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A B S T R A C T

Depletion flocculation is a well-known instability mechanism that can occur in oil-in-water emulsions when the
concentration of non-adsorbed polysaccharide exceeds a certain level. This critical flocculation concentration
depends on the molecular characteristics of the polysaccharide molecules, such as their molecular weight and
hydrodynamic radius. In this study, a range of analytical methods (dynamic shear rheology, optical microscopy,
and static light-scattering) were used to investigate the interaction between lipid droplets and polysaccharides
(guar gum and β-glucans) of varying weight-average molecular weight and hydrodynamic radius, and con-
centration. The aim of this work was to see if the health benefits of soluble fibers like β-glucans could be
explained by their influence on the structure and digestibility of lipid emulsions. The apparent viscosity of the
emulsions increased with increasing polysaccharide concentration, molecular weight, and hydrodynamic radius.
Droplet flocculation was observed in the emulsions only at certain polysaccharide concentrations, which was
attributed to a depletion effect. In addition, the water-soluble components in oat flakes, flour, and bran were
extracted using aqueous solutions, to examine their impact on emulsion stability and properties. Then, the rate
and extent of lipolysis of a sunflower oil-in-water emulsion in the presence of these oat extracts were monitored
using the pH-stat method. However, the inhibition of lipolysis was not linearly related to the viscosity of the oat
solutions. The water-soluble extracts of β-glucan collected from oat flakes had a significant inhibitory effect on
lipolysis. The results of this study increase our understanding of the possible mechanisms influencing the impact
of oat constituents on lipid digestion. This work also highlights the importance of considering the molecular
properties of polysaccharides, and not just their impact on solution viscosity.

1. Introduction

The ability of oat (Avena sativa L.) to affect lipid metabolism and
blood cholesterol levels is now well-known even though the mechan-
isms involved are not fully understood (Grundy, Fardet, Tosh, Rich, &
Wilde, 2018). Oats contain a range of constituents that may positively
impact human health, especially water-soluble polysaccharides such as
β-glucan (Martínez-Villaluenga & Peñas, 2017; Miller & Fulcher, 2011).
This type of polysaccharide may inhibit lipid digestion due to its ability
to increase viscosity or promote droplet flocculation, which reduces the
access of lipase to the oil droplet surfaces (Bai et al., 2017; Grundy,
Quint, Rieder, Ballance, Dreiss, Cross, et al., 2017). Consequently, the
presence of these soluble dietary fibres in foods could benefit human

health by modulating the blood lipid levels after ingestion of foods rich
in lipids. However, there is currently a poor understanding of the pre-
cise molecular and physicochemical mechanisms by which dietary fi-
bres inhibit lipid digestion.

In the late 1990s, it was shown experimentally that neutral non-
adsorbing polymers could promote droplet flocculation in oil-in-water
emulsions through a depletion mechanism (Jenkins & Snowden, 1996).
The tendency for depletion flocculation to occur depends on the mo-
lecular weight (Mw) and hydrodynamic radius (Rh) of the polymer
molecules, which has been described mathematically using theoretical
models (Asakura & Oosawa, 1954, 1958). Non-adsorbed polymers in-
duce flocculation in emulsions through an osmotic effect. In an emul-
sion containing non-adsorbing polymers, there is a region surrounding
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each droplet where the polymer concentration is depleted (depletion
zone). As a result, there is an osmotic pressure between the depletion
zone and the bulk polymer solution. It is energetically favourable to
minimise the osmotic potential differences in the system, so the system
will tend towards a state where the total volume of the depletion zones
is minimised. Therefore, when two lipid droplets approach each other
so that their depletion zones overlap, there is a reduction in the total
volume of solution from which the polymers are excluded, which is
energetically favourable. Thus, the system tends towards droplet asso-
ciation and drives flocculation. The magnitude of the osmotic pressure
increases with increasing polymer concentration, and so depletion
flocculation can happen when the attractive forces outweigh the re-
pulsive forces in the system (McClements, 2000).

Droplet flocculation often promotes more rapid gravitational se-
paration (creaming) in an emulsion because the particle size is effec-
tively increased. However, creaming may not be observed in some
cases, because the viscosity of the solution also increases with in-
creasing polymer concentration. For a particular polymer preparation,
there is a critical concentration (c*) above which polymer entanglement
occurs and a viscoelastic network is formed that restricts oil droplet
movement (Sharafbafi, Alexander, Tosh, & Corredig, 2015; Syrbe,
Bauer, & Klostermeyer, 1998). A number of experimental studies
showed that the presence of different types of food-grade biopolymers
in oil-in-water emulsions can induce depletion flocculation (Chung,
Degner, & McClements, 2013; Espinal-Ruiz, Parada-Alfonso, Restrepo-
Sanchez, Narvaez-Cuenca, & McClements, 2014; Minekus et al., 2005).
The tendency for droplet flocculation and creaming to take place de-
pends on the molecular characteristics and concentration of the poly-
mers used, and has to be established for different kinds of polymers.

