
DELIVERING THE BENEFITS OF PERSISTENCE TO SYSTEM
CONSTRUCTION AND EXECUTION

Quintin Ivor Cutts

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1993

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13488

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13488

Delivering the Benefits of Persistence to
System Construction and Execution

Quintin I. Cutts

Department of Mathematical and Computational Sciences

University of St Andrews

St Andrews

FifeKY16 9SS

Scotland

ProQuest Number: 10167261

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167261

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

%

Declarations

I, Quintin Ivor Cutts, hereby certify that this thesis has been composed by myself, that

it is a record of my own work, and that it has not been accepted in partial or complete

fulfilment of any other degree or professional qualification.

Signed Date

I was admitted to the Faculty of Science of the University of St Andrews under

Ordinance General No. 12 on 1st October 1988 and as a candidate for the degree of

Ph.D. on 1st October 1988.

Signed Date (Q - ^ ~ ^ 3»

I hereby certify that the candidate has fulfilled the conditions of the Resolution and

Regulations appropriate to the Degree of Ph.D.

Signature of Supervisor Date

In submitting this thesis to the University of St Andrews I understand that I am giving

permission for it to be made available for use in accordance with the regulations of the

University Library for the time being in force, subject to any copyright vested in the

work not being affected thereby. I also understand that the title and abstract will be

published, and that a copy of the work may be made and supplied to any bona fide

library or research worker.

Signed Date 1 4-^^%

Abstract
■3

f

In an orthogonally persistent programming system the longevity of data is independent

of its other attributes. The advantages of persistence may be seen primarily in the |

areas of data modelling and protection resulting from simpler semantics and reduced 1

complexity. These have been verified by the first implementations of persistent
languages, typically consisting of a persistent store, a run-time system and a compiler

that produces programs that may access and manipulate the persistent environment.

This thesis demonstrates that persistence can deliver many further benefits to the
programming process when applied to software construction and execution. To

support the thesis, a persistent environment has been extended with aU the components
necessary to support program construction and execution entirely within the persistent
environment. This is the first known example of a strongly-typed integrated persistent
programming environment.

The keystone of this work is the construction of a compiler that operates entirely |

within the persistent environment. During its construction, persistence has been

exploited in the development of a new methodology for the construction of
applications from components and in the optimisation of the widespread use of type

information throughout the environment.

Further enhancements to software construction and execution have been developed |
I

that can only be supported within an integrated persistent programming environment. &

It is shown how persistence forms the basis of a new methodology for dynamic

optimisation of code and data. In addition, new interfaces to the compiler are

described that offer increased functionality over traditional compilers. Extended by the

ability to manipulate structured values within the persistent environment, the interfaces
increase the simplicity, flexibility and efficiency of software construction and
execution. Reflective and hyper-programming techniques are also supported.

The methodologies and compilation facilities evolved together as the compiler was

developed and so the first uses of both were applied to one another. It is these

applications that have been described in this thesis as examples of its validity.

However, the methodologies and the compilation facilities need not be inter-twined.

The benefits derived from each of them are general and they may be used in many

areas of the persistent environment.

Acknowledgements

Firstly, I would like to thank Ron Morrison, my supervisor, for endless

encouragement, advice and patience and for his very significant rôle in my

development as a researcher. He has constructed a research environment which is the

object of envy and/or admiration to all who enter it.

Special thanks are also due to Fred Brown, Richard Connor, Alan Dearie and Graham

Kirby for the many detailed discussions that have lead to work presented here. Not to

mention their constant humour and enthusiasm.

Craig Baker, Ray Carrick and Dave Munro from the PISA group have also been

involved with this work. Outside the group, advice and encouragement have come

from Malcolm Atkinson, Dave McNally, Chris Marlin, John Rosenberg and Dave

Stemple.

Fred, Richard and Ron also deserve great praise for reading and re-reading various

drafts of the thesis.

Finally, I must thank Ron again for a very important contribution - allowing an

Englishman into his group.

parentibus carissimis meis

1

Contents

1 Introduction..1

1.1 Persistence.. ...4

1.1.1 Using a Persistent Environment to Cache Data............................6

1.2 Building an Integrated Persistent Programming Environment...................9

1.2.1 Conversion into an Integrated Persistent

Pi'ogramming Environment... 10

1.3 Constructing a Compiler within the Persistent Environment........................12

1.3.1 Constructing Applications in a Persistent

Environment.. 13

1.3.2 Using Persistence to Optimise Type Checking..............................15

1.4 Delivering the Benefits of a Persistent Programming

Environment..16 I

1.4.1 Using Persistence to Enhance Compilation...................................17

1.4.2 Using Persistence to Enhance Execution....................................... 18

1.4.3 Further Beneficiaries of an Integrated Environment.....................20

1.5 Working Practices in the St Andrews Persistence Group............................21

1.6 Related Work..22

1.7 Thesis Structure... 25 i

2 Constructing Applications in a Persistent Environment...27

:3
i

2.1 Introduction...27

2.1.1 Change and the Linking Process.. 28 5

2.1.2 Applying Persistence to the Separate Linking

Process...................................... 31

I
2.2 The General Architecture.. 33 4

I
i

2.2.1 Application Construction and Execution..34 <

2.2.1.1 Creation of Component Locations................................. 35

2.2.1.2 Constmction of Components..36

2.2.1.3 Execution of an Application...37

2.2.2 Component Evolution 38

2.2.2.1 Changing a Component by Assignment 38 |

2.2.2.2 Type Changes..39

2.2.2.3 Changes During Application Execution......................... 40

2.2.3 Supporting the Software Development Process............................41

2.2.3.1 Software Reuse..41

2.2.3.2 Application Evolution.. 42

2.3 An Implementation of the Architecture..44

2.3.1 Napier88.. 45

2.3.2 Implementing the architecture.. 47

2.3.2.1 Creation of the Initial Locations..................................... 47

2.3.2.2 Generators.. 47

2.3.2.3 Execution... 49

2.3.3 Support for the Features of the Architecture................................. 50

2.3.3.1 Evolution of Components.. 50

2.3.3.2 Software Reuse and Control over the

Component Space... 50

2.4 The Architecture Supported by Other Languages................................53

2.5 Conclusions............ 54

3 Persistent Type Representations.. 56

3.1 Introduction................................ 56

3.2 Type System Operations in Persistent Systems...................................60

3.2.1 The Type System Operations.. 61

3.2.2 Using the Type System Operations...66

3.2.2.1 Construction... 67

3.2.2.2 Compilation... 68

3.2.2.3 Execution... 70

3.2.3 Shai’ing Type Information and Operations.................................... 71

3.2.4 Summary..72 |

Î3.3 Type Information Producers..73 M

■3

3.4.0.1 Protecting the Integrity of Type

Representations..79

3.4.1 Choosing Representation Characteristics............................... 80

3.4.2 Type Type...82

3.4.3 Using Type for all Type Checking Operations.............................85

3.5 Caching the Results of Type System Operations... 86

3.5.1 The General Technique... 87

3.5.2 Optimising the Specialisation of Parameterised

Types... 89

3.5.3 Optimising Structural Type Equivalence Checking......................91

3.5.3.1 An Equivalence Cache...91

3.3.0.1 Conversion Between Denotation and

Representation.. 74

3.3.0.2 Sharing Type Information Between

Software Processes ...75

3.3.0.3 Sharing Type Information Between

Programs.. 76

3.3.1 Assessing the Implementation...76

i
3.3.2 Multiple Type Representations..77

3.3.3 Summary..78

3.4 A Type Representation.................................... 79 I

1

3.5.3.2 Including Non-equivalent Pairs in the

Cache...96

3.6 Conclusions...97

4 Using Persistence to Enhance Compilation..99

4.1 Introduction... 99

4.2 A Flexible Compiler Interface... 101

4.2.1 Linguistic Reflection...101

4.2.2 Supporting Flexible Binding Strategies....................................... 104

4.2.2.1 Composition-time Binding...................................... 105

4.2.2.2 Compüe-time Binding... 107

4.2.2.3 Separating Checking and Binding................................ 107

4.2.3 The Compiler Interface as an Abstract Data Type.........................112

4.3 Constructing the Compiler within the Persistent Environment..................113

4.3.1 The NapierSS Compiler.. 113

4.3.2 Building the Compiler on the Construction

Architecture.. 114

4.3.2.1 General Requirements of the Architecture................... 115

4.3.2.2 Bootstrapping the Compiler into the

Persistent Environment........... 116

4.3.2.3 Using the Flexible Compiler Interface to

Generate a Compiler.. 120

I
4.4 Dynamically Checked Witness Types 121 |

j
4.4.1 Napier88 Abstract Data Types... 122 r|

4.4.1.1 Accessing the Fields of Abstract Instances....................123

5.4 Storing and Choosing Concrete Specialisations...145

4.4.1.2 Placing Values of Witness Type into

Infinite Unions..124 é

4.4.2 Dynamic Witness Type Checking...126

4.4.2.1 Implementation..129

4.5 Conclusions.................. 129

5 Using Persistence to Optimise Execution... 131

5.1 Introduction.. 131

5.2 Polymorphic Procedures.......................... 133

5.2.1 Napier88 Polymorphic Procedures.. 133

5.2.2 Implementing Polymorphism ...136 |

5.2.2.1 A Mixed Implementation Strategy..................................139

5.3 Partly-tagged, Semi-uniform Polymorphism...141

5.3.1 Block Retention.. 142

5.3.2 Using Block Retention to Store Tag Information.........................143

5.3.3 Converting to and from the Uniform Polymorphic

Form... 144

: A-:' »,

%

 1

5.4.1 Storing Concrete Specialisations................... 147

5.4.2 Retrieving Concrete Code Vectors..148

5.5 Cost Functions and Execution Profiles ..150

5.5.1 Affordable vs. Exact Execution Profiles.. 150 i

5.5.2 Storing the Execution Profiles.. 152

5.5.2.1 Making Execution Profiles Persistent............................ 156

5.6 Polymorphic Code Enhancer... 156 ij

5.6.1 Compiling Concrete Specialisations... 157

5.6.2 Finding Procedures in the Persistent Environment.................. 158

5.6.3 Overwriting Polymorphic Specialisation Closures........................159

5.7 Conclusions..160

6 Conclusions.. 161

6.1 Delivering the Benefits of Persistence...161

6.2 Methodologies for Persistent Softwai'e Engineering.....................................164

6.2.1 Constructing Applications from Components...............................164

6.2.2 Optimisation techniques...165

6.2.2.1 Caching.. 165

6.2.2.2 Enhancement ...166

6.3 Enhancing the Functionality of the Compiler.. 166 |

6.4 Future Work...167

6.5 Finale...167

Appendix 1 The Napier88 Type System..168 |

A l.l Universe of Discourse.. 168

A1.2 Context Free Syntax and Type Rules... 169

A1.3 Type Equivalence Rule............ 170

A1.4 Napier88 Context Free Syntax..172

A1.5 Napier88 Type Rules..179

References...184

. v"'* - ' «ii*' --î : '

Ï

i

1 Introduction

The research presented in this thesis was undertaken in the context of the ESPRIT-

funded FIDE project [FID90]. The major aim of the project is to facilitate the

construction, maintenance and operation of large-scale long-lived and data-intensive

application systems, referred to here as Persistent Application Systems (PAS).

Typical examples of the systems under consideration are as follows:

• A social security system. The population recorded on such a system

represent a very large body of long-lived and constantly-evolving data.

The programs operating over that data will evolve as new legislation

concerning social security is introduced.

• Management of aircraft design information. All details of the design are

required from the initial concepts through to the finished product. Any

subsequent modifications must also be recorded. By law, aU of this

information must be retained for tens of years after the final aircraft of the

design has been manufactured in case of an aircraft failure. Design

analysis programs may evolve as new techniques and aircraft

characteristics are discovered.

The research of the FIDE consortium is concerned with reducing the cost and

difficulty of designing, building and maintaining PAS. Lack of integration between

conventional application-building components such as database systems,

programming languages, design tools and operating systems unnecessarily increases

the above intellectual and mechanical costs. System failure and the difficulties of |

recovery are also frequently exacerbated by this poor integration.

Improving the design, construction and operation of PAS has been planned within the
' i

FIDE project in two stages:

• Provision of a suitable language in which to write the components of a

PAS. The aim here is to remove the discontinuity between database

systems, programming languages and operating systems that must be

tackled when constmcdng components of a PAS.

• Provision of a consistent and coherent support environment for the

chosen language - a Fully Integrated Data Environment (FIDE). Such

an environment can be realised by removing the discontinuities between

the design and construction tools and the programming language itself.

Persistent programming languages are seen as an appropriate choice of PAS

implementation language. Persistent languages remove the discontinuity between long

and short-lived data exemplified by the traditional database, programming language

divide. In conjunction with a powerful type system, persistent programming

languages support increased power, safety and simplicity, all of which lead to

optimisations in the programming process.

Early research in the FIDE project has supported the development of many different

styles of persistent programming languages. These range from an embedded sub­

language [LR89], a statically typed object-oriented language [AC085], to strongly

typed multi-paradigm languages [MBC+89,MMS92]. The attempts of C++

implementations [Str86,Car89] and of the Smalltalk implementations

[GR83,BOP+89] in trying to integrate a programming language with an object store

have the same basic philosophical aims as those of the FIDE project. Their success is

discussed at the end of this chapter.

One of the current research areas of the FIDE project is the provision of a consistent

and coherent programming support environment for these languages. Such an

environment should support a harmonious framework in which a PAS may be

designed, constructed, operated and maintained. Current programming language

support envii'onments fail to provide the required consistency. Whilst each individual

component of these environments may be elegantly designed and well implemented.

they are poorly integrated and it is left to the programmer to overcome the associated

problems.

The required programming support environment will itself be implemented in some

programming system. The requirement of the implementation system is that it should

support within a consistent framework all the facilities for construction, compilation,

binding to existing data and components and execution of programs in the supported

language. In particular it must support the conversion of representations of programs

in the supported language into representations that may be executed by the supporting

language. This task is traditionally performed by a compiler.

This thesis assumes that a persistent programming language and its associated run­

time environment are the appropriate implementation technology for an integrated

programming support environment. It discusses the mechanisms necessary to

transform a language that can manipulate a persistent store into a single integrated

persistent programming environment and describes the implementation. Furthermore,

it will be shown that the construction of the environment is simplified using

persistence and subsequently that program construction and execution are enhanced

within an integrated persistent environment. The expected benefits are as follows:

• The binding of software components is more flexible.

• The complexity of software construction and evolution is reduced.

• The execution of software may be made more efficient.

A bootstrap implementation of a persistent programming language will be used to

construct the integrated programming environment supporting the construction and

execution of programs in the same persistent language. The persistence attribute of the

language is exploited wherever possible to enhance the construction and execution of

the integrated programming environment.

As soon as the ability to write and execute programs within the environment has been

provided the system may be developed from within. It is shown that these

developments may take advantage of the persistent environment in order to support

new techniques for software construction and execution within the system

demonstrating new levels of power and efficiency.

The mechanisms given in this thesis have all been implemented but should be regarded

as instances of methodological paradigms. Many more instances of the paradigms are

already envisaged and it is expected that these and others will be implemented as use

of the persistent environment becomes widespread.

1.1 Persistence

The persistence of a data item is defined as the length of time for which the item exists

and is usable [ABC83]. In an orthogonally persistent system, the persistence of all

data items manipulated withm the system is independent of their other properties. A

single programming language mechanism handles the longevity of aU data items from

micro-seconds to years.

The benefits of orthogonal persistence are well documented [ACC82,ABC+83,

ABC+84,AM85,AMP86,AB87,MBC+87,Wai87,AM88,Dea88,Bro89,MBC+90,Con

91,Weg90]. A major advantage of persistent systems is seen in the removal of

complexity. An inherent difficulty associated with the programming of data-intensive

applications is the understanding of the mappings between the real world and the

computational models. The programmer of an application manipulating long-lived

data must fully understand all the models shown in Figure 1.1 as well as the mappings

between them to be confident of constructing correct code.

In a persistent system only a single mapping is required between the programming

language data model and the real world as shown in Figure 1.2. Hence the task of

data modelling is greatly simplified.

Database

A

data model V
Programming

X
^ ^ Real world

language data model ^ ^ conceptual model

Figure 1.1 The models and mappings of a traditional system.

1 Persistent system ^ ^ Real world

1 data model ^ ^ conceptual model

Figure 1.2 The models and mapping of a persistent system.

As a consequence of the single programming language model, the programmer need

not write code to support the mappings that have been discarded. Measurements show

that maintaining the mappings constitutes as much as 30% of all code in data-intensive

applications [IBM?8]. Thus persistence yields mechanical as well as intellectual

benefits.

Some other advantages of orthogonal persistence are as follows:

• Type checking protection covers the entire environment. Since the only

way to access the data in the environment is via the persistent language,

no other protection mechanism is required

• Referential integrity is automatically supported. References between data

values are maintained in a consistent state irrespective of the longevity of

that data.

• Application components such as procedures and modules are first-class

values in the environment, laying the foundations for the construction of

large applications within the persistent environment.

t
r

1.1.1 Using a Persistent Environment to Cache Data

The persistent environment may be used as a cache for the storage of any data type |

supported by the persistent language. The general definition of a cache in this context

is a mechanism that may be used to store and later retrieve computed data and thus

avoid its repeated recomputation.

There may be many factors involved in the operation of a cache: |

• Which data should be stored in the cache?

• How is the data retrieved from the cache?

• Is data ever removed from the cache? There is a trade-off here between

the space used to store the cache and the time saved using it.

• How fast may the cache be accessed? The cache access must be fast with

respect to the time taken to compute the data for the cache to be

worthwhile.

• How expensive in terms of space and time is maintenance of the cache?

The trade-off here is against the time and space required to compute the

data.

• How frequently whl a cache search result in the required data? There is a

trade-off here between the time taken to perform the search against the !

time to perform the original computation.

• The cache affects only the speed of the required computation.

The traditional hardware cache [PS87] is just one example of the general caching

mechanism. A hardware cache stores the results of main memory lookups. The

memory devices used for hardware caches are very high speed and so examination of

the cache is much faster than a full main memory lookup. The cache lookup is

performed in parallel with the main memory lookup in case the cache fails to produce |

the required result; otherwise the result of the main memory lookup may be ignored.

The cache memory is very expensive and so is typically not large. Strategies are

required to determine which data should be placed into the cache and at what point it

may be removed. Hardware caching may run into difficulties when many individual

operations all use the same cache, since a context switch may result in an unsuitable

cache. Thrashing may occur when the contents of the cache are being repeatedly

discarded. Cache switching can overcome this problem but suffers the extra penalty

of reloading the cache on each switch.

The primary use of a persistent environment as a cache is as a store for structured data

values. The computation that is avoided consists of the storage and retrieval of |

structured data to and from a storage mechanism that only supports flat unstructured #

data, typically a file system.

The persistent environment may also be used as a cache for the results of any other

operations within the system. The results of complex calculations may be stored in a ®

lookup table keyed by the operands of the calculation, for example. The factors

involved in the operation of a cache described above should be considered before

constructing a caching mechanism for a particular operation.

The thrashing problems of hardware caching described above may be avoided in the r |

persistent environment since each operation may use a different cache. The persistent

storage space is conceptually infinite and so the space used by the cache is considered

cheap in comparison to the computation time that is saved.

Many instances of caching within the persistent environment will be demonstrated

within this thesis. Since the aim is to optimise both the constmction and execution of

software, the programs that are caching data will be considered in the following four

categories:

• Program composition.

• Compilation.

• Linking.

• Execution.

i

The data cached by a particular program invocation may be used for optimisation by

another invocation of the same or any other program. There are many different and

useful interactions between the four categories determined by the programs

participating in the generation and use of cached data. For example, data cached

during compilation of a program may be of use during its execution. Data cached

during the execution of one program may be used in the composition of another. As

shown in Figure 1.3, the persistent store may form the basis of a feedback mechanism

where the results of one program's execution may be used by another.

program
construction>

program \
^ compilation J

)program
linking

< progr^ A
execution J

Persistent Store

structured data values
such as source and

executable program
components and

other data constructed
during program

execution.

I

Figure 1.3 Caching data between programs via the persistent store.

There is no restriction over the type of the data that may be cached between programs.

Examples of data that is cached in the various techniques to be described here are as

follows: I
• Structured program, representations. These may be source, intermediate

or executable code representations.

• Type representations and definitions to be used for type checking

throughout the persistent environment.

• Execution profiles. An executing program may cache data that records

various aspects of the program's performance in the persistent

environment.

a:As with any caching technique, there is a trade-off between the space required in the .

persistent environment to hold the cached data and the time saved by not needing to I

reconstruct or recalculate it. However, many of the benefits described here apply to

data that would otherwise have required storage in an external storage system had it

not been cached. Significant extra space overall is not therefore required to support %

many of these techniques.

1.2 Building an Integrated Persistent Programming
Environment

The early part of the FIDE project has supported the initial implementations of a

number of persistent programming languages [MBC+89,AG088,MMS92,BBB+88].

These typically consist of the following components;

• A persistent store implementation.

• A run-time system to support execution of programs in the language and

to allow access to the persistent store.

• A compiler.

• Program construction tools.

As shown in Figure 1.4 which depicts an initial persistent language implementation the

compiler is implemented outside the persistent environment. Programs are constructed

and compiled using tools found in the enclosing environment and may then be

executed against the persistent environment to which they can add and change values. I
In a programming language that allows both static and dynamic type checking, this

configuration will result in type checking taking place both inside and outside the

persistent environment.

- J:- :

persistent envkonment file system

data structure

 ̂ function

"hello world"

compTer
[âtâ

source

Figure 1.4 A typical early persistent system.

Such systems have been sufficient to demonstrate the validity of persistent systems in

terms of greater programming simplicity and improved data modelling and protection

mechanisms.

1.2.1 Conversion into an Integrated Persistent
Programming Environment

An integrated persistent programming environment is achieved by supporting all

programming activity with software constructed within a persistent environment.

Such an integrated programming environment may be constructed using one of the

initial persistent programming language implementations outlined above. The aim is to

build within the persistent environment of such an implementation all the components

required for construction, execution and maintenance of programs written within a

persistent language. Such a system is depicted in Figure 1.5, where the integrated

programming environment is just one program within the persistent environment

which contains programming tools such as editors, compilers, browsers and window

managers.

Where the implementation persistent language and the language of the constructed

integrated environment are the same, a number of benefits are gained, as follows:

• Single consistent environment - simplifies the system.

• No conflict between the type system of the two languages.

• No partitioning of the store required between values of the two

languages.

10

'■tii

■■I

%

Persistent
Environment

editor

window !►
manager \

browser

Figure 1.5 A fully integrated persistent programming system.

The key feature in this transfer process is the construction of a compiler within the

persistent environment. As soon as a compiler is available to programs executing

within the environment, evolution may take place from within the environment. The

programs effecting the evolution may then take full advantage of the integrated

persistent environment in which they are embedded in order to intioduce new

techniques for the construction and execution of software. These techniques

demonstrate new levels of power and efficiency.

13 Constructing a Compiler within the Persistent
Environment

The first half of the work presented in this thesis derives from the conversion of an

initial implementation of a persistent programming language into a fully integrated

persistent programming system. As stated above, the key to this operation is the

construction of a compiler within the persistent environment of the initial persistent

language implementation.

11

#
I

12

A state-of-the-art persistent programming language, Napier8 8 , has been used as the

basis for this work. Napier88 has been developed by the persistent programming i

research group at the University of St Andrews, one member of the FIDE consortium,

and is the culmination of over ten years research into programming language design at 4

St Andrews. The language supports orthogonal persistence, parametric

polymorphism and a strong type system of the kind described in [CW85]. A ' |

description of the Napier88 type system is given in Appendix 1.

Napier88 Release 1,0 on which the work is based is of a similar structure to the style

of persistent programming language implementation depicted in Figure 1.4. This

release consists of a stable store implementation, an interpreter for the Persistent

Abstract Machine which is a byte coded interpreter operating over the stable store and 4

supporting persistence and polymorphism, and a compiler constructed outside the

Napier88 persistent environment. Program construction and compilation take place

outside the Napier88 environment. The compilation techniques used in the compiler

implementation may be found in [DM81] [Dea87] [MDC+91]. Further details of the

Napier88 Release 1.0 are not included here but may be found in [MBC+89].

