrix representations

P =

[
I 0
0 0

]
and Q =

[
C2 SC
SC S2

]
with S,C self-adjoint injective operators satisfying 0 ≤ S,C ≤ I and S2 +C2 =
I. Denote ‖S‖ = sinψ, 0 ≤ ψ ≤ π

2 . We define a map α: [0, π2 ]→ B(L) by

α(θ) =

[
cos2

(
2θ
π arcsinS

)
cos
(
2θ
π arcsinS

)
sin
(
2θ
π arcsinS

)
cos
(
2θ
π arcsinS

)
sin
(
2θ
π arcsinS

)
sin2

(
2θ
π arcsinS

) ]
for θ ∈

[
0, π2

]
. Then

α(θ) ∈ PdimK(L)

for every θ ∈ [0, π2 ],

α(0) = P, α
(π

2

)
= Q,

and

‖α(θ1)− α(θ2)‖ = sin

(
2|θ1 − θ2|

π
ψ

)
for all pairs θ1, θ2 ∈ [0, π2 ].

Proof. The verification of α(0) = P and α
(
π
2

)
= Q is straightforward, since

arcsinS = arccosC. It is also clear that α(θ) is a projection for all θ ∈ [0, π2 ].
If Γ ⊂ P (H) is a curve in the set of all projections then all projections on this
curve have the same rank and the same corank. Consequently, α(θ) ∈ PdimK(L)
for all θ ∈ [0, π2 ].

We set

Cθ = cos

(
2θ

π
arcsinS

)
, Sθ = sin

(
2θ

π
arcsinS

)
,

and

Uθ =

[
Cθ −Sθ
Sθ Cθ

]
.

Clearly, each Uθ is a unitary operator. Observe that

α(θ) = Uθ

[
I 0
0 0

]
U∗θ = Uθα(0)U∗θ .

Moreover, for every pair θ1, θ2 satisfying 0 ≤ θ1 < θ2 ≤ π
2 we have

U∗θ1Uθ2 =

[
Cθ1Cθ2 + Sθ1Sθ2 Sθ1Cθ2 − Cθ1Sθ2
Cθ1Sθ2 − Sθ1Cθ2 Cθ1Cθ2 + Sθ1Sθ2

]

=

[
Cθ2−θ1 −Sθ2−θ1
Sθ2−θ1 Cθ2−θ1

]
= Uθ2−θ1 .

12



Therefore,

‖α(θ1)− α(θ2)‖ =

∥∥∥∥Uθ1 [ I 0
0 0

]
U∗θ1 − Uθ2

[
I 0
0 0

]
U∗θ2

∥∥∥∥
=

∥∥∥∥[ I 0
0 0

]
− U∗θ1Uθ2

[
I 0
0 0

]
(U∗θ1Uθ2)∗

∥∥∥∥
=

∥∥∥∥[ I 0
0 0

]
− Uθ2−θ1

[
I 0
0 0

]
U∗θ2−θ1

∥∥∥∥ = ‖α(0)− α(θ2 − θ1)‖.

Consequently, by Proposition 2.2 we have

‖α(θ1)− α(θ2)‖ =

∥∥∥∥sin

[
2(θ2 − θ1)

π
arcsinS

]∥∥∥∥ = sin

(
2(θ2 − θ1)

π
ψ

)
,

as desired.

Lemma 2.7. Assume that P,Q ∈ P∞(H) have matrix representations

P =


I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

 and Q =


0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0


with respect to the orthogonal direct sum decomposition H = H1⊕H2⊕H3⊕H4

and assume that dimH1 = dimH2 6= 0, dimH3 6= 0 and dimH4 6= 0.
Then there exists R ∈ P∞(H) such that

‖R− P‖ = ‖R−Q‖ =
1√
2

and there exist more than just one mapping γ: [0, π2 ]→ P∞(H) with the proper-
ties

γ(0) = P, γ
(π

2

)
= Q, and γ

(π
4

)
= R,

and
‖γ(θ1)− γ(θ2)‖ = sin |θ1 − θ2|

for all θ1, θ2 ∈ [0, π2 ].

