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Hot-Hole Cooling Controls the 
Initial Ultrafast Relaxation in 
Methylammonium Lead Iodide 
Perovskite
Gordon J. Hedley 1, Claudio Quarti2, Jonathon Harwell1, Oleg V. Prezhdo3, David Beljonne2 & 
Ifor D. W. Samuel   1

Understanding the initial ultrafast excited state dynamics of methylammonium lead iodide (MAPI) 
perovskite is of vital importance to enable its fullest utilisation in optoelectronic devices and the 
design of improved materials. Here we have combined advanced measurements of the ultrafast 
photoluminescence from MAPI films up to 0.6 eV above the relaxed excited state with cutting-edge 
advanced non-adiabatic quantum dynamics simulations, to provide a powerful unique insight into 
the earliest time behaviour in MAPI. Our joint experimental-theoretical approach highlights that the 
cooling of holes from deep in the valence band to the valence band edge is fast, occurring on a 100–
500 fs timescale. Cooling of electrons from high in the conduction band to the conduction band edge, 
however, is much slower, on the order of 1–10 ps. Density of states calculations indicate that excited 
states with holes deep in the valence band are greatly favoured upon photoexcitation, and this matches 
well with the fast (100–500 fs) formation time for the relaxed excited state observed in our ultrafast PL 
measurements. Consequently we are able to provide a complete observation of the initial excited state 
evolution in this important prototypical material.

Methylammonium lead iodide (MAPI) perovskites and chemical analogues have seen a tremendous degree of 
interest, initially for use in photovoltaic cells1–9, and more recently also for light emitting diodes10 and lasers11,12. 
The key advantage of MAPI perovskite is the hybrid nature of the material, combining the benefits of conven-
tional inorganic semiconductors such as high charge mobilities13 and small exciton binding energies14, with 
cost-effective solution-based deposition techniques developed for organic semiconductors15. While great devel-
opments have been reported in both the efficiencies of the various devices fabricated using MAPI16 and under-
standing of the underlying physics of the material17, significant questions remain outstanding. Key amongst these 
questions is what the exact nature of the initially accessed photogenerated electronic states in MAPI are, how the 
system relaxes to the lowest excited state, and what controls the relaxation process.

Upon absorption of a photon in MAPI, free electron-hole pairs are formed17–20. Recombination of these pairs 
can be observed with time-resolved photoluminescence measurements, deducing recombination pathways and 
rates on slow nanosecond timescales as the excited state depopulates back to the ground state. The very initial 
femtosecond processes in MAPI upon absorption of a photon have most often been measured with ultrafast 
transient absorption, where monitoring in the spectral region of the ground state bleach gives information on the 
evolution to the final excited state. Xing et al. followed the evolution of the photobleaching signals at 480 nm and 
at 760 nm for a MAPI-film in contact with a selective hole- or electron-layer, observing a strikingly asymmetric 
behaviour for holes and electrons21. An excitation dependence is reported such that if MAPI is excited at 400 nm 
a 400 fs rise is observed, assigned to hole relaxation from the second to first valence band (dual-valence model), 
while if the interband transition is excited directly from the first valence band with 600 nm excitation then no 
rise-time is seen. A consistent but slightly different model was proposed in another study22 where charge cooling 
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takes place on a 700 fs timescale, and was assigned to both electron and hole cooling. Recently Richter et al. used 
two-dimensional photon echo experiments – a significantly more complex pump-probe-like methodology–to 
study carrier thermalization in MAPI, and find it to be in the region of 10–85 fs, dependent upon the excess 
energy of the carriers23. Meanwhile Ghosh et al. used very high time resolution pump-probe to study the earliest 
processes in MAPI, and find that initially created hot excitons dissociate in ~20 fs, followed by carrier thermali-
zation on the 100 fs timescale24. It is clear that the ability to probe the relaxation of both charges and distinguish 
them is crucial to aid understanding of the fundamental processes in MAPI. The central question is: what is the 
nature of the ultrafast relaxation in this material? Are electrons promoted from the valence band (VB) edge to 
high in the conduction band (CB) before relaxing, or are they promoted from deep in the VB to the CB edge and 
holes “cool” to the VB edge? Crucially, as transient absorption measurements involve tracking the ground state 
bleach or excited state absorption bands that can shift or evolve as the excited state evolves, the ability to track the 
relaxation process is somewhat hampered by spectral complexity making definitive tracking of the excited state 
evolution to the final state challenging.