The compiler for Napier88 is the largest application yet written in the initial Napier88

implementation. As such its construction has been a good test of the language's ability

to support application construction and of the implementation techniques used in

Release 1.0 of the language.

The new compiler is designed to support easy and efficient experimentation into

language design and compilation techniques. The ability both to construct applications

in a highly modular style and to perform easy and efficient change is required. The

persistent environment was exploited during the construction process and in so doing

a new architecture for the safe and flexible construction of applications from

components has been developed.

The large number of individually compiled components making up the new compiler

caused problems for the type checking implementation of the original Napier88

system. This is an effect of the two separate universes in which type checking takes

place in that system. Firstly, independently-prepared components are statically type

checked during compilation which takes place outside the persistent environment.

Secondly, binding and execution of the components which takes place within the

persistent environment may also require type checking. The requirement for type

information to pass between the two environments causes severe efficiency problems

in a strongly typed language where the amount of type information is typically large.

Persistence was again exploited to optimise the type checking and a unified view of

type system implementation within persistent systems was realised.

The research into the effect of persistence on application construction and type

checking is summarised below.

1.3.1 Constructing Applications in a Persistent
Environment

An application architecture has been developed that supports an evolutionary approach

to the construction of software from individual components. The advantageous

features of the architecture are efficiency and safety from failure during execution and

the flexible evolution of components and applications. Existing construction

architectures [Mil84,Car89,AC085,M AE+62,GR83,W ir71,KR78,DOD83]

attempting to satisfy these features fail to do so because the sharing of structured

executable versions of applications between the construction and execution

environments is not supported.

In a persistent system, the components of an application may be considered as data

items [AM85]. In the construction architecture presented here, the persistent

environment is used as a cache for components by programs that construct and bind

them together to create and update applications. The strongly typed locations of a

13

::4

persistent environment are used to hold the individual executable components of an

application which are first class values in the environment. Component generation and

binding programs cache the constructed components in these locations where they may

be directly accessed during execution. They are also available for future invocations

of the binding programs to permit flexible evolution of applications. |

I
The architecture involves the sharing of cached data between the compilation, binding |

and execution of applications. Particular advantages of this architecture are as follows:

• Application components may be independently compiled.

• Individual components may be incrementally linked into an application.

• The type compatibility of the components is fully checked before

application execution.

• Components may be reused in different contexts.

• Control over sharing and evolution of components and applications is

supported as they progress through the software lifecycle.

One disadvantage is as follows:

• The use of bindings to locations results in less tightly bound applications

than in a system using bindings to values [Str67]. Although the

architecture guarantees the type of a component prior to application

execution, the particular component contained in a location cannot be

determined until execution. The control over sharing and evolution

mentioned above helps to alleviate this problem.

1.3.2 Using Persistence to Optimise Type Checking

Type systems are well understood as mechanisms which impose static safety

constraints upon a program. Within a persistent programming environment the type

system provides all the data modelling and protection facilities for the environment.

Elsewhere [CBC+90] it has been demonstrated that not all constraints on data may be

14

captured statically. This leads to a judicious mixture of type checking times being f
I

employed to suit the particular requirements of an application. The spread of times ^

allows a balance between static safety in large applications and dynamic flexibility in

constraint expression and reuse.

The type system may be used to perform operations over program and data during any

of the four software lifetime processes of composition, compilation, binding and

execution. The point of interest here is the manner in which type information is shared â

among these four phases so that the relevant type system operations may take place. f

Much of the complexity associated with the implementation of type systems stems i

from a lack of support for the sharing of common type information across both

independent components and lifetime processes. Few systems have overcome the

technical difficulties associated with the transfer of complex type information between

independent environments [ACP+91].

A single set of operations to create, manipulate and test representations of type

information may be constructed within a persistent envhonment. The set may be

shared by all programs in the persistent environment that perform type system

operations. Instances of type representations may also be cached in the environment

and shared across programs.

The only type system operation traditionally available outside the compilation

environment is that of type equivalence. In order to maintain execution speed the

efficiency of this operation is optimised [CBC+90]. The availability of a single set of

type system operations and the sharing of type representations between programs

simplify the use of any type system operation in any of the construction, compilation,

linking or execution contexts. The implementation of complex type operations such as

those associated with parameterised and recursive types may require optimisation to

prevent their use outside the compilation environment seriously affecting system

performance. A format for the type information is required that can support efficient

implementations of all the type system operations that aie cairied out in a persistent

15

, _ -i

system. The persistent store may also be used to cache the results of inherently

complex operations over types in order to improve performance.

The benefits of persistence to type system implementation are as follows:

• A single copy of type information may be cached in the persistent

environment and shared by all programs.

• A single implementation of all type system operations may be cached in

the environment and shared by all programs.

• The results of complex type checking operations may be cached in the

persistent environment.

It is demonshated within the thesis how all these benefits may be exploited.

1.4 Delivering the Benefits of a Persistent Programming
Environment

The second half of the work presented in this thesis concerns some of the benefits that

may be gained when it is possible to construct and execute programs within an

integrated persistent programming environment. A number of general mechanisms for

the enhancement of software construction and execution are outlined below. A

detailed description and analysis of the first two mechanisms are presented in the

thesis. The work leading to the research presented in this thesis also lead to the

construction of the remaining mechanisms although they are not presented in detail

here.

1.4.1 Using Persistence to Enhance Compilation

Embedding a compiler within a persistent environment creates a symbiotic relationship

between the two. The relationship occurs in that the functionality of the compiler is

enhanced and compiled code optimised using the persistent environment. The

persistent environment benefits in that the execution of progiams, including the

16

compiler, may be made more efficient. The benefits of the relationship may be

described in terms of the manner in which the compiler and other programs executing

in the environment share cached data with one another, as follows.

Firstly the compiler, which is itself an item of data cached by the construction

architecture, may be accessed by executing programs. An executing program may

construct and execute new programs which manipulate the persistent environment. ^

This ability of a program to alter its own environment during execution is a particular

form of reflection [Mae87] known as run-time linguistic reflection [SSS+92]. It is of

particular interest in persistent systems because it can allow long-lived data and

programs to evolve in a type-safe manner.

■'V
Secondly, the functionality of the compiler may be enhanced by parameterising it with

persistent values that are associated with the source. The number of stages at which

programs are bound to data may be extended since the compiler itself can manipulate I

that data. These stages are defined by the various times at which identifiers embedded

in a program are resolved to their associated values, as follows:

• During program composition. The source contains embedded values.

During compilation these values are incorporated into the compiled code. |

This technique is known as hyper-programming [KCC+92].

• During compilation. Free identifiers in the source are resolved using

values passed into the compiler [FDK+92].

• Between compilation and execution. The resolution of the identifiers is

performed in a separate phase involving an intermediate program

representation and the associated values.

• During execution. Identifiers are resolved when the executing program

accesses values in the persistent environment.

Thirdly, the compiler may manipulate values in the environment. There are two

benefits here. The compiler may use the environment to optimise its own

17

performance, for example by caching the results of operations repeated across

invocations of the compiler. Also, the compiler may associate persistent values with

compiled code in order to optimise the execution of that code.

To summarise, the advantages of embedding a compiler in the persistent environment

are:

• Run-time linguistic reflection may be supported.

• A wide range of binding techniques between program and data may be

supported.

• The performance of both the compiler and the code that it produces may

be optimised.

1.4.2 Using Persistence to Enhance Execution

A persistent environment may be used by executing programs to record information

detailing aspects of the their operation. This information may then be accessible to

other programs executing in the environment. Optimisation within the environment

may be performed by these programs based on the data collected during its operation,

as follows:

• An execution profile of the program may be cached in the environment

during program execution.

• At some later time a program designed to enhance the environment may

analyse gathered execution profiles in an attempt to find optimisations

that will improve the performance of the environment. The analysis is

performed using a cost function that trades the cost of making an

improvement against the potential benefit gained from it. The enhancer

performs the optimisation if the analysis is favourable.

• Subsequent execution of the environment will be improved by the actions

of the enhancer.

18

Dynamic clustering [BD90] is an example of this technique, where groups of stored #

values that are accessed at the same time are placed near each other on secondary

storage to improve access time. The decision on which values to cluster is based on |

statistics collected during execution of the programs that access the values. A second

example is the caching of the results of complex operations in the persistent 4

environment, already described for type checking operations in Section 1.3.2. Where

programs are considered as data there is the possibility of using the same technique to ®

optimise program code in accordance with the dynamic needs of the program. Code

enhancement is possible since code generators make static trade-offs with regard to the

space requirement and run-time execution speed of the code. Dynamic execution

profiles can be used as a basis for changing these trade-offs. Dynamic query f|

optimisation is a particular example of code enhancement, where execution of the |

query is optimised based on information recorded during previous query executions.

A particular benefit of this technique is as follows:

• Optimisations may be made to the operation of the persistent environment

based on information not available statically.

An important consideration when using the architecture is as follows:

• The space and time required to record the execution profile may be

significant. There is a trade-off here between the amount of recorded

information and the cost of gathering it.

1.4.3 Further Beneficiaries of an Integrated Environment

Hyper-programming

Where the program composition process is supported inside the persistent

environment, programs and data may be bound during composition. The programmer

composes programs interactively by navigating the persistent environment and

19

selecting data items to be bound into the programs. This requires that direct links to

persistent data items are contained in program source code and that the compiler can

manipulate such links. This style of programming is known as hyper-programming

[KCC+92] and has been implemented on top of the integrated programming

environment described here [Kir92].

Browsing technology

Advanced persistent object browsers [DCK90,FDK+92] have been developed using

the technology described in this thesis. In particular, the ABERDEEN environment

developed at the University of Adelaide [Far91] permits the browsing and tagging of

persistent objects. Tagged objects may subsequently be incorporated into programs

under construction. These tags are resolved during compilation providing another

time at which program and data may be bound together.

Run-time Linguistic reflection

The provision of run-time linguistic reflection permits a system to evolve under its

own control. This is achieved when an executing program constructs a program

representation and passes it to a compiler. The compiler returns an executable value to

the program which can then execute or store it as required. Reflective programs have

traditionally been hard to understand because their source contains representations of

language constructs that are in different formats and which will be executed at many

different times. Work presented in [Kh92] attempts to simplify reflective programs by

providing a construction methodology which highlights the different kinds of code

contained in a reflective program. This work depends on the availability of a compiler

within the programming environment where it may be accessed by executing

programs.

20

1.5 Working Practices in the St Andrews Persistence
Group

The work presented in this thesis was undertaken within the persistent programming

research group at the University of St Andrews. During the time period in which this

21

work was carried out, the group has consisted of the following researchers: Ron |
Ï

Morrison, Richard Connor, Alan Dearie, Fred Brown, Ray Garrick, Graham Kirby, |

Craig Baker, Dave Munro and myself. Ron Morrison supervised the work with Alan

Dearie who was co-supervisor until he moved to the University of Adelaide at which |

point Richard Connor unofficially took over his role. All members of such a group

contribute in some way to nearly all the work of the group. The work presented in

this thesis has benefited from two significant collaborations as follows:
x3

• The research into application building was performed in conjunction with

Alan Dearie and Richard Connor.

• The optimisation of the type checking mechanisms took place jointly with

Richard Connor who was responsible for the Napier88 Release 1.0 type

checker.

It was my responsibility to provide the integrated persistent programming environment

and demonstrate that persistence may be exploited to support optimisations within the

environment. This then allowed others to use the facilities and for me to share in that

work. a
%

Jointly my supervisors and I designed the applications architecture which I then used

to implement the compiler. This required the design of the new type representations

and type checking optimisations, also undertaken jointly with my supervisors.

Completion of this work lead to my designing and implementing the new compiler

interface and the optimisation architecture. I have subsequently worked with Graham
%

Kirby on the design and implementation of the hyper-programming system and with ^

Alex Farkas on the ABERDEEN object store browser.

1.6 Related Work

There are no other known instances of a strongly-typed persistent programming

language having been used as the implementation vehicle for an integrated persistent

programming environment. However there are other programming language systems

that could be used to support such an environment. In order to catalogue those

languages, it is necessary to define exactly what is required to support the work

described here.

The base point is a language and environment supporting the orthogonal persistence of

strongly typed objects. In particular strongly typed executable code objects can be

retained within the persistent environment. The language is used to construct an

integrated set of tools within the environment that support the construction,

compilation, linking and execution of programs written in the language. The key tool

here is the compiler which can take representations of programs in the base language

made up from the data structures of that same language and convert these into program

components that are executable within the environment. This compiler is a function

within the persistent environment available to other programs executing there.

A brief analysis of a number of languages with the basis philosophical aims found in

the FIDE project is now given.

C+ +

The C++AJnix™ [Str86,Car89,RT78] world has succeeded in constructing integrated

persistent programming environments. However the only data type that may persist in

such environments is the byte. The benefits of strong typing such as improved safety

and data modelling power over the whole envhonment cannot be achieved. An

example of such a system is the combination of the language E [RCS89], an extension

of C++, with the EXODUS Storage Manager [Car89]. The Storage Manager provides

storage objects which are uninterpreted byte sequences of virtually any size. The aim

22

is to build and extend datable systems by writing the database system code in E. E

inherits from C++ the lack of strong typing and so is unsuitable for the experiments

described here.

Smalltalk

The object-based environments of Smalltalk systems [BOP+89] support the entire

programming process from construction to execution. However, the compiler used in

this environment is not implemented using the Smalltalk language and is not available

to executing programs. In addition, Smalltalk implementations are dynamically typed

which, while increasing flexibility for program construction and evolution, reduces the

safety of completed applications. This is a significant factor in an environment

designed to support large-scale and long-lived applications.

O2C

The O2 Database [BBB+88] is an object-oriented database server developed at Altair,

France. An O2 sublanguage is embedded in an existing programming language in

order to allow the creation of objects in and querying over the database. O2C [LR89]

is an extended version of the C language [KR78] that can operate over the O2

Database. O2C programs are stored outside the database and the language is therefore

unsuitable for the construction of system software within the 0 2 persistent

environment. For example, since executable program components cannot be stored

and manipulated within the environment, the construction architecture cannot be

supported. Type checking is spread over both the external C environment and the

internal 02 environment. Hyper-programming cannot be supported since source

programs are not contained within the environment.

23

Galileo

Galileo [AC085] is a strongly-typed object-oriented language developed at the

University of Pisa in Italy. The language is supported by the Functional Abstract

Machine (FAM) [Car83] with extensions to permit access to the Persistent Object

Store developed by Brown at the University of St Andrews [BMM+92]. Any top-

level declarations in an interactive Galileo session are retained within the persistent

environment. The compiler is external to the persistent environment and is not

available to executing programs. Executable code may be stored within the persistent

environment in the form of first class functions and strongly typed persistent locations

are also supported, so it should be possible to construct applications using the

methodology outlined in Section 1.3.1. Until a compiler has been constructed within

the language, which is possible, the remaining benefits of persistence described here

cannot be supported. However it is hoped that collaborative research during the term

of the FIDE project will permit these benefits to be demonstrated.

DBPL

Developed at the University of Hamburg in Germany, DBPL [MS89] supports an

extended relational data model. "The final DBPL language design provides an

orthogonal integration of sets and first order predicates into a strongly and statically

typed programming language and the DBPL system supports the language with full

database functionality including persistence, query optimisation and multi-user

transaction management." [Atk92] A compiler has yet to be constructed within the

DBPL language and so the benefits of persistence have yet to be realised. The

designers of DBPL have progressed to the language Tycoon which has a more

powerful type system in order to continue their experiments into persistent

environments.

24

25

1

-I

1
Tycoon 1

!
Î

The typeful language Quest [Car89] was developed by Cardelli to explore the limits of

strong typing within programs. The University of Hamburg combined Quest and the

Persistent Object Store of Brown [BMM+92] to construct the language Tycoon

[MMS92]. The Quest module mechanism inherited in Tycoon supports the

construction of large applications from components which are first class values in the

system. This module mechanism permits applications to be constructed that are more

statically bound than those constructed using the application architecture outlined in

Section 1.3.1. Similarly to Galileo, a compiler has yet to be constructed within the

environment and so the benefits of persistence outlined in Sections 1.3.2, 1.4.1 and

1.4.2, whilst possible have yet to be realised. Again, it is hoped to demonstrate the |

benefits of persistence within a Tycoon integrated environment during the FIDE

project.

1.7 Thesis Structure

The work described in this thesis is divided into four main chapters describing in detail

the benefits of persistence to system construction and execution outlined above.

In Chapter 2, the application architecture outlined in Section 1.3.1 is described

independently of any particular supporting language. This is followed by a

description of an implementation of the architecture in the persistent programming

language Napier8 8 . The suitability of the architecture for other languages is

discussed.

In Chapter 3, an analysis is made of the many different type system operations found

in persistent programming systems and describes in which of the four program

categories defined in Section 1.1.1 each operation is performed. It is shown how a

single set of operations and type representations may be shared by all programs in the

environment. A representation for type information is presented that supports efficient %

implementation of the type manipulation operations. The use of the persistent store as

a cache for the results of complex type system operations is discussed.

In Chapter 4, a flexible approach to compilation and binding is described. An

interface supporting this approach is defined. The construction of a compiler within

the persistent environment using the construction architecture of Chapter 2 is

described. The implementation of a protection mechanism for intermediate program

representations and for type representations is discussed.

In Chapter 5, a particular instance of the optimisation technique of Section 1.4.2 is

described that optimises the execution of the polymorphic procedures of Napier8 8 .

From the starting point of a complete but unoptimised implementation of polymorphic

proceduies, it is shown how execution profiles may be collected and analysed in order

to produce optimised versions of the procedures. These optimised versions are

associated with the unoptimised versions and may be accessed under the appropriate

conditions.

2 Constructing Applications in a Persistent Environment

2.1 Introduction

This chapter describes an application architecture designed to support an evolutionaiy

approach to the construction of software from individual components. The desirable

features of such an architecture are efficiency and safety from failure during execution

and the flexible evolution of components and applications. Existing construction

architectures attempting to satisfy these features fail to do so because the sharing of

structured executable versions of applications between the construction and execution

environments is not supported.

The strongly typed locations of a persistent envii'onment may be used to hold the

individual components of an executable application. The locations may be accessed by

both the linking and execution processes. It is shown that an architecture supporting

the construction of applications from components contained in these persistent

locations may satisfy the desires of safety, efficiency and flexibility.

The architecture was developed during the construction of the Napier88 compiler

within the Napier88 Release 1.0 persistent environment. The compiler was the largest

software item yet constructed in Napier88 consisting of more than 10,000 lines of

code and so construction in a single compilation unit was unacceptable. Using the

binding mechanisms of Napier8 8 , experiments were performed to realise various

methods of binding Napier88 components together, each giving different trade-offs

between safety, efficiency and flexibility. The result of these experiments is the

application construction architecture given here which supports a balanced tiade-off

between these three characteristics.

27

J

J
"i

2.1.1 Change and the Linking Process
1

Using an evolutionary approach to software construction, software evolves from a #

prototype to a production level system with frequent changes being made during #

implementation and testing. Once the software is released, changes are still needed

when bugs are removed, the implementation of the software is improved or

functionality is added as new requirements are perceived. Work by Lehman [LehSO] 4
I

shows that many of the changes required after release are not caused by poor initial |

specification or construction but are the result of a revision in users' expectations

brought about by the new software. Change is therefore an unavoidable process #

throughout the software lifecycle.

Where the source code for an entire software application is contained in a single J

compilation unit the process of making a change is straightforward entailing an update

to the source followed by re-compilation and re-execution. However maintaining an

application in a single compilation unit becomes increasingly difficult for large

applications, for the following reasons. I

' y
• The complexity of the single unit of source code may be beyond one |

person's intellectual capacity.

• Only one programmer can work on the application at any one time.

• Current compilation technology strains to handle very large compilation

units.

Breaking a large application contained in a single compilation unit into several

individual compilation units along the boundaries of the application's logical

components helps to overcome these problems. Constructing executable applications

from components introduces its own difficulties however. When one component uses

another component an identifier for the latter appears in the source code of the former. |

This identifier must be resolved into a link between the executable code of the two

components before one component can use the other. In many languages a type check

28

performed.

The first group includes the implementations used in languages such as ML, Quest and

Galileo [Mil84,Car89,AC085]. In these languages, linking occurs during

compilation removing the possibility of failure during execution. In addition, run-time

efficiency is not affected, since the checks involved in linking have already been

performed. However, separate compilation is not supported since compilation and

linking take place simultaneously. Also, a change of a single component may require

recompilation of the entire application in order to carry out the necessary relinking.

Such an operation is expensive and it may even be impossible to propagate the

29

is also performed at the time of identifier resolution to ensure that the linked

component is of the expected type. The combined operations of resolution and type '4

checking wül be referred to here as linking.

Linking complicates the process of change and affects the level of static safety in an «{

application, as follows:

• Changing an individual component requires that each component

referring to it must be relinked to the new version. The required

recompilation and relinking after a change should be minimised.

• The linking operation introduces a new source of errors, since it will fail

if the component to which an identifier refers cannot be found or if it is

of the wrong type. It is desirable to avoid such errors during execution.

• In the context of one component the action performed by an external

component cannot be guaranteed. It is a matter of programming

convention to ensure that errors are not caused by unexpected component

behaviour. Since this is a problem inherent in all linked systems, it will

not be discussed further here.

Existing implementations of linking do not satisfactorily solve the first two problems.

They fall into three categories, mainly determined by the time at which linking is

I

changes to an application whose components are spread across a distributed

environment.

At the other end of the spectrum are languages such as Lisp and Smalltalk [MAE+62,

GR83] in which linking occurs during execution just before the link between

components is required. This method loses the safety and efficiency provided by

linking during compilation. However changing a single component requires minimal

application reconfiguration since the new version will be relinked on the next

execution of the application. A suitable architecture for the support of this style of

linking is found in the Multics operating system [Org72].

The final category of languages, including Pascal, C and Ada [Wir71,KR78,

DOD83], represent a compromise between safety and flexibility where linking is

performed in a separate phase in between compilation and execution. Using this

method all linking is performed before an application executes, giving the gains in

efficiency and safety. In addition, changing an individual component requires the

recompilation of at most the components that use it. Although this method is less

expensive than linking during compilation, it is still significant in large programs. In

general, existing implementations of separate linking do not allow a single changed

component to be relinked to an application without forcing the entire application to be

relinked. The cost of a component update is therefore approximately proportional to

the size of the whole application rather than the size of the changed component. An

optimisation of separate linking is proposed in [QL91] where limited manipulation of

linked executable applications is possible, but the cost here is still the same in the

worst case.

30

2.1.2 Applying Persistence to the Separate Linking
Process

Of the three existing styles of linking, the first does not support sufficient flexibility

for change and the second does not support sufficient safety and efficiency. The third

is a good compromise although it is stül inflexible for change.

The inflexibility is caused by the manner in which the executable application is handled

by traditional software engineering environments. A typical application consists of

many logical components. The source code for an application is split into these

components, some of which may be shared by other applications. Traditionally

however the executable version of the application is not split up. It is a single self-

referencing unit constructed by taking copies of the compiled versions of all the

individual components and placing them together as a single unit. All references

between components are made within the context of the unit.

This style of operation is caused by the separate environments in which the processes

of compilation, linking and execution tiaditionally take place. The only means of

communication between the processes is the file system supporting flat unconnected

units such as compiled components and executable units. Placing the compiled

versions of an application's components into a single file increases the efficiency and

safety of the application during execution. It is the uns tinctured nature of that file

however that makes it impossible in general to update a single component.

A persistent environment may be used to hold a structured version of the executable

application which may be accessed by both the linking and execution processes. The

components of this application are executable programs in then own right and may be

shared using persistent addresses. The safety of the application is maintained since the

environment is strongly typed.

31

A persistent environment holding the executable components of an application may

support the separate linking phase described earlier since the components may be

manipulated independently of one another. A change to a component requires only the

relinking of components that directly or indirectly use it This may still be significant

for large applications however and in the worst case entire applications will be

relinked.

This chapter describes a new architecture for the construction and maintenance of lai'ge

applications in which it is possible to safely and efficiently update single changed

executable components. The architecture depends on shared strongly typed locations

and the manipulation of individual executable components supported by a persistent

environment. An alternative approach to the separate linking method is used which

provides a different compromise between safety and flexibility. Linking is split into

two phases as follows. All type checking and part of the identifier resolution are

performed before application execution for safety and efficiency. The completion of

the resolution operation is performed dynamically which gives the flexibility required

for individual component update.