Proof. Since dimH1 = dimH2 we can identify these two subspaces. Because
of dimH3 6= 0 and dimH4 6= 0 we can decompose both H3 and H4 into direct
sums of a one-dimensional subspace and its orthogonal complement and then
the corresponding matrix representations of P and Q are

P =


I 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 and Q =


0 0 0 0 0 0
0 I 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0


13



with the third and the fourth subspace in the corresponding orthogonal direct
sum decomposition of H being one-dimensional.

Choosing

R =



1
2I

1
2I 0 0 0 0

1
2I

1
2I 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0


we immediately see that for every Lipschitz function f : [0, π2 ] → [0, π2 ] with
Lipschitz constant 1 satisfying f(0) = f(π4 ) = f(π2 ) = 0 the mapping γ: [0, π2 ]→
P∞(H) given by

γ(θ) =

=


(cos2 θ)I (cos θ sin θ)I 0 0 0 0

(cos θ sin θ)I (sin2 θ)I 0 0 0 0
0 0 cos2 f(θ) cos f(θ) sin f(θ) 0 0
0 0 cos f(θ) sin f(θ) sin2 f(θ) 0 0
0 0 0 0 I 0
0 0 0 0 0 0


has the desired properties.

Lemma 2.8. Assume that P,Q ∈ P∞(H) have matrix representations

P =


I 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 and Q =


0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 C2 SC
0 0 0 0 SC S2

 ,

with respect to the orthogonal direct sum decomposition H = L⊕L⊕H1⊕H2⊕
K ⊕K (note that the first two and the last two summands are equal). Assume
further that L,K 6= {0} (while any of H1 and H2 might be a zero subspace and
then, of course, some columns and rows in the above matrix representations of
P and Q are absent) and that S,C:K → K are self-adjoint injective operators
satisfying 0 ≤ S,C ≤ I and S2 +C2 = I. Suppose finally that ‖S‖ = sinψ < 1.

Then there exists R ∈ P∞(H) such that

‖R− P‖ = ‖R−Q‖ =
1√
2

and there exist more than just one mapping γ: [0, π2 ]→ P∞(H) with the proper-
ties

γ(0) = P, γ
(π

2

)
= Q, and γ

(π
4

)
= R,

and
‖γ(θ1)− γ(θ2)‖ = sin |θ1 − θ2|

for all θ1, θ2 ∈ [0, π2 ].
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Proof. We set

Cθ = cos

(
2θ

π
arcsinS

)
and Sθ = sin

(
2θ

π
arcsinS

)
, θ ∈

[
0,
π

2

]
.

Obviously, there are infinitely many Lipschitz functions f : [0, π2 ] → [0, π2 ] with
Lipschitz constant π

2ψ satisfying f(0) = 0, f(π4 ) = π
4 and f(π2 ) = π

2 . Choose

R =



1
2I

1
2I 0 0 0 0

1
2I

1
2I 0 0 0 0

0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 C2

π
4

Cπ
4
Sπ

4

0 0 0 0 Cπ
4
Sπ

4
S2

π
4


and the mapping γ: [0, π2 ]→ P∞(H) given by

γ(θ) =



(cos2 θ)I (cos θ sin θ)I 0 0 0 0
(cos θ sin θ)I (sin2 θ)I 0 0 0 0

0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 C2

f(θ) Cf(θ)Sf(θ)
0 0 0 0 Cf(θ)Sf(θ) S2

f(θ)

 .

A straightforward application of Lemma 2.6 completes the proof.

Lemma 2.9. Assume that P,Q ∈ P∞(H) have matrix representations

P =


I 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 and Q =


0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 C2 SC
0 0 0 0 SC S2

 ,

with respect to the orthogonal direct sum decomposition H = L⊕L⊕H1⊕H2⊕
K ⊕K. Assume further that K 6= {0} and that S,C:K → K are self-adjoint
injective operators satisfying 0 ≤ S,C ≤ I and S2 + C2 = I. Suppose finally
that ‖S‖ = 1.

