
ar
X

iv
:1

20
5.

37
57

v2
 [

cs
.D

M
]

 2
3

N
ov

 2
01

2

A reduced integer programming model for the ferry

scheduling problem∗

Daniel Karapetyan and Abraham P. Punnen

Department of Mathematics, Simon Fraser University Surrey, Central City,
250-13450 102nd AV, Surrey, British Columbia, V3T 0A3, Canada

daniel.karapetyan@gmail.com, apunnen@sfu.ca

Abstract

We present an integer programming model for the ferry scheduling problem, im-
proving existing models in various ways. In particular, our model has reduced size
in terms of the number of variables and constraints compared to existing models by a
factor of approximately O(n), where n being the number of ports. The model also han-
dles efficiently load/unload time constraints, crew scheduling and passenger transfers.
Experiments using real world data produced high quality solutions in 12 hours using
CPLEX 12.4 with a performance guarantee of within 15% of optimality, on average.
This establishes that using a general purpose integer programming solver is a viable
alternative in solving the ferry scheduling problem of moderate size.

1 Introduction

Given a set of ports, a set of ferries, and a planning horizon, the ferry scheduling prob-
lem (FSP) seeks a routing and scheduling scheme for the ferries so that the travel demand
emanating at the ports during the planning horizon is satisfied while the operations cost
and passenger dissatisfaction are minimized. Ferry companies are often confronted with the
problem of revising the ferry schedules due to a variety of reasons. These include chang-
ing demographics within the service area, changes in fleet characteristics, changes in port
configuration, altered service level restrictions, responses to customer feedback, and changes
in government regulations. Developing an ‘optimal’ schedule is crucial in achieving oper-
ational efficiency and cost savings. Even for a problem that appears to be of a small size
(e.g., 4 ferries and 7 ports with a 20 hour planning horizon), the FSP is still complex and

∗This research work was supported by BC Ferries and MITACS.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/157860594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1205.3757v2

requires systematic scientific approaches to construct useful schedules, attain insights into
true operational bottlenecks, and to develop proper management strategies.

Optimization problems similar to the FSP has been studied extensively in the operations
research literature in the context of airline scheduling [5], public transport scheduling [2] and
scheduling problems in maritime transportation [3, 4]. Such problems can be formulated as
integer programming problems. However, solving the resulting integer programming models
to optimality is prohibitively hard most of the time due to the very large size of the mod-
els. Heuristic solution procedures are often employed to obtain practical solutions for such
problems. Despite the similarity with the airline or public transport scheduling problem,
special treatment of the FSP is desirable to handle special constraints and to exploit the
resulting problem structure. Further, practical FSPs allow integer programming models of
moderate size and this opens new avenues for exploring the usability of powerful general
purpose integer programming solvers.

Lai and Lo [10] studied the FSP and provided an integer programming formulation with
the assumption that all ferries are of same speed. The paper provides detailed references
on related problems and excellent computational results are reported with their heuristic
algorithm. Wang, Lo, and Lai [13] considered a slightly more general problem with demand
estimation included in the model using appropriate mathematical functions. Mitrovic-Minic
and Punnen [12] studied the FSP with re-configurable ferries. All these works presented
integer programming models and reported that the resulting model was too large to be used
in practice. Thus, they also developed heuristic algorithms. For other related works on ferry
scheduling we refer to [7, 14, 15]. More general reviews of maritime transportation can be
found in [3, 4].

The power of integer programming solvers increased substantially over the past decade.
Researchers quantify this improvement by a factor of 7 approximately [1, 6, 8, 11]. Integration
of various metaheuristic ideas into modern integer programming solvers not only resulted in
powerful general purpose exact solvers, but also improved our ability to use the exact solvers
as a heuristic by defining appropriate termination criteria. Moreover, the resulting solution
also comes with a proof of quality in terms of percentage deviation from the best lower
bound identified. These observations renewed our interest in studying integer programming
formulations for the FSP.