The present study was designed to establish the impact of polymer
size and concentration on the viscosity and flocculation of oil-in-water
emulsions, using common food-grade neutral polysaccharides (i.e., guar
gum and β-glucan) with different molecular characteristics. Guar gum
is a well characterised source of galactomannan that we used as a
control. On the other hand, the β-glucan was selected because it is one
of the main water-soluble polysaccharides found in oat, and has been
proposed to be the cause of many of its health benefits, such as pre-
vention of cardiovascular diseases, diabetes, obesity, cancer, and hy-
pertension (Khan et al., 2018; Martínez-Villaluenga & Peñas, 2017;
Rebello, O'Neil, & Greenway, 2016; Surampudi, Enkhmaa, Anuurad, &
Berglund, 2016). In addition, water-soluble extracts isolated from oat
flakes, flour, and bran (BG32) were collected to determine their impact
on the stability of emulsions. Finally, we used these soluble extracts as a
source of β-glucan and monitored their potential impact on lipid di-
gestion using our in vitro duodenal model, in order to obtain some in-
sights into the potential roles of polymer viscosity and depletion floc-
culation on free fatty acid (FFA) release. This study should provide
some valuable insights into the molecular and physicochemical origin
of the health benefits of soluble fibres in the human diet and comple-
ment some previous studies (Grundy, Quint, Rieder, Ballance, Dreiss,
Butterworth, et al., 2017; Grundy, Quint, Rieder, Ballance, Dreiss,
Cross, et al., 2017). Our main objective was therefore to fully char-
acterise the materials used in this previous work, while investigating
further how they influenced the emulsion stability. We believe that the
innovation of the work presented here relies on more detailed char-
acterisation steps that are often missing in the literature.

2. Materials and methods

2.1. Materials and samples characterisation

Sunflower oil, sodium chloride (99.8%), calcium chloride (99%),
bovine bile extract, and pancreatin (40 U/mg of solid based on lipase
activity) were purchased from Sigma-Adrich (Poole, Dorset, UK). High
Mw oat β-glucan (BG1) was a generous gift from Dr Susan Tosh at
Agricultural and Agri-Food Canada. Swedish Oat Fiber (Swedish Oat

Fiber AB, Bua, Sweden) provided medium Mw β-glucan (BG2, brand
name BG90) and the oat bran (brand name BG32). Low Mw oat β-
glucan (BG3) was obtained from Megazyme (Bray, Wicklow, Ireland;
Product Code: P-BGOM). Guar gum flour (Meyprogat M150) was pro-
vided by Dr Graham Sworn (Danisco, Paris, France). Oat flakes and oat
flour were obtained as previously described (Grundy, Quint, Rieder,
Ballance, Dreiss, Cross, et al., 2017). Powdered whey protein isolate
(WPI) was donated by Davisco Foods International (Le Sueur, MN,
USA).

The methods used for the determination of the moisture content,
lipid content, polysaccharide concentrations of the oats (flakes, flour
and bran), BG1, BG2, BG3, and guar gum are detailed elsewhere
(Grundy, Quint, Rieder, Ballance, Dreiss, Butterworth, et al., 2017).
Weight-, number-average molar mass, polydispersity, and weight-
average Rh of purified β-glucan and galactomannan were determined by
size-exclusion chromatography with a series coupled Wyatt 8 angle
multi-angle light scattering detector, followed by a Wyatt Viscostar II
viscosity detector, and finally a Wyatt T-rex refractive index detector
(SEC-MALS-VISC-RI). For the oats flakes, flour and bran, the β-glucan
was directly extracted and purified (omitting protease and xylanase
treatment) as described by Rieder, Ballance, and Knutsen (2015).
Briefly, 2mg of purified sample was weighted into a 2mL Eppendorf
tube with screw lid. Twenty μL of 80% aqueous ethanol was added,
vortexed, and left for 1 h with occasional mixing. To this 1.5 mL of
0.1 M sodium nitrate containing 0.02% sodium azide was added and the
sample placed into a boiling water bath for 5min followed by shaking
at a frequency of 25s-1 in a Retch 400M oscillating mill. This procedure
of boiling and shaking was repeated a further time. Samples were fi-
nally filtered through a 0.8 μm syringe filter. One hundred μL of each
sample was injected via a 100 μL loop onto two size-exclusion chro-
matography columns coupled in series (Tosho Bioscience TSK-gel PXWL
5000 and 6000). An isocratic mobile phase of 0.1M sodium nitrate
containing 0.02% sodium azide at a flow rate of 0.5 mL/min was used
to elute the samples and delivered by a Shimadzu HPLC pump. Data
was processed in custom Wyatt Astra software. The second virial
coefficient was set at zero and a refractive index increment of 0.146 was
used. As positive control, a certified pullulan standard of known molar
mass from Polymer Standards Service was used. Treatment of samples/
extracts containing β-glucan with lichenase followed by SEC-MALS-
VISC-RI eliminated the concentration signal from the refractive index
detector used to measure Mw in conjunction with the MALLS detector.
This confirmed all the analysed sample/extracts comprised β-glucan.
The amount of β-glucan released during the incubation of the oat ma-
terials were measured using an enzymatic method based on a cereal
mixed-linkage β-glucan kit from Megazyme (Megazyme, Product Code:
K-MBGL).

2.2. Preparation of the experimental material

Solutions of guar gum or β-glucan were obtained by slowly
sprinkling the polymer powder into a rapidly swirling vortex of 10mM
phosphate buffer, pH 7. The mixture was heated at 80 °C for 2 h before
being left at room temperature overnight. This procedure ensured that
the polymers were fully hydrated. Additionally to those pure polymer
preparations, water-soluble extracts from selected oat materials (flakes,
flour or bran with a total β-glucan content of 1.0%, w/v) were in-
cubated in 10mM phosphate buffer as previously described (Grundy,
Quint, Rieder, Ballance, Dreiss, Butterworth, et al., 2017). After 1 or
72 h of incubation, the samples were centrifuged at 1800 g for 10min
and the aqueous phase collected. This aqueous phase is referred as oat
extract in the rest of the manuscript. Oat extracts were used in the
present work in order to identify if the compounds/structures released
during incubation, and not the oat particles, where responsible for the
reduced lipid digestibility observed in our previous study (Grundy,
Quint, Rieder, Ballance, Dreiss, Cross, et al., 2017). The incubation
times were selected because 1 h corresponds to the duration of the
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duodenal phase used in our digestion model and 72 h is the time at
which the maximum of β-glucan released from the oat matrices was
recorded (Grundy, Quint, Rieder, Ballance, Dreiss, Butterworth, et al.,
2017).

