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Abstract: The vaquita is a critically endangered species of porpoise. It
produces echolocation clicks, making it a good candidate for passive
acoustic monitoring. A systematic grid of sensors has been deployed for
3 months annually since 2011; results from 2016 are reported here.
Statistical models (to compensate for non-uniform data loss) show an
overall decline in the acoustic detection rate between 2015 and 2016 of
49% (95% credible interval 82% decline to 8% increase), and total
decline between 2011 and 2016 of over 90%. Assuming the acoustic
detection rate is proportional to population size, approximately 30
vaquita (95% credible interval 8-96) remained in November 2016.
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1. Introduction

The vaquita (Phocoena sinus) is a critically endangered species of porpoise endemic to
the northern Gulf of California, Mexico. Vaquitas have been subject to a long history
of unsustainable bycatch in gillnets set by small-boat fishers targeting shrimp and fin-
fish (Rojas-Bracho and Reeves, 2013). Recently, there has been a resurgence of an ille-
gal gillnet fishery for an endangered fish, the totoaba (Totoaba macdonaldi), fueled by
a lucrative illegal trade with China for totoaba swim bladders. This has raised concerns
about increased levels of vaquita bycatch. Vaquita are difficult to monitor using stan-
dard visual survey methods (line transects or mark-recapture based on photo-identifica-
tion) because they are small and visually cryptic, and now are very rare. However,
they produce echolocation clicks almost continually, making passive acoustic monitor-
ing of population trends possible. An acoustic monitoring program at a grid of
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locations throughout the core range of the vaquita was started in 2011; analysis of
data to 2015 showed an estimated annual decline of 34% [95% credible interval (CRI)
21%-48%)] (Jaramillo-Legorreta et al., 2017). Based on preliminary results through
2014, the government of Mexico enacted an emergency ban on gillnets, which began in
2015. However, despite extensive enforcement efforts, there is evidence that illegal fish-
ing and bycatch continue (CIRVA, 2017). Here we report results from the 2016 acous-
tic monitoring.

2. Methods

Hardware deployment, acoustic processing, and trend analysis methods followed those
described in detail by Jaramillo-Legorreta et al. (2017), and are outlined below.

2.1 Acoustic data collection and processing

Forty-six autonomous acoustic loggers were deployed between June and August each
year from 2011 to 2016 in a systematic grid within the vaquita refuge, an area of core
habitat designated in 2005 [Fig. 1(A)]. Because vaquita now number far fewer than
when acoustic monitoring began, 47 additional loggers were added mid July 2016
within the same area to improve precision in future trend monitoring [Fig. 1(B)]. The
loggers were C-PODs (Tregenza et al., 2016): autonomous passive acoustic monitoring
instruments designed to detect echo-location clicks of toothed whales and store salient
features for offline classification. Upon retrieval, proprietary software (C-POD soft-
ware version 2.044 with KERNO algorithm) was used to detect coherent sequences
(“trains”) of approximately regularly spaced clicks and classify them as possible
vaquita click trains; all possible vaquita click trains were then manually validated.
Data were summarized as the number of vaquita clicks detected per sampling location
per day—the “click rate.”

2.2 Trend analysis

Only data from the original 46 sampling locations were used for trend analysis.
Although this grid of locations was designed to give equal coverage in space and time,
in practice sampling was uneven due to shifts in annual deployment dates, equipment
failure, and loss. The data set was further truncated to a core sampling period during
which at least 50% of the detectors were operating across all 6 years: June 19 to
August 19, inclusive (62 days). Nevertheless, the sampling effort was still somewhat
uneven, and so trend analysis was based on two Bayesian statistical models developed
by Jaramillo-Legorreta et al. (2017): a geostatistical model and a non-spatial mixture
model. They are described briefly here; full details are given in Jaramillo-Legorreta
et al. (2017). Both models estimate average click rate per sampling location and year;
the mean of these over locations is the average annual click rate. Between-year change
in acoustic activity, denoted 4, is estimated as the ratio of the average annual click
rates in successive pairs of years.