In this paper we present an integer programming formulation for the FSP. The size of our
formulation (number of variables and constraints) is less than that of the previous models
by a factor O(n), where n is the number of ports. We also rectify some shortcomings in the
existing models in terms of crew scheduling, load/unload constraints and passenger transfer
constraints. We have tested our model using real world data, and the outcomes of our
experiments indicated that our approach leads to significant savings of computational time,
which in turn makes it possible to obtain near-optimal solutions (15% optimality guarantee
for our case study) in practical time.

The paper is organized as follows. In Section 2 we provide a formal definition of the
problem and introduce relevant notations. Section 3 deals with our integer programming
model. Summary of experimental results based on our case study is presented in Section 4

2

followed by concluding remarks in Section 5.

2 Notations and basic model

Let us first give a formal definition of the ferry scheduling problem (FSP). Let P =
{1, 2, . . . , n} be a set of ports and F = {1, 2, . . . , m} be a set of ferries. For each port
p ∈ P , we are given the number of berths βk. For each ferry f ∈ F , we are given its capacity
Cf , in automobile equivalent units (AEQ), and a port hf ∈ P , called the home port of the
ferry f . The ferry f starts and ends its service at hf . We are also given the time T f(k, h)
needed for ferry f to travel from port k to port h.1

Let [ℓ, L] be the planning horizon. If ℓ = 5:00 am and L = 12:00 pm, then the planning
horizon is the time interval between 5:00 am and 12:00 pm. A finite travel demand originates
at discrete times at a port during the planning horizon with prescribed destination ports.
During the planning horizon, starting from the home port, each ferry visits its destination
ports (possibly multiple times) and returns to its home port. We call this a ferry traversal.
An arrangement of all the arrival and departure times of a ferry f at each of the ports it
visits in a traversal is called a schedule of the ferry f . A ferry carries passengers as well as
vehicles of various types such as trucks, SUVs, buses, cars, other commercial vehicles, etc.
To simplify the demand types, we consider a measure called automobile equivalent (AEQ)
which is calculated from the itemized demand using a conversion formula. Thus hereafter,
we assume that demand is given in terms of AEQ. Each travel demand can be represented
by a 4-tuple (o, d, t, b) where o is the origin port, d is the destination port, t is the departure
time and b is the demand volume in AEQ. The FSP is to develop schedules for all ferries
to move the whole demand volume from the respective origins to destinations so that the
weighted sum of total operating cost and total travel time is minimized.

Let us now develop an integer programming formulation for the FSP. We follow the
standard approach adopted in [10, 12, 13] to develop the general structure of the model by
making use of ferry flow networks and passenger flow networks.

2.1 Ferry flow network

Our ferry flow network is defined as follows. Let δ be a given time increment factor which
is used to discretize the planning horizon. Let q be the number of time intervals within the
planning horizon, i.e., qδ = L− ℓ. Typically, ℓ represents 5:00 am, δ = 10 minutes and q is
about 120.

Let Gf = (V,Ef) be the ferry flow network corresponding to ferry f . For each port
k ∈ P , let V k = {k1, k2, . . . , kq} be the set of nodes in Gf representing ‘different time-states’
of port k. For example, if ℓ = 5:00 am and δ = 10 minutes, then k1 represents 5:00 am, k2
represents 5:10 am and so on. The node set V of Gf is given by V =

⋃

k∈P V
k. The nodes

1Our notations follow several simple rules. The ports are usually denoted by k, s or p. Ferries are usually
denoted by f . The superscript is used for either port or ferry and subscripts for other indices.

3

in V can be considered as a rectangular arrangement as depicted in Figure 1. We denote
the exact time represented by the node ki as τ(ki). Thus τ(ki) = ℓ+ δ(i− 1) for all ki ∈ V .