To make the oil in water emulsions, sunflower oil was added to 1%
(w/w) WPI solution to obtain a 6.4 wt% oil solution as previously re-
ported (Grundy, Quint, Rieder, Ballance, Dreiss, Cross, et al., 2017).
Briefly, the emulsion premix was homogenized (Ultra-Turrax T25, IKA®

Werke, from Fisher Scientific Ltd.) at 11,000 rpm for 1min. The pre-
emulsion was then sonicated with an ultrasonic processor (Sonics &
Materials Inc, Newtown, USA) at 70% amplitude for 2min. The particle
size distribution of the emulsions with and without polymers were
measured with a laser diffraction instrument (LS13320®, Beckman
Coulter Ltd., High Wycombe, UK), the average droplet size (d32) of both
type of emulsions was 2.0 μm (Fig. 1). Emulsion samples (10.64 mL)
were added to aqueous solutions containing either pure polymers or oat
extracts (20mL); the final concentration of the pure polymer mixtures
ranging from 0.025 to 1.0% (w/v). The resulting mixtures were stirred
at room temperature for 30min before further analysis.

2.3. Rheological measurements

Rheological measurements (oscillatory and viscometry) of the
emulsion and polymer samples were carried out with a dynamic rhe-
ometer (Advanced Rheometer AR 2000, TA instrument, Herts, UK)
equipped with a conical concentric cylinder geometry (inner radius of
15 mm, cylinder length of 42mm and gap of 2mm) and a temperature-
controlling Peltier unit. The measurements were run using controlled
strain mode.

First, the linear viscoelastic region of each sample was determined
with a strain sweep - 0.01–100% - at a fixed angular frequency of
6.28 rad s−1. Data collection started after temperature equilibration of
2min. Then, the storage (G′) and loss (G″) moduli were measured at
25 °C by a dynamic frequency sweep conducted over an angular fre-
quency range between 0.1 and 1000 rad s−1 and at a constant strain of
either 5 or 10% depending on the linear viscoelastic region of the
sample formerly determined. Viscosity flow curves were obtained in
duplicate at 25 °C after 2min temperature equilibration with the op-
erating shear rate ranging from 0.01 to 1000 s−1 with seven measure-
ment points per decade.

2.4. Microstructural analysis

Aqueous solutions containing pure polysaccharides and oat extracts,

with or without emulsion, were visualised, immediately after prepara-
tion as described in Section 2.2., using an optical (Olympus BX60,
Olympus, Southend-on-Sea, UK) or a confocal laser scanning (CLSM;
Zeiss LSM 780 confocal microscope, Carl Zeiss Ltd, Cambridge, UK)
microscopes. For the CLSM, Nile red (1mg/mL in dimethyl sulphoxide)
and calcofluor white (2% w/v in deionised water) were used to identify
the lipids and the β-glucan, respectively. The images were captured
using a 40× (N.A. 1.2) objective lens. The samples were excited using
an argon laser at 488 nm (Nile red) and 405 nm (calcofluor white), the
fluorescence emitted by the samples was detected at 570–650 nm (Nile
red) and 406–460 nm (calcofluor white).

2.5. Emulsion stability analysis

The stability of the emulsion alone or with the polymers (freshly
prepared as described in Section 2.2.) was monitored visually by taking
photographs of the mixture at different time points (0, 1, 2, 4, 6 and
24 h; see Fig. S1 of the supplementary material). Additionally, fluc-
tuation in the stability of the emulsion and emulsion/polymer (pure
polymer and incubation liquid) mixtures were measured using a laser
scanning instrument (Turbiscan Lab Expert analyser, Formulaction SA,
Toulouse, France). Twenty mL of a freshly prepared sample were placed
into a flat-bottomed cylindrical glass cell and scanned at 10min in-
terval for 6 h to determine the light scattered from the emulsions as a
function of the height (40 μm intervals) of the sample. The intensity of
the scattered light gives information on flocculation, creaming and se-
dimentation in the emulsion. All stability experiments were performed
at room temperature and at least in duplicate.

2.6. Theoretical prediction of thickening and flocculation

2.6.1. Thickening
The ability of a polymer molecule to increase the viscosity of aqu-

eous solutions can be described by the following relatively simple ex-
pression (McClements, 2000):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

−η
η

φ
φ

1 E

C1

2

(1)

In this equation, η is the apparent shear viscosity of an aqueous
polymer solution, η1 is the viscosity of water, φE is the effective volume
fraction of the polymer molecules, and φC is the critical packing frac-
tion of the polymers (≈0.57). The critical packing fraction represents
the polymer concentration where polymer molecules become so closely
packed together that the solution viscosity increases steeply. The ef-
fective volume fraction of the hydrated polymer molecules can be es-
timated using the following expression:

= ⎛
⎝

⎞
⎠

φ πR cN
M

4
3E h

A3
(2)

here, Rh is the hydrodynamic radius of the polymer molecules (m), c is
the polymer concentration (kg m−3), NA is Avogadro's number
(6.02×1023 mol−1), and M is the Mw of the polymer molecules (kg
mol−1). These equations predict that the solution viscosity should in-
crease as the polymer concentration and Rh increase, and the Mw de-
creases. It should be noted that the Rh and Mw are actually dependent
on each other, with Rh increasing as Mw increases, which has to be
taken into account. Moreover, these equations assume that the polymer
molecules are monodisperse hard spheres, whereas in reality they are
polydisperse soft spheroids. Nevertheless, they still provide some useful
qualitative insights into the factors affecting solution rheology.