Then there exists R ∈ P∞(H) such that

‖R− P‖ = ‖R−Q‖ =
1√
2

and there exist more than just one mapping γ: [0, π2 ]→ P∞(H) with the proper-
ties

γ(0) = P, γ
(π

2

)
= Q, and γ

(π
4

)
= R,

and
‖γ(θ1)− γ(θ2)‖ = sin |θ1 − θ2|

for all θ1, θ2 ∈ [0, π2 ].
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Proof. Note that ‖S‖ = 1, S2 + C2 = I, and the injectivity of both S and C
impy that K is infinite-dimensional. By the spectral theorem the bottom-right
corners of P and Q: [

I 0
0 0

]
and

[
C2 CS
CS S2

]
can be rewritten as

I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

 and


C2

1 C1S1 0 0
C1S1 S2

1 0 0
0 0 C2

2 C2S2

0 0 C2S2 S2
2


with ‖S1‖ = 1 and 0 < ‖S2‖ < 1. One can now use the same ideas as before to
complete the proof.

For P,Q ∈ P∞(H) we write P ∼ Q if and only if P ⊥ Q or (I−P ) ⊥ (I−Q),
and P]Q if and only if P ⊥ Q and P +Q ∈ P∞(H), that is, we have P]Q if and
only if P and Q are orthogonal and the kernel of P +Q is infinite-dimensional,
or in other words, P +Q have up to a unitary similarity matrix representations

P =

 I 0 0
0 0 0
0 0 0

 and Q =

 0 0 0
0 I 0
0 0 0

 ,
where the three direct summands in the corresponding orthogonal direct sum
decomposition of H are all infinite-dimensional. Note that above we could define
P]Q if and only if P +Q ∈ P∞(H), since P +Q ∈ P∞(H) yields P ⊥ Q.

Lemma 2.10. Let P,Q ∈ P∞(H). Then there exist j ∈ {1, 2, 3} and a sequence
P = P0, P1, . . . , Pj = Q such that Pk ∈ P∞(H), k = 0, 1, . . . , j, and Pk−1 ⊥ Pk,
k = 1, . . . , j.

Proof. By the two projections theorem we have up to a unitary similarity matrix
representations

P =


I 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 and Q =


0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 C2 SC
0 0 0 0 SC S2

 ,

where the underlying orthogonal decomposition of H is H = H1 ⊕H2 ⊕H3 ⊕
H4 ⊕ K ⊕ K and S,C:K → K are self-adjoint injective operators satisfying
0 ≤ S,C ≤ I and S2 + C2 = I.

In the case when K is infinite-dimensional the bottom-right corners of P
and Q: [

I 0
0 0

]
and

[
C2 CS
CS S2

]
∈ B(K ⊕K)
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can be rewritten as
I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

 and


C2

1 C1S1 0 0
C1S1 S2

1 0 0
0 0 C2

2 C2S2

0 0 C2S2 S2
2

 ∈ B(K ⊕K)

where all the underlying direct summands are infinite-dimensional, and then the
projections P0 = P , P3 = Q, P1 whose matrix representation has bottom-right
corner equal to 

0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 ∈ B(K ⊕K)

and zeros elsewhere, and P2 whose bottom-right corner equals
0 0 0 0
0 0 0 0
0 0 S2

2 −C2S2

0 0 −C2S2 C2
2

 ∈ B(K ⊕K)

while all other entries are zero, do the job.
In the case when H4 is infinite-dimensional we simply choose P0 = P , P2 =

Q, and P1 is a projection whose image is H4 to complete the proof.
It remains to consider the case when both K and H4 are finite-dimensional.

Then both H1 and H2 must be infinite-dimensional. This case is easy and is
left to the reader.

Corollary 2.11. Let P,Q ∈ P∞(H). Then there exist j ∈ {1, 2, 3} and a
sequence P = P0, P1, . . . , Pj = Q such that Pk ∈ P∞(H), k = 0, 1, . . . , j, and
Pk−1]Pk, k = 1, . . . , j.

Proof. By the previous lemma we can find a sequence P = Q0, Q1, . . . , Qj = Q
such that Qk ∈ P∞(H), k = 0, 1, . . . , j, and Qk−1 ⊥ Qk, k = 1, . . . , j. There is
no loss of generality in assuming that j > 1. Indeed, in the case when j = 1 we
have P ⊥ Q and we can choose the sequence Q0 = P , Q1 = Q, Q2 = P , and
Q3 = Q. Thus, we may assume that j ∈ {2, 3} and all we need to do is to replace
Q1, . . . , Qj−1 by projections P1, . . . , Pj−1 satisfying Pk ≤ Qk, k = 1, . . . , j − 1,
and the image of Qk − Pk is infinite-dimensional.