Observations of ultrafast photoluminescence (PL), by contrast, can greatly aid in understanding of this 
difficult but important problem. By measuring the ultrafast PL at different detection energies we can in effect 
directly monitor the excited state population at different stages in its evolution, thus a detailed picture can readily 
and unambiguously be constructed, from the species created upon absorption of a photon through to the final 
long-lived relaxed emissive state. Limited single wavelength ultrafast PL experiments in MAPI have enabled the 
observation of excited state relaxation times similar to those found in transient absorption to be measured25,26, 
with time constants of ~200–500 fs. However, only narrow conclusions were able to be drawn on what processes 
controlled this relaxation, with assignment given to equal rates of cooling of electrons to the conduction band 
edge and holes to the valence band edge.

Here we are able to answer the pressing question of what controls the initial relaxation in MAPI perovskite 
by combining a detailed and comprehensive set of observations of the ultrafast photoluminescence with an 
advanced theoretical treatment of the excited states using non-adiabatic quantum dynamics simulations. As men-
tioned above, non-relaxed excited states in MAPI can either be from within the valence band to the conduction 
band edge, generating hot holes, from the VB edge to higher in the CB, generating hot electrons, or a combination 
of both. Our PL measurements provide accurate estimations of PL rise-times at various wavelengths, enabling us 
to track quantitatively the photogenerated carrier dynamics. The measured PL rise-times indicate a fast relaxa-
tion of photogenerated carriers at high energy, within 100–500 fs, followed by a slower relaxation when carriers 
get close to the band edges, on the order of 1–10 ps. Non-adiabatic quantum dynamics simulations match the 
observed rise-times and enable us to assign the initial fast component of the charge relaxation to cooling of holes 
within the valence band and the subsequent slower component to the relaxation of the electrons within the con-
duction band. We find that the electron density of states strongly favours optical transitions from deeper inside 
the valence band to the conduction band edge, leading primarily to the generation of hot holes, and thus the over-
all relaxation is dominated by hot hole cooling on the 100–500 fs time range. A small amount of electron cooling 
to the conduction band edge also contributes, and is consistent with the significant slowing of the relaxation rate 
that is observed as one approaches the final lowest excited state energy, where cooling slows to ~700 fs. Overall 
our combined experiment-theory approach enables important new insights into the fundamental ultrafast relax-
ation in MAPI to be determined.

Results
Ultrafast photoluminescence.  To begin our examination of the excited state processes in MAPI we look 
at the time-resolved photoluminescence from a thin film of the material deposited on a fused silica substrate. The 
steady state absorption and PL spectra of MAPI are shown in Fig. 1a along with its unit cell. MAPI perovskite 
shows a bandgap at 1.6 eV (775 nm), with the PL peak at 1.57 eV (790 nm). Shoulders in the absorption spectrum 
are evident at 680, 620 and 575 nm, possibly associated with higher energy transitions between the valence and 
conduction band. Steady state PL is attributed to long-lived charge recombination17, however the nature of any 
ultrafast PL is less well understood.