A critical viscosity concentration (CVC) can be estimated from the
above equations, i.e., the polymer concentration where the viscosity
increases steeply due to overlap of the polymer molecules:

Fig. 1. Particle size as percentage volume of the emulsion at baseline ( ) and
in presence of the polymers ( ). Values are presented as means ± SD
(n=3).
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As described previously (Bai et al., 2017), it is assumed that the CVC
corresponds to the polymer concentration where the viscosity of the
polymer solution is hundred times greater than that of pure water (η/
η1= 100). The value was selected because a 100-fold increase in so-
lution viscosity will greatly retard the creaming of the droplets in
emulsions. Inserting η/η1= 100 and φC= 0.57 into Equation (1) leads
to the following expression for the effective polymer volume fraction
where overlap occurs: φ∗

E≈ 0.53. Then, inserting this value into
Equation (3), gives the expression: CVC=21×M/Rh

3 (wt%) when M
is expressed in kg mol−1 and Rh is expressed in nm. The smaller the
magnitude of CVC, the greater is the effectiveness of the polymer at
increasing the solution viscosity.

2.6.2. Depletion flocculation
The ability of a non-adsorbed polymer to promote depletion floc-

culation depends on its effectiveness at increasing the attractive os-
motic forces between oil droplets (Jenkins & Snowden, 1996). As dis-
cussed in the Introduction section, this osmotic attraction occurs
because the polymer molecules are excluded from a narrow depletion
zone around each droplet, which leads to a concentration gradient in
the system. The volume of the depletion zone can only be reduced when
two or more droplets come into close proximity. The attractive inter-
action between two droplets brought into contact through this effect
can be estimated using the following expression (McClements, 2000):
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here WDep is the depletion attraction between the droplets, k is Boltz-
mann's constant, T is the absolute temperature, and R is the oil droplet
radius. The majority (> 98%) of oil droplets in an emulsion flocculate
when the depletion attraction is stronger than about −4 kT, which al-
lows a critical flocculation concentration (CFC) to be defined (Bai et al.,
2017):
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2.7. In vitro duodenal digestion

The oral and gastric phases were omitted in the present study as our
main aim was to study the starting material in a less dilute system and
apply a simple model in order to understand in more detail the

processes occurring in the duodenal phase. In our view, the important
aspect that needed to be taken into consideration in the present ex-
periments was to keep the conditions (pH, digestive agents and source
of lipid: the emulsion) identical across the range of materials to permit a
fundamental understanding of the mechanisms controlling emulsion
stability and digestion.

The kinetics of release of FFA during in vitro duodenal digestion was
measured in a pH-stat vessel. Nine mL of the incubation solution con-
taining the polymer was added to 10mL of sunflower oil emulsion,
15mL of bile solution, 1mL of NaCl, 1 mL of CaCl2, and 1.5 mL of
pancreatin solution (digestion) or phosphate buffer (blank). The details
about the preparation of the digestion reagents are presented in
(Grundy et al., 2015) (Grundy, Wilde, Butterworth, Gray, & Ellis,
2015). The rate and extent of FFA released during lipolysis of the
sunflower oil emulsion were monitored by titration with 0.10M NaOH
for 60min at 37 °C, pH 7 using a pH-stat (KEM AT-700, Kyoto Elec-
tronics Manufacturing Co., Ltd., Kyoto, Japan). All lipolysis experi-
ments were carried out in triplicate.

The digestibility experiments could not be performed with the pure
polymer samples given that their high viscosity interfered with pH
measurements. Indeed, we experienced issues in rapidly reaching a
steady-state pH due to a delay in mixing therefore adjustment of the pH,
and the pH measurements were highly variable between replicates
(data not shown).

2.8. Statistical analysis

The data were analysed using SPSS version 22.0. For all tests, the
significance level was set at p < 0.05 (2 tailed) and the data were
expressed as means of duplicates or means of triplicates ± standard
deviations. The differences between the lipolysis of emulsion alone and
in presence of oat extracts were analysed by one-way analysis of var-
iance (ANOVA) followed by Dunnett's post-hoc test.

3. Results and discussion

In a recent study, we showed that the tendency for depletion floc-
culation to occur in sunflower oil-in-water emulsions, and its impact on
the rate and extent of lipid digestion, was not directly related to the
concentration of β-glucan in the reaction system (Grundy, Quint,
Rieder, Ballance, Dreiss, Cross, et al., 2017). In the present work, we
therefore aimed to make a more detailed investigation of the impact of
polysaccharide properties on emulsion stability and lipid digestion
using water-soluble polysaccharides with well-defined molecular
characteristics and water-soluble extracts isolated from oats (flakes,
flour and bran).

3.1. Material characterisation

The pure polymer samples had a polysaccharide (galactomannan or
β-glucan) concentration between 87.1 and 93.8% dry-weight basis
(d.b.), and the weight-average Mw of these polysaccharides ranged

Table 1
Chemical composition of the purified polymers (guar gum and β-glucans) and oat materials (oat bran, flour and flakes), weight-average molecular weight (Mw),
weight-average hydrodynamic radius (Rh), critical viscosity concentration (CVC), and critical flocculation concentration (CFC) of the polymers. The composition data
are expressed on a dry weight basis.