T f(1, 2)
T f(1, 3)

21

2q

31

3q

11

12

13

14

15

1q

Port 1 Port 2 Port 3
5:00 = l

5:10 = l + δ

5:20 = l + 2δ

5:30 = l + 3δ

5:40 = l + 4δ

...

l + ψ = l + (q − 1)δ

Figure 1: A ferry flow network with Port 1 as home port. Travel time for the ferry between
Port 1 and Port 2 is 20 minutes, Port 1 and Port 3 is 30 minutes, and port 2 and port 3 is
40 minutes, and δ = 10 minutes. Some service arcs are omitted for clarity of the example.

Introduce an arc (ki, hj) in E
f for i = 1, 2, . . . , q and k, h ∈ P , k 6= h, if a direct service

from k to h is allowed and j ≤ q is the smallest index such that τ(hj) ≥ τ(ki) + T f(k, h).
Such arcs connecting time-state nodes of two different ports are called service arcs. Also,
for each k ∈ P and i = 1, 2, . . . , q − 1, introduce an arc (ki, ki+1). These arcs connect two
consecutive time state nodes of the same port and are called waiting arcs.

An example of a ferry flow network Gf = (V,Ef) with three ports is shown in Figure 1.
Every service arc (ki, hj) ∈ Ef represents a potential service of ferry f from port k to port
h with departure time τ(ki). Every waiting arc (ki, ki+1) represents a waiting of ferry f at
port k between times τ(ki) and τ(ki+1).

2.2 Passenger flow network

Let G = (V,E) be the minimal supergraph of all Gf , f ∈ F . Thus, (i, j) ∈ E implies
(i, j) ∈ Ef for at least one f . It may be noted that Gf will be the same as G for all f if
all ferries take the same time to travel between two specified ports. Introduce n new nodes
ζ1, ζ2, . . . , ζn to G and connect node kq to ζi for all i ∈ P \{k} and for all k ∈ P . The resulting
arcs are called infeasibility arcs. Also, connect each node ki for i = 1, 2, . . . , q to ζk by arcs
called destination arcs. Let Ωk = (U,Ak) be the resulting graph and we call this the passenger
flow network for destination port k. (See Figure 2.) Note that U = V ∪ {ζ1, ζ2, . . . ζn} and
Ak consists of E together with all destination arcs for port k and the infeasibility arcs.

Note that we consider all the passengers heading to same port as the same type of flow.
This is different to the traditional approach to maintain a flow for each OD-pair. Although

4

1q

ζ1

2q

ζ2

3q

ζ3

Port 1 Port 2 Port 3

Figure 2: A passenger flow network Ω3 with destination port 3.

this enhancement is appropriate in our case study problem, it may not be applicable in some
other cases where the information about the origin of a passenger is crucial.

Similar to the ferry flow notation, let Ik(v) = {u : (u, v) ∈ Ak} and Ok(v) = {u : (v, u) ∈
Ak}.

2.3 Basic model

For any v ∈ V , let If(v) = {u : (u, v) ∈ Ef} and Of(v) = {u : (v, u) ∈ Ef}. For each
(u, v) ∈ Ef consider a 0-1 variable yfuv defined by

yfuv =

{

1 if ferry f traverses the arc (u, v),

0 otherwise.

Define

bfv =

−1 if v = hf1 ,

1 if v = hfq ,

0 otherwise.

(1)

Let dpki be the travel demand originating at node ki, k ∈ P , i = 1, 2, . . . , q with destination
port p. If no travel demand originates at node ki with destination node p, dpki = 0. The
travel demand with destination port p at the node ζt of Ω

p is given by

dpζt =

−
∑

k∈P

q
∑

i=1

dpki if t = p

0 otherwise.

5

Let xkuv be the number of passengers (measured in AEQ) traveling along arc (u, v) in Ωk.
Thus the destination port of passengers xkuv, (u, v) ∈ Ωk is port k.