ML
Gahleo
Quest

Ada
Pascal

C

new
architecture

Lisp
Smalltalk

operations
performed
statically

operations
performed

dynamically

two phase
hnking

I dynamic j
^ hnking J

Figure 2.1 A comparison of linking mechanisms.

Figure 2.1 shows how this architecture relates to existing architectures for application

construction. On each side are the extreme positions of entirely static or dynamic

:1

I

32

linking; in between are the existing and new compromises between safety, flexibility

and efficiency.

The following section describes the proposed architecture independently of any

particular programming language and shows how it may be used to support a software

development environment. Section 2.3 describes a particular instantiation of the

architectuie using the persistent programming language NapierSS [MBC+89]. Section

2.4 makes comparisons with other languages that could be used to implement the

architecture followed by some conclusions.

2.2 The General Architecture

An application consists of a number of logically separate components. The major aim

of this ai'chitecture is to permit construction of applications from these components in a

manner which is as safe as possible from dynamic failure whilst still allowing change

to individual components throughout the software lifecycle with the minimum of

application reconfiguration.

The desired safety and flexibility may be achieved using a two-stage linking process as

follows. Every component of an application is contained in a separate typed location.

Each component is linked to the locations of the other components that it uses, not to

the components themselves. This initial linking operation from component to location

takes place between compilation and execution and involves identifier resolution and

type checking. When one component uses another during execution, a second linking

operation is performed which retrieves the desired component from the relevant linked

location. This is an inexpensive operation involving a dereference of a known location

with no identifier resolution or type check.

The advantage of the two-stage linking process is that all type checking and partial

identifier resolution are performed before application execution. Locations are

guaranteed to contain a value of the correct type during execution. In addition an

33

update to a component can be achieved by simply placing a new version into a location

by assignment. The new version will automatically be used when the location is next

accessed during execution.

This section elaborates on the basic principle, showing how applications are initially

created and executed and how different styles of change may be achieved. The basic

principle is then extended to show how other facilities desirable during the software

development process such as software reuse and support for system building can be

realised.

2.2.1 Application Construction and Execution

An example which contains two separate components, a text editor and a dialogue

box, is now introduced. Since the architecture is strongly typed the two values must

be assigned suitable types. As shown in Figure 2.2, the editor is a procedure taking

as a parameter the initial text for the editor and returning the final edited text; the

dialogue is a procedure taking the message text as a parameter and returning a boolean

value. The types of the values are as follows:

dialogue box proc(text bool)
text editor proc(text text)

Figure 2.2 Component types.

This example has been chosen to show that the architecture can support mutual

recursion: the dialogue box uses an editor to display the message; the editor uses a

dialogue to request information. The process of constructing locations for these

components, constructing the components themselves and executing them is now

described. This will show how the architecture may be used to construct applications

that cannot dynamically faü from identifier resolution or type checking errors.

34

Creation of Component Locations

Every component of an application is contained in a separate typed location. The first

phase in the construction of a new application is to make the locations for these

components. In order to do this the names and types of the locations must be known.

Locations are always initialised containing a default value of the correct type in order

to preserve the integrity of the location. For the editor/dialogue example, the new

locations are shown in Figure 2.3: the locations are the ovals lying in the horizontal

plane containing identifiers, types and default components.

location
access

mechanism
editor

proc (text text

dialogue
proc (text bool)

defaidt

Figure 2.3 Initialised locations and access mechanism.

The application is not restricted to just this initial group of locations. Extra locations

may be added at a later time if extra components are required.

A mechanism which will return a location given an identifier and a type is requir ed to

allow access to the locations during the subsequent stages of program construction and

modification. The mechanism performs the identifier resolution and type checking

requhed by the first linking stage mentioned in the introduction to this Section. The

heavy arrows in the vertical plane of Figure 2.3 represent the location access

mechanism.

35

Construction of Components

Once a component's location has been created, the component itself may be

constructed. The initial linking phase is performed at this stage. The generation of an f

individual value involves three steps, as follows.

36

• Find component locations. Using the location access mechanism all

the component locations used by the component under construction are

identified. Type checking is performed by the access mechanism on the

locations to ensure that each one is of the type expected by the new

component.

• Create new component. A new component is created which may

refer to any locations that were identified in the previous step. These

locations are linked into the new component.

• Store the new component. Using the location access mechanism

again the location of the new component is determined. The new

component is stored by assigning it into this location which overwrites

the dummy component.

Returning to the example, the generation of the dialogue procedure requires the

identification of the editor location. When the new dialogue procedure has been

created, containing a link to the editor location, it is assigned into the dialogue

location, which must also have been identified. Figure 2.4a shows the situation after

the dialogue has been generated; Figure 2.4b shows the position after both

components have been generated.

,, 1

location
access

mechanism

location
access

mechanism

editoreditor
proc (text text proc (text text)]

dialogue dialogue
proc (text -> bool) proc (text bool)

Figure 2.4a After dialogue construction. Figure 2.4b After construction of both.

When every component has been generated all links between components and

locations will have been created. The components which aie executable language

values are represented by the rectangular boxes inside the locations shown in Figure

2.4b. Each component contains a link (or an address) to the location of the other

component that it uses, represented by the arrows in the horizontal plane. The initial

linking phase involving identifier resolution and type checking is therefore completed

before application execution, which ensures that there can be no failure during

execution due to missing component or type checking errors.

Execution of an Application

In order to execute an application the location of a suitable entry point in the call graph

of the application is identified. This is achieved using the location access mechanism

shown in Figure 2.3. The component itself is then retrieved from the location and

executed. This retrieval is the second linking process mentioned in the introduction

to Section 2.2, which is also used for all inter-component communication while the

application is executing.

37

1

Any component of an application may be executed in the same way. This may be

desirable during component testing. For example to test the dialogue box of Figure I

2.4b the dialogue location is identified and the component retrieved. The component

is then executed. If an editor is requhed by the dialogue box, the editor location to

which the dialogue was linked at construction can be accessed.

:
IHaving identified the first component to be executed, all access between components

is type safe, since the location access operation performed during execution does not

need to perform identifier resolution or type checking.

An application may be executed before all components have been constructed, for

example during a prototype phase. The dummy initialisation values will be used for

those components that have not yet been generated.

2.2.2 Component Evolution

The architecture allows individual components to be updated with minimum

disturbance to the remainder of the application. A mechanism for relinking single |

changed components is required to implement this. This section describes three 1
Idifferent kinds of change that are all desirable and shows how they are supported by

the architecture.

Changing a Component by Assignment

A change to a component may be achieved by assigning a new value of the correct

type into the component's location. If other components use the changed component

they WÜ1 contain hnks to its location. When they next access the location dynamically

the new component placed there by assignment wiU be retrieved.

The mechanism for this kind of change is identical to the operation to construct a

component described in Section 2.2.1. It is impossible to place a component of an

unsuitable type into the location since the assignment operation is type-safe. The |

38

change does not therefore compromise the level of type safety in an application

provided by the architecture.

Type Changes

Often during the development of an application the type of a component is forced to

change as new requirements are made of it. The architecture supports such changes

without requiring major reconfiguration. Figure 2.5 describes an application as a large

matrix of linked locations.

Figure 2.5 A linking matrix.

The ovals as before are locations containing component values of an application. The

arrows denote the links made at construction time between components and the

locations of other components to which they refer. The access mechanism has been

omitted from this diagram. Consider the dark oval in the centre of the linking matrix.

The components that are linked to that location have been shaded with diagonal

stripes. If a change in type is to be made to the centre component then the striped

components must also be changed to preserve the type correctness of the application.

Even though these components must be changed internally, they will not themselves

change type; consequently the changes that must be made to them may be handled by

39

the mechanisms described earlier for changing a component by assignment. The

mechanism to change the type of any component is therefore as follows.

• A new location is created of the appropriate new type.

• A value of the new type is created and assigned to the new location.

• Components dependent on the changed component are regenerated and

linked to the new location, taking account of the new type.

This amounts to making a hole in the application binding matrix and then darning in a

new component. In most cases the majority of the application will be unaffected and

therefore not require any reconfiguration.

Changes During Application Execution
1Î

Sometimes it is undesirable or even impossible to halt the execution of an application

in order to make a change. Systems administrators might not have such a bad name if

they could install for example a new version of the mail server without bringing the

whole operating system down. This type of change requir es that both the application

construction system and the application itself can execute concurrently. In addition,

the construction system must be able to use the dynamic access mechanism to the

application components at the same time as the application is using the statically %

constructed links.

Where the change to a component does not involve changing its type the location for

that component may simply be updated with a new version. Any component of the

application currently using the old version will continue to do so until the next access #

of the location at which point it wiU retrieve the new version.

A number of other components may also require alteration when a type change is made

to a component. The change process is identical to that for a type change described

above. As long as the changes are synchronised with the execution of the application, Ë

it WÜ1 continue to operate correctly.

40 Æ

J£il

1
5I

An application may change itself in an identical manner to that described above

provided that it has access to its own locations and is able to manipulate components.

This is a form of type-safe behavioural reflection [Mae87].

2.2.3 Supporting the Software Development Process

The architecture described so far may be used as the basis of a system to manage ^

applications during their lifetime. This section describes some simple extensions to

the basic architecture which add support for software reuse and application, as

opposed to component, evolution.

Software Reuse
5

ISoftware may be reused in two ways in this architecture. The most obvious way is to

have many different applications using the same component, which is a

straightforward extension of allowing many components in a single application to use 4
■i

the same location. For example there are many applications that use a dialogue box to i#

request information from the user. These may all use the dialogue component %

described earlier. The access mechanism already described must be extended to reach

all the components of all applications so that the generation process for a component

can find any required location. ^

A second form of software reuse may occur when components are required that are ^

identical except for the environment into which they are linked. For example two text

editors may be identical except for the style of dialogue box that they display. The

only difference between them is that they are linked to different dialogue locations.

The duplication of these locations cannot be avoided; however the description of the

generation process for each editor need not be duplicated.

The component generation process may be performed by an independent program. If

the generator program for the text editor was parameterised by the locations that it

41

' - :i.;- - - ■ ■ - - --___ ■■ ■« , ... -,

‘I

required, it would not need to identify them itself. The generator program may now

be reused since component creation is independent of any particular locations. The

process of component generation is therefore as follows:

• Find component locations. Identify the locations that aie to be used

by the new value.

• Call generator. Call the generator program for this value, passing the

locations as parameters. The new value is returned as the result of the

generator.

• Store value. Store the value in the required location.

To support this, the architecture must contain a mechanism to allow the component

locations of an application to be passed to generator programs.

A comparison can be made here between the construction operations of this

architecture and the static scoping of block structured languages. A component is

created in a block structured language in the context of an environment which is

statically defined by the enclosing scope levels. The component may be linked to

components contained in these scope levels. The passing of locations to generator

progi ams that is performed in this architectuie allows the enclosing environment of the

new component to be created at construction time. During the execution of the

application the appearance of components constructed using both methods will be

identical - that of a component containing links to a number of locations in its closure.

However greater flexibility in the construction of the enclosing environment is

provided in this architecture.

Application Evolution

The degree of access required to applications and their constituent components

changes during their lifetimes. Unrestricted access is desirable during the construction

phase of components in order to permit sharing and evolution. The ability to evolve

42

completed components may be restricted whilst access for sharing is still permitted,

for example in a library of utilities to be used by developers. When an application

evolves into a product, all access to the individual components of the software by its

new users may be prohibited. This action, known as sealing the system [Car89],

prevents accidental or malicious tampering with the software. Access can still be

provided to privileged users such as system engineers in order to permit maintenance

of the software.

These levels of control over components and applications can be supported by the

architecture if extra functionality is added to the location access mechanism.

The first step in achieving this goal is to partition the view of the component space

provided by the access mechanism. This is analogous to the file systems of operating

systems which provide a hierarchical access mechanism to a collection of files. This

partitioning is shown in Figuie 2.6. The component space itself represented by the

rectangle in the horizontal plane is unchanged, with the same links between

components and locations; it is the access mechanism which has been changed to

provide the partitioning. Components may now be collected into logical groups

relating for example to particular applications, utility libraries or data values.

location
access

mechanism

Figure 2.6 Partitioning the component name space.

43

Having partitioned the component space in this way the second step is to provide

selective control over the sharing and evolution of components. This can be enforced

by placing varying degrees of protection over particular access paths ranging from no

protection at aU to complete protection where its access path is removed altogether.

The restriction of access to components has no effect on the operation of applications

that have already been constructed. Considering Figure 2.6, it is access to the vertical

links that is being restricted, not the horizontal links made during component

generation and used during application execution.

2.3 An Implementation of the Architecture

The architecture has been described so far in terms of components, shared typed

locations and a linking mechanism that allows independently constructed components

and locations to be linked together. A language to implement this architecture must

therefore be able to support the following:

• The inclusion of application components within the value space.

• A type system sufficiently powerful to model the interfaces to the

components.

• The ability to refer to the same location from different compilation units.

It should be noted that the language of the constructed applications does not have to be

the same as the architecture's implementation language. For example, it is only a

requirement that the components should be manipulable as values within the

implementation language, not the constructed application's language. For the same

reasons the application language need not be able to link components to locations

The ability to share strongly typed locations across compilation units is not shared by

many languages. In a persistent system [Atk78], such locations may be held in a

persistent store. A single persistent language and type system may be used both for

the implementation of applications and the implementation of the architecture that

44

supports their construction. This section describes an implementation of the

architecture using the persistent programming language Napier88 which supports the

construction of applications in that language. Following this, Section 2.4 shows how

other languages may support the architecture.

2.3.1 Napier88

The facilities of Napier88 required to support the architecture are briefly introduced

first. In Napier8 8 , all values are first-class in accordance with the Principle of Data

Type Completeness [Mor79]. Since application components must be included in the

value space of the implementation language any Napier88 value can be a component.

Components constructed in different compilation units may be linked to the same

location using the persistent store. Persistence in Napier88 is defined as reachability

from a single distinguished root of persistence which is of the data type environment,

or env [Dea89]. A value of this type is a collection of named typed locations. The

persistent root may be retrieved by calling the predefined procedure PS of type proc(

env). For example, the code in Figure 2.7 creates a new location in the persistent

root environment with the identifier textEditor of type proc(string -> string).

in PS() let textEditor := proc(initial : string -> string) ; "dummy result"

Figure 2.7 Creating a location in the persistent store.

Locations must be initialised on creation, in this case with the dummy procedure value

following the .*=. Having executed this program the location may be accessed in

another program as shown in Figure 2.8.__________________________________

use PSQ with textEditor : proc(string string) in
writeString(textEditor("Here is some initial text."))

Figure 2.8 Retrieving a value from the persistent store.

45

The use statement makes an assertion that the persistent root contains a location

named textEditor of type proc(string string). Any uses of the identifier

textEditor, available in the body of the statement following the in, may be statically

checked with respect to this assertion. A dynamic check is performed to verify the

assertion when the use is executed: if successful the location is retrieved from the

environment, otherwise the program fails. A dereference operation is implicit when

the identifier textEditor is used, to give whichever value is in the associated location at

the time of execution. The use statement and the dereference operation make up the

two stage linking process described in Section 2. In this example the body of the use

statement writes out the result of invoking the text editor on the supplied string.

Locations may be updated by assignment as shown in Figure 2.9 where the location

with identifier textEditor is updated with a new procedure value. The assignment

statement will not compile if the new value is of an unsuitable type.

use PS() with textEditor : proc(string string) in
textEditor := proc(initial : string ^ string) ; "a different dummy result"

Figure 2.9 Updating a location by assignment.

New empty environments may be created using the predefined procedure environment

of type proc(env). Since environments are first class they may be placed into

other environments such as the persistent root and are therefore used as a structuring

tool over the values placed into the persistent store.

The three separate programs or compilation units above all manipulate the same text

editor location during execution, as required. The use of these features in the

implementation of the construction architecture wül now be described.

46

'

2.3.2 Implementing the architecture

Creation of the Initial Locations 5

Following the phases of application construction covered in Section 2.2.1, the first

step is to create the locations containing the components of an application. The

dialogue/editor example wül again be used.

/** Create a new environment.
let newEnv := environment()

Place the new environment into the persistent store
in PS() let exampleEnv := newEnv

Figure 2.10 Creation of component locations.

Default instances of the components must be created at this stage since empty locations

cannot be created in Napier8 8 . The program shown in Figure 2.10 creates a new

environment containing locations for the editor and the dialogue. This environment is

then placed into the root environment of the persistent store.

Generators

Generators of the kind described in Section 2.2.3 may be modelled using Napier88

procedures parameterised by environments containing the component locations

required for a particular generation. The generated component is returned by the

procedure. Since these generators are first class values in Napier88 they may also be

held in the persistent store. A program to create a generator for text editor components

is given in Figure 2.11.

47

I

/** Create locations containing dummy values, I
in newEnv let dialogue := proc(message : string -> bool) ; false
in newEnv let textEditor := proc(initial : string string) ;

I

%

/** The generator takes one environment and returns an editor procedure.
let textEditGen := proc(dialogueEnv : env proc(string -4- string))
begin

/** Section 1: Retrieve the location required by the text editor.
use dialogueEnv with dialogue : proc(string -> bool) in

/** Section 2: Create the generator result, a first class
/** procedure value.
proc(initialText : string string)
begin

/** Code to construct the editor.

/** The dialogue location may be used here
!** For example...
let reply := dialogue("Save before closing?")

/** The edited text is returned as the result.
editedText

end
end

/** Store this generator for future use in an environment named generators which
/** has been constructed already.
use PS() with generators : env in

in generators let textEditGenerator := textEditGen

Figure 2.11 Generator procedure for a text editor.

Generators are usually coded in two sections: the first retrieves the required locations

from the supplied environments; the second creates the value returned by the

generator. A program to use the new locations created in Figure 2.10 and the

generator of Figure 2.11 is shown in Figure 2.12. In this program, the editor

generator and the example envkonment containing the new locations are retrieved; a

new editor value is generated, which is then assigned to the correct location in the

example environment.

48

/** Find the generator and the environment with the new locations.
use PS() with generators,exampleEnv : env in
use generators with textEditGenerator : proc(env -> proc(string string))
in
begin

/** Create a new editor value
let newTextEditor := textEditGenerator(exampleEnv)

/** Update the textEditor location with the new value
use exampleEnv with textEditor : proc(string string) in

textEditor ;= newTextEditor
end

Figure 2,12 Program to create a new textEditor value.

Note that the value denoted by newTextEditor is linked to the location of the dialogue

component at the time of construction, as required by the architecture. Any use of that

location during execution requires no type or existence check. Referring back to

Figure 2.4b, the checking is performed while traversing the vertical access paths; the

links created during construction between components and locations are the arrows in

the horizontal plane.

Execution

Components may be invoked by accessing their locations. For example. Figure 2.13

shows how the text editor component may be used in a program. Note that although

access and type checking operations are performed to find the text editor location, the

execution of the editor itself involves only a location dereference. Any references to

other components during execution will be realised by similar location dereferences.

49

use PSQ with exampleEnv : env in
use exampleEnv with textEditor : proc(string string) in
begin

let editedText := textEditor("Here is some text to edit.")

end

Figure 2.13 Executing components

2.3.3 Support for the Features of the Architecture

Evolution of Components

To make a change to a component not affecting its type, the usual method is to edit,

recompile and reload the generator for that component. Re-executing the program of

the style of Figure 2.12 will cause the new generator to be used and hence a changed

version of the component to be placed into its location. If a type change is required,

then a new location of the new type must be placed into the appropriate environment.

Generators and programs using such locations must be adjusted accordingly.

Software Reuse and Control over the Component Space

The two styles of software reuse described in Section 2.2.3 are both supported. The

first is the reuse of components in different contexts. This is supported since many

different components may refer to the same location using persistent addresses. The

second style of reuse allows the same code to be associated with different

environments thus providing different functionality. The same generator may be used

to create values bound to different locations by writing different versions of the

program shown in Figure 2.12.

Techniques for handling application evolution were discussed in Section 2.2.3. These

were partitioning the component space and restricting the access to component

50

locations. The component space can be partitioned by the use of environments as a

structuring tool in the persistent store as described in Section 2.3.1. The effect is

identical to that shown in Figure 2.6.

There are many ways in which locations may be protected within a strong type system

[MBC+90]: two are described here. The first involves the drop language construct,

described by example in Figui e 2.14.

use PS() with exampleEnv : env in
drop dialogue from exampleEnv

Figure 2.14 Dropping an access path.

This finds the exampleEnv environment in the root of the store and drops the binding

between the identifier dialogue and the associated location. It is important to realise

that if other values are bound to the location that is dropped then it will not be lost

from the store. Only the ability to access the location via the environment exampleEnv

has been lost. If Figure 2.4b described the situation before the drop, the situation is

now as shown in Figure 2.15. Note that the links between values and locations are

unchanged.

A second technique for restricting access is to place password protection over the

environments. To protect exampleEnv, it may be enclosed in a procedure which

returns it when supplied with the correct password. The code in Figure 2.16 creates

this procedure and places it into the store. An empty environment is retuined if the

password is incorrect.

51

single access
path

editor
proc(string -> string)

dialogue
proc{ string ->hool)

Figure 2.15 After the dropping of an access path.

let password := "abracadabral27'*
in PSQ let protectedEnv := proc(testPassword : string env)

if testPassword = password
then exampleEnv
else environmentO

Figure 2.16 Password protecting an environment.

The environment may be accessed as shown in Figure 2.17.

use PS() with protectedEnv : proc(string env) in
use protectedEnv("abracadabral27") with

Figure 2.17 Using the password protection mechanism.

If the password is incorrect, the program will fail when locations are retrieved from

the environment.

52

2.4 The Architecture Supported by Other Languages

Application components as first-class values and shareable strongly typed locations are

the only major requirements of an implementation language for the architecture

described here. These requirements are usually found in persistent environments but

they may also be supported in non-persistent languages. The way in which these

requirements are provided by different languages produces instances of the

architecture with slightly different characteristics as described below.

A fore-runner of Napier8 8 , PS-algol [PS88] can support the architecture using the

fields of records as shareable locations. Dereference of these locations is explicit and

so the code for a component that uses external values will be noisier than in Napier8 8 .

Since the language is persistent and data type complete, applications will otherwise be

very similar to those constructed using Napier88 .

Standard ML supports the denotation of individual locations using the ref construct

and allows code and other forms of data to be first-class values. It can therefore

implement this architecture. SML is not persistent but most of the features of the

architecture described above could be performed in a single invocation of the

language’s interactive system. The outermost scope level of the interactive system

may be used to hold the shareable locations that are required by the architecture. The

environment supporting the outer scope level behaves like a persistent environment for

the duration of the invocation. Generating functions may be constructed taking

locations as parameters which gives the same level of reusability as the generators of

Napier8 8 . Unlike Napier8 8 , the use of an explicit location dereference operation is

required in ML. There is also no simple method for removing access to locations or

partitioning the location name space. Since the actions of an invocation of the

interactive system do not persist beyond a single invocation, all components of an

application wül have to be re-entered and therefore recompüed when the system is next

invoked.

53

Persistent ML [Har85] ensures that the bindings in the outermost scope level persist

between invocations of the interactive system. This removes the requirement for

application recompilation when the system is re-invoked. The persistent languages

Quest and Galileo may also support the architecture in the same manner as Persistent

ML. Quest and Galileo may also support protection of locations since access to them

may be removed

The languages above can all be used as both implementation and application language

in an instantiation of the architecture. Any language that can support shareable

locations and model the values of another language should be able to implement the

architecture for applications in the second language. For example, it may be desirable

to write Pascal applications using this architecture in order to gain the benefits of the

incremental linking. Pascal itself could not implement the architecture since it cannot

support the requirements above. However Napier88 has a sufficiently powerful type

system to model Pascal values and could therefore be used as the implementation

language for an instantiation of the architecture that supported Pascal applications.

2.5 Conclusions

Systems supporting the construction of applications from individual components

attempt to satisfy two conflicting desires. These are the desire to ensure efficiency and

safety from failure during execution and the desire to permit flexible component and

application evolution. Safety and efficiency may be gained by performing component

linking operations before application execution. Flexibility is usually achieved by

delaying these same operations untü execution.

This chapter has introduced a new architecture which uses a blend of static and

dynamic linking to satisfy both desires. Applications constructed using the

architecture display the following features:

54

• Components may be independently compiled.

• Individual components may be incrementally linked into applications.