Moisture (%) Crude lipid (%) β-glucan (%) Galactomannan (%) Mw (kg mol−1) Rh (nm) CVC (%) CFC (%)

Guar gum 10.2 1.1 – 87.1 2490 78 0.11 0.037
BG1 8.1 – 90.1 – 1020 51 0.18 0.040
BG2 14.6 – 91.0 – 650 38 0.24 0.044
BG3 4.0 – 93.8 – 272 23 0.38 0.042
Bran 8.3 3.8 37.9 – 2100 78
Flakes 10.8 10.8 5.0 – 1680 70
Flour 10.8 10.8 5.0 – 1740 70
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from 220 to 1020 kgmol−1 as measured by SEC-MALLS (Table 1). The
amount of β-glucan contained in the complex oat materials was lower
than the purified samples: 5% d.b. in the oat flakes/flour and 37.9%
d.b. in oat bran. The lipid content of the flakes/flour were also mark-
edly different from the oat bran, 10.8 and 3.8% d.b., respectively,
whereas BG1, BG2 and BG3 did not contain any lipid. The Mw of the β-
glucan extracted from the oat flakes and flour were both around
1700 kgmol−1 but the one from the oat bran was higher
(2100 kgmol−1). The weight-average Rh of the pure polysaccharides in
solution ranged from around 23 to 78 nm, and increased with in-
creasing Mw.

3.2. Impact of polymer type on rheology

The measured flow curves of the emulsion/polymer mixtures
(Fig. 2) were similar to those reported for the polymer solutions alone
(Grundy, Quint, Rieder, Ballance, Dreiss, Butterworth, et al., 2017). As
anticipated, the apparent viscosity increased with both concentration
and Mw. Indeed, solutions with the lowest polysaccharide concentra-
tion and Mw (0.1% BG3) had the lowest viscosity, whereas those with
the highest concentration and Mw (1.0% guar gum) had the highest
viscosity over the range of shear rates. The increase in viscosity with
increasing Mw can be attributed to the fact that larger polysaccharides
occupy a greater effective volume (polymer chain + water) (Section
3.6.). Apart from BG3, the 1.0% polysaccharide solutions had a plateau
region at low shear rates, followed by a shear-thinning region at higher
shear rates, which is characteristic of semi-flexible polysaccharides or
entangled polymers (Ellis, Wang, Rayment, Ren, & Ross-Murphy,
2001). The 0.1% polymer solutions all behaved as Newtonian fluids,
i.e., the viscosity was independent of shear rate in so-called dilute so-
lution conditions. This suggests that the polysaccharide molecules were

not entangled in these solutions, i.e., the polymer concentration was
below the critical overlap concentration (c*).

For the flakes after 1 h of incubation, the viscosity appeared
Newtonian over the range of shear rates (Fig. 3A1) suggesting the β-
glucan concentration (0.1% w/v, Table 2) was not high enough to
achieve polymer entanglement. Whereas both the bran and flour sam-
ples, displayed some shear thinning. Despite containing fairly similar β-
glucan concentrations (0.26–0.27%, Table 2), the oat extract solutions
isolated from the flour after 1 h of incubation had higher apparent
viscosity than those isolated from the oat bran across the whole range of
shear rates studied (Fig. 3). This phenomenon may have been because a
higher level of starch was released from the oat flour than from the bran
(see Fig. 7). Both the flour and bran extracts had much higher viscos-
ities than the oat flakes extract, which can be attributed to the lower
amounts of β-glucan and starch released from the flakes. The incubation
time of the oat flakes, flour and bran also impacted their viscosities.
Therefore, the samples that were incubated for 72 h had higher ap-
parent viscosity than those incubated for 1 h, which is a result of a
larger quantity of polymers (e.g., β-glucan, starch, and proteins) being
released after prolonged incubation (Table 2 and Figs. 3 and 7). The
addition of the emulsion appeared to have diminished the disparities
that existed in the viscosity profiles between the flakes/flour and the
bran (Grundy, Quint, Rieder, Ballance, Dreiss, Butterworth, et al.,
2017). The reason for this could be the swelling of the starch when in
presence of additional liquid (i.e. the emulsion). The viscosity profiles
of the 72 h incubation samples were fairly similar, and were consistent
with the concentrations of β-glucan released (Table 2) compared to the
pure polymer with the highest Mw (∼1020 kgmol−1) and equivalent
concentration (∼0.5%), i.e., BG1. This implies that β-glucan was the
main oat component affecting the viscosity of those samples.

Oscillatory measurements were performed to describe the

Fig. 2. Log-log plot of steady shear viscosity versus shear rate for emulsion and polymer (guar gum and β-glucan) mixtures at concentration of 0.1 (A), 0.5 (B) and
1.0% (C). BG1 corresponds to high Mw β-glucan, BG2 to medium Mw β-glucan, and BG3 to low Mw β-glucan.
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viscoelastic properties of the samples, which provided insights into the
possible conformation of the polysaccharides in solution. For all con-
centrations, the guar gum and BG1 samples exhibited a crossover point
between G′ and G″ indicating that these polymers formed an entangled
network in solution and showed an elastic-like behaviour at higher
frequencies (Fig. 4), which is in agreement with previous studies
(Agbenorhevi, Kontogiorgos, Kirby, Morris, & Tosh, 2011; Ren, Ellis,
Ross-Murphy, Wang, & Wood, 2003; Robinson, Ross-Murphy, & Morris,
1982).

The oat materials, for both incubation times, showed similar trend
in G′ and G″ profiles across the range of angular frequencies, although
the 1 h flake sample had lower moduli than the corresponding values
for bran and flour (Fig. 5), due to the lower amounts of β-glucan re-
leased (Table 2). The general pattern of the plots indicates that the β-
glucan molecules released, above a concentration of 0.1%w/v, over-
lapped and generated an entangled network (Morris, 2001). These data
are consistent with the amount of β-glucan presents in solution in the
oat samples (Table 2).