Ultrafast PL from MAPI films was investigated with upconversion spectroscopy. Excitation was at 2.41 eV 
(~0.85 eV above the PL peak), with no power dependence observed in kinetics over a factor of two of excitation 
fluence (see Supporting Information). An overall picture of the spectral dependence of the time-resolved PL 
decays is shown in Fig. 1b, where PL kinetics from energies well above the steady state PL peak, a little above the 
peak, and on the peak are shown out to ~5 ps. As expected, PL detected at energies above the steady state PL decay 
quickly as the system relaxes to the bottom of the excited state, while PL from within the steady state region decays 
very slowly (in the context of the time window chosen here) through radiative recombination of charge pairs back 
to the ground state. Noticeable in these selected time traces is that the initial formation time of PL changes as a 
function of the detection energy. To investigate this more carefully the rise-time region of three further energies 
are shown in Fig. 1c–e. It is clear that in all cases, even at a detection energy as high as 2.06 eV (600 nm), there is 
a delay in the formation of the PL versus what one would expect given the temporal response of the experiment. 
This is evidenced by the fact that the slope of the PL formation is shallower than the dotted line representing the 
instrument response function. The PL kinetics we would expect to measure on the instrument if the emission was 
instantaneous is shown in SI – indicating that the observed PL formation is demonstrably slower. Here, 350 meV 
of excess energy has been deposited in the perovskite, and it takes a rise-time constant of ~120 fs for the excited 
state to dissipate this energy and to reach the energy detection window. When one moves to detecting emission 
on the PL peak at 1.57 eV (790 nm, Fig. 1e) then the effect is even clearer, where 840 meV of excess energy takes 
a rise-time constant of 650 fs to dissipate. This is understandable in the context of relaxation of the excited state, 
where an effective delay time will exist at lower energy relaxed sites before the excited state reaches them. To 
fully quantify this effect, we have measured the PL rise-times at 20 different energies from 2.18 to 1.51 eV (570 
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to 820 nm in 10 nm steps). Each of these traces are fitted with an exponential rise-time constant convolved with 
the instrument response function and rounded to the nearest 5 fs, to enable a quantifiable parameter of the PL 
kinetics to be monitored as a function of detection energy/excess energy above the relaxed excited state. All these 
rise-time constants are plotted in Fig. 1f along with the absorption and PL spectra for reference, the fits at each 
individual energy are shown in SI for reference. A continual increase in the rise-time is recorded as one moves 
down in energy towards the steady-state PL, in line with the larger amount of energy that must be dissipated. 
However, the increase is not linear, and instead shows a relatively shallow gradient throughout the lower-energy 
part of the absorption spectrum, with a significant slowing at and beyond the absorption edge bandgap ~1.6 eV.

The measured ultrafast photoluminescence rise-times give us a powerful insight into the electronic relaxation 
processes occurring at the very earliest times in MAPI. It is clear from these results that such relaxations are not 
trivial, and are instead controlled by dissipation mechanisms within the MAPI band structure. Such a meas-
urable relaxation contrasts with other systems, e.g. organic conjugated materials where a nearly instantaneous 
dissipation through high frequency vibrational modes enables the system to reach close to its final state in tens 
of femtoseconds. Here in MAPI even with only ~0.25 eV of excess energy to be dissipated, the excited state takes 
~100 fs to do so. At the onset of the steady state PL the dissipation of excess energy slows considerably, rising to 
~700 fs. As noted earlier, the indistinguishability of electron and hole cooling to the band edges makes it difficult 
for us to go further in our analysis of the earliest relaxations from experiments alone, thus we have performed a 
theoretical investigation of the ultrafast dynamics in MAPI to aid our understanding and interpretation of the 
experimental results.

Theoretical simulations.  To further our investigations on MAPI we have performed ground-state 
Born-Oppenheimer Molecular Dynamics (BOMD) to probe local distortions of the lattice, along with 
semi-classical Non-Adiabatic Quantum Dynamics (NAQD) simulations of the energy cooling dynamics in hot 
electronic states. For the latter, we resorted to the PYXAID program27,28 which has been successfully used by some 
of the authors to study the excited state properties of MAPI29–32. An initial excited state is defined by promoting 
an electron from a Kohn-Sham33 single-particle level in the valence band to a Kohn-Sham level in the conduction 
band. Subsequently, the decay of the electron/hole couple in the conduction/valence electronic states manifold is 
simulated by calculating the non-adiabatic couplings between single particle states and using the fewest-surface 