(A) Original sensor locations 19 June — 19 August (B) Augmented grid 11 July — 19 August

3138 - L L L 318

m ﬂ { \\»\\'?:\J‘\ m
- NS <
I, A
316 ~ r 3164 P S
o o / A
\k\; o j» - \\\ \7773\
144 (. 31.4 t/‘ o
2 | Jo o ‘ N fosoly
E o 0.0 Lol g desol ! | g ‘OQO_ @002 w800  days of
£ \?} 'OO OO ®) OO H sampling £ § ‘OO o OO 0 sampling
= A "0 O OOOOI 176 |© 0-15 - kil OOOO o o 0-15
3129 Y : OOOOO (e} o 15-30| 3121 Y ...?)0 050 %! 762 e el
| ' .(S)OOQO‘ 58 |O 30-45 | 19802 0 O0 ® O 30 - 45
I o / \ O o 58
N CING) O O 45- 63 \ O’Ooooo o O 45-63
N 050 @00 . O4 09200@ P4
s 26 OOO, 20 oeg '.oOoOo°p 20
( ~ ;> ( >
31.0- R / r : \ Q
\\\ \\.O ) § 5 31.0 N O‘o 20 8l
Y A 2 ™ Q $ 9
\ c38 \ o 3
| 20km Sllo z 20 km Sllo
s 1 T0nm : : 208 10
-115.0 -114.8 1146 1144 -114.2 -114.0 2115.0 114.8 1146 114.4 1142 114.0
Longitude Longitude

Fig. 1. (Color online) Summary of raw data for 2016. Mean click rate (clicks/day), indicated by shading (note
log scale), and days of sampling, indicated by circle size, for (A) the 46 sampling sites grid during the core sam-
pling period (June 19 to August 19), and (B) the augmented 93 sampling sites grid during the part of the core
sampling period when additional sensors were deployed (July 11 to August 19).
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The geostatistical model compensates for locations with missing data by
“borrowing strength” from those around it: the model assumes the average click rate
varies smoothly over space, with a separate smooth surface fit to each year of data but
with the amount of smoothness (the spatial autocorrelation) the same across years (i.e.,
autocorrelation parameters estimated from all years’ data). It further accounts for vari-
ation in sampling by assuming locations with more sampling days give more precise
estimates of the average click rate than those with fewer days.

The post-stratification mixture model probabilistically assigns individual sam-
pling locations to one of three strata. A sampling location is permanently assigned to
the same stratum for all years (which is justified based on spatial stability of the data),
but each stratum mean click rate is estimated independently for each year. The pur-
pose of stratification is to statistically account for much of the inter-site variance in the
number of clicks recorded; the number of strata was chosen subjectively, after explor-
atory data analysis.

Uninformative prior distributions were used for all model parameters. For
each model, inference was performed using Markov chain Monte Carlo methods: a
single chain was run for 1010000 iterations using the WinBUGS (geostatistical model)
and OpenBUGS (mixture model) software packages (Lunn ez al., 2012), the first
10000 samples were discarded and thereafter every 100th sample was retained for pos-
terior distribution summaries, yielding 10000 samples for each model. Results are
reported separately for each model, but also combining samples from both to form a
model-averaged estimate. Each model has equal weight in the model averaging.

2.3 Checking acoustic metric

For annual change in acoustic activity to represent change in abundance, there must
be no systematic change in animal vocal behavior or range-specific click detection.
Data were not available to measure these directly (e.g., through animal-borne record-
ing tags); however, we searched for changes in the number of detected vaquita clicks in
minutes when animals were known to be present (a measure of acoustic behavior), for
trends in temperature (known to affect propagation) and a proxy for background
noise. Details are given in the supplementary material.