3.3. Impact of polymer type on emulsion stability

The susceptibility of the emulsions to droplet flocculation was in-
itially determined by optical and confocal fluorescence microscopy
(Fig. 6). Droplet flocculation was only observed at certain concentra-
tions for the different polymers. The “stability pattern” appeared to be
similar for all polymers but the concentrations at which the depletion
flocculation occurred differed (Fig. 6A). In general, the emulsions were
stable to flocculation at low polymer concentrations, unstable at in-
termediate concentrations, and stable again at high polymer con-
centrations. For the purpose of clarity, we defined four different floc-
culation regimes as the polymer concentration was increased. Firstly,
the addition of low concentrations of polymer did not disturb the
emulsion and it appeared similar to the control emulsion (a1). Second,
as the polymer concentration increased, extensive flocculation occurred
(a2). Third, when the polymer concentration was increased further, a
more limited amount of flocculation was observed (a3). Fourth, high
concentrations of polysaccharides did not induce flocculation and the
emulsion was stable (a4). For all polymers no flocculation was observed
at 0.025%, and strong flocculation (a2) was observed at 0.05%. As the
polysaccharide Mw decreased, the concentration range over which
flocculation was observed increased: guar gum < BG1 < BG2 <
BG3.

Several images were taken throughout the sample to visually assess
the degree of flocculation. Fig. 6B shows representative images of stable
(Fig. 6B1) and flocculated emulsions (Fig. 6B2 and B3). Selective
fluorescence staining indicated that the β-glucan (stained blue) was
present in the aqueous phase surrounding the oil droplets (stained red),
which is strong evidence for the ability of this polysaccharide to

Fig. 3. Log-log plot of steady shear viscosity versus shear rate for emulsion mixed with oat bran, flour and flakes solutions collected after 1 h (A) and 72 h (B) of
incubation. Pictures A2 and B2 illustrate the collected incubation solutions before adding the emulsion. The dashed line on Fig. B1 represents the flow curve of BG1 at
0.5% (similar concentration than the β-glucan contained in the oat extracts).

Table 2
Concentrations, in percentage, of the β-glucan present in the solutions collected
from the incubation of oat materials (bran, flakes and flour).

Concentration of β-glucan in incubation extract (%)

1 h 72 h

Bran 0.27 0.54
Flour 0.26 0.57
Flakes 0.10 0.51
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promote flocculation through a depletion mechanism. The particle size
distributions of the emulsion alone (baseline) and in presence of the
polymers were virtually identical (average size of 2.0 μm as shown in
Fig. 1). During the laser diffraction measurement, the sample was di-
luted (up to 1000 fold) when loading the sample into the instrument.
This demonstrated that the droplet aggregation was reversible and
depletion flocculation is therefore likely to be the phenomenon occur-
ring in our systems. These findings confirm that β-glucan is a non-ab-
sorbing polymer under those conditions, i.e., pH 7 and emulsion sta-
bilised by whey proteins, as recently reported (Zielke, Lu, Poinsot, &
Nilsson, 2018). The β-glucan also formed aggregates at certain Mw and
concentrations (a2 (++)), which is a well-known phenomenon
(Agbenorhevi et al., 2011; Doublier & Wood, 1995; Lazaridou,
Biliaderis, & Izydorczyk, 2003; Li, Cui, Wang, & Yada, 2011). On the
other hand, a three-dimensional network of aggregated polysaccharides
appeared to form at the highest polymer concentrations used, which
immobilised the oil droplets and prevented them from flocculating
(Fig. 6A a4). Indeed, above the critical concentration (c*) and Mw of
the galactomannan or β-glucan, when entanglement occurs, and a
visco-elastic network is generated, the oil droplets are less able to dif-
fuse through the entangled network and therefore the droplets cannot
approach each other, and their depletion zones cannot overlap. This is
possible as once an entangled network is formed, it is capable of ar-
resting microscopic phase separation (McClements, 2000).

The optical and confocal microscopy images of emulsions mixed
with the water-soluble extracts isolated from the oat bran, flour, and
flakes indicated that they contained various types of colloidal particles
(Fig. 7). These were probably oil droplets from the emulsions, as well as
starch granules and protein aggregates that leached out of the oat
materials. The microscopy images also indicated that more compounds

were released after 72 h than 1 h of incubation, especially for the oat
flour, which is consistent with the viscosity data (Fig. 3) and our former
work (Grundy, Quint, Rieder, Ballance, Dreiss, Butterworth, et al.,
2017). Moreover, the confocal microscopy images clearly show that the
oil droplets were flocculated in a number of the samples, i.e., the oat
flour extracts (72 h) and the oat flake extracts (1 h and 72 h) (Fig. 7B4,
C3, and C4). This suggests that the extracts contained water-soluble
compounds/particulates capable of promoting depletion flocculation of
the oil droplets in the emulsions.

3.4. Stability of the emulsions in presence of pure polysaccharides

Further information about the stability of the emulsions to creaming
and flocculation was obtained by measuring the backscattering versus
height profiles using a laser scanning instrument. Typical creaming
profiles describing the different observed stability states are shown in
Fig. 8. The X-axis denotes the distance or height from the sample base,
and the Y-axis denotes the backscatter intensity, a function of the
number and size of scattering particles or droplets. Creaming is denoted
by a reduction in intensity at the left-hand side of the graph (base of the
sample) with a concomitant increase in the intensity at the right-hand
side (top of the sample) (Fig. 8A). Flocculation is denoted by a decrease
in the intensity of the backscattering at the centre of the emulsion
(Fig. 8B and C), due to the fact that the droplets move closer together
and therefore scatter light less strongly as a consequence of the reduced
number of scattering centres. The backscattering profiles of the poly-
saccharides-emulsion mixtures were consistent with the microscopy
images (Fig. 8), with the different polymers exhibiting similar general
trends. Again, the backscattering profiles could be separated into four
different categories depending on polymer concentration. First, no

Fig. 4. Log-log plot of storage (G′) and loss (G″) moduli versus angular frequency for mixtures of emulsion and pure polymer at different concentrations (0.1, 0.5 and
1.0% in final preparation). BG1 denotes high Mw β-glucan, BG2 medium Mw β-glucan, and BG3 low Mw β-glucan.
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Fig. 5. Log-log plot of storage (G′) and loss (G″) moduli versus angular frequency for emulsion mixed with oat bran (A), flour (B) and flakes (C) solutions collected
after 1 h and 72 h of incubation.