In the next few lemmas we will always assume that φ:P∞(H) → P∞(H) is
a bijective map preserving the relation ∼ in both directions, that is,

P ∼ Q ⇐⇒ φ(P ) ∼ φ(Q), P,Q ∈ P∞(H).

Lemma 2.12. Let Pj ∈ P∞(H), j = 1, 2, 3, and assume that Pk]Pm whenever
k 6= m. Then either φ(Pk)]φ(Pm) whenever k 6= m, or (I −φ(Pk))](I −φ(Pm))
whenever k 6= m.
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Proof. Of course, we only need to verify that either φ(Pk) ⊥ φ(Pm) whenever
k 6= m, or (I − φ(Pk)) ⊥ (I − φ(Pm)) whenever k 6= m.

For each pair k,m, k 6= m, we have φ(Pk) ⊥ φ(Pm) or (I − φ(Pk)) ⊥ (I −
φ(Pm)). It follows that there exists r ∈ {1, 2, 3} such that either φ(Pr) ⊥ φ(Pm)
for both integers m 6= r, or (I − φ(Pr)) ⊥ (I − φ(Pm)) for both integers m 6= r.

We will consider only the first possibility and we will assume with no loss of
generality that r = 1. Hence, we have

φ(P1) ⊥ φ(P2) and φ(P1) ⊥ φ(P3).

Clearly, I − φ(P2) and I − φ(P3) cannot be orthogonal, as their images contain
Imφ(P1), forcing φ(P2) and φ(P3) to be orthogonal.

Lemma 2.13. Let P,Q,R ∈ P∞(H) satisfy P]Q, P]R, and φ(P )]φ(Q). Then

φ(P )]φ(R).

Proof. With respect to the orthogonal direct sum decomposition H = ImP ⊕
KerP we have

P =

[
I 0
0 0

]
, Q =

[
0 0
0 Q1

]
, and R =

[
0 0
0 R1

]
with Q1, R1 ∈ P∞(KerP ). According to Lemma 2.10 we can find Q1 =
T0, T1, . . . , Tj = R1 such that Tk ∈ P∞(KerP ), k = 0, 1, . . . , j, and Tk−1 ⊥ Tk,
k = 1, . . . , j. Set

Sk =

[
0 0
0 Tk

]
, k = 0, 1, . . . , j.

Then S0 = Q, Sj = R, and Sk−1]Sk, k = 1, . . . , j, and P]Sk, k = 0, . . . , j.
Using Lemma 2.12 for the triple P,Q = S0, S1 we see that φ(P )]φ(S1). If

j = 1 we are done. Otherwise we apply Lemma 2.12 once more, this time for the
triple P, S1, S2 to conclude that φ(P )]φ(S2). If j = 2 we are done. Otherwise
we need one more step to conclude the proof.

For P ∈ P∞(H) we denote

P ] = {Q ∈ P∞(H): P]Q}.

Lemma 2.14. Assume that there exist P,Q ∈ P∞(H) such that P]Q and
φ(P )]φ(Q). Then for every R ∈ P∞(H) we have

φ(R]) = (φ(R))],

that is, φ preserves the relation ] in both directions.

Proof. If for some R ∈ P∞(H) there exists S ∈ R] such that φ(R)]φ(S), then
Lemma 2.13 yields that φ(R]) ⊂ (φ(R))]. But as φ−1 has the same properties
as φ, we actually have φ(R]) = (φ(R))].

It follows that if for some R ∈ P∞(H) we have φ(R]) = (φ(R))], then
φ(S]) = (φ(S))] for every S ∈ R].

The lemma is now a straightforward consequence of Corollary 2.11.
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Corollary 2.15. Let φ:P∞(H)→ P∞(H) be a bijective map such that for every
pair P,Q ∈ P∞(H) we have

P ∼ Q ⇐⇒ φ(P ) ∼ φ(Q).