2.4 Abundance estimate for 2016

Vaquita population abundance was estimated from Bayesian analysis of a combined
visual and acoustic survey, conducted in the fall of 2015, by Taylor et al. (2016). The
posterior distribution for population size was well approximated by a lognormal distri-
bution with mean 66 and standard deviation 33. To project the population forward
from 2015 to 2016, 20000 random samples were drawn from this lognormal distribu-
tion, and each sample was multiplied by a sample from the distribution of annual
change in acoustic activity, Ayi15-201¢ from the trend models. Using November 2, 2015
(the midpoint of the visual survey) as the survey abundance date, the projected esti-
mate represents population size on November 2, 2016.

3. Results

The sampling effort in 2016 was high for the 46 original sampling locations, with most
C-PODs being operational for the entire core period [Fig. 1(A)]. As in earlier years,
vaquita detections were restricted to only some portion of the refuge, with the highest
click rates close to the southwest boundary; the additional 47 locations monitored for
the first time in 2016 [Fig. 1(B)] make it clear that detections decline to almost zero on
this boundary (and most other boundaries).

The recorded number of vaquita clicks per day in the 46 original locations
decreased by 44% from 2015 to 2016 (Ax15-2016 = 0.56). However, this statistic does
not account for unequal sampling effort across sites. Results from the statistical mod-
els, which do account for an unequal effort, and give estimates of statistical uncer-
tainty, are summarized in Fig. 2 (see also the supplementary material'). The values for
2011-2015 are very similar to those reported by Jaramillo-Legorreta et al. (2017), as
would be expected since the addition of a sixth year of data should not change sub-
stantially results from the previous five. The estimated change in acoustic activity
between 2015 and 2016 differs somewhat between the two models and has wide poste-
rior CRIs; combining results from the two produces a model averaged posterior mean
estimate of Ay15_2016 = 0.51 with 95% posterior CRI 0.18 to 1.08. Although this inter-
val includes the “no change” value of 1.0, the posterior probability that acoustic activ-
ity decreased between 2015 and 2016 [i.e., p(/2015-2016) < 1.0] is 0.96 (Fig. 3).

Another way to express the estimated change in acoustic activity is as a per-
centage rate of decline or increase (1 — 1) % 100 (Fig. 2). The estimated model averaged
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Fig. 2. (Color online) Estimated annual rate of change (1) and percentage change (%) in mean click rate from
the statistical trend models. Solid symbols denote posterior means and vertical bars 95% posterior CRIs.
“Geom. mean” is the geometric mean of the annual estimates.

percentage rate of decline between 2015 and 2016 was extremely high: posterior mean
49% decline (95% CRI 82% decline to 8% increase).

Over the entire monitoring period 2011-2016, the estimated average annual
change in acoustic activity is 0.61 (95% CRI 0.48-0.74), i.e., an average decline of 39%
per year (95% CRI 26% to 52%, Fig. 2). This corresponds to an estimated total decline
of 90% over this 6-year period. The posterior probability of a decline is 1.00, and there
is a >99% chance that the decline in acoustic activity has averaged >20% per year
(Fig. 3).

The spatio-temporal pattern of estimated click rates from the geostatistical
model is shown in Fig. 4. The spatial pattern of click rates is quite consistent between
years, with the southwest area being a relative hotspot in all years. However, the stron-
gest pattern is the overall steep decline in click rates over time.

No yearly change was found in the metric of acoustic behavior or background
noise; water temperature generally increased over time, but the resultant effect on
propagation loss is likely to be minimal (see the supplementary material®).

The projected population size estimate for November 2, 2016, using the model
averaged acoustic results, is approximately 30 (posterior mean 33; posterior median 27;
95% CRI 8 to 96).