Fig. 6. Impact of pure polymers on emulsion stability:
summary table of the flocculation observed at different
concentrations of the polymers using light (A) and con-
focal (B) microscopy. BG1 corresponds to high Mw β-
glucan, BG2 to medium Mw β-glucan, and BG3 to low
Mw β-glucan. Note in figures B2 and B3 the β-glucan
stained in blue surrounding the oil droplets (red)
creating depletion flocculation (white arrows). Four
flocculation regimes were defined: a1 (−) no floccula-
tion, a2 (++) extensive flocculation, a3 (+) limited
flocculation, a4 (–) high viscosity prevents the move-
ment of the droplets, no flocculation was observed. (For
interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this
article.)
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flocculation occurred at lower polymer levels, but a small amount of
creaming was observed, i.e., the backscattering intensity in the central
part of the sample remained constant, but there was a slight increase at
the top and decrease at the bottom (Fig. 8A). This behaviour can be
attributed to the upward movement of the individual oil droplets since
they have a lower density than the surrounding aqueous phase. Second,
as the polymer concentration increased, the mixture became highly
unstable to flocculation and creaming, i.e., the backscattering intensity
in the central region decreased appreciably, and there was a large in-
crease in intensity at the top of the sample. This effect can be attributed
to the fact that flocculation leads to an increase in particle size, which
promotes gravitational separation, and that the viscosity is not high
enough to inhibit the creaming of oil droplets (Mengual, Meunier,
Cayre, Puech, & Snabre, 1999). Third, a further increase in polymer
concentration led to flocculation without creaming, i.e., there was a
decrease in the backscattering intensity in the central region, but little
change at the top or bottom of the sample (Fig. 8C). This effect can be
attributed to the fact that the non-adsorbed polymers induced depletion
flocculation, but the aqueous phase viscoelasticity was sufficient to stop
the creaming of the flocculated droplets. Fourth, at high polymer levels,
neither flocculation nor creaming was observed, i.e., the backscattering
profile remained constant during storage (Fig. 8D). Indeed, the

movement of flocs will be hindered by an increase in viscosity of the
aqueous phase up to the point where the viscosity was high enough that
it restricted the movement of individual oil droplets, so they could not
approach each other. This prevented droplet flocculation, despite the
high depletion forces generated by the polymer (Bai et al., 2017;
McClements, 2000; Syrbe et al., 1998).

3.5. Impact of oat extracts on emulsion stability

The laser scanning technique was also used to study the impact of
the oat extracts on the physical stability of the emulsions (Fig. 9). These
samples displayed a more complex behaviour than the purified poly-
saccharide solutions. When the emulsion was mixed with the solution
containing the oat flake extracts, the droplets flocculated to a greater
extent than for the solutions containing either the flour and bran ex-
tracts (as seen in Fig. 7), with creaming starting fairly rapidly (after
∼20–30min). The 1 h bran extract also exhibited some creaming but at
a later stage (after 2 h, Fig. 9A2). Therefore, the concentration of water-
soluble extracts in the solutions increased as the extraction time in-
creased, which will promote the tendency for depletion flocculation to
occur. No creaming was detected for any of the 72 h samples, however
sedimentation occurred for the oat flake extracts (Fig. 9C2). This was

Fig. 7. Light (1 and 2) and confocal (3 and 4) micro-
scopy images of emulsion mixed with oat bran (A),
flour (B) and flakes (C) solutions collected after 1 h (1
and 3) and 72 h (2 and 4) of incubation. The oil dro-
plets are stained with Nile red (3 and 4). (For inter-
pretation of the references to colour in this figure le-
gend, the reader is referred to the Web version of this
article.)

Fig. 8. Typical trends of the light-scattering curves for
mixtures of emulsion and pure polymer at different
concentrations. BG1 denotes high Mw β-glucan, BG2
medium Mw β-glucan, and BG3 low Mw β-glucan. Four
flocculation regimes were defined: a1 (−) no floccula-
tion, a2 (++) extensive flocculation, a3 (+) limited
flocculation, a4 (–) high viscosity prevents the move-
ment of the droplets, no flocculation was observed.
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indicated by a decrease in intensity at the top of the sample, together
with an increase in intensity at the base of the sample. Similarly to the
processes occurring with pure polymers, the high viscosity of the oat
flake and bran extract solutions, as shown in Fig. 3B1 and 3B2, is likely
to have hindered the mobility of the oil droplets. For the extracts, there
was some evidence of an increase in backscattering at the bottom of the
samples after prolonged storage, which was attributed to the sedi-
mentation of dense particulates, such as starch granules, cell fragments,
and protein aggregates from the oat material.

3.6. Theoretical prediction of thickening and flocculation

The ability of polymer molecules to thicken emulsions and to pro-
mote depletion flocculation has been theoretically related to their
molecular characteristics (Bai et al., 2017; McClements, 2000). These
models can be used to understand the impact of polysaccharide con-
centration and Mw on emulsion stability.