Then there exists a unitary or an antiunitary operator (orthogonal operator) U
on H such that either

φ(P ) = UPU∗

for every P ∈ P∞(H); or

φ(P ) = U(I − P )U∗

for every P ∈ P∞(H).

Proof. We take P,Q ∈ P∞(H) with P]Q. By Lemma 2.12 we have either
φ(P )]φ(Q), or (I − φ(P ))](I − φ(Q)). In the second case we replace the map
φ by the map P 7→ I − φ(P ). Thus, there is no loss of generality in assuming
that we have the first possibility. But then we already know that for every
S, T ∈ P∞(H) we have

T]S ⇐⇒ φ(T )]φ(S). (7)

We will prove that for every S, T ∈ P∞(H) we have

T ⊥ S ⇐⇒ φ(T ) ⊥ φ(S).

Once we will verify this the conclusion follows from [7, Theorem 1.2] (or from a
result of [5]).

Because the inverse of φ has the same properties as φ, it is enough to check
that for every S, T ∈ P∞(H) we have

T ⊥ S ⇒ φ(T ) ⊥ φ(S).

Let T, S be any elements of P∞(H). Clearly, S ≤ T if and only if for every
M ∈ P∞(H) we have

T]M ⇒ S]M,

and hence (7) yields that

S ≤ T ⇐⇒ φ(S) ≤ φ(T ).

Let T ∈ P∞(H). Then I − T can be characterized as the unique element L
of P∞(H) with the properties:

• for every M ∈ P∞(H) we have: M]T ⇒M ≤ L, and

• for every pair M,N ∈ P∞(H) we have: M,N ≤ T and M]N imply that
M]L and N]L.

It follows that φ(I−T ) = I−φ(T ). Since T ⊥ S holds if and only S ≤ I−T
we conclude that φ preserves orthogonality.
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3 Proofs of the main results

We start with the proof of our main result.

Proof of Theorem 1.1. Assume that P,Q ∈ P∞(H) and P ∼ Q. We already
know from the proof of Lemma 2.5 that then there exists an R ∈ P∞(H) with

‖R− P‖ = ‖R−Q‖ =
1√
2
. (8)

Note that for such an R we also have

‖φ(R)− φ(P )‖ = ‖φ(R)− φ(Q)‖ =
1√
2
. (9)

By Halmos’ two projections theorem, up to a unitary similarity H can be
written as an orthogonal direct sum H = H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊕ K ⊕ K such
that the corresponding matrix representations of φ(P ) and φ(Q) are

φ(P ) =


I 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0

 and φ(Q) =


0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 C2 SC
0 0 0 0 SC S2

 ,

where S,C:K → K are self-adjoint injective operators satisfying 0 ≤ S,C ≤ I
and S2 + C2 = I.

By (9) and Lemma 2.4 we have necessarily dimH1 = dimH2. Furthermore,
from ‖φ(P ) − φ(Q)‖ = 1 and Proposition 2.2 we immediately conclude that
either dimH1 = dimH2 6= 0, or K 6= {0} and ‖S‖ = 1.

Next, we prove that the second possibility cannot happen. Let R̃ ∈ P∞(H)
be arbitrary such that it satisfies

‖R̃− φ(P )‖ = ‖R̃− φ(Q)‖ =
1√
2
.

Note that by (9) such an R̃ exists. We set R := φ−1(R̃) which clearly satisfies
(8). By Lemma 2.5 there exists exactly one mapping α: [0, π2 ] → P∞(H) such
that α(0) = P , α

(
π
2

)
= Q, α

(
π
4

)
= R, and ‖α(θ1) − α(θ2)‖ = sin |θ1 − θ2|

for all θ1, θ2 ∈ [0, π2 ]. Since φ is a bijective isometry, it is straightforward that
there exists exactly one mapping γ: [0, π2 ] → P∞(H) such that γ(0) = φ(P ),

γ
(
π
2

)
= φ(Q), γ

(
π
4

)
= R̃, and ‖γ(θ1)−γ(θ2)‖ = sin |θ1−θ2| for all θ1, θ2 ∈ [0, π2 ].