Then we can formulate the FSP as follows:

Minimize λ
∑

f∈F

∑

e∈Ef

gfe y
f
e + ν

∑

k∈P

∑

e∈Ak

ckex
k
e (2)

subject to
∑

v′∈If (v)

yfv′v −
∑

v′∈Of (v)

yfvv′ = bfv for every v ∈ V and f ∈ F , (3)

∑

f∈F

yfkiki+1
≤ βk for every waiting arc (ki, ki+1), ki ∈ V k, k ∈ P, i 6= q, (4)

∑

v′∈Ik(v)

xkv′,v −
∑

v′∈Ok(v)

xkv,v′ = dkv for every v ∈ U and for every k ∈ P , (5)

∑

k∈P

xkuv ≤
∑

f∈F (u,v)

Cfyfuv for every service arc (u, v) ∈ Ω, (6)

yfuv ∈ {0, 1} for (u, v) ∈ Ef , f ∈ F , (7)

xkuv is a non-negative integer for (u, v) ∈ Ak, k ∈ P , (8)

where λ and ν are coefficients controlling the cost/level of service balance, gfe is the cost
associated with traversing the arc e ∈ Ef and cke is the penalty associated with the arc
e ∈ Ak. Let µf be the cost of operating ferry f for one hour when it is in service and ηf be
the cost of operating ferry f for one hour when it is staying at a port. These costs include
fuel cost and crew salary. For each edge e ∈ Ef , define gfe as

gfe = (τ(v)− τ(u)) ·

{

µf if v, u ∈ V k for some k ∈ P,

ηf otherwise,
(9)

where e = (u, v). Also define cke as

ckuv =

M if (u, v) is an infeasibility arc,

0 if (u, v) is a destination arc,

τ(v)− τ(u) otherwise,

where e = (u, v) andM is a very large number. Note that the destination arcs have zero cost
and any passenger that does not reach the correct destination port needs to travel through
the infeasibility arcs incurring a very large cost.

We require that a ferry needs to be back at its home port at the end of the planning
horizon since repositioning cost for ferries is high for our case study whereas for models
studied in [10, 13] the repositioning cost is assumed to be negligible.

Also note that some of the variables and constraints in the above model are redundant.
Consider, e.g., an arc (k1, hj) ∈ Ef , where k 6= hf . Obviously, this arc can never be tra-
versed and, hence, corresponding variables and constraints can be safely removed. However,

6

our experiments showed that the preprocessing algorithms embedded into modern integer
programming solvers are powerful enough to eliminate such redundancy and, thus, there is
no need to complicate the model with such improvements.

3 Integer programming formulation enhancements

The major contribution of this paper is our passenger flow network, see Section 2.2, that
is somewhat different from previous models studied for similar problems. This allows us
to reduce the number of variables and constraints by a factor of O(n) compared to models
in [10, 12, 13]. Further, we add additional constraints that allow load/unload time at each
port which was not considered in previous models. This way we can handle berth conflict
constraints properly. Avoiding infeasible passenger transfers is another complicating factor
in our model which is also handled by appropriate constraints. This was not addressed in
previous models and for some past studies such an issue was not relevant since passenger
transfers were not allowed in those models. As additional enhancements, we modify the
ferry flow network and passenger flow networks to allow more accurate crew scheduling and
operating cost calculation. These enhancements to our basic integer programming models
are discussed in this section.