• Checks to ensure that components exist and are of the correct type are

performed before application execution.

In addition, the architecture can be used as the basis of a software development

environment with specific support for the following features

• Software reuse.

• Control over sharing and change of components and applications as they

progress through the software lifecycle.

The flexibility for incremental linking is provided by a persistent environment

supporting the sharing of strongly typed locations containing the executable versions

of application components. The persistence mechanism is used to permit the type-safe

sharing of structured executable versions of applications between the processes of

linking and execution. Such sharing is not supported in traditional programming

environments.

The architecture has been implemented using the persistent programming language

Napier8 8 , where it has been used to construct a compiler for Napier88 written in the

language. This is an application consisting of more than 10,000 lines of code split

between about 600 separate components and is described in detail in Chapter 4. It has

also been used to construct window management, editing and browsing tools for the

language. These components have been joined in an integrated programming

environment written entirely in Napier88 which supports the construction of programs

using the architecture [KCC+92].

55

3 Persistent Type Representations

3.1 Introduction

Type systems are well understood as mechanisms which impose static safety

constraints upon a program. Within a persistent programming environment the type

system provides all the data modelling and protection facilities for the environment.

This role is similar to that of a traditional schema in a database system [ABM85].

Elsewhere [CBC+90] it has been demonstrated that not all constraints on data may be

captured statically. This leads to a judicious mixture of type checking times being

employed to suit the particular requirements of an application. The spread of times

allows a balance between static safety in systems and dynamic flexibility in constraint

expression and reuse. The type system may perform operations over program and

data during the following processes which will be referred to as lifetime processes:

• Program construction and compilation. Type checking at compilation

allows errors to be discovered earlier in the software lifecycle and

eliminates the need for expensive type checks during execution.

• Linking. Type safe incremental linking may be supported in a persistent

environment as described in Chapter 2. Type checking during the

linking process allows programs to be constructed independently and

linked as if they are a single unit. This is more flexible than the above

with the disadvantage that a type error may occui' later than compilation.

• Execution. Type checking during execution is the most flexible in terms

of reuse and independent generation of program and data. It is however

the least safe.

Program components and data are related by the common types associated with them.

For example, the expected type of independently generated data must be known to the

56

programmer so that valid operations may be constructed over it. The expected types

of independent program components must also be available during construction so that

the components can be correctly used by each other.

The focus of interest in this chapter is the manner in which type information may be

distributed among independent programs and across the lifetime processes through

which those programs pass. Traditionally, programs are completely independent and

so each program must contain a copy of the type information that it requires. There is

a conflict here between the type information and the code contained in each program:

while the code is different in every program, the type information may be the same. In

addition the various formats into which a single program is translated as it passes from

source code to compile-time format to link segment to executable image may also

require copies of the same type information. Much of the complexity associated with

the implementation of type systems stems from a lack of support for the sharing of

common type information across both independent components and lifetime

processes. Few systems have overcome the technical difficulties associated with the

transfer of complex type information between independent environments [ACP-j-91].

The ad-hoc language mechanisms supporting limited sharing of types between

programs for example found in the languages C [KR78] and Quest [Car89] and the

copying of type information between independent environments may be eliminated

when the sharing of type information is supported between both components and

processes.

A single set of operations to create, manipulate and test representations of type

information may be constructed in a persistent environment. The operations may be

shared by the lifetime processes also supported by the persistent environment. Single

instances of type information as opposed to copies may now be shared by programs

and lifetime processes. The persistent environment is being used as a cache for type

information from program construction through to execution.

57

Traditionally, the only type checking operation to be performed during the linking and

execution processes has been type equivalence. In order to maintain execution speed

the efficiency of this operation is optimised [CBC+90]. The availability of a single set

of type system operations and the sharing of representations of type information

between both programs and lifetime processes simplify the use of a type system

operation. The implementation of other complex type operations may also require

optimisation to prevent their use seriously affecting system performance. A format for

the type information is required which may be used in efficient implementations of all

the type checking operations that are carried out in a persistent system.

The discussion here relates to reasonably sophisticated type systems such as those

found in ML [Mil84], Galileo [AC085], Quest [Car89] and Napier88 [MBC+89],

The type rules are defined by a set of base types and a set of constructors. The

universe of discourse is the closure of the recursive application of the constructors

over the base types. Typically the constructed types contain labelled cross products

(records), labelled disjoint sums (variants) and functions. Universal quantification of

functions and existential quantification of records as well as recursively parameterised

types are supported. In general the systems will use structural equivalence. The

details of such type systems are found in [Con91]. Some of the operations associated

with these systems are inherently expensive, irrespective of the type representation

format. In addition to the caching of type information, the persistent store may also be

used to cache the results of such inherently expensive operations in order to improve

their performance.

The research presented in this chapter derives from the construction of the Napier88

compiler within the persistent environment. Napier88 Release 1.0 contains two

independent type checking universes. The first is used to perform static type checking

within the compiler which is implemented in PS-algol [PS88]. The second supports

dynamic type checking during the execution of the Napier88 persistent environment.

58

In order to perform dynamic type checking, type information must be passed from the

compilation environment to the execution environment. The initial implementation of

this type information transfer reacted poorly with the application construction

architecture of the previous chapter resulting in multiple copies of type information.

The problems were so severe (tens of megabytes of redundant type information) that

the type checking implementation had to be re-engineered in order that the construction

architectui e could be sensibly used.

A new type representation for the type information was designed for use within the

persistent environment which represented a good trade-off between time to execute

type checking operations and space to store the type information. The initial

implementation of the compiler within the persistent environment was completed using

an ad-hoc mechanism not described here to avoid multiple redundant copies of type

within the envii’onment. Reimplementation also allowed insight to be gained into the

nature of type checking within an integrated persistent programming environment.

This chapter analyses the many different type system operations found in persistent

programming systems and determines in which lifetime processes each is found,

demonstrating the widespread use of the type system. The operations may be split

into those that make type information available in the system (the producers) and those

that directly manipulate the information itself (the consumers). Implementation of the

producers in a persistent environment is described, showing how a single set of

operations and single instances of type representations may be shared by all programs

and software processes. A representation for type information is presented that

supports efficient implementation of the type manipulation operations. The final

section discusses the use of the persistent store as a cache for the results of inherently

complex operations over types.

59

3.2 Type System Operations in Persistent Systems

Type information is associated with all applications. It describes the data being

manipulated in terms of the data model of the programming language supporting the

application. The type information exists in three distinct forms:

• Type concepts

These are the type models created by the programmer that describe the

data to be manipulated by the application. They form the programmer's

understanding of the type information associated with the application.

• Type denotations

A means of passing type concepts from the programmer to the

programming system is required in order to perform mechanised type

checking. This is achieved by translating the type concepts into formal

denotations that may be interpreted by the system. A denotation in this

context is a textual representation of a valid type concept in the type

system. In addition the system may pass type information back to the

programmer via denotations.

• Type representations

Type denotations are converted by the system into internal

representations over which type checking operations may be performed.

There are a number of operations associated with these three forms which are

performed either by the programmer or by the programming system. They fall into

nine groups as depicted in Figure 3.1. Only a single format for denotations and for

representations is considered at the moment.

60

Concepts translated
into denotations

S Denotations translated
into representations

Concepts
1 Concepts
constructed

Denotations
4 Denotations associated

with source code

Representations
Representations associated with

executable code
i Equivalence of representations
) Examination of representations

Denotations translated
into concepts

Representations translated
into denotations

Figure 3.1 Operations over type information.

3.2.1 The Type System Operations

The nine groups of type system operations may be described as follows.

Construction of Type Concepts

Using the language data model the programmer designs the types that describe the data

associated with an application. For example, a record type may be created to represent

a person, an instance of which contains a name and an age of the base types string and

int respectively. Further data models may be constructed with reference to the person

type. For example, a type to describe a research grant may be a record with a grant

holder of the person type and a grant award of type int.

2 Conversion of Type Concepts into Type Denotations

The programming language supports a type algebra in which type concepts may be

formally expressed. Formal expression of type information is required so that the type

concepts created by the programmer may be submitted to the system. The

programmer converts type concepts into denotations in the type algebra of the

language.

61

Figure 3.2 gives the formal denotation of a type describing a person. This and all

other denotations given here are written in the type algebra of NapierSS. The

NapierSS type system is outlined in Appendix 1. The algebra supports the naming of

data types to avoid repeated denotations of the same type information. The identifiers

assigned to data types form no part of the type information. In this case the identifier

for the type is Person.

type Person is structure(name : string ; age : int)

Figure 3.2 A type denotation.

Denotations may contain references to other denotations already created. The

denotation in Figure 3.3 denotes a research grant type and refers to the person type

using the identifier Person.

type ResearchGrant is structure(holder : Person ; award : int)

Figure 3.3 Referring to an existing denotation.

Parameterised type definitions may be used to construct type denotations that are

similar but not identical in structure, reducing the complexity of multiple descriptions.

For example the denotation identified by Related in Figure 3.4 describes a record type

containing two fields of the same type. The exact type of the fields is abstracted from

the denotation and referred to by the identifier t.

type Related! t] is structure(first,second ; t)

Figure 3.4 Parameterised type Related.

Whilst not a type itself. Related specifies an infinite group of types, each of which

may be realised by specialising the definition with a type to replace the abstracted type.

Figure 3.5 shows two such specialisations.

62

type FamilyRelationship is Related! Person]
type SimilarResearch is Related! ResearchGrant]

Figure 3.5 Specialising a parameterised type.

FamilyRelationship may be used to model relationships between two people in a

family; SimilarResearch may model pairs of research grants for related work areas.

It is not essential that all types be named. Anonymous type denotations may be

included in the source code in situations where the trouble of writing the anonymous

denotation is no greater than that of writing the named denotation and then referring to

it. A typical example is Hnt which is the denotation for a vector of integers in

NapierSS. This denotation is so simple that naming it is unnecessary.

3 Conversion of Type Denotations into Type Concepts

The construction of denotations must be a reversible process so that the programmer is

able to understand type information returned from the system.

4 Association of Type Denotations with Program Source Code

A mechanism is required that associates type denotations with program source code

where they may be found by the compilation system. Denotations may be included in

program source code or constructed separately and then referred to from the source

code.

§ Conversion of Type Denotations into Type Representations

Type denotations are translated into type representations usually at or before

compilation so that they may be manipulated more efficiently in the type checking

process. This may entail parsing the type denotations and using existing

representations to create new representations. For example, the construction of a

representation for the type Person in Figure 3.2 requires only parsing of the denotation

63

since there are no references to any types previously constructed. However,

constructing a representation for ResearchGrant in Figure 3.3 requires access to the

representation for Person in order to determine the correct information for the new

representation. Further, the specialisations in Figure 3.5 require access to

representations for both the parameterised type constructor Related and the specialising

types. The specialised representation is constructed by copying the parameterised

constructor, replacing the parameterised types found in the constructor by the

specialising types.

The system ensures that the denotations constructed by the programmer represent valid

types according to the data model of the language.

6 Conversion of Type Representations into Denotations

The system occasionally makes type information available to the programmer,

requiring a conversion from a representation to a denotation. This may occur for

example when the programmer is manipulating language values with a tool such as a

browser [DB88,Far91] or when type errors occur.

With structural equivalence there are an infinite number of denotations for a given

representation since the choice of identifiers for named types is arbitrary and they are

not part of the type information. However, the identifiers used in a particular set of

denotations ai e usually given semantic information by the progi ammer relating to the

expected use of the types they represent. For example, values associated with the

equivalent types moonRocket m dfish in Figure 3.6 may be freely intermixed in any

program manipulating structured values containing two fields named length and

noOfFins of type int. However, receiving a denotation called moonRocket in an

angling program will probably lead to confusion.

64

type moonRocket is structure(length,noOfFins : int)
type fish is structure(length,noOfFins : int)

Figure 3.6 Equivalent types.

The point here is that denotations produced by the system should contain information

that is not misleading. Where the system cannot guarantee that a type created in one

context will not end up in another context it should ensure that identifiers for type

denotations contain no contextual information.

1 Association of Type Representations with Executable Code

A mechanism is required that associates type representations with executable code

where they may be found for type system operations performed during execution.

@ Type Equivalence Checking

Type equivalence checking is the primary type checking operation that occurs in

persistent systems. In order to perform a structural type equivalence check, a

representation defining the set of operations over values of the type is required for

each type. The check may be expensive since a complete traversal of both type

representations is required. This traversal is of similar complexity to a check for

equivalence over two graphs, although structural equivalence is not necessarily

implemented in this way. The expense of the traversal is also related to the amount of

information stored in the representation which is dependent on the data models

supported by the type system. The optimum efficiency for equivalence checking may

be achieved if two representations can be shown to be identical instances since a full

structural check is then not necessary.

65

9 Examination of Type Representations

The system examines the information contained in the representations in order to carry

out many operations. The information may be used for type checking purposes or for

other operations such as address calculation and the generation of code to manipulate

values of the type. The system requires operations over type representations to extract

information such as the constructor used to build a particular type, the names and

types of fields in a record type, the number and types of the parameters to a proceduie

or the type of the elements in a vector.

3.2.2 Using the Type System Operations

The use of the type system operations in a persistent environment wiU be demonstrated

here in the framework of the three lifetime processes of program construction,

compilation and execution. As described in Chapter 2, the linking process may be

supported in a persistent environment by executing programs that manipulate fiist

class values in the environment. It is therefore included in the execution process here.

Two programs that independently generate and manipulate shared data will be used to

illustrate the type system operations. The program shown in Figure 3.7 creates a

value of the type Person described in Section 3.2.1 and places it into the persistent

environment. The identifier Person from the type denotation is being used as a

constructor function for values of that type. Initialising field values of "quintin" and

25 are supplied to the function, in PS() let indicates that the declaration of the

identifier quintin is to be made in the persistent environment and not in the local scope.

in PS() let quintin := Person("quintin",25)

Figure 3.7 Creating a persistent value.

The program shown in Figure 3.8 accesses the value placed in the persistent

environment by the program of Figure 3.7 and increments its age field. To ensure

66

safe application of operations to the value some type checking must be performed

during execution. The mechanism used in Figure 3.8 depends on the compiler's

making and verifying assertions about the expected types of values in the persistent

environment at execution. The first line of Figure 3.8 makes an assertion that the

persistent store will contain a value named quintin of type Person when the program

executes. The code following the in is type checked during compilation with respect

to this assertion. During execution the assertion must be verified before the program

can access the data and the code can safely be executed.

use PS() with quintin : Person in
quintin(age) := quintin(age) + 1

Figure 3.8 Accessing a persistent value.

The type system operations associated with the application of each process to these

programs will now be described.

Construction

Before program construction the programmer must create the type concepts modelling

the data to be used in the program. The concept in the example programs is the model

of a person described by a name and an age of the base types string and int

respectively.

The concepts and denotations are used by the programmer to aid the construction of

valid code. For example, to write code that constructs a value of the Person type the

programmer must know the types of the fields. To access the fields of a Person value

the field names must be known.

The concepts are translated by the programmer into denotations and made available for

program construction. The type denotation for the example programs is shown in

67

Figure 3.2. The denotation is associated with both programs. For example this may

be performed by writing the denotation in each program.

An alternative method of determining type concepts may occur in a persistent

environment since values in the environment may be accessible during program

construction. The system may allow the programmer to browse over these values,

displaying denotations of the type representations associated with the values. Having

determined that the type concepts associated with these existing denotations are

suitable, the programmer may associate these denotations with the programs under

construction. This is the first step towards hyper-programming [KCC+92] where

existing language values as well as existing type denotations may be associated with

program source code.

Of the operation groups described in Section 3.2.1, those used during the construction

of programs are as follows:

1 Creation of type concepts.

2 Conversion of concepts into type denotations.

3 Conversion of denotations to concepts.

4 Association of denotations to source programs.

6 Conversion of type representations to denotations.

9 Manipulation of type representations (during browsing).

Compilation

Type representations are constructed from the denotations at any time before they are

required for type checking puiposes although traditionally the conversion takes place

during compilation. Checks during conversion ensure that the denotations represent

valid types according to the data model of the language.

68

Code constructed by the programmer may be checked for type correctness during

compilation if the type of the data can be determined by an examination of the source

code. The type representations describing the data are the arguments to the type

checking operations. Compile-time type checking may be performed on the program

of Figure 3.7 to ensure that the types of the initialising values of the new Person

record are equivalent to the types of the fields to which they are being assigned. That

is, checks are performed to ensure that the type of the value "quintin" is equivalent to

string and that of the value 25 is equivalent to int. Using a representation for Person,

type checking in the program of Figure 3.8 ensures that Person has a field named age.

The type of this field must be equivalent to the type of the first argument to the

addition operation. Finally, the result type of the addition operation must be

equivalent to the type of the age field in order to permit the assignment.

Type errors detected during program compilation are reported back to the programmer.

The type representations involved in the type error must be reconverted into

denotations for display so that the programmer can understand the error.

Both example programs require that a type representation for Person is associated with

the executable code produced by the compiler. Values reachable in the persistent

environment are self-describing in order to allow the late binding of independently

prepared program and data. The executable version of the program in Figure 3.7

requires a representation for Person that will be associated with the value placed into

the persistent environment during execution. The progam of Figure 3.8 requires the

representation so that verification of the compile-time assertion on the type of the value

associated with the identifier quintin may be made.

The operation goups used during the compilation of progams are as follows:

3 Conversion of denotations to concepts.

5 Conversion of denotations into representations.

6 Conversion of representations into denotations.

69

7 Association of representations to executable code.

8 Type equivalence checking.

9 Manipulation of type representations.

Execution

When the program of Figure 3.7 executes, the type representation associated with the

executable version of the progam must in turn be associated with the newly-created

Person value as it is placed into the persistent environment.

Verification of the assertions over the expected state of the persistent environment may

be made during execution when the actual state has been discovered. The verification

operation is one of type equivalence between the representation expected by the

executing program and the representation associated with the value being accessed.

For example in the progam of Figure 3.8, equivalence is determined between the

Person representation associated with the program and the representation associated

with the value identified by quintin in the persistent environment.

Subsequent execution of the progam may continue if the verification of the assertion

is successful. Otherwise the progam terminates. The representations of the types

involved in the failed verification are converted into denotations and reported to the

progammer.

The contents of the persistent environment may grow in an arbitrary manner according

to the progams that are executed against it. Tools such as browsers may be requii ed

to allow users to discover the contents of the store. During the construction of a

browsing program the progammer cannot anticipate the types of all values that will be

found in the persistent environment during execution. The browser is therefore an

adaptive program that incrementally learns during execution how to browse values

with types that have not previously been encountered. The browser requires the

ability to manipulate type representations in order to browse these new values.

70

Conversion of representations to denotations is also required so that the browser can

display the types to the user.

Some representations cannot be constructed until progam execution because they

depend on language values that are not available before that time [Con92]. In these

cases, some of the operations used to convert denotations into representations and to

manipulate representations may be required during execution.

The operation goups used during the execution of progams are as follows:

3 Conversion of denotations to concepts.

5 Conversion of denotations into representations.

6 Conversion of representations into denotations.

8 Type equivalence checking.

9 Manipulation of type representations.

3.2.3 Sharing Type Information and Operations

Section 3.2.2 shows that the same type information may be used in more than one

progam and in more than one of the processes through which progams pass. In

addition, the type information may be used in more than one of its different forms in

each process. Considering the progam of Figure 3.8, the concept and denotation for

the type Person aie used during program construction, the denotation and

representation are used during compilation and all three forms may be used during

execution depending on the result of the type verification operation.

Sharing of type information may therefore occur in three dimensions:

• The type information may be used in the three different forms of concept,

denotation and representation.

71

• Co-operating progams such as those making up an application may

operate over shared data and will therefore share the type information

associated with that data.

• Type information associated with a single progam may be used in and

therefore shared by more than one of the lifetime processes through

which the progam passes.

In addition, many of the type system operations are used in each process. For example

the examination of type representations may occur during progam construction,

compilation and execution.

3.2.4 Summary

This section has demonstrated that type system operations occur throughout the

lifetime processes. The objective of this chapter is to show how they may be

efficiently implemented. The nine operation goups associated with a type system that

have been described here may themselves be split into three goups as follows:

1. Operations involving type concepts, goups 1 - 3.

2. Operations that make type information available throughout the system,

goups 4, 5, 6 and 7. These are the producers of type information and

involve the translation of type information between denotation and

representation, the sharing of type information between progams and the

transfer of type information between the lifetime processes.

3. The remaining operations are concerned with representations only,

groups 8 and 9. These are the consumers of type information and

involve type equivalence over and information retrieval from type

representations.

The operations over concepts are carried out in the progammer's head and are not of

concern in this discussion. Of interest here is the efficient implementation of the type

72

operations performed by the system supporting a persistent programming

environment. Efficient production of type information is essential since its use is

widespread in the different forms, lifetime processes and progams. Similarly,

efficient execution of type system operations over representations throughout the

system is desirable. The remaining sections discuss the implementation of the type

system operations in goups 2 and 3 using persistence to support the implementation.

3.3 Type Information Producers

The ease with which the various system components such as the lifetime processes

and progams may refer to the type denotations and representations depends on the

availability of type information throughout the system. The disjoint collection of

components that are traditionally used in programming environments do not permit

efficient inter-component references and so a number of ad-hoc mechanisms have been

constructed to effect the required distribution of information. These usually involve

multiple copies of the same type information in different representations each requiring

its own set of type system operations.

The implementation of a programming environment may be based on a persistent

environment in which references between system components and complex type

information are maintained by the persistence mechanism. Here a single set of type

system operations may be used by all processes. Instances of denotations and

representations constructed by the operations may be shared by the lifetime processes

and also by the progams supported by the progamming environment.

The manner in which type information is made available to the system will now be

described in more detail according to the three dimensions of sharing discussed in

Section 3.2.3.

73

Conversion Between Denotation and Representation

Complex type denotations used throughout an application are usually constructed and

named by the progammer before construction of the programs. Reference may be

made from the source code of the programs to the shared denotations. The type

representations associated with these denotations may be constructed at any time

before the representation is required for type checking purposes. Since these types are

usually complex the denotation can be linked to the representation to avoid repeated

execution of the conversion operation. This also avoids excessive space consumption

which can be caused by multiple representations since each one may be retained for

use during execution.

Anonymous type denotations are included in the source code of many progams in

situations where it is inconvenient to name the type. Conversion of these denotations

to representations is required on every compilation. However, they usually denote

simple types or types that extend an existing shared type, for example proc(

complexType) where complexType is a large named type. The conversion of these

types need not be expensive providing that the representation for the shared types may

be shared in the new representation.

Making a link from representations to denotations in order to effect the reconversion

operation may lead to confusion over the names used to refer to component types as

described in Section 3.2.1. A conversion operation is therefore required that maps

representations to denotations whose inter-component references contain no contextual

information.

In order to ensure a consistent use of names between all components in a denotation

without using a system-wide naming scheme, each type representation in the system in

general requires a complete self-contained denotation. Attempting to cache all these

denotations is prohibitively expensive and so denotations are constructed from

representations when required. The time spent constructing the denotation is not

74

important since the system only requires denotations at points of interaction with the

user when speed is not essential.

Sharing Type Information Between Software Processes

Figure 3.9 illustrates the transformations on the persistent store as the program of

Figure 3.7 passes through the lifetime processes of construction, compilation and

execution using a single shared type denotation and representation, t d and TE, that

have already been constructed for the type Person.

Source code Source code
Executable code

Executable code
Source code

Figure 3.9 The persistent store during the development of a program.

The numbered stages are described as follows:

1. The source code of the program is created and linked to the type

denotation.

2. The compilation process can access the type representation for type

checking puiposes via the type denotation and produces an executable

version of the program linked to the type representation.

75

3. Having executed the program, the store contains an entry with the

identifier quintin linked to both a value of type Person and the type

representation.

Sharing Type Information Between Programs

Many programs resident in the store may share the same instance of a type denotation

and representation. For example consider the persistent store depicted in Figure 3.10.

This contains the source and executable code of the programs in both Figures 3.7 and

3.8 and the value placed in the store during the execution of the first of those

programs. Note that all of these items contain links to a single type denotation -

representation pair.

Executable code
Source code

3.7 qumtiul
3.7

'quintin'
Source
code

Fig

Executable
code

Figure 3.10 Separate programs sharing a single type representation.

3.3.1 Assessing the Implementation

The advantages of the techniques described above all stem from the ability to share

instances of denotations and representations:

• Multiple instances of the same denotations and representations aie not

required in each program.