Figure 1.  Ultrafast experimental results. (a) Absorption (blue line), PL (red line) spectra of methylammonium 
lead iodide films. The purple arrow indicates the excitation wavelength used in these studies. The black line is 
the theoretically calculated absorption spectrum (vide infra). The crystal structure is shown in the inset. (b) PL 
dynamics measured in the range 0–5 ps at three detection energies as noted. Measuring well above the bandgap 
leads to a fast decay, on the edge of the steady state PL a slower decay, while on the PL peak a decay so slow as to 
be outside the time window used here. (c–e) Ultrafast PL kinetics of a MAPI film in the 0–1500 fs time range at 
three detection energies of 2.06 eV (c), 1.77 eV (d) and 1.57 eV (e). The instrument response function is shown 
as a dotted line in each case. The solid lines represent the best-fit to the dynamics with rise-times of 120, 330 and 
655 fs for each detection energy, along with subsequent fast decays as appropriate. (f) Fitted PL rise-times (open 
diamonds, left axis) as a function of detection energy. Also shown are the steady state absorption and PL spectra 
for reference (solid lines, right axis). The purple squares are rise-times derived from theoretical calculations 
(vide infra) and show very good agreement with experimental values. The coloured vertical arrows refer to the 
detection energies/rise-times shown in panels (c–e).
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hopping algorithm to estimate the transition probabilities. The use of the Kohn-Sham single particle set does not 
allow electron-hole interactions to be considered. On the other hand, previous studies clearly pointed out the 
extremely long lifetime (of the order of tens of ns34) and ineffective recombination of photogenerated carriers, 
exceeding the Langevin limit35. Hence, electron-hole interaction is expected to play a negligible role in charge 
relaxation on the ultrafast time-scale (1.2 ps of NAQD simulations)36. The Kohn-Sham orbital energies and the 
non-adiabatic couplings were computed at the scalar relativistic PBE level of theory37 which is known to predict 
the correct band gap for MAPI perovskites38–40. Full details of the theoretical methods, packages used and of 
the computational set-up adopted are provided in the Computational Methods section. The structural model 
employed for the present simulations consists of a 2 × 2 × 1 supercell of the room-temperature tetragonal phase 
of the MAPI perovskite, shown in SI, which represents a reasonable compromise between accuracy and compu-
tational cost.

In our theoretical examination we first wanted to establish what the possible and likely initial configurations 
of the electronic transitions are. The band gap computed along the BOMD trajectory averages to 1.74 eV, in good 
agreement with what we observe experimentally in Fig. 1 and with similar simulations in the literature41–44. The 
oscillations of the band gap within a root mean square of 0.05 eV also agree with the same literature data. The 
initial electronic excited-state configuration for the NAQD simulations must be as close as possible to the PL 
experimental conditions. Thus we considered all the Kohn-Sham pairs separated by an energy of ~0.85 eV larger 
than the fundamental band gap, resulting in 68 pairs of Kohn-Sham states, from a total of 529 electronic configu-
rations (including the ground state) in the present computational set-up. Different scenarios for these transitions 
exist, with the absorption of a photon resulting in the promotion of an electron either deep in the valence band to 
the conduction band edge (creating a “hot hole”) or from the valence band edge to a level deep in the conduction 
band (creating a “hot electron”), as sketched in the inset of Fig. 2. We thus classify all electron-hole pair states in 
these terms, with configurations where the excess of excitation energy is comparable between the two bands being 
classified as “intermediate”.

In Fig. 2, we report the joint Density of States (jDOS), describing the number of electron-hole pairs at a 
given excitation energy. It can clearly be seen that when absorbing a photon at ~0.85 eV higher than the band 
gap, matching the experiments discussed above, there are many “hot-hole” and “intermediate”-like excited states 
available, while “hot-electron” states represent only a modest contribution (roughly 8%). This is due to the fact 
that MAPI has a denser DOS in the valence than in the conduction band (Fig. 3d), as widely pointed out in the 
literature45,46, which reflects the chemical composition of hybrid perovskite. Indeed, the valence band is mainly 
composed of 5p orbitals of the iodide, while the conduction band is mostly lead 6p orbitals, hence resulting in 
many more valence than conduction states, because of the 3:1 iodide:lead stoichiometry of this material. To assess 
the contributions from hot hole, hot electron and intermediate excitations to the optical absorption, we calculate 
and sum their oscillator strengths to generate a theoretical absorption spectrum, as shown in Fig. 1a. Two com-
ments can be made, firstly that the predicted spectrum qualitatively agrees well with that measured, and secondly 
that the theoretical spectrum closely follows the jDOS shown in Fig. 2, demonstrating that all excitations share 
similar radiative rates.

That we find all transitions contributing a significant dipole moment irrespective of the starting valence and 
ending conduction states is intriguing and likely arises from reduced symmetry constraints in the presence of 
thermal lattice fluctuations in our 2 × 2 × 1 supercell model.