3.1 Loading/unloading times

The ferry flow balancing constraints (3) allow ferry f to pass through the arcs of the ferry flow
network and eventually reach the home port at the end of the planning horizon. However, if
ferry f enters a node ki of G

f , i 6= q, we need to ensure that it traverses several waiting arcs
to allow required loading/unloading time. The loading/unloading time depends on several
factors including ferry layout, port facilities, current load, downloading and uploading traffic,
and staff efficiency. Some of these parameters may vary significantly from time to time and,
thus, there exists no accurate way to estimate the time required for a ferry to stay in a port.
Thus, we propose a flexible yet simple way of defining such times that allows fine tuning
of the model based on historical data. We assume that, for each ferry f and each node
ki, the minimum loading/unloading time is fixed to wf

kδ, where w
f
ki

is given. Then, if ferry

f traverses a service arc (hj , ki), then it also needs to traverse wf
ki

waiting arcs (ki, ki+1),
(ki+1, ki+2), etc. This can be ensured by the inequality:

|∆f
ki
|

∑

u∈I
f
serv(ki)

yfuki ≤
∑

(u,v)∈∆f
ki

yfuv for every ki ∈ V and f ∈ F , (10)

where ∆f
ki

= {(ki, ki+1), (ki+1, ki+2), . . . (kr−1, kr)}, r = min{i + wf
k , q}, and I

f
serv(ki) = {u :

(u, ki) ∈ Ef , u /∈ V k}.
Given wf

ki
δ < T f(k, h) for every h ∈ P , h 6= k, the above constraint can be simplified as

follows:
∑

v′∈O
f
serv(ki)

yki,v′ ≤ ykj ,kj+1
for every ki ∈ V and f ∈ F , (11)

7

where Of
serv(v) = {u ∈ Of(v) : (v, u) is a service arc} and j is the largest index such that

τ(ki)− τ(kj) ≥ W f
k . If no such j exists, the constraint for the corresponding node ki is not

needed.
Some authors add the loading/unloading times to the travel times. Then a ferry does

not need to traverse any waiting arcs and, thus, the berth constraints may be violated.
In our approach, inequalities (10) and (4) handle the load/unload requirements and berth
constraints efficiently.

3.2 Transfer times

Another important issue that we have to deal with is infeasible transfers. Since there is
no penalty for a transfer from one ferry to another, the model favors immediate transfer
without allowing time for passengers to unload from one ferry and reload onto another. (See
Figure 3 for such an instance.) Thus, we want to make sure that passengers transferring

Figure 3: A sample infeasible transfer from one ferry (solid line) to another ferry (dashed
line).

from one ferry to another one get sufficient unloading and loading time. Let Tkiδ be the
transfer time required for a passenger arriving at node ki and ∆ki = {ki, ki+1, . . . , kr−1},
where r = min{i + Tki, q}. Let Iserv(ki) = {u : (u, ki) ∈ E, u /∈ V k}. Then the transfer
constraints can be stated as

t
∑

j=i

∑

u∈Iserv(kj)

xpukj ≤ xpktkt+1
for t = i to r − 1, ki ∈ V, i 6= q and p ∈ P \ {k}. (12)

Note that (12) affects not only the transferring passengers but also the passengers re-
maining on a ferry. Thus, we require Tki ≤ minf∈F w

f
ki
for each ki ∈ V .

The transfer constraints force that the flow with destination port p along each of the arcs
(kj, kj + 1), kj ∈ ∆ki, is at least the total flow with destination port p arriving at node ki
through service arcs. Note that we have |∆ki | transfer inequalities for each ki ∈ V , k ∈ P . If
port k has only one berth or Tki = 1, we can replace the |∆ki| transfer inequalities at node
ki by a single inequality

∑

u∈Iserv(ki)

xpuki ≤ xpkiki+1
for every ki ∈ V, i 6= q and p ∈ P . (13)

8

3.3 Updated model

The foregoing discussions can be summarized in a formal integer programming formulation
(2)–(8) extended by including the constraint sets (10) and (12).

The resulting model has O(qmn2) constraints and O(qmn3) variables. If we used the
demand type as OD-pairs, as considered in [10, 13, 12], instead of passengers with same
destination port considered in the present model, the number of constraints and variables
would have been O(qmn3) and O(qmn4) respectively, i.e., the model size in our case is smaller
by a factor of O(n). As it was mentioned above, the drawback of such an approach is that
the model becomes less flexible. Indeed, now we cannot distinguish passengers traveling to
the same destination in terms of their origin ports. However, in our case it is not necessary
because the model allows us to calculate the total traveling time of all the passenger. The
major advantage, however, is the reduced problem size which makes the usage of general
purpose integer programming solvers a viable alternative.