• Different denotations and representations of the same type information

aie not required in each lifetime process.

76

• Only a single set of type operations is required since there is only one

representation over which to operate. The operations are shared by all

lifetime processes.

• The results of converting complex types from denotation to

representation may be cached.

• The efficiency of structural type equivalence checking is optimal.

Considering Figure 3.10, the type equivalence check performed by the

program in Figure 3.8 to verify the assertion over the type of the value

identified by quintin in the store will succeed on an identity check since

both the executable program and the identifier quintin are linked to the

same type representation instance.

In addition, completely independent construction of program and data is still possible

since the system does not preclude the construction of independent but equivalent type

denotations and representations. Where independent construction is required the only

effect wdl be a loss in the efficiency of the type checking operations. The reduction in

efficiency may be minimised by using the persistent store to cache the results of type

checking operations as described in Section 3.5.

3.3.2 Multiple Type Representations

The use of a single type representation shared by programs and lifetime processes has

been considered so far. Alternatively, multiple representations of the same type

information may be used by different type system operations in different lifetime

processes. Greater efficiency may be achieved since the representations can be

optimised for the operations applied to them. For example a compact representation

may be desirable during execution to improve system operation as opposed to another

used during compilation from which type information may be more efficiently

retrieved.

77

As shown in Section 3.2 type system operations may be performed over type

representations from different lifetime processes. For example the compilation of a

program may involve type representations created during both the construction and

execution processes. When multiple representations are used operations may be

required over type information stored in different representations. There are two ways

in which these operations may be carried out:

• The representations may be translated into a single format suitable for the

operation being performed. The space consumed by multiple copies and

the cost of translation may be significant.

• Specialised versions of operations may be constructed for each

combination of representations encountered. This may cause a code

explosion if there are many combinations.

An analysis of system operation is required to determine the trade-off of increased

efficiency in the execution of the type system operations against the space required for

multiple representations and operations.

3.3.3 Summary

The persistent store has been used here as a cache for type denotations and

representations. The caching avoids multiple copies of the same type information

appearing in different programs and the lifetime processes through which they pass.

In addition the results of conversion operations between the denotations and

representations of complex types are also cached.

The persistent store may also be used as a cache for the results of those operations that

ai e inherently expensive or those less well-suited to a particular representation. The

results of operations over multiple representations may also be cached. An analysis of

the system will show whether the gain in efficiency justifies the expense of

maintaining the cache.

78

Section 3.4 describes a single type representation that in conjunction with the caching

of operation results described in more detail in Section 3.5 provides at least

satisfactory efficiency during system operation.

3.4 A Type Representation

The persistent environment is used in Section 3.3 to make type information available

throughout the system by supporting a single set of type operations over denotations

and representations that may be shared among both programs and lifetime processes.

In this section a type representation is described which gives at least satisfactory

performance for those operations acting on type representations. These are:

• Construction of representation instances, in particular construction

involving the use of existing instances.

• Type information retrieval from a representation instance.

• Type equivalence of two representation instances.

The representation to be described here has been used in the implementation of the

NapierSS programming environment, the type system for which is outlined in

Appendix 1. It is suitable at the least for any language whose type system supports a

subset of the NapierSS type constructors. These are vectors, labelled cross product

types, labelled disjoint union types, universally quantified procedures, existentially

quantified abstract data types and infinite union types. Parameterised and recursive

types are also supported.

Protecting the Integrity of Type Representations

It should be noted that the integrity of the whole NapierSS system depends on the

integrity of the type information used by type checking operations. Traditionally type

checking occurs during compilation and the compiler is trusted to manipulate type

representations in an appropriate manner. Where type representations are to be

79

manipulated by untrusted code, a protection mechanism is required to ensure their

integrity. Suitable protection may be provided using the NapierSS abstract type

mechanism described in Section 4.4.1. The Napier types module [ConSS] is an

abstract data type and the type representation manipulated in the persistent system is a

witness type of this module.

The use of values of witness type for this style of protection depends upon a particular

style of witness type checking. This style is more flexible than that of NapierSS

release 1.0 [MBC+S9] but is still statically checkable. It is discussed along with its

implementation in Section 4.4.

3.4.1 Choosing Representation Characteristics

There are a number of possible characteristics of a representation that affect operations

over representations:

• The construction of and information retrieval from representations may

be improved where they are constructed using other representations as

components. Structural type equivalence checks and the use of space

may also be more efficient.

• It should be possible to traverse representations efficiently since this

improves the efficiency of information retrieval.

• Representations should be compact since a reduction in the use of space

improves the operation of the system as a whole.

There is a conflict here between the first two characteristics and the third characteristic

which concerns the addressing between components making up a particular

representation. A typical representation consists of a number of component parts

containing references to one another. Efficient construction and traversal may be

achieved using a structured representation in which persistent addresses are used to

link the components of a representation together. Alternatively, a flat representation is

80

likely to be more compact since the context of the addresses of the various components

of the representation is limited to the representation itself and so the addresses

themselves may be much smaller than a system wide persistent identifier. The

majority of the information in most representations records inter-component references

and so the difference in size between a flat and a structured representation is likely to

be significant.

Global addressing permits the sharing of independently constructed representations

which may also be a major factor in space consumption. Because of the limited scope

of the references inside a flat representation it is impossible to shaie components

between representations.

Both structured and flat representations therefore reduce space consumption but in

different ways. The types involved in a persistent programming system such as that

supported by NapierSS are typically large as demonstrated later in this section. To

prevent the space used by the intrinsically large representations associated with these

types from seriously affecting the perfoimance of the system, it is important to find the

representation that is most space efficient overall. Some measurements are included

on two different type representations. The first is a terse textual representation and the

second permits the sharing of component instances.

The measurements were made using representation instances of a NapierSS abstract

syntax tree. This is a variation of PAIL [DeaS7] and is defined as a set of mutually

recursive types containing about 140 component types.

The size of the textual representation of the abstract syntax tree is 2,206 bytes

compared to 14,466 for the structured representation. In the construction of the

NapierSS compiler the type is used as a component type of 276 other types. If no

sharing of component types is possible then each of the 276 types requires a separate

copy of the abstract syntax tree type representation. This amounts to a space overhead

of over 600,000 bytes for the textual representation which does not support sharing of

SI

components as opposed to a constant 14,466 bytes for the structured representation

which does support such sharing. Therefore, depending on the use of the

representation instances, the ability to share components has a more significant effect

on overall space overheads than the size of an individual type representation.

The speed of a full structural equivalence check over the textual representation is faster

than that over the structured representation. Checking independently constructed

versions of the abstract syntax tree representation is of the order of several hundred

times faster for the textual representation than the structured representation. However,

full structural checks are rarely required when the sharing of representation instances

is possible since they will frequently succeed immediately on an identity check. The

structured representation's ability to share components promotes the sharing of

representations throughout the system. In a persistent system where the sharing of

instances is promoted across all programs and lifetime processes, a structured

representation appears to satisfy all of the desirable characteristics of easy

construction, traversal and compactness and it is therefore this style of representation

that is described here.

3.4.2 Type Type

The format used for all type checking in the NapierSS system may be written down as

the following NapierSS type:

rec type Type is structure(label,misc,random : int ;
name : string ;
others : var)

& vai' is variant(none,unique : null ; one : Type ; many : *Type)

Figure 3.11 Type Type.

A NapierSS structure is a labelled cross product type; a variant is a labelled disjoint

union type. The interpretation of the fields is as follows.

82

label This records either that the representation is of a base type or if not then

the kind of constructor it is.

nam e,m ise These form the information specific to this type, for example the name

of a base type, the concatenated field names of a record type, the

number of branches in a variant type or the number of parameters to a

procedure.

random This is a pseudo-random number used to optimise type caching as

described in Section 3.5.

others This is a field of the variant type var, recording the component types

making up this type.

The interpretation of the variant labels is as follows:

none There are no component types for this type

one There is a single component type for this type

many There are many component types. They are stored in a vector, denoted by

the * in the type description,

unique There are situations where a type equivalence check should only succeed if

the identity of the representations is the same, that is to say, strict name

equivalence is required. This occurs when checking universally and

existentially quantified types. If the unique label is discovered during an

equivalence check, then name instead of structural equivalence is used for

this type.

It is possible to implement some classes of dependent types using this label,

since a one to one correspondence between type representations and values

may be constructed.

Some instances of the structure of representations for NapierSS types using this format

are illustrated in Figure 3.12:

83

(::) I *int(i)|int (iii) I stnicture(a ; int ; b : real)

label name mise W random othersrvKff"' label mise y random others

one many

a*b
label mise % random others

none

label random others

'int' none

'real'

Figure 3.12 Instances of the universal representation format.

The first instance (i) is for the base type int. The 1 contained in the label field specifies

that the representation is a base type. The information associated with a base type is

its name which is contained in the string attached to the name field.

The second instance (ii) is for a vector whose elements are of type int, denoted *int.

The label is 2 denoting a vector constructor. The information associated with the

vector is the type of the elements of the vector which is recorded using the one branch

of the variant var and points to a type representation of the type int. Note that the

representation for int used here is the same as that in the first instance. The vector type

representation is using an existing type representation for its component type.

The third instance (iii) is for a structure containing two fields named a and b of types

int and real respectively. The label is 3 denoting a structure constructor. The name

field contains the field names of the structure concatenated into a string, separated by *

characters. The mise field records the number of fields in the structure, two in this

case. The component types of the structure, int and real, are recorded using the many

branch of the variant var which points to a vector containing one entry for each

component in field order. Sharing of the component type representation for int is

taking place between aU three instances.

84

3.4.3 Using Type for all Type Checking Operations

85

The design of the Type representation is based on a trade-off between space and time. I

The representation may be used by all type system operations to achieve at least

satisfactory performance whilst some achieve good performance. The space used by

the representation is low because of its ability to share components.
1

The use of space has also been minimised by reducing the number of objects created

by the system for a particular representation. In the NapierSS system, the maximum |

number of objects per component type is three. Every component requires an instance

of the Type structure, which is implemented as one object. The name field is a string |

which is implemented as a separate object. The variant is stored within the Type

object. However if the variant contains a value that is implemented as a separate object

then this will necessarily be external to the Type object. The third object that can occur

in the representation of a single type is required when the type contains many

components. The variant field is instantiated to the many branch when this occurs.

The vector required for this branch is implemented as a separate object.

In order to minimise the number of objects in a representation instance, some type

information is densely encoded. This increases the complexity of some operations #

such as type decomposition. An example is the concatenation of the field names of a %

record type into a single string. Whilst this improves the efficiency of full structural

checking, complex string manipulation functions are now required to determine |

individual field names. The complexity is manageable since it may be restricted to a

few of the type manipulation functions encapsulated inside the implementation of the |

type system operations.

In this section a representation was described that supported at least satisfactory

performance of operations over representation instances. The results for each of the

three operations are as follows;

1

86

I
• Composition of type representation instances. The ability of a single

representation instance to be a component of many others, as shown in

Figure 3.12, simplifies the composition of new instances. f

• Retrieval of type information. The structured nature of the representation

simplifies the traversal of components that is usually required when

gathering information from representations. However, analysis of

information in a single representation is also required which is more

complex because of the dense encoding of type information. s
• Type equivalence checking. The representation is designed for a |

persistent environment in which sharing of instances is frequently

achieved. Equivalence checking over a shared instance gives optimal |

efficiency. Some features of the representation are included to optimise

the performance of full structural checking, since it is stül required when

programs are constructed in complete independence. In particular, the

number of objects created for an instance is small and the operations S

required to check the equivalence of the contents of objects are not

complex. The type equivalence algorithm is described in more detail in |

Section 3.5.3.

3.5 Caching the Results of Type System Operations

Some of the type system operations are expensive no matter what representation is

used. For example both the specialisation of parameterised type constructors and full

structural type equivalence are intrinsically expensive since they perform operations on

every component encountered during complete traversals of type representations.

It has already been shown how persistence may be used to cache the construction of

type representations, achieved by making an existing representation accessible in the

persistent environment. Persistence may also be used to cache the results of other

intrinsically expensive operations.

3.5.1 The General Technique

Each operation to be optimised is linked to a cache containing the results of the f

operation's invocations. The cache is keyed on some unique characteristic of the

operands to the operation. On each invocation of the operation the following takes «I
place;

• The cache is examined to check if the operation has already been

performed on these operands. If the cache contains an entry for the

particular combinations of operands then it is returned as the result of the

operation. Otherwise,

• The result is calculated, stored in the cache and then returned.

There are a number of factors that should be taken into account when considering the

use of such a cache;

• The time taken to access the cache compared with the time taken to

perform the operation.

• The frequency of successful searches over the cache. This depends on

the repeated invocation of the operation on the same operands. If the

frequency of success is low, the time taken to perform the cache access

must also be small with respect to the time taken to perform the operation

in order to make the use of the table worthwhile.

• The expense of maintaining the cache. Very large caches may affect the

operation of other parts of the system.

• The class of results held in the cache. It may be possible to store only

the results of the operation over a certain class of operands. This may

87 ^

reduce the expense of maintaining the cache or increase the access speed

on the cache.

• The correctness of an operation's algorithm does not depend on the

contents of the table - it is just an optimisation. The table may be emptied

at any time if it becomes too large.

• Non-existence of a result in the table for a set of operands proves nothing

about the result of the operation over those operands.

This remainder of this section describes the caching optimisation of the following two

operations as examples of the technique:

88

%

Î

I

• Specialisation of parameterised types.

• Structural type equivalence checking.

Both these operations take type representations as the operands. If the representation

contains no ordered key over which the type may be indexed then the cache will in fact

be a long list of (representation instance, result) tuples searched linearly on the identity

of the representation instances. This would cause the lookup time to be proportional

to the number of entries in the table which is unsatisfactory for a large number of

results.

The random field in the Type representation of Section 3.4 contains a pseudo-random

number calculated during the creation of the representation. It is included for use as a

hashing key into hash tables implementing the caches described here. The pseudo­

random nature of the hash key should ensure an even distribution of results in the
' I

table. With a good hashing function and a large enough table, access into the cache i

may be performed in a near constant time [CBC+90].

r'iü.-'*. P-l. • -i .".A'. ■■ : k

î
3.5.2 Optimising the Specialisation of Parameterised

Types j

The first example of a type checking operation whose results may be cached is the |

specialisation operation that takes place over the parameterised type constructors

described in Section 3.2.1.

The type parameterised in Figure 3.13 is parameterised by two parameter types, tl and

t2. The type itself is a structure containing two fields of each parameter type

I

type parameterised! tl,t2] is structure(a : tl ; b : t2)
type specialised is parameterised! int,real]
type concrete is structure(a : int ; b : real)

Figure 3,13 A parameterised type declaration and a specialisation.

Figure 3.14 depicts the representation instances for the type parameterised and the

specialisation of that type to the types int and real. The parameterised instance is

indicated by the label 6. The number of parameters is specified in the mise field, in

this case two. The parameterised instance refers to the instance of the type being

parameterised via the others field. Where this instance contains components that

represent parameter types, instances are used that are denoted by the label 11. A

parameter instance specifies which parameter it was in the original parameterised

declaration as well as a reference to the parameterised declaration itself. The name of

the parameter is not part of the type information. The specialised type has a similar

structure to the parameterised type and is obtained by traversing every node of the

parameterised instance making a copy of it in which the parameter nodes are replaced

by the specialising type instances.

89

Irespectively. The type specialised is a specialisation of the parameterised type

constructor using the specialising types int and real and after specialisation is §

structurally equivalent to the type concrete.

(ü) 1 specialised |(i) Iparameterised |

name mUc random others

one

mise random others mise random others

many

a*b a*b

label mise random others
label mise random others

one none

label mise random olhc

S I nonelabel random others
one 'inf

'real'

Figure 3.14 A representation of a parameterised type and a particular specialisation.

Specialisation is an intrinsically expensive operation which may occur repeatedly with

the same types. A typical example is the use of a parameterised type declaration that is

global to many programs, such as a tree or a list type. The type is repeatedly

specialised in the local programs with the same specialising types and also in a single

program if the denotation is clearer than a type identifier. The cost of repeatedly

reconstructing the specialised version may be avoided by using a persistent cache that

records the results of specialisation operations. The cache maps from parameterised

type and specialising types to the appropriate specialised version. The cost of

searching the cache to find out if a particular specialisation has already been performed

will in general be small in comparison to the full specialisation operation. As well as

avoiding the cost of the specialisation, the cache also promotes efficiency in the rest of

the type system since it allows a single representation instanced to be shared by many

programs.

90

3.5.3 Optimising Structural Type Equivalence Checking

Although the type representation described in Section 3.4 is optimised for structural

equivalence checking such checking is still inherently expensive. The objective here is

to avoid the expense incurred by re-checking pairs of types that have already been

checked wherever this may have occurred in the lifetime processes.

The type equivalence function is used frequently during the compilation, linking and

execution processes. Recording all the results of its execution would result in a cache

that consumed excessive space and slowed the cache lookup. At the same time, the

comparison of many representation pairs would not be significantly improved since

the full equivalence check is fast for certain representation pairs. An example is those

pairs that can be shown to be non-equivalent near the root of the representation

graphs.

A strategy is required for recording just the results of the representation pairs whose

comparison causes the most expense. This occurs when the types being checked are:

• Equivalent, since complete traversals of the type representations are

required.

• Nearly equivalent, differing only at the leaves of the representation

graphs, since a near complete traversal is required to show the

difference.

An Equivalence Cache

Recursive data types require representations that are cyclic. Type equivalence

checking must terminate when checking these cyclic structures. To recognise the

cycles a caching mechanism is used.

91

if l

An empty cache is created on each invocation of the equivalence algorithm. Pairs of

type representations already encountered during a particular invocation are stored in

the cache. The rechecking of cycles is then avoided by an examination of the cache.

If the result of the equivalence test is successful then the pairs of instances in the cache

are also equivalent. Making this cache persist between invocations of the algorithm

provides successful component type equivalence results with almost no extension of

the equivalence algorithm. This section describes the implementation of the

equivalence algorithm and the mechanism for recursion checking for the Type

representation described in Section 3.4.

Structural equivalence checking involves simultaneous traversal of the representations

of the types being checked. The structural check over non-cyclic instances is

recursively defined in five stages, as follows:

1. Check whether the instances are identical. Return true if they are.

Otherwise,

2. Check that the label fields of the two instances are the same. Return false

if they are not. Otherwise,

3. Check that the specific information of each type, made up from the name

and mise fields, is compatible. Return false if they are not. Otherwise,

4. If the others fields of the instances contain the unique branch of the

variant, the test fails immediately. Types with the unique branch are

defined to be equivalent only to themselves, in which case the identity

check in stage 1 above would have succeeded. If the field was not

unique,

5. Apply the algorithm recursively to any type instances contained in the

others field to check that the component types are equivalent.

92

To illustrate the algorithm, consider the equivalent but not identical instances in Figure

3.16 of the type denoted in Figure 3.15 which is a record type with one field named a

of type real.

structurée a : real)

Figure 3.15 A non-recursive type.

label name mise random others label name random others

1 3 1 ? many 6 3 1 ? many

"a" label name mdac random others

none

TI 8

"a" label name mise random others

'real'

none

'real'

Figure 3.16 Equivalent but not identical representations.

The objects making up the instances in the diagram have been numbered. An

equivalence check over these instances would initially compare object 1 with object 6.

The two objects aie not identical and so the check continues. The labels are the same,

as is the specific information consisting of the number of fields and the field name.

The algorithm is then recursively applied to the types accessible from the others field,

in this case the types found in the vector objects 3 and 8. Each of these vectors

contains just one type instance and so the algorithm is applied to these, objects 4 and

9. Again the objects are not identical. The labels and specific information are

equivalent and this time there are no further type instances accessible from the others

field and so the recursion of the algorithm is successfully grounded.

Equivalence checking in the presence of recursive data types is more complicated since

their representation instances contain cycles. For example, consider the two cyclic

instances in Figure 3.18 of the recui'sive type denoted in Figure 3.17 which is a record

93

type containing one field named x of the same record type and two fields named y and

z of type int.

rec type a is structure(x : a ; y,z : int)

Figure 3,17 A recursive type

label name mise random label name mise random others

many1

label

none

'int'

é

label name mise

none

'int'

Figure 3.18 Equivalent cyclic representations.

In order to check for cycles during an equivalence check over two instances, a cache is

maintained which records each pair of component types that have so far been

encountered during the traversal of the instances. Every time the algorithm is

recursively applied to a pair of components, the cache is scanned to find out if the

identical pair is already in the cache. If the pair is not present then it is placed in the

cache and the equivalence of the instances is determined according to their structuie.

If the pair is found in the cache then one of two situations has been detected:

1. The pair of instances has already been fully checked. If this is the case,

the check must have been successful otherwise the algorithm would

already have terminated The recursive application of the algorithm to

these types may therefore be successfully terminated.

2. A cycle has been detected in which case the pair of types may safely be

assumed to be equivalent. The assumption is based on the recursive

94

application of the algorithm to other components of the type. If these

applications succeed then the assumption is correct, otherwise the types

will have been shown to be non-equivalent and the type check will fail.

In either case the re-traversal of the cycle has been avoided.

The algorithm may be demonstrated using the two instances in Figure 3.18. On the

first call the cache is empty and so the pair of types represented by the non-identical

objects 1 and 6 is placed in the cache. Comparison of the label and the specific

information of the two types is successful since they are both structures and the field

names are the same. The algorithm is then recursively applied to the component types,

in this case three applications to the field types of each structure. The first application f

is to objects 1 and 6. A cycle occurs here and at the start of the new application this

cycle is detected since the object pair 1 and 6 is found in the cache. Condition 2 above |

applies and so no further checking of these types is attempted. The second application i

is to the non-identical objects 4 and 9. The pair is stored in the cache since it is not

present and then structurally checked for equivalence which is successful. The third I
application is also to objects 4 and 9, and so the pair is found in the cache this time. f

Condition 1 above now applies and so rechecking of the instances is avoided. The

algorithm now terminates with the result true.

Storing and accessing component pairs in the cache may become the most significant

operation in the checking of large type instances. Using the random field of the Type

representation as described in Section 3.5.1 ensures that the cost of checking for

cycles need not be significant.

The cache prevents the re-traversal of pairs of components that are encountered more

than once during the execution of the algorithm. This is the basic requirement of the

cache for type equivalence results. Making the cache persistent makes this caching

beneficial to shared components across all representation instances and across all

invocations of the equivalence algorithm since it will then record all non-identical,

equivalent type representations so far encountered. The cache does not record the

95

-a
i

4

96

!
results of all equivalence tests that have been performed, only those performed over ..u

non-identical but equivalent instances. Use of the cache is not quite as flexible as with

the general caches described in Section 3.5.1 since a cache is required for the correct

operation of the equivalence algorithm. In addition very frequent clearing of the cache | |

may result in no finite progress being made.

To maintain the correctness of the check for cycles, instances not proven to be

equivalent must not remain in the cache across invocations. If no special action is

taken these may be present after a failed invocation of the algorithm. One method of %

solving this problem is to make a record of the new pairs entered into the cache on

each new invocation of the equivalence algorithm. Should it turn out that the two

types being checked are not equivalent these new pairs must be removed from the

cache.

A particular version of a persistent cache for successful type equivalence tests may

therefore be achieved using the mechanism to check for recursive types. The cache

stores all non-identical equivalent pairs of representation instances that have been seen

by the equivalence algorithm.

Including Non-equivalent Pairs in the Cache

The structural checking of pairs of type representations that are nearly equivalent is

almost as expensive as the checking of equivalent types. The difference between the

representations is only detected at the leaves of the representation graphs which means

that a near-complete traversal of the representations is required.

In order to include pairs of representation instances that are nearly equivalent in the

cache, a 'measure of equivalence' is required that can be cheaply calculated during the

execution of the equivalence algorithm. On equivalence failure, only those pairs that

are nearly equivalent are placed into the cache. Each entry in the cache must also

record whether the pair are equivalent or not. The equivalence algorithm must be

^ 4

97

adjusted slightly since accessing the cache can now produce three results - the pair

being checked are equivalent, the pair are not equivalent or they aie not present in the

cache.

3.6 Conclusions

As the scope of the type system's application has grown from just the compilation

environment to all lifetime processes, type system implementations have gained ad-hoc

extensions to cope with the expansion. Both programs and software development

processes are traditionally independent of one another and the only way to distribute

the type information now universally required has been to make copies throughout the

system. In persistent programming systems where the type descriptions are typically

large, this copying is a complex operation and there are few implementations that

permit system-wide distribution of type information.