Having established that the ground to excited state transitions are appropriate for the MAPI system, we now 
turn our attention to how the excited state dynamically evolves at the early timescales after photoexcitation with 
NAQD simulations. Both “hot-hole”, “intermediate” and “hot-electron” states have been considered as starting 
configurations for the NAQD simulations, keeping in mind that in MAPI the photogenerated excited state likely 
corresponds to the first two types of configurations. The evolution of the electronic population for excited states 

Figure 2.  The total joint Density of States (jDOS) and jDOS associated to hot electron, intermediate and hot 
hole excited states. Shown in the inset is the definition we use here of the electronic excitation in terms of hot 
holes and hot electrons.
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at different energies above the band gap (Eg) are summarized in Fig. 3a–c. For “hot-hole” configurations (Fig. 3a), 
the population of the initial high-energy (0.85 eV above Eg) excited-state decays to ~5% within 400 fs and it goes 
to 0 at 600 fs. Concurrently the population of the excited states at 0.5 eV above Eg increases, showing a rise-time 
of ~160 fs, which compares well with the experimental rise time (120 fs), and then it decays. The rise time corre-
sponds to the time required by the initial “hot-hole” configuration to cool down from 0.85 eV to 0.5 eV above Eg. 
For states at 0.3, 0.2 eV above Eg and close to Eg, we find rise-times of 230, 345 and 702 fs, respectively, which agree 
very well with the experimental values (280, 330 and 650 fs) as shown in Fig. 1c–e. The population of the elec-
tronic states close to the band gap (Eg) goes from ~2% at 200 fs to ~52% at 800 fs and stabilizes to ~67% at 1200 fs, 
thus leaving ~33% of the electrons and holes in a higher energy electronic configuration.

For the initial “hot electron” configurations (Fig. 3b), however, a very different time evolution is predicted. 
The population of the initial, high-energy excited state decays very slowly in time and it is still considerably 
populated (15%) after 1200 fs. Correspondingly, the population of the excited states at 0.5, 0.3, 0.2 eV above Eg 
and close to Eg show only a very small increase in time. In particular, after 1200 fs, only 16% of the electrons 
and holes have reached the bottom of the conduction and valence band edge, respectively. Hence, in the case of 
initial “hot-electron” excited-states, electrons take a very long time to cool down through the conduction band. 
We tentatively associate this relaxation time with the measured 10 ps timescale reported by Chen et al.26. Finally, 
for “intermediate” initial excited-states (Fig. 3c), the population of the initial, high-energy excited states rapidly 
decays down to 15% of the initial value within the first 400 fs, similar to the “hot-hole” case, but the population of 
the states close to the Eg is still limited to 18% after 1200 fs, similar to the “hot-electron” case. For these electronic 
configurations, therefore, the holes rapidly cool to the valence band edge, but the electrons cool much more 
slowly from high-energy configurations, thus explaining the small population of the excited states close to Eg after 
1200 fs.

Figure 3.  Results from NAQD simulations. (a–c) Time evolution of the population for excited electronic 
configurations over the first 1.2 ps for hot hole, hot electron and the intermediate case at energies corresponding 
to the band gap (Eg) and at higher energies. The population is given as the sum of the populations of the 
electronic configurations at a given energy above Eg (within a window of ± 0.05 eV, except close to the band gap, 
where, we considered an energy window of 0.1 eV). (d) DOS computed for MAPI along the BOMD trajectory 
and partial DOS from 5p orbitals of iodine and 6p orbitals from lead. (e) Non-adiabatic couplings in the energy 
representation, averaged along the BOMD trajectory. The valence band edge is set to 0 eV and the couplings 
(z-scale) are expressed in meV. (f) Schematic of the observed ultrafast relaxation processes in MAPI, with holes 
from deep in the valence band cooling quickly, while electrons from high in the conduction band cool slowly.
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Summarising, the presented NAQD simulations nicely reproduce the fast excited state dynamics observed in 
the PL measurements when starting with “hot-hole” electronic configurations, giving us a strong indication that 
this is the process that dominates in films of MAPI. Surprisingly we calculated a strikingly slower electron evo-
lution in the “hot-electron” and “intermediate” cases, indicating that hot electrons cool down much slower than 
“hot holes” do. The observed difference in the relaxation times of electrons versus holes provides an explanation 
for the transient absorption measurements by Xing that showed distinctive results when a MAPI film was in con-
tact with an electron- (PBCM) or a hole-selective layer21.