4. Discussion

Despite the gillnet ban, there is a very high probability that acoustic activity within the
vaquita refuge has continued to decline between 2015 and 2016. As expected, the esti-
mate for annual change in acoustic activity for a single year (2015-2016) is too impre-
cise to say whether it differs either from the previous year (2014-2015) or from the
series of years (2011-2015). Given the low number of acoustic detections, it will take
several years of monitoring to pick up such changes in trend, although the augmented

Probability Density

I T T T 1

0.0 0.5 1.0 1.5 20
Annual rate of change (1)

Fig. 3. Model-averaged posterior probability distribution for the annual rate of change in mean clicks-per-day.
The darker gray distribution describes geometric mean annual rate of change from 2011 to 2016. The lighter dis-
tribution describes the change between 2015 and 2016. Values less than 1.0 indicate a decline, for example, a
value of 0.5 indicates a halving each year.
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Fig. 4. (Color online) Estimated mean number of clicks per day predicted by the geostatistical model for the 46
numbered sampling sites with data for at least 1 year. Values in the legend are posterior medians (note log
scale). Some sites, ®, were missing in the indicated year. The size of the circles indicate the number of sampling
days on each year (see the legend).

monitoring design will help improve precision. There is little doubt, however, that the
decline continues and is rapid.

Relating this decline in acoustic activity to a decline in population size requires
the assumption that the acoustic behavior of vaquita and detection performance has
not changed; our investigations (see the supplementary material') provide partial vali-
dation of this. Another important assumption in extrapolating the trend observed in
the vaquita refuge from acoustic data to total population trend is that population trend
outside the refuge is the same as that inside. The combined visual-acoustic survey of
Taylor et al. (2016) estimated that, in 2015, approximately 20% (12 of the estimated
59) of the vaquita population were outside the refuge. Hence, if the population change
outside the refuge is different from that inside, it will have only a small effect on the
overall trend, because it is only a small proportion of the total population. It is possi-
ble that animal distribution has changed radically between 2015 and 2016, with ani-
mals moving out of the refuge causing the observed decline. However, this seems very
unlikely given low detections on the periphery of the range from the augmented grid
[Fig. 1(B)] and the relative paucity of detections outside the refuge on previous synop-
tic surveys (e.g., Fig. 1 of Rojas-Bracho and Reeves, 2013).

If the acoustic change between 2015 and 2016 represents a population change,
then we estimate that approximately 30 vaquita remained as of November 2, 2016.
Only a fraction of these will be reproductive-age females. Given this estimate, and the
ongoing negative population trend, it seems clear that we are facing the imminent
extinction of this species unless radical and effective conservation measures are imme-
diately implemented.
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S1. Checking acoustic metric

As stated in the main body of the paper, for annual change in acoustic activity to represent
change in abundance, there must be no systematic change in animal vocal behavior or range-
specific click detection. Although data were not available to measure these directly (such as
from animal-borne acoustic and movement recording tags), we performed three checks using
metrics related to acoustic behavior, sound propagation and background noise respectively.
These checks augment those performed by Jaramillo-Legorreta et al. (2017, Supporting
Information Appendix 1) on the 2011-2015 data, and by Taylor et al. (2016, Supporting
Information Appendix 3) on a separate acoustic survey undertaken in 2015 over a wider area (as
part of a combined visual-acoustic abundance estimation study).

For each check, we derived a relevant response variable, at the level of day within
sampling location within year. We then averaged across days (using only the core period 19
June to 19 August) to obtain a value per sampling location and year. We visually examined the
distribution of values between years using a boxplot. We also fit a classical linear mixed model
with year as a categorical explanatory variable and location as a random effect; by comparing

this to a model with no year effect we derived an indication of whether the response variable
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changed significantly between years. Analyses were performed using R 3.4.1 (R Core Team
2017).

To help maintain comparability between years, only the 34 sampling locations that were
sampled in all 6 years were included in the above analysis. We did not attempt to weight the

models or boxplots by the number of sampling days in each location and year.

S1.1. Acoustic behavior

If acoustic behavior changed over time, we would expect to see changes in the number of
detected vaquita clicks when animals are known to be present. To check this, we grouped the
acoustic data for each day and sensor location into “vaquita click positive minutes” (VCPMs) —
1.e., minutes where at least one vaquita click train was detected. We then used as a response
variable the number of clicks per VCPM. Note that, unlike the other two analyses reported here,
sampling locations with no vaquita click detections in a year were necessarily excluded from the
analysis, so the number of sampling locations was not the same in every year.