It has been shown here how the ability of a persistent environment to cache the

construction of complex data structures may be used to transform the implementation

of the type system operations associated with a persistent programming system.

Instead of making copies of the type information, a single instance of a structured type

description may be shared by all programs and all software processes through which

the programs pass.

The implementation of a type system now requires only a single set of operations to

construct, manipulate and test type representations. The type storage, copying and

conversion routines associated with traditional type system implementations as well as

the ad-hoc language mechanisms to promote limited type sharing may be dropped

since the function that they attempted to fulfil is now carried out by the persistence

mechanism.

The use of complex type checking operations has traditionally been restricted to the

compilation environment where speed may not be critical. As the influence of the type

 — i i : ------ ■ '-----U ------J -

98

system extends to all parts of the system, the use of these complex operations is also

spreading. Since almost any type system operation may now be used in any part of

the software development process, it is essential that a type representation is used that f

permits efficient implementation of all type operations. The description of a particular |

type representation has been given here.

I
Some type system operations are inherently expensive to implement no matter what

type representation format is used. It has been shown here how the persistent store

may be used to cache the results of these operations in order to improve the f

performance of the type system implementation.

The use of persistence to support the implementation of a type system as described

here greatly simplifies the use of the type system operations in any of the lifetime

processes.

99

<
I

4 Using Persistence to Enhance Compilation

4.1 Introduction

Embedding a compiler within a persistent environment creates a symbiotic relationship

between the two. The benefits of the relationship may be described in terms of the

manner in which the compiler and the environment interact with one another, as

follows.

Firstly, the compiler may be accessed by executing programs. An executing program
•"'V

may construct and execute new programs which manipulate the persistent %

environment. This ability of a program to alter its own environment during execution

is a particular form of reflection [Mae87] known as run-time linguistic reflection

[SSS+92]. It is of particular interest in persistent systems because it can allow long-

lived data and programs to evolve in a type-safe manner.

Secondly, the functionality of the compiler may be enhanced by parameterising it with

cached persistent values that are associated with the source. The number of stages at

which programs are bound to data may be extended when the compiler can manipulate

that data. These stages depend upon the times at which identifiers embedded in a

program are resolved to their associated values, as follows:

• During program composition. The source contains embedded complex

structured values. During compilation these values are incorporated into

the compiled code. This technique is known as hyper-programming

[KCC+92].

• During compilation. Free identifiers in the source are resolved using

values passed into the compiler [FDK+92].

■ I

• Between compilation and execution. The resolution of the identifiers is

performed in a separate phase involving an intermediate program

representation and the associated values.

• During execution. Identifiers are resolved when the executing program

accesses values in the persistent environment.

Thirdly, the compiler may manipulate values in the environment. There are two

benefits here. The compiler may use the environment to optimise its own

performance, for example by caching the results of operations repeated across

invocations of the compiler. An example of this was seen in the implementation of

type checking seen in Chapter 3. Also, the compiler may associate persistent values

with compiled code in order to optimise the execution of that code. An example of this

for optimising the implementation of polymorphism is described in Chapter 5.

The symbiotic relationship occurs in that the compiler uses the persistent environment

to enhance its functionality and to optimise code for use within the environment. The

persistent environment benefits in that the execution of programs, including the

compiler, is made more efficient.

This chapter describes the facilities that are required in order to deliver the benefits

described above. They are:

• A flexible compiler interface. The interface supports reflective

programming techniques and flexible binding strategies.

• The construction of the NapierSS compiler within the NapierSS persistent

environment. The construction architecture of Chapter 2 is used to

achieve this.

As described in Chapter 1, construction of a compiler within a persistent environment

is the major task in converting a persistent programming language implementation into

an integrated persistent programming environment. Construction of the NapierSS

100

compiler within the NapierSS persistent environment was the keystone on which all of

the research in this thesis is based.

The flexible compiler interface was developed once the initial implementation of the

compiler was complete. The impetus for the interface was a number of new

component binding styles implemented independently during the development of the

persistent environment. These included hyper-programming [KCC+92], compile-time

binding[FCK+92] and binding between compilation and execution. The location

binding used in the construction architecture of Chapter 2 was also incorporated. The

new compiler interface cleanly supports all of these binding styles.

4.2 A Flexible Compiler Interface

Placing the compiler within the persistent environment establishes a requirement for |

greater flexibility in the use of the compiler and therefore demands more facilities from

it. These facilities are described as a series of ever richer interfaces to the compiler

which can be used in the appropriate context.

4.2.1 Linguistic Reflection

a

a
i'

■I
Linguistic reflection is defined as the ability of a program to generate new program v|

fragments and to integrate these into its own execution. The importance of linguistic

reflection is that in conjunction with strong typing it may be used to provide a type

safe mechanism for the production and evolution of programs and data in a persistent |

environment. In current systems it has been used to attain high levels of genericity

[SFS+90], accommodate changes in systems [DB88,DCK89], implement data models

[Coo90a,Coo90b], optimise implementations [CAD+87,FS91] and validate

specifications [FSS92,SSF92].

The focus of interest here is the manner in which linguistic reflection may be used to

support the programming process entirely within the persistent environment. To

101

■

achieve this, a particular style of linguistic reflection known as run-time linguistic I

reflection is used. This style is concerned with the construction and manipulation of

new program components during the execution of an existing program.

Run-time linguistic reflection involves the use of a compiler that can be called

dynamically to compile newly generated program fragments. Programs may access a

compiler during execution since it is a procedure value within the persistent

environment. The type of this procedure is of interest. Traditionally, a compiler takes

a source code representation and produces executable code. The source representation

may be a string and the executable code may be represented by a void procedure. In

such cases the type of the compiler is as in Figure 4.1.

type compiler is proc(string procQ)

Figure 4.1 The type of the compiler procedure.

An example of the use of this procedure to support run-time linguistic reflection is

given in Figure 4.2 in order to demonstrate that the whole programming process, from

program construction through compilation to execution, may be carried out within a

persistent environment. The example is a fragment from a program that supports a

very simple programming environment in which the user is prompted to type in the

source text of a program. The source text is then passed to the compiler procedure

which returns executable code for the source program encapsulated inside a void

procedure. The reflection occurs at this point. The resulting executable procedure

may then be stored or executed.

102

' ...

/** The new program is constructed.
writeString("Please type in a program: ")
let source = readStringQ

/** The source text is compiled, using the procedure compile,
to give a void procedure.

let executable = compile(source)

/** Do something with the executable version of the program.
wiiteString("Store or execute the program? ")
if readStringO = "store"
then /** storeProc stores the source and associated executable code.

storeProc(source,executable)
else /** The new program may be executed by calling the procedure.

executableO

Figure 4.2 Using a compiler procedure within a program.

The user may type the program of Figure 4.3 when the program of Figure 4.2 is

executed. The user's program is compiled into a procedure that will write out Hello

World when called. The user may execute the procedure immediately or store it for

later use.

writestring("Hello World")

Figure 4.2 A simple program.

By extrapolating the program fragment of Figure 4.2 it can be seen how a complete

programming environment may be supported if the reflective ability to turn a program

representation into executable code is provided within the persistent environment.

The compiler interface given in Figure 4.1, used to introduce the concept of reflection,

does not specify the full behaviour of a conventional compiler since there is no

indication of the action taken when the compiler detects an error in the source

program. The interface may be extended to handle compilation errors as shown in

103

1

$

J

J

Î

:|
'i
J:

Figure 4.4. The compiler returns a variant type compilerResult which may indicate a |

compilation failure along with an appropriate message or else a successful compilation %

along with the void procedure result.

type compilerResult is variant(fail : string ;
ok : procQ) 4

type compiler is proc(string compilerResult)

Figure 4.4 Handling compilation errors.

An executable program may contain code which causes the data to be

accessed during execution.

The subject of compilation errors raises an important point about the nature of the

compiler in a persistent environment. The compiler is the only program with the

power to convert program representations into executable values within the |

environment. A particular component within the compiler, known as the magic

module, performs this task. The compiler is trusted to ensure that only valid

representations of programs are passed to the magic module. This is particularly

important in a persistent system where the type system may be the only protection

mechanism over data. It is therefore essential both that the compiler is implemented

correctly and that it is protected from corruption.

4.2.2 Supporting Flexible Binding Strategies

In persistent systems, an executing program and the persistent data over which it

operates combine to form a complex graph structure within the persistent object store.

Where program construction and compilation is independent of the persistent

environment however, source and executable program representations are restricted to

being unstructured values. Therefore the binding of program and persistent data may

only be achieved as follows:

104 ‘I

!

If the data can be translated into a flat representation then a flat copy of |

the data may be taken from the persistent environment and included in the

program. Referential integrity over the data is lost in this case.

When the program construction environment is contained within the persistent

environment, both source and executable program representations may be represented #

by structured persistent values. This promotes a range of techniques by which

programs may be bound to data. The trade-offs associated with these styles of

binding may be found in [FDK+92].

105

The compiler interface described in Section 4.2.1 reflects the functionality of a J

compiler external to the persistent environment. A number of extensions are required

to the interface in order to support new binding techniques. Each technique is

described in conjunction with the necessary extension to the interface. The different

interfaces described here are simplified for the sake of clearer discussion.

Composition-time Binding

Where the program composition process is supported inside the persistent €

environment, programs and data may be bound during composition. The programmer

composes programs interactively by navigating the persistent environment and

selecting data items to be bound into the programs. This requires direct links to the

persistent data items to be represented in the program source. This style of

programming is known as hyper-programming [KCC+92].

The source representation passed to the compiler may be extended to include direct

links to persistent values or locations as shown in Figure 4.5. An instance of

sourceRep is a list of source components, each element of which may be either a I

language lexeme or an embedded item contained in the persistent environment.

Whether the embedded item is a value or a location is determined using the value field

~ ■ • '------------ ±..., ,-■'51: i , .

rec type compiler is proc(sourceRep compilerResult)
& sourceRep is list[sourceComponent]
& sourceComponent is variant(lexeme : string ;

embedded : valueOrLocation)
& valueOrLocation is structure(value : bool ; item : any)

Figure 4.5 Compiler interface with extended source representation.

When the compiler encounters an embedded item, its type is deteraiined from the any

in which the item is contained. The value or location itself is directly embedded into

the executable code produced by the compiler.

As described in Chapter 3, type representations found in the persistent environment

may also be included in the source representation to promote optimisations in type

checking. sourceRep may be used unchanged to hold type representations since they

are persistent values. The compiler can always determine by context whether an

embeddedValue is to be used as a value or as a type. A problem specific to NapierSS

is the overloading of types as constructor functions. Further complexity is required to

handle this which is not of interest here.

The integrity of the whole persistent environment depends on the manipulation of type

representations by the compiler. The compiler as described previously is a trusted

program and must construct and manipulate type representations correctly to ensure

that only legal operations are applied to data. Where the compiler is the only trusted

program in the system it is potentially dangerous to allow type representations to

escape the control of the compiler and then be returned to it in a different context. A

mechanism is required to ensure both that type representations supplied to the compiler

did originate there and that type representations cannot be corrupted. Such a

mechanism is described in Section 4.2.3.

106

J — -J-

of valueOrLocation. The embedded item may be of any valid type and so is injected

into the infinite union type any.

Compile-time Binding

Where the compiler can access and manipulate persistent values, binding between S

program and data may also be performed during compilation.

The binding mechanism may be based on the resolution of free identifiers within the

program by the compiler. The use of an identifier that is not declared within a

program is detected by the compiler. Traditionally an error is reported in such cases. â

To support compile-time binding the compiler may be parameterised by a table of

persistent values or locations keyed by identifiers. When a free identifier is detected

the compiler attempts to resolve the identifier against the table of values. Successful

resolution causes the associated value to be included in the executable program.

Unsuccessful resolution causes a compilation error.

The interface to the compiler is extended as shown in Figure 4.6. table[string,any] is

the type of a table package that holds persistent values injected into type any keyed by

values of type string,

type compiler is proc(sourceRep,table[string,valueOrLocation]
compilerResult)

Figure 4.6 Compiler interface suitable for compile-time binding.

It should be noticed that the compiler interface has been extended to allow both

composition and compüe-time binding to co-exist.

Separating Checking and Binding

By permitting the binding of programs to values during compilation, the compiler is

now performing the following two activities:

• Compilation, consisting of lexical analysis, syntax analysis, type
checking and code generation.

• Binding.

107

Greater flexibility and efficiency may be achieved if the binding is performed in a

separate phase. Binding may take place after compilation and before execution.

Efficiency is gained since the program passes through the compilation phase only

once. Flexibility is increased since a compiled program forms a generic specification

which may be specialised in many different ways provided that the generic version is

allowed to pass through the binding phase many times. On each occasion a different

executable program may be produced according to the values supplied to the binding

phase. Flexibility may be further increased where the binding can be performed in

incremental stages, each stage producing a more completely resolved program.

Execution of the program can take place when all the bindings are completely

resolved.

The compiler interface may be split into two sections as in Figure 4.7 to support

separate compilation and binding phases. Note that the compiler may produce

executable code if the source code contains no free identifiers.

rec type compiler is proc(sourceRep,table[string,valueOrLocation]
result)

result is variant(fad : string ;
stillUnbound : unboundDetads ;
executable : procQ)

unboundDetads is structure(code : intermediateRep ;
free : list[id])

id is structurée name : string ; embedded : valueOrLocation)
intermediateRep i s
binder is proc(intermediateRep,table[string,valueOrLocation] —>

result)

&

&

&
&
&

Figure 4.7 Separating compilation and binding.

Although the values associated with free identifiers are not resolved until the binding

phase, the types associated with the identifiers must be known during the compilation

phase. The table passed to the compilation phase is used for this purpose. The values

J:

108

 ’— L .

in the anys are ignored by the compiler; it is the specific types that are used by the

compiler.

The compilation phase may detect an error in which case an appropriate message is

returned. Otherwise either no free identifiers are detected in which case the compiler

returns an executable procedure or else an intermediate program representation is

returned along with details of the free identifiers contained in the program. The format

of the intermediate representation is not of concern here.

The binder phase takes an intermediate representation as parameter along with a table

of values. If the representation contains a free identifier for which the table contains

an entry and the entry is of the type specified during checking, then the identifier is

resolved. If all free identifiers are resolved then the binder produces an executable

procedure. Otherwise a new intermediate representation is produced along with details

of the remaining free identifiers. If the table contains entries for which the program

has no corresponding free identifiers or if the entries are of the wrong type then the

entries are ignored.

The compiler and binder procedures may be used independently from one another.

Interfaces may be defined over them however to provide various styles of compilation.

For example a procedure that supports the integrated compiling and binding interface

of Figure 4.6 is shown in Figure 4.8.

The soui'ce is passed to the procedure along with the values table. The result of the

compiler is projected onto the possible branches of type result. A compilation error

may be detected, or else the compilation is successful. In the latter case the values

table may be empty in which case the compiler returns an executable procedure.

Otherwise the intermediate program result is passed to the binder procedure along with

the values table. Since the same values table is used in both compilation and binding,

this operation is always successful and the resulting executable procedure is returned.

109

let integratedCompiler = proc(source : sourceRep ;
values : table[string,valueOrLocation]

compilerResult)
begin

let compRes = compiler(source,values)

project compRes as X onto
fail : compilerResult(fail : X)
executable : compilerResult(ok : X)
stillUnbound : begin

let binderRes = binder(X(code),values)

project binderRes as Y onto
executable : compilerResult(ok : Y)

default : {...}

default
end

: { }
end

Figure 4.8 A compiler interface over the compiler and binder procedures.

An alternative interface may be constructed that allows free identifiers in a program to

be resolved against the values found in a list of environments, as illustrated in Figure

4.8. An extra procedure is required that converts an environment into a suitable table

of values. If the compilation is successful then the intermediate program result is

repeatedly bound against the values found in each environment in the list. If the

environments do not contain all the required values, then the compilation fails and a

message is returned to that effect.

let envToTable : proc(e : env -> table[string,valueOrLocation]) ; {}

let compileWithEnvs = proc(sourœ : sourceRep ;

envs : list[env] ;

fiedids ; table[string.valueOrLocation] -> compilerResult)

begin

let compRes = compiler(source,values)

110

Figure 4.8 Compiling against a list of environments.

An intermediate representation is another example of a value constructed by the

compiler that may escape its control, to be returned to the compiler at another time.

Conuption of the representation may result in the production of an unsafe program.

I l l

project compRes as X onto

1fail : ccmpilerResultC fail : X)

executable ; compilerResnlt(ok : X) %
stiUUnbound : begin -'S

let intRep := X , i

let finished := false i
let result := compilerResult(fad :"Couldn't bind all free identifiers")

while envs isnt tip and rfinished do

begin Ï

let values = envToTable(envs'cons(hd)) -I.:n
let binderRes = binder(X(code),values)

project binderRes as Y onto
Î
1

executable : begin 1
i

result := compilerResult(ok : Y)

finished := true 1
end

StillUnbound : begin Î
mtRep := Y 1
envs := envs'cons(tl)

'i
1

end

default : begin 1?
finished := true

1
result := compilerResult(ok : A

"error in binding")

end

end

result

end

default {....} cannot occur

end

'i

Consequently it is necessary to protect the representation while it is outside the

compiler.

I

4.2.3 The Compiler Interface as an Abstract Data Type

As discussed above, type representations and intermediate program representations

must be protected to avoid potential corruption of the persistent environment.

Protection is only required when they are outside the control of the compiler. The

required protection may be provided using the abstract data types of Napier88

[CDM+90]. The compiler interface may be supported using the abstract data type

shown in Figure 4.10.

rec type compilerPackage is abstype[intermediateRep]
(

compiler ; proc(sourceRep,table[string.valueOrLocation]
result! intermediateRep]) ;

binder : proc(intermediateRep ,table[string.valueOrLocation] —>
result! intermediateRep])

)
& result! IR] is variant(fad : string ;

StillUnbound : structure(code : IR ;
free : list!id]) ;

executable : proc())
& id is structure(string.valueOrLocation)

Figure 4.10 The compiler abstract data type.

The abstract type specifies a type known as the witness type, in this case

intermediateRep, which is the type that is abstracted over. The interface contains two

procedures, compiler and binder, which return values of the result type which is

parameterised by the witness type. Outside the abstract data type the internal structure

of values of the witness type may not be accessed. However these values may be

stored and passed around. When they are re-presented to the binder then their internal

structure may be accessed again within that procedure with the confidence that it has

112

‘I

" .

not been altered in an unsafe manner, A value of the abstract type is constructed by

specifying a concrete type for the witness type and supplying two procedures

operating over that concrete type. A suitable concrete type for the intermediate

representation used by the compiler might be a record containing a list of instruction

codes and a list of unresolved identifiers and their positions of use in the instruction

sequence. It is this data structure that is protected while outside the compiler.

I
The above description of the use of values of witness types depends upon a particular if

style of witness type checking. This style is more flexible than that of Napier88

release 1.0 [MBC+89] but is stül statically checkable. It is discussed along with its

implementation in Section 4.4.

4.3 Constructing the Compiler within the Persistent
Environment

The benefits described so far depend on the availability of a compiler within the

persistent environment. A compiler must therefore be constructed inside the

environment. The binding style used in the construction architecture of Chapter 2 may

be used to support the implementation since it gives appropriate levels of safety and

flexibility. The construction of the Napier88 compiler will be used as an example of

how a complex application may be mapped onto that software architecture.

4.3.1 The Napier88 Compiler

The Napier88 compiler uses the recursive descent compilation technique

[Amm73,DM81]. Recursive descent is a single-pass technique which is centred

around the syntax analysis phase of the compilation. This phase is split up between a

number of recognition procedures, each one performing the syntax analysis of a

particular production in the grammar defining the language.

113

Embedded in each recognition procedure are calls to others to recognise the appearance

of sub-productions. For example the procedure recognising the declaration of an

object uses the procedure that recognises clauses in order to parse the object itself.

The technique is mutually recursive since within one recogniser the use of the same

recogniser is frequently required at a lower level. This follows the mutually recursive

definition of the language. For example, the definition of a procedure may contain the

definition of encapsulated procedures.

No explicit parse trees are constructed using recursive descent. All information about

the compilation is retained in the stack frames of the recursive procedure calls.

The recognition procedures perform the syntax analysis phase of the compilation. A

number of other procedures are required to perform lexical analysis, type checking,

code generation, and error handling. Calls to these procedures are embedded at

appropriate positions within the recogniser procedures.

The compiler produces a low level intermediate code representation. A second pass is

required to convert this representation into target machine code. This pass is

performed incrementally at the end of the compilation of each procedure. There are

two existing implementations of the second pass for PAM [BCC+88] code and for

SPARC [Sun87] code.

4.3.2 Building the Compiler on the Construction
Architecture

When no compiler is available in the persistent environment, one must be constructed

using an external program construction environment. The binding styles described in

Section 4.2 are therefore not available. However the flexible binding style of the

architecture described in Chapter 2 may be supported using the generator programs

described there. Having bootstrapped a compiler into the environment, it may be

114

reimplemented using the binding techniques of Section 4.2. Both the bootstrap and

one possible reimplementation technique are described here.

General Requirements of the Architecture

Using the construction architecture of Chapter 2, an application is divided into a

number of components. Each component is contained in a typed location and bound

to the locations of other components to which it refers. This style of binding gives

both safety and flexibility at the cost of a small degradation in the efficiency of inter­

component references.

The locations are also bound together by a mechanism that allows access to the

locations so that they and their contents may be manipulated. In Napier88 this access

mechanism is supported using the environment data structure. The environments

holding the locations of the compiler are tree-structured as shown in Figure 4.11 in

order to impose some logical structure over the 600 or so components that make up the

compiler. The tree structure is reachable from the persistent root. Each name in the

diagram is an environment containing a number of components grouped according to

the compilation operation for which they are used. There are also a number of

constant values that are treated as separate components.

PSQ

compiler

recognisers typeChecking lexicalAnalysis constants secondPass codeGeneration errors

PAM SPARC

Figure 4.11 The environment tree structure containing component locations.

4
S';

115

Figure 2.6 is reproduced here in Figure 4.12 as a reminder of the two styles of

binding that are used in the construction architecture. The environment structure of

Figure 4.11 is the location access mechanism represented in the vertical plane of

Figure 4.12. The bindings in the horizontal plane are constructed when the

components are created and as described above are bindings from component to

location.

location
access

mechanism

bindings from
components
to locations

Figure 4.12 The two styles of binding in the construction architecture.

Bootstrapping the Compiler into the Persistent Environment

When the Napier88 program construction environment is external to the persistent

environment, binding between program and persistent data is achieved by including

code in programs to access the data during execution. Using the construction

ai'chitecture of Chapter 2, programs bind to persistent data during the generation of

new components in order to construct the required component to location bindings.

There are two kinds of program that should be considered.

Firstly, initialiser programs are required to construct the environment structure and the

associated locations shown in Figure 4.11. The program of Figure 4.13 constructs

116

the compiler environment. The procedure environment available in the root

environment of the persistent store may be used to create new environments.

use PS() with environment : proc(env) in
in PS() let compiler := environment()

Figure 4.13 Creating the compiler environment.

There is an initialiser program for each sub-environment to create that environment and

its associated typed locations. The locations initially contain default values that are not

of interest here. Figure 4.14 shows the program that is used to set up the recognisers

environment and the locations contained therein. Initially the program binds to the

compiler environment and to the procedure to create new environments. A new

environment newEnv is created and then a number of locations of suitable types are

created in the new environment. The exact types are not of interest here, sequence

and objectDecl are two of the many productions in the language grammar. Finally the

new environment is placed into the compiler environment.

use PSQ with environment : proc(—> env) ;
compiler : env in

begin
let newEnv = environment()
in newEnv let sequence := p roc(....)
in newEnv let objectDecl := proc(....)

in compiler let recognisers := newEnv
end

Figure 4.14 Creating an environment and associated locations.