The CVC values were calculated from equation (3) for the four
polysaccharides used in this study from their known mean Mws and
hydrodynamic radii (Table 1). The values of CVC increased in the fol-
lowing order: guar gum (0.11%) < BG1 (0.18%) < BG2
(0.24%) < BG3 (0.38%). These calculations suggest that a higher
concentration of BG3 is needed to increase the viscosity than guar gum,
which is in agreement with the experimental measurements (Fig. 3).

The CFC of the different polysaccharides used in this study were
calculated from the equations described in Section 2.6.2. (Table 1). The
values of the CFC decreased in the following order: guar gum
(0.037%) < BG1 (0.040%) < BG2 (0.044%) < BG3 (0.042%). Thus,
a lower concentration of guar gum should be required to promote de-
pletion flocculation than BG3. Interestingly, the CFC values are higher
than the CVC values for the higher Mw polymers (guar gum and BG1),
which suggests that the viscosity of the emulsions would be relatively
high before the oil droplets flocculated. Conversely, the CFC values are
lower than the CVC values for the lower Mw polymers (BG2 and BG3),
which confirmed that droplet flocculation and creaming occur at

intermediate polymer concentrations, but creaming is hindered at
higher polymer levels. These differences may account for the visual
observations that the BG3 emulsions are unstable to flocculation and
creaming over a wider range of polymer levels than the guar gum
emulsions (Fig. 6A).

3.7. Impact of oat extracts on lipid digestibility

Finally, we examined the impact of the oat extracts from the oat
flakes, flour, and bran on the extent of lipid digestion under simulated
duodenal conditions. Fig. 10 shows that the extent of lipid digestion
was significantly reduced for the flakes, for both 1 h (p=0.001) and
72 h (p= 0.034) of incubation, but not for the flour and bran. However,

Fig. 9. Light-scattering curves for emulsion mixed with oat bran (A), flour (B) and flakes (C) solutions collected after 1 h (1) and 72 h (2) of incubation.

Fig. 10. Amount of free fatty acids (FFA) released during the simulated duo-
denal digestion of emulsion alone (red) or in presence of solutions collected
from the incubation of oat bran (yellow), flour (green) and flakes (blue).
Statistical significance was determined using a one-way ANOVA (*p < 0.05
and **p < 0.01, bran or flour or flakes vs emulsion, n = 3). (For interpretation
of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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longer incubation time of the flour appeared to decrease the amount of
FFA formed during the lipolysis of the emulsion, albeit the difference
was not significant. Overall, these results suggest that the oat extracts
were able to inhibit lipid digestion (the kinetics of FFA production vs
time can be found in Fig. S2 of the supplementary material). There are a
number of possible reasons for this effect. First, an increase in the
viscosity of the gastrointestinal fluids due to the presence of the dietary
fibres may slow down the transport of lipase to the lipid droplet sur-
faces. The viscosity of the oat extract solutions decreased in the fol-
lowing order: flour > bran > flakes > control, and was higher for
the 72 h extracts than for the equivalent 1 h extracts (Fig. 3). Thus,
there did not seem to be a strong correlation between the viscosity of
the solutions and the inhibition of lipid digestion for those systems.
Second, an increase in droplet flocculation in the emulsions may have
decreased lipid digestion by reducing the surface area of the lipid phase
exposed to the lipase (Golding & Wooster, 2010). Based on β-glucan
concentrations and the CFC of the pure polymers, the tendency for
droplet flocculation to occur due to a depletion mechanism in the
emulsions containing the different oat extracts should decrease in the
following order (Fig. 9): bran > flour > flakes > control, which is
not the case. By effectively excluding the first two possibilities, the third
and most likely explanation is that there may be differences in the
ability of the different extracts to bind components that are important
in the lipid digestion process, such as bile salts, lipase, FFA, and cal-
cium, which would alter the rate and extent of lipid digestion. In ad-
dition, the lack of a change in the initial lipolysis rate, but a change in
the plateau of the FFA released (Supplementary Fig. S2) further sug-
gests that β-glucan's role in lipid digestion is affected by the binding or
entrapment of the products of digestion by the matrix.

The rate of hydration of the polysaccharides as well as the order in
which the polymer network is formed and then mixed to the emulsion
may also be critical to the functionality of oat and its compounds, in
particular β-glucan (Veverka, Dubaj, Veverková, & Šimon, 2018; Wang,
Ellis, & Ross-Murphy, 2008). The protocol used here, consisting of
adding released compounds to an emulsion, seems like a realistic si-
mulation of the course of events taking place during digestion in the
human gastrointestinal tract. Indeed, it is likely that, during the di-
gestion of oat or oat based food products, the lipids present in the
stomach and small intestine would be emulsified (due to food proces-
sing or as a result of digestion) before becoming in contact with the β-
glucan and viscous digesta since the β-glucan will first have to be re-
leased from the oat matrix (Grundy, Quint, Rieder, Ballance, Dreiss,
Butterworth, et al., 2017).

4. Conclusions

The Mw and concentration of the polysaccharides studied influ-
enced the stability of emulsions, such that lower Mws and concentra-
tions resulted in depletion flocculation of the oil droplets stabilised with
whey proteins. However, the observed effect was not linearly associated
with the viscosity of the polymer solution. In vitro lipid digestion
showed that oat flakes displayed the largest reduction in lipolysis, but
this also did not relate directly with the solution viscosity.

Therefore, the mechanisms that leads to the reduction in blood lipid
and cholesterol concentrations when oat is consumed still warrant
further research. In particular, special attention should be put on the
other compounds that are released during oat digestion and the inter-
actions between them and with the oat matrix. Systematic character-
isation of the interactions of the different oat extracts with lipid di-
gestion components would be useful. Finally, additional work should be
performed to identify if the depletion flocculation observed with the
material presented in this investigation persists in the gastric com-
partment and succeeds in reducing the subsequent lipid digestion in the
small intestine.
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