Note that in some studies (see, e.g., [14]), the problem size depends not on the number
of ferries but on the number of ferry types. In our case study, all the vessels were of different
types and, thus, we decided not to complicate the discussion by allowing several ferries of
the same type. However, such a modification can be easily incorporated in the proposed
model.

3.4 Operational cost refinements and crew scheduling

Recall that for a waiting arc e = (ki, ki+1), the operational cost is defined as gfe = δµf , see (9).
If all the ferries start operation at the beginning of the planning horizon and terminate at the
end of the planning horizon, this is an appropriate cost assignment. However, this need not
be true in some applications. For example, a ferry may start at 10:00 am and terminate at
4:00 pm. If we use the model from the previous section directly, we are counting the excess
cost of the waiting arcs from 5:00 am to 10:00 am and from 4:00 pm to 11:00 pm which may
alter the optimal solution. However, the correct calculation of costs for the waiting arcs in
such cases is possible by a minor change in our model.

In the ferry flow network Gf , f ∈ F , introduce two new nodes αf and βf and connect
αf to all nodes in V hf

\ {hfq}. The resulting arcs (αf , hfi), i = 1, 2, . . . , q − 1, are called

in-port arcs. Likewise, connect each node of V hf

\{hf1} to βf and the resulting arcs (hfi , β
f),

i = 2, 3, . . . , q, are called out-port arcs. (See Figure 4.)
Set gfe = 0 for each in-port and out-port arc. Let ferry f start from node α and terminate

at node β. Consequently we change the definition of bfv (see (1)) for this modified Gf as

bfv =

−1 if v = αf ,

1 if v = βf ,

0 otherwise.

Now the operational cost of a ferry f excludes the time spent at the home port before and
after its operation.

9

αf

βf

Port 1 Port 2 Port 3

Figure 4: Ferry flow network with nodes αf and βf that allow better calculation of the crew
salaries and loading/unloading stays. In this example, Port 1 is the home port hf of ferry f .

Let us now further develop the model to handle a situation when the crew time per
planning horizon is divided in two shifts, a morning shift and an evening shift. Let σf be
the total crew salary for ferry f per shift. We are given a time window [t1, t2], and during
this period the ferries must reach their home port for a crew exchange. One way to deal
with this problem is to divide the planning horizon into two; [ℓ, t1] and [t2, L]. However, this
approach creates another issue where we force passengers to reach their destination during
the planning horizon [ℓ, t1] and move demands that could not reach the destination to the
planning horizon [t2, L]. This is likely to make the resulting solution suboptimal. We now
show how we can make simple modifications in the definition of Gf to achieve the desired
outcome without breaking the problem into two and compromising for suboptimal solutions.

In the original ferry flow network Gf as introduced in Section 2.1, add three nodes αf , βf

and γf . Connect αf to hfi ∈ V hf

by an arc whenever τ(hfi) < t1 and set the cost of this
arc to σf . Similarly, connect hfi to γf by an arc (hfi , γ

f) of zero weight for every i > 1
such that τ(hfi) ≤ t1. Set the cost g

f
e of the waiting arcs e involving time state nodes v with

t1 ≤ τ(v) ≤ t2 to a very large numberM2. Now connect γf to hfi by an arc (γf , hfi) of weight
σf for every i < q such that τ(hfi) ≥ t2. Connect each node hfi to βf by an arc (hfi , β

f) of
zero weight for every i such that τ(hfi) > t2. Finally connect αf to γf and γf to βf by arcs
of zero weights, see Figure 5.

The modified definition of Gf can easily be incorporated into our integer programming
model. It can be verified that the modification discussed here correctly handle the desired
outcome. In fact, this is the model we used in our case study experiments.