Secondly, generator programs are required to fill the locations with the appropriate

components. Figure 4.15 shows a program to generate a new version of the sequence

recogniser procedure. The sequence procedure may be bound to any of the

components in the environment structure. Among others, sequence uses the

' I

■Si

I

1

117

objectDecl procedure, also found in the recognisers environment Once the generating

program has been bound to the required locations in the persistent store, a new version

of the sequence procedure is constructed and assigned to the sequence location.

use PS() with compiler : env in
use compiler with recognisers, types, cgen : env in
use recognisers with sequence : p ro c(....) ;

objectDecl : p ro c(....) ;
.... in

use types with

begin
sequence := proc(....)

begin

objectDecl may be used within sequence
.... objectDecl

end
end

Figure 4.15 Generating a new component.

When generator programs for all components have been executed the compiler is ready

for use. The construction of a compiler interface package of the style shown in Figure

4.10 is outlined in Figure 4.16. First a concrete type for the intermediate program

representation is declared. Having retrieved the necessary components from the

environment, versions of the compiler and binder procedures are constructed that

operate over the concrete intermediate representation. At some point, the compiler

procedure calls sequence since it is sequence that compiles the top-most production m

the language grammar. Other details of binder and checker are not important here.

Having generated the two procedures, a new instance of the compiler interface abstract

type may be constructed. This is achieved by specifying the concrete type and

appropriate interface components.

118

type intermedRep isstru ctu re(....) Details unimportant here.
type compilerPackage is abstype[...](....) in Figure 4.10.

use PSQ with compiler : env in
use compiler with recognisers : env in
use recognisers with sequence : p roc(....) in

begin
let compiler = proc(s : sourceRep ;

freelds : table! string,valueOrLocation]
result! intermedRep])

begin

/** The compiler part o f the package is called using sequence
.... sequence(....)

end

let binder = proc(i : intermedRep ;
freelds : table!string,valueOrLocation] —>

result! intermedRep])
begin

end

/** A new compiler interface is constructed using intermedRep as the
/** specialising concrete type.
let compüerlnterface = compilerPackage! intermedRep](compiler,binder)

Use or store the interface....
end

Figure 4.16 Generating a compiler package.

119

1

Using the Flexible Compiler Interface to Generate a Compiler

Once a compiler has been constructed in the store, the flexible compiler interface

described in Section 4.2 may be used to reimplement the compiler. As an example,

composition-time binding will be used to show how the programs of Figures 4.13,

4.14 and 4.15 are adjusted. The bindings in a program using composition-time

binding may be denoted using boxes surrounding identifiers for the embedded values.

Full details of an interface which allows these composition-time bindings to be

constructed and examined is given in [KCC+92].

The program of Figure 4.13 which creates the compiler environment is altered to that

shown in Figure 4.17. Note that the environment procedure was found during

program composition and bound into the program representation.

in PS() let compiler =| environment ()

The program of Figure 4.14 to create the recognisers environment is altered to that of

Figure 4.18. Both the environment procedure and the compiler environment have

been bound during program composition.

let newEnv =|environment|()
in newEnv lei sequence := ...
in newEnv let objectDecl := ...

in |compüêr let recognisers := newEnv

Figure 4.18 Creating the recognisers environment using composition-time binding.

The most radical reduction in complexity is the version of the program to generate a

new sequence component using composition-time binding. This is shown in Figure

4.19.

120

I

Figure 4.17 Creating the compiler environment using composition-time binding. |

sequence|:= p roc()
begin

objectDecl may be used within sequence.
....lobiectDecll....

end

121

Figure 4,19 Creating the sequence component using composition-time binding. if

Of the binding styles introduced in Section 4.2, only composition time binding has

been shown here. For increased flexibility, the compiler may be implemented using

generic specifications of each component in which the exact components to which they

refer are left unspecified. Compilers with different behaviour may be produced

according to the particular values used to specialise the components. î
€

4.4 Dynamically Checked Witness Types

As described at the end of Section 4.2, NapierSS abstract data types may be used to

protect both type and intermediate program representations when they are outside the

control of the compiler. This is a requirement in the system since it is only the

compiler that is trusted to manufacture and manipulate these representations. The

representations are viewed as values of the witness type of the compiler abstract data ■ f

type while external to the compiler. As such only the basic operations available over

all types may be performed on the representations such as equality and assignment.

This section describes the construction and use of NapierSS abstract data types in

detail. Some limitations over witness type checking encountered in NapierSS release

1.0 are exposed that disallow the manipulation of values of witness type as required

by the compiler interface. A new style of witness type checking that is suitable for use

with the compiler interface is then described along with its implementation.

4.4.1 NapierSS Abstract Data Types

type count is abstype[t](val : t ;
inc : proc(t -> t))

1

I
i

NapierSS abstract data types are the existentially quantified types of Mitchell and

Plotkin [MPSS]. Consider the abstract data type count shown in Figure 4.20. count

is declared to be an abstract type with a single witness type t which is the type that is

abstracted over. The abstract type interface consists of an identifier val with the type t

and an identifier inc which is a procedure that takes a parameter of type t and returns a H

result of that type.

I

I

Figure 4,20 The abstract data type count.

To create an instance of the abstract type the fields of the interface are initialised. This

requires a value of type t and another of type proc(t t) for some type t. For

example, if type t is specialised to type mf, the procedure value inclnt created in Figure

4.21 may be used in the abstract type instance counterOne also created in Figure 4.21.

The value counterOne is of abstract type count with concrete witness type int in which

the val field is initialised to 0 and the inc field to inclnt.

let inclnt = proc(x : int -> int) ; x + 1

let counterOne = count! int](0,inclnt)

Figure 4,21 Creating an instance of count. ^

Once the abstract instance has been created the user of the interface can never again teU

that the concrete witness type is int. The concrete witness type of the abstract instance

counterTwo, shown in Figure 4.22, is real. counter One and counterTwo are however

type compatible since the type of the concrete witness is abstracted after creation.

122

-2—•. ■ ' - ' • -• '------------111- - ' -L ■■ ■•■•■A--• -j -IV'î'.-'.sfâf.a

let incReal = proc(x : real real) ; x + 1,0

let counterTwo = count! real](0.0,incReal)

counterOne(val) := counterOne(inc)(counterTwo(v a l))

Figure 4.23 Unsafe interaction between abstract instances.

A mechanism is required therefore to ensure that only operations and values from the

same instance of an abstract type are mixed. It is desirable for this mechanism to

operate statically. The abstract use clause of NapierSS !CDM+90] performs this

function. Use of an abstract instance is restricted to a specified code section by the use

clause. Consider the use clause of Figure 4.24. The use of intCounter is restricted to

the block after the in which in this case is a single assignment operation. The compiler

cannot detect statically which abstract instance is being used since the abstract value

after the use can be expressed as any legal expression and therefore may be

anonymous. However, the compiler can ensure that the same instance, whichever it

is, is used throughout the use block by aliasing it to a constant identifier, in this case

123

I

Figure 4.22 Creating an instance of count using real as the concrete witness type. J

Accessing the Fields of Abstract Instances

s
The focus of interest in this section is the type checking that is required to ensure the

safe use of abstract types. Consider the procedure call and assignment of Figure 4.23.

Since counterOne and counterTwo are type compatible this appears to be a type-safe

operation. However the implementations used to construct the two abstract types are %

different and so the application of counterOne(inc) to counterTwo(val) is unsafe.

The inc procedure expects a parameter of concrete type int but instead is supplied with

one of type real. The compiler cannot find out the concrete types and so cannot detect

the erroneous operation.

aliasedCounter. Inside the block the only access to the abstract instance being used is

via this identifier.

As well as aliasing the abstract data type to a constant identifier, the witness types of

the abstract type are aliased to types that are unique to the use elapse. The user may

specify identifiers for these types. In Figure 4.24 the witness type of counterOne has

been aliased to uniqueT. Name equivalence is used over these types, i.e. uniqueT is

only equivalent to itself.

use counterOne as aliasedCounter[uniqueT] in
aliasedCounter(val) : = aliasedCounter(inc)(aliasedCounter(val))

Figure 4.24 Abstract type use clause.

The unsafe interaction of the program in Figure 4.v can now be detected statically.

The same program must be rewritten with use clauses as in Figure 4.25. Using the

aliased types, the dereference aliasedCounterOne(inc) produces a procedure of type

proc(uniqueT 1 uniqueT 1). The result of tho dereference aliasedCounterTwof val)

to which this procedure is applied is of type uniqueT2. The compiler may therefore

detect the erroneous operation.

use counterOne as aliasedCounterOne[uniqueT 1] in
use counterTwo as aliasedCounterTwo[uniqueT2] in
aliasedCounterOne(val) := aHasedCounterOne(inc)(

aliasedCounterTwo(val))

Figure 4.25 Detecting an unsafe interaction.

Placing Values of Witness Type into Infinite Unions

The protection offered by the use clause mechanism depends on the assumption that

values of witness type or values containing values of witness type can only originate

from the abstract instance aliased to the constant identifier. In the presence of infinite

124

1

I

;;

unions this assumption is incorrect since such values may be introduced into the use

block from an infinite union.

Storage and retrieval of values of witness type from infinite unions may be required

during the use of the compiler interface abstract type of Figure 4.10. For example, in

the program of Figure 4.26 the checker part of the compiler is used and the result is

placed into the persistent root which is of the infinite union type env.

use PS() with compilerPackage : compiler in
begin

use compilerPackage as comp[intRep] in
begin

let someSource =
let someUnboundValues =

let checkerProc = comp(checker)
let checkerResult = checkerProc(someSource,

someUnboundValues)

project checkerResult as X onto
fail :
StillUnbound : /** Value of witness type placed

/** into an infinite union here.
in PSQ let anIntermediateProg = X

default
end

end

Figure 4.26 Placing a value of witness type into an infinite union.

The program of Figure 4.27 then retrieves the intermediate result and uses the binder

procedure to specialise it. The execution of these two programs is only safe if the

same abstract instance is used in both programs. This cannot be ensured statically. A

dynamic mechanism is required to determine whether values of witness type

introduced via an infinite union originated from the same abstract instance that is being

125

i

I

manipulated by the use clause. The mechanism described here hinges on the use of

appropriate type representations for the dynamic type checking operations associated

with infinite unions.

use PS() with compilerPackage : compiler in
begin

use compilerPackage as comp[intRep] in
begin

Value o f witness type retrieved from infinite union here.
use PS() with anIntermediateProg : intRep in
begin

let someUnboundValues =

let binderProc = comp(binder)
let binderResult = binderProc(anIntermediateProg,

someUnboundValues)

/** Manipulation o f binderResult.

end
end

end

Figure 4.27 Retrieving a value of witness type from an infinite union.

4.4.2 Dynamic Witness Type Checking

To reiterate, a dynamic check is required when a value of witness type is introduced

into a use block from an infinite union. The check ensures that the value originated

from the abstract instance being used. A dynamic type check is already performed

whenever a value is retrieved from an infinite union to ensure that the value is of the

type expected by the program. A type representation to be used for this purpose is

associated with a value in an infinite union. The compatibility check between a

witness value and an instance may become part of the dynamic type check if the type

126

representation associated with the witness value is dependent in some way on the

abstract instance from which the value originated.

The required dependency may be set up if, for every abstract instance, a unique type is

created for each witness type in the instance. Similarly to the unique witness types

used during the compilation of use clauses, name equivalence is used over these types.

A value of witness type is placed into an infinite union along with the unique type

created for the witness type of the abstract instance from which the value originated.

This is shown in Figure 4.28 which contains a program to place the contents of the val

field of counterOne into the persistent environment. The code in italics indicates how

the program is transformed during compilation. On entry to the use block, the unique

witness type is declared for use inside the block. It is the unique type that is

associated with the witness value in the persistent environment.

use counterOne as aliasedCounter in
begin

type uniqueWitness is the unique type for the witness type t in counterOne
in PS() let aValue = ahasedCounter(val) .• uniqueWitness

end

Figure 4,28 Placing a witness value into an infinite union.

When a witness value is retrieved from an infinite union, the type associated with the

value is checked against the expected type. The expected type is the unique witness

type of the abstract instance being used. Figure 4.29 illusti ates how the code to look

up a value in the persistent environment is transformed.

127

use counterOne as aliasedCounter in
begin

type uniqueWitness is the unique type for the witness type t in counterOne
use PS() with aValue : uniqueWitness in
begin

end
end

Figure 4.29 Retrieving a witness value from an infinite union.

A further complication arises where values whose types contain components of

witness type are placed into infinite unions. Values of these types must also not be

mixed between abstract instances. Consider for example the two abstract use clauses

of Figure 4.30. The first clause puts the inc procedure from counterOne into the

persistent environment whilst the second retrieves it. The type of the inc procedure

contains components of witness type.

use counterOne as aliasedCounter! t] in
in PS() let counterinc = aliasedCounter(inc)

use counterOne as aliasedCounter! t] in
use PSQ with counterinc : proc(t -> t) in
begin

end

Figure 4,30 Types with components of witness type.

The solution is to create a parameterised type for these types. Components of witness

type in the original type are of parameter type in the new type. On entry to a use

clause the parameterised type is specialised with the unique witness type associated

with the particular abstract instance being used. For example, the compiler transforms

the second use clause of Figure 4.30 into that shown in Figure 4.31.

128

......... L.' .V " .."A ' _ . L ;

use counterOne as aliasedCounter! t] in
begin

type newType[paraml] is proc(paraml paraml)
type uniqueWitness is the unique type for the witness type t in counterOne
type specialisedType is newType[uniqueWitness]
use PS() with counterinc : specialisedType in
begin

end
end

Figure 4.31 Using parameterised type for types with components of witness type.

Implementation

Type representations for the unique witness types may be constructed when the

abstract instance is constructed and then stored in hidden fields added to the abstract

interface. For example the count abstract type of Figure 4.20 is converted by the

compiler into the type shown in Figure 4.32, where Type is the type representation

used in the system.

type count is abstype! t](val : t ;
inc : proc(t -> t) ;
tRep : Type)

Figure 4.32 Adding fields for unique witness type representations.

Whenever the type representation is required for type checking, the compiler can

generate code to dereference it from the particular abstract instance.

4.5 Conclusions

There are a number of benefits associated with the caching of a compiler within the

persistent environment. The benefits are two-fold in that the functionality and

129

.y». '.V

1'4
I
'I

A

operation of the compiler are enhanced whilst at the same time the performance of the

persistent environment is improved via the optimised code produced by the compiler.

To reap any of the benefits a compiler must first be cached within the persistent

environment. It has been shown here how the persistent application architecture of

Chapter 2 may be used to support the construction of a large application using the

NapierSS compiler as an example.

The benefits to the compiler and the environment may be categorised in three groups.

Firstly, executing programs may access the compiler in order to construct and execute

new programs which manipulate the environment. The many uses of such a facility

are discussed elsewhere [KCC+92,FDK+92,SSS+92,Kir92].

Secondly, structured persistent values may be associated with source code which is

then passed to the compiler. New styles of binding between programs and data may

be realised. An interface to the compiler permitting a wide range of binding styles

from totally static toTotally dynamic binding has been described here. The interface

distinguishes between the new binding styles and the traditional compilation

operations of lexical analysis, syntax analysis, type checking and code generation.

Thirdly, the compiler may manipulate values in the persistent environment. An

example of the associated benefits may be found in Chapter 3 where the compiler's

own operation is improved by caching type representations between invocations.

Another example is given in Chapter 5 where the implementation of polymorphism is

optimised using dynamically gathered information cached in the persistent

environment.

130

5 Using Persistence to Optimise Execution

5.1 Introduction

A persistent environment provides a conceptually unbounded space for the storage of

data. Information detailing aspects of the environment's operation may be recorded

there by executing programs. This information may then be accessible to applications

executing in the environment. An opportunity exists for optimisation within the

environment based on data collected during its operation, as follows:

• Data is collected and stored in the environment during program

execution. The data records details of the program's execution. For

example interactions between the program and the environment or

patterns of usage among code segments may be recorded. This

information cannot be determined statically.

• At some later time, perhaps when the environment is quiescent, an

environment enhancing program may traverse the environment to find the

information recorded by executing programs. The enhancer program

analyses the information in an attempt to find optimisations that will

improve the performance of the environment. The analysis is performed

by a cost function which depends on a trade-off between the cost of

making an improvement and the benefit gained from it. The enhancer

performs the optimisation if the analysis is favourable. Optimisations

range from the reorganisation of stored data to the transformation of

program code. There may be many enhancers for different

optimisations, each operating over different collections of data.

• Subsequent execution of the environment will be improved by the actions

of the enhancers. Optimhiations made as a result of data recorded by one

executing program may be of benefit to many other programs. It should

131

be noted that the optimisations are made on the assumption that the

patterns of use recorded by executing programs are a reasonable

prediction of future behaviour. In addition, if two independent

optimisations operate over the same feature of the system, care should be

taken to avoid repeated readjustment of that feature according to each

optimisation. This is analogous to thrashing [PS87] in a virtual memory

system where the shared resource is the main memory and the optimisers

are the paging mechanisms of each process running in the system.

Dynamic clustering [BD90] is an example of this technique. Language values are

clustered into segments on secondary storage. When a value is to be retrieved from

secondary storage the whole segment that contains the value is read into main

memory. Many unwanted values will be retrieved if every value accessed by a

program is in a separate segment. During execution, records may be taken of the data

items that are accessed by a particular program. Execution of that program may be

enhanced if those data items can be clustered onto the same segment in secondary

storage.

A second example is the caching of the results of complex operations in the persistent

environment. This has already been seen in Chapter 3 where the results of type

system operations were cached. The results may benefit any program that has access

to the cache. In this case the cost function is built in and always gives a positive result

and the enhancement is performed automatically.

Both of the above examples, clustering and caching, are concerned with the efficient

utilisation of data. Where programs are considered as data there is the possibility of

using the same architecture to improve the execution sequences in accordance with the

needs of the application. Code enhancement is possible since code generators make

static trade-offs with regard to the space requirement and run-time execution speed of

the code. Dynamic execution information can be used as a basis for changing these

132

trade-offs. In this chapter the technique is used to enhance the implementation of

polymorphism in NapierSS [MDC+91].

The concepts involved in the general optimisation architecture were developed during

construction of the NapierSS integrated environment. Suggestions for optimisation of

the implementation of polymorphism found in NapierSS Release 1.0 have been made

in [MDC-H91]. The optimisation architecture and the polymorphic optimisations were

not combined until construction of the integrated environment was complete since a

compiler available within the environment is a requirement of the optimisation

technique.

5.2 Polymorphic Procedures

Polymorphism in a programming language is the ability to write programs that are - f
independent of the form of the data values that they manipulate. Thus it provides an

abstraction over the form of the data which is often categorised by type. A survey of 2

different styles of polymorphism may be found in [MDC+91]. The style considered

here is parametric polymorphism in which a polymorphic function has an explicit or |

implicit type parameter determining the type of an argument for each application of the :|
■5

function.
«

5.2.1 NapierSS Polymorphic Procedures

A description of the declaration and use of NapierSS polymorphic procedures will be

given to indicate the features that an implementation must support. The polymorphic

identity procedure shown in Figure 5.1 will be used as an example. The identifier id

is declared to be a procedure which is quantified by t, written [t], that takes a

parameter x of type t and yields a value of type t. The body of the procedure is the

expression x which when evaluated yields the result.

133

let id = proc[t](x : t -> t) ; x

Figure 5.1 NapierSS polymorphic identity procedure.

In the implementation of NapierSS, a call of the identity procedure takes place in two

stages. The procedure must first be specialised to a particular type and then applied to f

a value of that type. Figure 5.2 shows a call of the procedure where the quantifier t in

procedure id has been specialised to integer, written int. The procedure is applied to 4;

the integer value 7 and the result is of course the integer 7.

id[in t](7)

Figure 5.2 Calling id with an integer parameter.

let stringid = id[string]

■••j
1

The procedure may be specialised to any type. For example Figure 5.3 shows a %

specialisation and application for a real value yielding in the same manner the real

value 7.0.

4
id[real](7.0)

Figure 5.3 Calling id with a real parameter.

The specialisation and application operations may take place independently. Figure

5.4 shows the specialisation of the id procedure to the string type without an

application. The specialised procedure is assigned to the identifier stringid. Such a

procedure will be referred to as partially specialised. 5

i:

Figure 5.4 Specialising id to type string.

The same specialised procedure may now be applied many times to different string

values. Figure 5.5 illustrates this point.

134

let hello = stringld("hello")
let bye = stringld("bye")

Figure 5.5 Applying a specialised procedure.

The procedure stringld is type compatible with monomorphic procedures taking a

string parameter and returning a string. For example it is compatible with the

procedure monoStringId in Figure 5.6.

let monoStringId = proc(a : string string) ; a

type list[s] i s

in PS() let length = proc[t](theList : list[t] -> int) ;

Figure 5.7 Placing a polymorphic procedure into the persistent environment.

Figure 5.6 Non-polymorphic string identity function.

It is expected that the 'specialise once, use many times' mode of operation will occur |

frequently where polymorphic procedures may be placed into the persistent

environment. This is where a polymorphic procedure stored in the environment is

retrieved by a program, specialised once to the types associated with the program and

then the specialised version used many times. For example consider the length

procedure in Figure 5.7 which determines the length of a list value, list is a

parameterised type used to model homogeneous lists of data values. Polymorphic

procedures often operate over parameterised data types that are specialised by the

quantified types of the procedure. This occurs in length which is parameterised by a

value of the list type specialised to the quantifier type t of the procedure, in PS() at the

start of the code indicates that the declaration of the procedure is to be made in the

persistent environment and not in the local scope. Details of the procedure body are f

not important here.

135

LL ~ ■ - ---- - ' '___, -i*. , .■•f':- wf. ->■■■ ■______:_______ -__- ---i- , V '

The procedure may be used in any program in which the length of a list is required.

For example a program that organises information about people may need to know the

length of lists of people. It is expected that the program would use the length

procedure as shown in Figure 5.8 where the procedure has been retrieved from the

store and specialised to the type Person at the start of the program. It is the specialised

version lengthPerson that is used subsequently in the program.

type list[s] is
type Person is

use PS() with length : proc[t](list[t] » in t) in
begin

let lengthPerson = length[Person]

/** The specialised procedure may be used many times in the program.

end

Figure 5.8 Specialising and using a persistent polymorphic procedure.

5.2.2 Implementing Polymorphism

Polymorphism may be expressed at many levels of abstraction depending on the style

of implementation. The following three categories represent extremes in the possible

range of implementation techniques [MDC+91]:

• Textual polymorphism. In this category polymorphism is only

expressed at the source code level. Different executable code may be

produced for each different specialising type. The execution efficiency

of the equivalent monomorphic procedure will be achieved using this

technique. This is the optimum efficiency. However textual

polymorphism may be expensive in terms of the storage space required

1

1

;

I

136

for the specialised forms. An example of this kind of polymorphism is

found in the generics of Ada [DOD83].

• Uniform polymorphism. Both the source code and the executable code

are independent of particular specialising types in this category and so

only a single executable version of a polymorphic expression is required.

This is achieved using a single representation for all data. The use of

space for polymorphic code forms is optimal. However, the uniform

data format has efficiency implications for non-polymorphic data values

in terms of both space and time. This kind of polymorphism is found in

ML[Mil78].

• Tagged polymorphism. In this category uniformity is expressed both at

the source and executable levels but non-uniform data formats are used.

Thus the executable code for a polymorphic expression is parameterised

in some way by type information describing the representation of data

values being manipulated. Effectively every data item is tagged with its

type. Code space is again optimised but all values have to pay the price

of the tagging which is expensive if performed in software and is

generally not available in hardware. Tagged polymorphism is used in the

implementation of some object-oriented languages [GR83].

These implementations represent different trade-offs between run-time efficiency and

the space required for polymorphic code forms. A particular trade-off is traditionally

determined statically during the code generation phase of compilation and is therefore

fixed for the lifetime of the procedure. The trade-off is affected by the various

different styles of polymorphic procedures. For example, textual polymorphism is

suitable for the compilation of the generics of Ada since the polymorphic code and the

specialising types are known statically and so the number and type of required code

forms is also known.

137

By contrast, the polymorphic procedures of Napier88 may be anonymous. It is

therefore impossible to determine statically which specialisations will be performed

during the lifetime of a polymorphic procedure. Moreover there may be a very large

number of possible specialisations as shown in the following example.

Given that there are a fixed number of representations onto which a language's data

types may be mapped there is a fixed upper limit to the number of different

specialisations that may be required. This is the number of representations raised to

the power of the number of type variables. For example the procedure in Figure 5.9 is

quantified by three identifiers e and /and takes three parameters Z), E and F. There

is no result type and the body of the procedure is not of interest here. In Napier88 fe

where there are seven possible representations onto which a data type may be mapped k

there are 7̂ or 343 possible specialisations of the polymorphic procedure.