We are thus driven to asking the question, what is the reason for the calculated and matching experimen-
tal observations having such a significant electron-hole asymmetry? In the present formalism, the rate of the 
electronic transition from state i to state j depends essentially on the non-adiabatic coupling matrix element 
(dij), i.e. large non-adiabatic coupling dij, correspond to a fast i to j electronic transition. In Fig. 3e we report 
the energy-dependent non-adiabatic matrix elements averaged along the BOMD trajectory. Firstly, we note that 
(as anticipated) the only non-zero coupling values are close to the diagonal, meaning that the non-adiabatic 
couplings are large only for Kohn-Sham states close in energy. Secondly, non-adiabatic couplings are larger in 
the valence band (with values up to 50 meV) than in the conduction band (~10 meV). Thirdly, there is a clear 
correspondence between the DOS and the value of the non-adiabatic coupling, that is, non-adiabatic couplings 
are large in the energy range of the maximum of the DOS (~1 eV below the valence band and 0.5 eV above the 
conduction band), while they decrease in correspondence of the band edges where the DOS is small. This is 
clearly explained by the fact that a high density of states ensures close energy separation between coupled elec-
tronic states and efficient release of the excess energy to nuclear degrees of freedom, which is reflected in a larger 
value of the NA couplings. Thus, the larger non-adiabatic couplings for states within the valence band compared 
to the conduction band follow the shape of the corresponding DOS. The conjunction of the larger non-adiabatic 
couplings and the higher density of available states lead to holes relaxing faster than electrons and to hot-electrons 
relaxing slower close to the band edge. These conclusions allow the two different gradient regimes of rise-times 
in the experimental results (Fig. 1f) to be fully understood. It is worth stressing that the present argument, which 
correlates fast/slow non radiative recombination to a larger/smaller density of states, represents a different mech-
anism from the proposed “phonon bottleneck”, to explain the slowing of the hot-charge relaxation close to the 
band edge47,48. Recent work has in fact observed a similarly slow hot-charge relaxation, even under low fluence, 
where the energy of the hot-carrier is expected to be effectively dissipated by phonons49. We can extend our 
analysis to investigating the phonons relevant for the electronic processes, by taking a Fourier transform of the 
time-dependent band gap autocorrelation function, as shown in SI. Large components in the frequency region 
below 100 cm−1 are calculated, assigned mainly to the vibration of the inorganic framework50; there is also a com-
ponent at 115 cm−1, which matches the measured Raman signals found at 109 and at 119 cm−1 in thin-films and 
mesostructured samples, respectively51.

Discussion
In this work we have combined ultrafast photoluminescence measurements with Non-Adiabatic Quantum 
Dynamics (NAQD) simulations to gain a detailed insight into the initial excited state processes in MAPI per-
ovskites. By observing the femtosecond photoluminescence we are directly measuring the dynamics of the 
emissive species photogenerated in the sample, free from any complications of assignment that can make other 
techniques such as pump-probe spectroscopy challenging. The experimental results are interpreted on the basis 
of NAQD simulations, which follow the time evolution of the initial excited state, allowing us to present an overall 
picture of the earliest electronic processes.