Using Lemma 2.9 we see that we cannot have K 6= {0} and ‖S‖ = 1.
Hence, we have dimH1 = dimH2 6= 0, furthermore if K 6= {0}, then ‖S‖ <

1. In a similar way as above, we get from Lemma 2.8 that K actually must be
the zero subspace. Now, using the same argument once more, we conclude from
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Lemma 2.7 that dimH3 = 0 or dimH4 = 0. Thus up to a unitary similarity we
have either

φ(P ) =

 I 0 0
0 0 0
0 0 0

 and φ(Q) =

 0 0 0
0 I 0
0 0 0


(note that the last row and the last column may be absent), or

φ(P ) =

 I 0 0
0 0 0
0 0 I

 and φ(Q) =

 0 0 0
0 I 0
0 0 I

 .
In other words, P ∼ Q implies φ(P ) ∼ φ(Q). Since φ−1 has the same properties
as φ, we obtain that

P ∼ Q ⇐⇒ φ(P ) ∼ φ(Q)

for every pair P,Q ∈ P∞(H). We complete the proof using Corollary 2.15.

Proof of Theorem 1.2. We need to prove that

• either 0 is mapped to 0 and I is mapped to I, or 0 is mapped to I and I
is mapped to 0,

• for every positive integer n either Pn(H) is mapped onto Pn(H) and
Pn(H) is mapped onto Pn(H), or Pn(H) is mapped onto Pn(H) and
Pn(H) is mapped onto Pn(H),

• and φ(P∞(H)) = P∞(H).

Once we will verify that the above is true the proof follows directly from struc-
tural results for bijective isometries of Pn(H), n = 1, 2, . . ., Theorem 1.1, and
the obvious fact that ϕ:Pn(H) → Pn(H) is a bijective isometry if and only if
the maps P 7→ I − ϕ(P ), P ∈ Pn(H), and P 7→ I − ϕ(I − P ), P ∈ Pn(H), are
bijective isometries of Pn(H) onto Pn(H), and Pn(H) onto itself, respectively.

If P,Q ∈ P (H) belong to two different subsets

{0}, {I}, P1(H), P 1(H), P2(H), P 2(H), . . . , P∞(H), (10)

then clearly ‖P − Q‖ = 1. On the other hand, if P and Q belong to the same
subset, then one can easily find a chain of projections P = P0, P1, . . . , Pk = Q
with k a positive integer such that ‖Pj−1 − Pj‖ < 1, j = 1, . . . , k. Of course,
this is trivial when ‖P −Q‖ < 1 and it follows easily from the two projections
theorem when ‖P −Q‖ = 1.

Hence, each of the subsets from the list (10) is mapped bijectively onto
some subset in the list. In this list we have two singletons and then of course,
each of them is mapped onto itself, or each of them is mapped onto the other
one. It was proved in [4] that if ‖P − Q‖ = 1 for some positive integer n

and some P,Q ∈ Pn(H), then P
≤ 1√

2 ∩ Q≤
1√
2 is either a compact manifold
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homeomorphic to the unitary group Un of all n × n unitary matrices, or a
non-empty non-compact subset of Pn(H). As Pn(H) is isometric to Pn(H) we
immediately conclude that for every pair P,Q ∈ Pn(H) with ‖P −Q‖ = 1 the

set P
≤ 1√

2 ∩Q≤
1√
2 is either a compact manifold with the same dimension as Un,

or a non-empty non-compact subset of Pn(H). The dimensions of the compact
manifolds Un, n = 1, 2, . . ., are well-known. For us the exact values are not
important, we only need the obvious fact that the dimension of Un is a strictly
increasing function of n. Finally, Lemma 2.4 tells that for every P ∈ P∞(H) we

can find Q ∈ P∞(H) such that ‖P − Q‖ = 1 and P
≤ 1√

2 ∩ Q≤
1√
2 is the empty

set.
It follows that for every positive integer n either Pn(H) is mapped onto

Pn(H) and Pn(H) is mapped onto Pn(H), or Pn(H) is mapped onto Pn(H)
and Pn(H) is mapped onto Pn(H), and φ(P∞(H)) = P∞(H), as desired.
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