We found no evidence of change in clicks per VCPM between years, either from the
boxplot (Fig. S1) or linear mixed model (y? = 4.24,df = 5,p = 0.49). Note that this should
not be taken as definitive evidence of no change — for example, if some animals stop
echolocating entirely for extended periods in some years then this will not be detected using the
above metric. However, we have no reason to expect such a change in acoustic behavior
(vaquita are like harbor porpoises, which forage nearly continuously day and night — see, e.g.,
Wisniewska et al. 2016). More direct measurements of behavior, such as from an animal-

attached acoustic tag or a focal follow with acoustic array, are not feasible given the extremely
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low population density and cryptic nature of the vaquita. We therefore cautiously conclude that
change in acoustic behavior is unlikely to have caused spurious population indices.
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Figure S1. Boxplots showing distribution of clicks per vaquita click positive minute (VCPM) at
sampling locations between years. Bottom and top of the boxes indicate the first and third

quartile; vertical line the median; red diamond the mean; horizontal lines (whiskers) the lowest
and highest data point within 1.5 times the inter-quartile range of the lower and upper quartile,

respectively; dots (outliers) any data points outside this range.

S1.2. Sound propagation

Range-specific sound propagation can be measured by playback experiments using artificial
vaquita clicks; such an experiment was undertaken by Taylor et al. (2016) in 2015 over a wider
geographic region than that sampled here, but that has not been repeated in other years. Taylor
et al. were interested in spatial variation in propagation between the core area sampled here and a

shallow region further to the north and west; they concluded that there may be small differences
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in propagation, but that these are unlikely to be enough to cause large differences in effective
vaquita click detection ranges (see Taylor et al. 2016 Supporting Information Appendix 3).

To minimize the effect of seasonal differences in propagation, the analyses were all
restricted to same period of 19 June to 19 August, inclusive. Nevertheless, some factors
affecting propagation may vary between years even within the same dates. One factor that we
have measurements on is temperature — this is measured by the CPOD loggers every minute. We
therefore used mean temperature as a response variable indicating possible changes in
propagation conditions.

We found strong evidence for a change in temperature between years (Figure S2; y? =
59.29,df = 5,p < 0.001): mean temperature appears to have generally increased over time,
with a strong jump between 2015 and 2016. The overall difference in mean temperature between

2011 and 2016 is 4.0 degrees centigrade.
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Figure S2. Boxplots showing distribution of temperature at sampling locations between years.
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To quantify the possible effect of such a change on transmission loss, we estimated the
transmission loss due to absorption (which is the component affected by temperature), using

equations 7.53a to 7.54c¢ of Kinsler et al. (1982):

_ARS? |, BAS
Rt et

where a is the transmission loss per meter (dB), f is the frequency, assumed to be 135 kHz, f; is
the relaxation frequency (Hz) of boric acid, calculated as

fi = 1.32 x 103(T + 273)e~1700/(T+273)
where T is the temperature (Celsius), f, is the relaxation frequency (Hz) of magnesium sulfate,
calculated as

f, = 1.55 X 107(T + 273)e~3052/(T+273)
and A, B and C are temperature- and pressure-dependent values calculated as follows.