Measuring the observed rise-times in the PL allows assessing the processes that control the delay in the excited 
state reaching the detection energy. Ultrafast relaxation, from the initial high-energy state populated with laser 
excitation to the final relaxed excited state, from which slower radiative and non-radiative decay occurs, can vary 
depending upon the system. In organic materials this initial relaxation is very fast, typically <100 fs52, for internal 
conversion between electronic states or even for vibrational redistribution amongst high frequency modes53. 
Slower picosecond relaxations, typically induced by coupling with low frequency vibrational modes, e.g. tor-
sional rotations, also occur in organic molecules, but generally do so from the already populated lowest electronic 
excited state and thus lead to only a small relaxation and spectral evolution54. In direct bandgap inorganic semi-
conductors, instead, relaxation of electrons and holes to the band edge can be considerably slower, in the picosec-
ond time range, and are mediated by lattice phonon modes. Our joint experimental-theoretical study points to a 
distinctive behaviour occurring in MAPI perovskite. Ultrafast PL measurements performed for optical excitation 
0.85 eV above the PL peak indicate relaxation processes in the sub-picosecond time scale, with fast relaxation 
when significantly above the relaxed excited state, but slowing considerably when it nears it. Well above the 
electronic band gap, the rise-times are of the order of 100–300 fs, while close to the band gap, the rise-times are 
longer, in the range of 300–700 fs (Fig. 1f). Given that such dynamics represents the formation time of emissive 
states, the general interpretation is that optical absorption generates electron/hole pairs that quickly dissociate 
and relax before contributing to non-geminate recombination and photon emission on longer timescales17. The 
theoretical calculations enable us to derive more exacting conclusions from the experimental results, show that 
above bandgap light absorption in MAPI likely results in promoting an electron from a deep valence band level 
to the conduction band edge (so-called “hot-hole” excited states), and predict rise-times for these “hot hole” like 
excitations in very good agreement with our experimental results. Thus, the theoretical calculations support the 
view that the PL measurements reported here probe relaxation of hot-holes in the valence band and provide 
theoretical support to the dual-valence model21. Moreover, theoretical simulations also predict that the electron 
excitation from the valence band edge to a high-energy conduction band level (a “hot-electron” state) is less likely 
and characterized by much longer lifetimes, on the order of ps26. This is also consistent with the long lifetime 
(102 ps) for hot-carriers recently reported for CH3NH3PbBr3 perovskites49. A recent publication by Madjet et al., 
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appeared during the preparation of this manuscript, also underlying an asymmetric behaviour for electron and 
hole relaxation36. However, these authors do not discuss whether the initial photogenerated species corresponds 
to “hot-hole” rather than to “hot-electron” like excitation, which is the key result of the present work, and leads 
to a fuller understanding of the optoelectronic properties of hybrid perovskites34. The ability to discriminate 
between charges in the very earliest time evolution of the MAPI excited state that we report here is of great value, 
as this is very difficult to achieve given the relative indistinguishability of electrons and holes. Furthermore these 
results reach the earliest possible times after photoexcitation of the material, and tell us about the nature of the 
energy landscape that both charges experience as they relax.

These findings are important, as they help to elucidate the nature, timescales and details of the very fastest ini-
tial processes in MAPI perovskite. Understanding of such details is important if one wants to think about taking 
advantage of the unique properties of these materials. For example, such new knowledge may open up possible 
strategies for hot-carrier extraction that would take advantage of the long lifetime of “hot-electron”-like states 
that we find here. Similarly, perovskite-based lasers could benefit from the long life times of these “hot-electrons”, 
which are crucial for the population inversion process.

Experimental Methods
Film preparation.  Perovskite films were prepared by the lead acetate precursor route described by Zhang 
et al.55. A solution of 221 mg of recrystallised methylammonium iodide (MAI) and 175.6 mg of lead acetate dis-
solved in 1 ml of N-N dimethylformamide (DMF) and stirred for 5 minutes until the solution had completely dis-
solved. Substrates to be spin coated were first cleaned via sequential sonication in Helmanex solution, deionised 
water, acetone, and then isopropanol before being dried and then oxygen plasma cleaned for 3 minutes at maxi-
mum power. The solution was then spin coated onto the clean substrate in a nitrogen filled glovebox (<0.1ppm 
O2 and H2O) at 2000 RPM for 60 s, followed by vacuum annealing at 100 °C for 5 minutes. Samples were ~120 nm 
thick with <10 nm roughness, and any samples with PbI2 impurities (shown by a “milky” appearance on the sur-
face of the film) were discarded. Samples were encapsulated by placing a 2 mm thick fused silica window on top of 
the film and sealing it in a rotating sample holder for measurement in the upconversion setup.