2We assume that such arcs exist.

10

αf

γf

βf

t2

t1

Port 1 Port 2 Port 3

Figure 5: Ferry flow network with nodes αf , βf and γf that allow better calculation of the
crew salaries and correct calculation of the fuel charges. In this example, Port 1 is the home
port hf of ferry f .

4 Experimental analysis

Our integer programming model, as modified in the previous section, was tested using data
provided by a major ferry company. The company operated 3 to 4 ferries linking 7 ports
located at various islands. For peak season, 4 ferries were used but for off-peak season only 3
ferries were used. The demand data was obtained from ticket selling statistics. Each ticket is
sold at the berth for a particular service and, thus, the data was accurate. We only consider
vehicles to define the demand value. However, if no vehicles were transferred between two
ports but there were some foot passengers, we assume the demand volume to be 1 AEQ to
ensure that these passengers will be taken into account by the model. The total demand in
the considered problems was 1000 to 2000 AEQ per day.

To solve the integer programming model, we used CPLEX 12.4 where the problem input
was prepared using a C# code. The experiments were run on a Windows 7 PC with an Intel
i7 3.4 GHz CPU (8 virtual cores) and 16 GB of memory. The values of various parameters
for the model were set as follows: δ = 10 minutes, ℓ = 5:00 am and L = 12:00 midnight.
The values for shift cost σf for ferry f and operating costs for these ferries were provided by
the ferry company.

In order to speed up calculations, we provided a trivial starting solution for each problem.
Such a solution defines a schedule, where each ferry stays at the home port for the whole
day. Due to the infeasibility arcs, such a solution is feasible although none of the passengers
reach their destination. When possible, we also tried to use the existing schedules as the
starting solutions. The solver in such cases was not able to improve the schedule except
some very minor changes and spent almost the same time as if no solution is provided to

11

prove the quality of the schedule.
The travel demand varies with respect seasons and days of the week. To validate our

model, we selected Off-Peak Monday–Thursday and Peak Friday demands. The former is
interesting because it is operated around 150 days per year. The latter is one of the busiest
days and, thus, requires maximum capacity. Since the demand data is taken from ticket
selling statistics, the traffic volume is essentially what is carried by the current schedule
and passengers arrived at the ports as per the prescribed schedule. Thus, in terms of the
proposed model, it is quite likely that the current schedule is close to optimum, if not
optimum. Hence, by comparing the original schedules with the schedules generated by our
model for the original fleet configuration, we are able to evaluate our method.

We allowed 12 hours to solve each problem, and the model produced schedules almost
identical to the current schedule of the case study and provided a performance guarantee of
within 15% of optimality (in terms of the objective function value), on average. For example,
for the current fleet configuration and the Peak Friday demand data, the routes produced
by our model (see Figure 6) have only two minor changes comparing to the original routes,
and these changes are arguably beneficial. The departure and arrival times in the produced
schedule are also very close to the original schedule; the difference is mainly caused by the
lower time resolution of our model (10 minutes) comparing to the currently implemented
schedules (5 minutes). The model contained around 4.7 · 104 integer variables and 4.2 · 104

constraints but its size was reduced by CPLEX preprocessor to 3.8 ·104 integer variables and
3.3 · 104 constraints. Observe that the real number of variables in the model is well below
the estimation O(qmn3). That is because the speeds of the ferries considered in our case
study are very similar, and many of the arcs in the ferry flow networks coincide, which in
turn reduces the size of the passenger flow networks.

For the other fleet configurations, the model was able to produce schedules of reasonable
operational costs and service levels. Our computational experiments validate the model and
establish that general purpose integer programming solvers could be a viable alternative to
solve moderate sized ferry scheduling problem.