A=895%x10"8(1+23%x1072T — 5.1 x 107*T?)
B=488x10"7(1+13x1072T)(1-0.9x 1073P,)
C=476%x10"13(1—-4.0x107?2T + 59 x 1074T?)(1 — 3.8 X 107*P,)
where P, is the pressure in atmospheres, assumed to be 2 (corresponding with a depth of
approximately 10m). Given a value of a, we estimated transmission loss due to absorption at a
nominal distance of r = 100m as
TL, =71a
These calculations (Table S1) yield a negligible decrease in transmission loss, from

4.605 dB at 24.6 °C in 2011 to 4.584 at 28.4 °C in 2016 — a change of only 0.021 dB. We
conclude that the warming Gulf has likely had little direct effect on the effective detection

distance of vaquita clicks.
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Year 2011 2012 2013 2014 2015 2016 Unit
T 24.6 25.2 259 26.7 26.6 28.4 °C

fi 129825 131590 1336.72 1360.80 1357.78  1413.01 Hz
/2 162223 165939 170363 175539 174885 186971 Hz

A 1.13E-07 1.12E-07 1.12E-07 1.12E-07 1.12E-07 1.11E-07

B 6.43E-07 6.47E-07 6.51E-07 6.56E-07 6.56E-07 6.67E-07

C 1.77E-13  1.74E-13 1.71E-13 1.68E-13 1.68E-13 1.62E-13

a 0.04605  0.04606 0.04605 0.04602  0.04602  0.04584 dB/m
TL, 4.605 4.607 4.605 4.602 4.602 4.584 dB

Table S1. Estimated transmission loss (Trans. loss) due to absorption for a 135 kHz signal at the

mean temperature observed in each year of sampling. Symbols are defined in the text.

S1.3. Background noise

The vast majority of detections made by the CPOD logger are not vaquita clicks; rather they are
impulsive sounds from other sources such as crustaceans and fine sand in suspension, and these
are filtered out in post-processing, at the classification stage. These recorded sounds provide
some opportunity to quantify background noise at vaquita-relevant frequencies, because the
number of detections per minute of sampling effort will be related to the level of background
noise. Taylor et al. (2016, Supporting Materials Appendix 3) used this approach to investigate
whether there was a difference in background noise between core and shallow water strata.
They found some differences between strata (the shallow stratum was nosier). This prompted a
further investigation, where copies of real vaquita click trains were added to data sets of varying

noise level, and the performance of the detection and classification algorithm in finding them
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was assessed. There was no difference in detection performance in quieter conditions, defined as
those with less than 3000 detections per minute, but some degradation of performance was noted
in higher noise conditions (i.e., 3000 detections per minute or greater).

We therefore used as response metric the proportion of “noisy minutes” — i.e., minutes
with >3000 detections. There was no evidence of a change in the proportion of noisy minutes
between years (y? = 6.87,df = 5,p < 0.23), although the data are strongly right-skewed
(Figure S3) and so a more sophisticated analysis that does not assume a normally-distributed
response may be warranted. Even so, the median (across sites) proportion of noisy minutes was
less than 0.06 in all years, meaning that most sites do not have high levels of background noise
most of the time. Note that fishing activity is unlikely to contribute strongly to background noise
because the season for acoustic monitoring was chosen because summers generally have very
low fishing effort (including for Totoaba, which spawn in winter/spring).

We conclude that background noise variation between years is unlikely to bias the

estimated changes in vaquita population size.
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125  Figure S3. Boxplots showing distribution of proportion of “noisy minutes” — i.e., minutes with

126 >3000 detections at sampling locations between years.
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Table S1. Estimated annual rate of change (J,) in acoustic activity from the statistical trend
models. Quantities are posterior means with 95% posterior credible intervals in brackets.

Year Geostatistical model | Post-stratification Model average
mixture model

2011-12 0.674 0.980 0.827
(0.207-1.578) (0.460-1.927) (0.250-1.791)

2012-13 1.244 0.708 0.978
(0.381-3.230) (0.309-1.409) (0.329-2.647)

2013-14 0.505 0.546 0.525
(0.136-1.311) (0.236-1.091) (0.162-1.182)

2014-15 0.680 0.702 0.691
(0.241-1.485) (0.304-1.364) (0.267-1.423)

2015-16 0.401 0.611 0.506

(0.163-0.827)

(0.270-1.206)

(0.184-1.083)

Geometric mean
annual change

0.575
(0.460-0.691)

0.649
(0.562-0.749)

0.612
(0.480-0.735)
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