Ultrafast photoluminescence.  Ultrafast PL was measured with a modified FOG100 upconversion setup 
by CDP Systems. Briefly, the 1030 nm, 80 MHz, 100 fs fundamental of an Yb:KGW oscillator (FLINT by Light 
Conversion) is fed into the setup, where the second harmonic at 515 nm is generated with a BBO crystal. This 
forms the excitation beam that is passed through a Berek polariser set to magic angle with respect to the detection 
polarisation, then focussed onto the sample, which was rotated to avoid sample degradation, while PL was col-
lected with a short focal length lens. The residual 1030 nm fundamental that was not converted for the excitation 
was instead sent down an optical delay line and then focussed onto a BBO upconversion crystal along where it 
was spatially overlapped with the collected PL. Upconverted photons in the visible or near-UV were then filtered 
spectrally and spatially before being detected with a photomultiplier tube. Computer control of the delay line 
along with PMT counting enable the PL intensity as a function of time to be recorded. The instrument response 
function was recorded by measuring the water Raman shift of the excitation laser. The optical path length was 
small (~0.5 mm) to ensure dispersion did not broaden the response significantly compared to the thin perovskite 
film. This gave a Gaussian response of width 244 fs full-width half-maximum.

Computational Methods
Electronic structure calculations.  Electronic structure calculations are performed at the DFT level of 
theory, within the pseudopotential/plane-wave implementation of the PWSCF program from the Quantum-
Espresso suite56. We resort to ultrasoft, scalar-relativistic pseudotential, along with PBE functional to describe 
exchange-correlation37, and we used a cutoff of 25 Ry and 200 Ry, respectively for the expansion of the wave-
function and electron density. The present computational set-up has been largely exploited in the literature and 
represents the best compromise between accuracy and computational cost41–43.

For the 2 × 2 × 1 supercell model of the tetragonal phase, we employed the cell parameters by Poglitsch 
and Weber (total cell parameters of 17.72 × 17.72 × 12.67 Å)57. During the BOMD simulations, we resort to a 
Monkhorst-Pack mesh58 in the first Brillouin zone of 1 × 1 × 2, to preserve a comparable accuracy of the atomic 
forces along the three crystallographic directions, in line with similar calculations reported in the literature41,42. 
During the evaluation of the non-adiabatic matrix elements, instead, we considered only Γ. The comparison of 
the DOS for the supercell model evaluated with the two sets of k-point mesh shows that there are only minor 
differences between the two cases and with respect to a reference calculation of the tetragonal unit cell, using a 
4 × 4 × 4 sampling of the first Brillouin zone (see Supporting Information).

Born-Oppenheimer molecular dynamics (BOMD).  BOMD is conducted under NVT conditions, for a 
total simulation length of 4.5 ps. This includes 1.5 ps of production dynamics, performed after 3 ps of thermaliza-
tion, where the target temperature (300 K) was reached following three steps of 1 ps duration each, with progres-
sive increase of the temperature by 100 K. The procedure is similar to the one reported in ref.42, with the use of 
~1 fs time steps, along with the Anderson thermostat to control the temperature, with a time constant of ~5 fs, in 
line with other BOMD simulations reported in the literature34,44,59.

Non-adiabatic quantum dynamics.  We carried out NAQD simulations using the PYXAID program27,28. 
Out of the 68 electronic excited state configurations having similar energy to the initial excitation used in PL 
measurements (0.85 eV above Eg), we selected four “hot-hole”, four “intermediate” and four “hot-electron” as ini-
tial excited states configurations for the NAQD simulations, along with ten different initial conditions. The elec-
tronic configurations were then allowed to evolve in the NAQD simulations, using the Fewest Surface Hopping 
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algorithm, along the 529 electronic configurations resulting from the current computational set-up, considering 
300 stochastic realizations for each initial condition34.

No decoherence effects were considered in the present NAQD simulations. The need for a decoherence cor-
rection to a quantum-classical NA dynamics scheme is judged by comparing the decoherence timescale with the 
timescales of quantum transitions between electronic levels. In the case of intraband relaxation, investigated here, 
transitions happen within a dense manifold of electronic states that have similar properties60. Because the gaps 
between electronic states are small, approaching 0, transitions are very fast. On the other hand, the electronic 
states have similar properties, including potential energy surfaces, hence resulting in slow decoherence. As a 
result, the decoherence timescale is longer than quantum transition time, and a decoherence correction has little 
or no effect on the dynamics35.

Data Availability.  The research data supporting this publication can be accessed at https://doi.org/10.17630/ 
6f533425-f4b6-49c9-aa69-ea02692c6af0.
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