5 Conclusions

In this paper, we developed an integer programming model for the ferry scheduling problem.
Our model has reduced size compared to existing models by a factor of approximately O(n).
The model handles efficiently such new constraints as crew scheduling, loading/unloading
time and passenger transfer. The model was able to produce high quality solutions in 12
hours using CPLEX 12.4.

References

[1] R.E. Bixby. Mixed integer programming: it works better than you may think. Gurobi
optimization.

12

[2] A. Ceder. Designing public transport network and routes. In Advanced Modeling for
Transit Operations and Service Planning, W. Lam and M. Bell (Eds.), Elsevier, 2003.

[3] M. Christiansen, K. Fagerholt, and D. Ronen. Ship Routing and Scheduling: Status and
Perspectives. Transportation Science, 38(1), 1–18, 2004.

[4] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime Transportation. In
Handbook in Operations Research and Management Science, C. Barnhart and G. Laporte
(Eds.), vol. 14, pp. 189–284, Elsevier, 2007.

[5] R. Gopalan and K.T. Talluri. Mathematical models in airline schedule planning: A sur-
vey. Annals of Operations Research 76 (1998) 155-185.

[6] L.M. Hvattum, A. Lokketangen, and F. Glover. Comparisons of commercial MIP solvers
and an adaptive memory (tabu search) procedure for a class of 0-1 integer programming
problems. Algorithmic Operations Research 7 (2012) 13–20.

[7] W.M.K.A.W. Zaimi, M.S. Abu, A.K. Junoh, W.N.M. Ariffin. Ferry Scheduling Model
Using Linear Programming Technique. In proc. of the 3rd International Conference on
Computer Research and Development (ICCRD), 4 (2011) 337–341.

[8] T. Koch, T. Achterberg, E. Anderson, O. Bastert, T. Berthold, R.E. Bixby, E. Danna,
G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D.E. Steffy, and K. Wolter. MILP 2010 — Mixed integer programming library version 5.
Mathematical Programming Computation 3 (2011) 103–163.

[9] M.F. Lai and H.K. Lo. Ferry service network design: optimal fleet size, routing, and
scheduling. Transportation research PART A: Policy and Practice 38 (2004) 305–328.

[10] J.T. Linderoth and A. Lodi. MILP Software. In Wiley Encyclopedia of Operations Re-
search and Management Science, J.J. Cochrane (Ed.).

[11] A. Lodi. MIP computation and beyond. Technical report ARRIVAL-TR-0229.

[12] S. Mitrovic-Minic and A.P. Punnen. Routing and scheduling of a heterogeneous fleet of
re-configurable ferries: a model, a heuristic, and a case study. International Conference
on Operations Research, Zurich, Switzerland, 2011.

[13] Z.W. Wang, H. Lo, and M.F. Lai. Mixed-fleet Ferry Routing and Scheduling. Lecture
Notes in Economics and Mathematical Systems 600: Computer-Aided Systems in Public
Transport, M. Hickman, P. Mirchandani, and S. Voss (Eds.), 181–194, 2008.

[14] D.Z.W. Wang and H.K. Lo. Multi-fleet ferry service network design with passenger
preferences for differential services. Transportation Research Part B 42 (2008) 798–822.

[15] S. Yan, C.-H. Chen, H.-Y. Chen, and T.-C. Lou. Optimal scheduling models for ferry
companies under alliances. Journal of Marine Science and Technology 15 (2007) 53–66.

13

A B C D E F G

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

24:00

Ferry 127 Ferry 70 (1) Ferry 70 (2) Ferry 192

A B C D E F G
04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

24:00

Figure 6: A sample schedule produced by our model.

	1 Introduction
	2 Notations and basic model
	2.1 Ferry flow network
	2.2 Passenger flow network
	2.3 Basic model

	3 Integer programming formulation enhancements
	3.1 Loading/unloading times
	3.2 Transfer times
	3.3 Updated model
	3.4 Operational cost refinements and crew scheduling

	4 Experimental analysis
	5 Conclusions