Figure 5.9 A polymorphic procedure with multiple quantifiers.

Where the trade-off between space and execution speed is made statically the use of

textual polymorphism to implement the anonymous polymorphic procedures of

Napier88 requires that all possible specialisations are constructed statically, a

prohibitively expensive operation in terms of both time and space.

Both uniform and tagged polymorphism overcome the problems of excessive code

space but suffer in terms of execution speed. In particular, the execution of all code is

adversely affected by the inclusion of polymorphic constructs.

The implementation of the polymorphic procedures of Napier88 makes use of a

general mechanism [MDC+91] which represents an optimisation over uniform and

tagged polymorphism. It is a mix of the two schemes and will be referred to here as

partly-tagged, semi-uniform polymorphism. A major advantage of the mechanism is

138

%
I

that it does not affect the efficiency of non-polymorphic code in any way. However |
I

the poorer execution speeds of uniform and tagged polymorphism in comparison to

textual polymorphism are inherited for code inside polymorphic contexts.
1'

A Mixed Implementation Strategy

139

The design of partly-tagged, semi-uniform polymorphism is a result of the

environment in which the construction of executable code for the procedures takes

place. This environment is traditionally separated from the execution environment of

the procedures and is only reachable from the execution environment with

considerable difficulty. Using such an environment, analysis of the use of :f

polymorphic procedures takes place before generation of the executable code which in

turn takes place before execution of the procedure.

In a persistent environment however, the construction and execution environments are

the same and so the implementation decisions for partly-tagged, semi-uniform

polymorphism may be reconsidered. Firstly, the persistent environment may be used

to cache execution profiles of programs. This data may be analysed later. Secondly,

the cached compiler described in Chapter 4 may be used at any time to construct code.

Decisions of implementation methods may now be based on both static and dynamic

information. For example, in the extreme case textual implementations of the

polymorphic procedures may be constructed during execution when required.

Although this may be efficient in terms of code space and execution speed of the

procedures, the time required to construct the versions is likely to significantly reduce

overall performance.

This chapter describes an extension to the partly-tagged semi-uniform implementation

which makes use of textual polymorphism, thus providing execution speeds that are l

frequently optimal. During compilation, a version of the procedure is compiled using

the partly-tagged, semi-uniform technique. Code is included in the procedure to cache

I

execution profiles in the persistent environment concerning patterns of use such as the

number of specialisations, calls and polymorphic operations. |

After the partly-tagged, semi-uniform version of the procedure has been in use for

some time, analysis of the cached execution profiles may indicate particular

specialisations where the space-time trade-off favours a textual implementation. That

is, the cost of constructing a specialised version of the procedure is small in |

comparison to the efficiency gained through using it. The analysis may be performed

using a cost function operating over execution profiles. The cost function may restrict

the potentially large number of specialised versions that could be constructed. The

space-time trade-off determined by the cost function is based on static and dynamic

information since the cost function itself may contain static characteristics of the

procedure whilst the function's arguments record dynamic characteristics. There is

another trade-off here between the amount of information coded into the cost function ^
;

and the amount of information gathered during execution. The cost function may be |

complex since the expense incurred in its evaluation is offset by the fact that the |

analysis can be performed during quiescent points in system operation.

Specialised versions of a polymorphic procedure may be constructed using the

compiler resident in the environment. The original procedure is accessible from the

execution profiles. The source code is retained with the original procedure and is

transformed to reflect the data format of the specialising type. Recompilation produces

a form of the procedure containing no polymorphic operations and so optimum

execution efficiency may be gained when using it. Such a specialised version will be

referred to as a concrete specialisation.

Concrete specialisations may be associated with the partly-tagged, semi-uniform

version of a procedure. During a specialise operation a search for an appropriate

concrete specialisation is carried out. If one is found then it is returned as the result of

the specialisation otherwise the partly-tagged, semi-uniform version is used.

140

' - 'i î J

 . . '.L L U L Ü . - " ' --------- ■ . - .v ̂ . . . ; L ' ' y

The advantages of the extended implementation may be summarised as follows:

• Optimum execution speed may be achieved.

• Excessive use of code space may be limited using an appropriate cost

function.

• Optimisation is based on both static and dynamic information about

procedure execution.

• Analysis and construction of optimised forms may be carried out during

quiescent periods so as not to affect the efficiency of system operation.

The extended implementation is described in the following four sections:

• The partly-tagged, semi-uniform implementation is described

independently of the extended implementation.

• The association of concrete specialisations with the partly-tagged, semi­

uniform version of a procedure is described along with the manner in

which a particular concrete specialisation is chosen when the

polymorphic procedure is specialised.

• The recording and analysis of execution profiles and the characteristics of

cost functions are discussed.

• The use of a program known as a polymorphic code enhancer is

described. An enhancer finds the execution profiles, performs the

necessary analysis and constructs specialised versions as required.

5.3 Partly-tagged, Semi-uniform Polymorphism

Partly-tagged, semi-uniform polymorphism represents a mix of both the uniform and

tagged styles. In non-polymorphic contexts values are contained in non-uniform 4

representations and are manipulated by operations specialised to those representations %

in order to maximise efficiency. It is only the operations in polymorphic expressions

that must function over values of any type. Values of the quantifier type are therefore

141

coerced to a uniform polymorphic representation on entering a polymorphic procedure

and coerced back on leaving it. Inside the procedure they are manipulated in the

uniform polymorphic representation. This is the uniform part of the implementation.

1
The correct execution of some operations over values of quantifier type depends on the

values* original representations. Information describing those representations must

therefore be available during execution. For example, the coercion operations require |

knowledge of the original representation of the values to be coerced. This is the f

tagged part of the implementation. Note that it is only values of quantifier type that f

have an associated tag.
='l'n.

142

I
Tagging requires that the data types of a language's possibly infinite type system may

be mapped onto a finite tag representation. Usually many different types share

representations and an encoding of the representation can be used as a tag. For

example, the infinite number of data types described by the Napier88 type system may

be mapped onto seven distinct tags and so a tag is represented by an integer. |
s

■I
As described above, some polymorphic operations require access to tag information in

order to execute correctly. Different mechanisms may be used to make this

information available [Con91]. The Napier88 partly-tagged, semi-uniform

implementation uses the block retention architecture of the language to support the

storage of tag information.

Block Retention

The mixed implementation in Napier88 uses the block retention architecture of the

language to support the storage of tag information. Block retention is necessary to |

support higher order procedures [Joh71]. The example in Figure 5.10 requires block

retention to execute correctly. The value of the block is assigned to the identifier t|

counter. Inside the block an integer variable count is declared and the value of the

block is a procedure. The space created for the block during the execution of the
2

■IS

counter déclaration must be retained since it contains the variable count which is in the

closure of the procedure. Reclaiming the space would lead to incorrect operation of

the procedure.

let counter = begin
let count := 0

proc(-> int)
begin

count := count + 1
count

end
end

Figure 5.10 Block retention.

Using Block Retention to Store Tag Information

A Napier88 polymorphic procedure is compiled into another procedure which takes

the specialising tag information as a parameter. This procedure will be referred to as

the encapsulating procedure. The encapsulating procedure returns an encapsulated

procedure containing the executable code for the original procedure. For example the

id procedure of Figure 5.1 is compiled as shown in Figure 5.11.

let compiledid = proc(tag : int -> proc(d -+ a)) encapsulating procedure
proc(X : a “+ a) ; X encapsulated procedure

Figure 5.11 Encapsulating and encapsulated procedures.

Specialisation of a polymorphic procedure is compiled into a call of the encapsulating

procedure passing tags for the specialising types as parameters. For example the

specialisation id[int] is compiled into compiledId(intTag). intTag is the tag for the

integer type.

143

■M.

i

!
:

.1
f

•i

The result of a specialisation is the encapsulated procedure which contains the

specialising tags in its closure. Tags are retained in the stack frame created on

execution of the encapsulating procedure. They may be accessed by instructions in the

encapsulated procedure that depend on the original representation of quantified values.

The specialised procedure may be applied immediately to parameter values of

appropriate types or else stored for later use. The specialised procedure will be

referred to as a polymorphic specialisation.

The code in the specialised procedure is the same for all specialisations. It is the

retained stack frame from the execution of the encapsulating procedure that differs in

each specialised version. The type a is statically unknown and depends on the

concrete types of the quantifiers for a particular specialisation.

Converting to and from the Uniform Polymorphic Form

As stated earlier, parameters to the specialised procedure that are of quantified type

must be converted to the uniform polymorphic form on entry to the procedure. In S

addition a result that is of quantified type must be reconverted from polymorphic form

on procedure exit.

proc(X : a —> a)
begin

convert x to polymorphic form
X

convert X to concrete form
end

I

In the case of a specialised id procedure the parameter must be converted into the

polymorphic form for use inside the procedure and then reconverted on exit as shown

in Figure 5.12. The conversion operations use the tag information contained in the %

closure of the encapsulated procedure. 1

Figure 5.12 Converting values to and from polymorphic form.

144

Other operations also require access to tag information in order to function correctly,

as follows:

I

I

• Equality is defined differently for the various data type of Napier88. In a

polymorphic context, tag information is used to determine which equality

function should be applied to polymorphic values.

• Values in data structures are always stored in their concrete format

despite the fact that they may sometimes be viewed with a polymorphic

type. This is because the same data structure may pass between

monomorphic and polymorphic contexts [MDC+91]. The operations

that store and retrieve values of polymorphic type from data structures

must perform appropriate coercion operations and so require access to

tag information. |

5.4 Storing and Choosing Concrete Specialisations
i'

Some explanation of the representation and execution of Napier88 procedures is

required in order to describe the manner in which concrete specialisations are stored ÿ.

and chosen. Napier88 executes on the Persistent Abstract Machine (PAM)

[CBC+90], a byte coded machine that operates over a single persistent heap of

objects. A procedure value or closure consists of two pointers, one to the code vector

object for the procedure and the other to the stack frames containing the environment

of values in which the procedure was declared. The latter will be referred to as the

environment pointer. Each stack frame is implemented as a separate object on the heap

in order to implement the block retention architecture required for first-class

procedures.

The code vector is formatted similarly for all kinds of procedures, i.e. for

monomorphic procedures, the encapsulating and the encapsulated procedures of the

mixed polymorphic implementation and the concrete specialisations of the textual

extensions to be described here. The code vector associated with a concrete

145 -I

specialisation will be referred to as a concrete code vector. The format for code

vectors is as shown in Figure 5.13. As with all PAM objects the code vector object

begins with a header and a size field followed by all the pointers in the object and then

all the non-pointers. The first pointer is to the source code of the procedure and the

second is used to determine the identity of procedures. They are followed by literal

pointer values used during the execution of the procedure. This is followed by the

non-pointer values made up of the code and other non-pointer values required for

execution.

ode I other non-pointer valuesheader source code id. pntr pointer literalssize

Figure 5.13 The format of a code vector.

Creation of a procedure value, or closure, consists of associating a pointer to a code

vector constructed during compilation with a pointer to the list of stack frames making

up the environment in which the procedure is declared.

Applying a procedure results in the creation of a new stack frame. The layout of a

frame is shown in Figure 5.14. A frame contains a pointer to the code vector for the

procedure (CV) and the static link or environment pointer of the applied procedure

(SL). Each stack frame contains two stacks, one for pointer values and one for non­

pointers. House-keeping information is kept at the top of the stack frame.

:

j
'4If

146

- j -i A»-»' ’■■̂1 f ■ ,•

header size dynamic link CV SL pointer stacki main stack I other non-pointer:

Figure 5.14 The format of a stack frame.

5.4.1 Storing Concrete Specialisations

The concrete specialisations of a polymorphic procedure are held in the recursive data

structure denoted in Figure 5.15. A list has been used here for simplicity in

explanation; a vector would be more sensible for a real implementation to allow fast

lookup.

rec type listElement is structure(tags : tagCombination
CV : codeVector ;
next : cVecList)

& cV eclist is variante concrete : listElement;
tip : null)

Figure 5.15 Data structure to hold specialised versions.

Each list element holds a single concrete code vector and key which is a combination

of the particular type tags for which this code vector is specialised. The list initially

consists of a single instance of listElement containing the code vector for the

encapsulated procedure of the mixed implementation. As concrete specialisations are

constructed they may be added to the end of this list. The list is associated with the

encapsulating procedure by placing a pointer to it in the list of pointer literals as shown

in Figure 5.16. Other pointers are not shown to avoid confusion.

I'"S

,f

I

147

encapsulating code vector
H source id pointer literals T

^ listElement

:]
UstElement

tags CV next. tags CV next more concrete
code vectors

encapsulated
polymorphic code vector concrete code vector

Figure 5,16 Storing the code vectors of concrete specialisations.

5.4.2 Retrieving Concrete Code Vectors

Once concrete code vectors have been constructed and associated with the

polymorphic version of the procedure, access is required to them when suitable

specialisations occur. This may be achieved by adjusting the encapsulating procedure

used in the mixed implementation to perform the specialisation of a polymorphic

procedure. Code is added to the encapsulating procedure to search the cVecList for a

suitable code vector. This search is only performed during specialisation. Provided

that the 'specialise once, use many' mode of use is prevalent then the cost of the

search will not be significant in comparison to the subsequent calls. For the identity

procedure of Figure 5.1 the new version of the encapsulating procedure is shown in

Figure 5.17.

The body of the procedure is split into three sections. In the first section the list of

specialised code vectors is accessed via the code vector for the encapsulating

procedure. polySpecCVs is the field offset in the encapsulating code vector of the list

of specialised code vectors. The code vector is found in the frame created on

application of the procedure and accessed using the standard procedure thisFrame,

The second section uses the procedure searchForConcrete to determine whether the list

of concrete code vectors contains a version suitable for the particular tag supplied to

this application of the procedure. searchForConcrete chains down the list attempting

148

"iV

. Ï

à

to match the tag passed as a parameter with the tag contained in the list element. If a

match is found then the corresponding code vector is returned otherwise nil is

returned.

let compiledid = proc(t : tag -> proc(a —> a))
begin

/** Retrieve the list o f code vectors.
let currentFrame = thisFrameO
let encapsulatingCVec = currentFrame(CV)
let polyAndSpecCVecs = encapsulatingCVec(polySpecCVs)

/** Attempt to find a concrete specialisation suitable for the tag t.
searchForConcrete returns nil if no suitable version exists.

let specialisedCVec = searchForConcrete(t,polyAndSpecCVecs)

/** Return a concrete specialisation if available,
otherwise a polymorphic version.

if specialisedCVec ~= nil
then /** Concrete specialisation.

makeProcedure(specialisedCVec,currentFrame(StaticLink))
else /** Poly specialisation.

/** Code vector found at head o f code vector list.
makeProcedure(polyAndSpecCVecs(cv),currentFrame)

end

Figure 5.17 Extended encapsulating procedure.

The third section constructs a suitable specialised procedure value using the standard

function makeProcedure which forms a closure by associating a code vector with a list

of stack frames. Concrete and polymorphic code vectors are associated with slightly

different environments. The polymorphic code vector is associated with the frame

created on invocation of the encapsulating procedure since it is this frame that contains

the tag information required by the polymorphic version. A concrete code vector

however is associated with the same list of frames as was the encapsulating procedure.

This list is the static link of the frame constructed on invocation of the encapsulating

149

1

I

■ k,' :---- iJ ---

5.5 Cost Functions and Execution Profiles

150

procedure. The two kinds of specialisation are constructed against different

compilation environments to ensure they operate correctly during execution. I

Concrete and polymorphic specialisations over the same type may be used entirely #

interchangeably. They both expect parameters in concrete form and will return results

also in concrete form.

It should be noted that where polymorphic procedures are manifest values, such as in

a hyper-programming environment [KCC+92], it may be possible during compilation

to find an appropriate concrete version of the procedure that is being specialised. The

concrete version may be bound directly into the compiled code.

The decision on when to construct a concrete specialisation is made by a cost function

on the basis of execution profiles recorded in the persistent environment during the |

execution of the polymorphic specialisations. The cost function may also access

statically gathered information about procedures. It is of interest to determine which

data should be recorded and in what manner it is stored.

5.5.1 Affordable vs. Exact Execution Profiles

Execution profiles and cost functions are used to determine which concrete

specialisations are worth constructing, according to a particular trade-off. The trade­

off concerns the following costs:

• The extra time spent executing polymorphic specialisations in

comparison to their concrete counteiparts.

• The extra space used to store concrete specialisations.

• The expense incurred in constructing a concrete specialisation.

- (' y ■ --

■1

A new concrete specialisation is constructed when the cost in execution speed incurred s

using a polymorphic specialisation is shown to be significant in comparison to the

space and time required to construct and store a concrete specialisation.

The extra expense of executing a polymorphic specialisation in comparison to the

equivalent concrete specialisation is caused by the execution of operations depending

on the concrete type of values of quantifier type. In addition, operations that move #

polymorphic values around the system are also more expensive than their |

monomorphic counterparts. A record of the number of executions of these operations

is required in order to determine the difference in efficiency between the two

151

■S

specialisations. Records of this kind may only be taken during execution of the ^

program being measured and would significantly affect the performance of the I

program.

By making judicious choice of which execution profiles to collect and which static

information to bind into the cost function, a good approximation to the exact cost of a

polymorphic specialisation can be made without incurring a significant expense. The

information bound into the cost function is determined statically and includes items

such as:

• The number of conversions required on procedure entry and exit. This is

a fixed cost that must be performed on every procedure invocation.

• The number of polymorphic operations in the code. This may be used to

good effect when combined with the number of executions, but is

heavily dependent on the flow of control within the program.

The execution profile consists of data that can only be collected accurately during

execution, such as:

• The number of specialisations to a particular type.

• The number of calls of a particular specialisation.

4 - - - •___- ______ : ..

■ 1

• The number of executions of polymorphic instructions. This is likely to

be prohibitively expensive to collect.

In the implementation described here, there is a single cost function for aU procedur es

which takes both static and dynamic information as arguments. The static details are |

accessible in the encapsulating polymorphic code vector. Initially, the precision of the f

analysis has been limited to static details concerning the number of conversions and «

the size of the procedure and to dynamic details concerning the number of

specialisations and number of calls of particular specialisations. The cost function

determines threshold levels for combinations of the static and dynamic information

above which optimisation is appropriate.

Since the cost function may be performed during quiescent periods it may be of

arbitrary complexity. Approximations of expected dynamic details may be included in

the static information to reduce the size and hence the cost of recording and storing the

execution profiles.

It should be noted that the validity of this analysis is based on the patterns of use up to

the point of the analysis. An optimisation is only valuable if the patterns of use remain

the same after optimisation.

5.5.2 Storing the Execution Profiles

Execution profiles may be held in an extended version of the data structure used to

hold the specialised code vectors already given in Figure 5.15. The cVecList type may

be extended as in Figure 5.18. A new poly branch may be constructed and added to

the code vector list for each different specialisation of a polymorphic procedure that is

encountered during execution. Execution profiles may therefore be recorded about

each different specialisation. The structure associated with the poly branch, profile,

contains a combination of the tags denoting the particular specialisation to which the

corresponding execution profile relates. The version of the structure type shown here

152

contains only the number of specialisations and calls. An arbitrary amount of data

may be recorded here by extending the type.

rec type listElement is structure(tags : tagCombination ;
cv : codeVector ;
next : cVecList)

& profile is structure(tags : tagCombination ;
specialisations : int ;
calls : int ;
next : cVecList)

& cVecList is variant(concrete : listElement;
poly : profile ;
tip : null)

?
a

Figure 5.18 Updated cVecList to hold execution profiles.

Execution profiles are recorded to determine when a particular concrete specialisation #

of a polymorphic procedure should be constructed. Once this has occurred the

associated poly branch may be replaced by a concrete branch containing the new

version. If profiling information is still to be recorded from the new concrete version

then the poly branch may be associated with it.

The searchForConcrete procedure is adjusted to return one of the variant branches of

the cVecList type. The procedure may now discover one of the following three

situations when the cVecList is examined:

• A concrete version of the procedure exists for the combination of tags

supplied. The variant branch containing the concrete version is returned

from searchForConcrete.

• A poly branch exists for the combination of tags supplied which means

that this specialisation has occurred before but a concrete version has not

yet been constructed. The structure associated with this branch may be

shared by all polymorphic specialisations to the corresponding tags by

returning the branch from searchForConcrete and making it available to

153

-s

154

the result of this specialisation. The specialisations field may be

incremented before returning the structure.

• Neither a poly nor a concrete branch exist for the supplied combination

of tags and so a new poly branch is added to the end of the list and

returned from the procedure. Again, the specialisations branch may be

incremented.

The encapsulating procedure that is called on specialisation of a polymorphic

procedure is also adjusted to accommodate the recording of execution profiles, as

shown in Figure 5.19. If searchForConcrete returns a concrete branch then the

associated structure is dereferenced to give the concrete code vector. Otherwise a

polymorphic specialisation is constructed as before. The head of the list of frames

making up the environment of the specialised closure is the frame constructed when

the encapsulating procedure was executed, i.e. the id procedure of Figure 5.19. As

can be seen from the figure, this frame must contain a location for the identifier

cVecOrStats. For a polymorphic specialisation this location contains the profile f

structure for the particular specialisation, as shown in Figure 5.20. The polymorphic

code vector may be constructed with this in mind to enable profiling information

concerning its execution to be recorded.

let id = proc(t : tag -» proc(a a))
begin

/** Retrieve the list o f code vectors.
let currentFrame = thisFrame()
let encapsulatingCVec = currentFrame(CV)
let polyAndSpecCVecs = encapsulatingCVec(polySpecCVs)

/** Attempt to find a concrete specialisation suitable for the tag t.
/** searchForConcrete returns a statistics structure
/** if no suitable version exists.
let cVecOrStats = searchForConcrete(t,polyAndSpecCVecs)

/** Return a concrete specialisation if available,
/** otherwise a polymorphic version.
/** is tests a variant to determine which branch it is.
if cVecOrStats is concrete

then /** Concrete specialisation. ’ projects a variant onto
/** the named branch.
makeProcedure(cVecOrStats'concrete(cv),

currentFrame(StaticLink))
else Poly specialisation code vector found at

/** head of code vector list.
makeProcedure(polyAndSpecCVecs(cv),currentFrame)

end

Figure 5.19 Recording statistics in the encapsulating procedure.

polymorphic
specialisation I

frame created on execution
of irf in Figure 5.p

SL cVecOrStats tags

profile

encapsulated code vector tags specialisations calls next

Figure 5.20 A polymorphic specialisation showing the associated profile
information.

155

;

Making Execution Profiles Persistent

Changes made to the persistent environment do not become permanent until a stabilise

operation is performed [Bro89]. This operation ensures that all changes to the

environment are transferred from volatile to non-volatile storage. The Napier88

system performs a stabilise operation when the system shuts down normally and at

other times during the execution of the system as required. The changes made to the

statistics stored with polymorphic procedures will become permanent when these

stabilise operations are performed provided that the procedures themselves are

reachable in the persistent environment. The normal mode of operation is to terminate

correctly in which case the execution profile will be correctly recorded in the persistent

environment to be shared by all uses of the procedure.

5.6 Polymorphic Code Enhancer

The architecture described so far supports the storage and use of specialised forms of

polymorphic procedures and the gathering of statistics concerning the use of

polymorphic forms. The manner in which the statistics are analysed and the

specialised forms constructed is now described.

A program known as the polymorphic code enhancer traverses the persistent

environment in order to find procedure closures that can be optimised. The enhancer

searches for two kinds of closure during its traversal. The first is the closure for an

unspecialised polymorphic procedure and the second is for a polymorphic

specialisation. The first contains the execution profiles of many different polymorphic

specialisations, the second just a single profile for the particular specialisation.

The enhancer applies the cost function to both the static and the dynamic profiling

information concerning a particular specialisation. The static information, which is the

same for all specialisations, is recorded in the encapsulating code vector and is

accessible via a pointer in the pointer literals vector. The information is therefore

156

.,y-, ; ...H - ■/ .__ i: • ■■ '.'1' ' - ■ ■ ' - :__i____ ' ■ f i-.'.-!- 'a:,,'; . . ,,

Ï

appropriately for the specialising type by the enhancer.

The enhancer constructs a new concrete code vector when the cost function indicates

that it is worthwhile. The enhancer has access to the following components:

157

available from either of the closure types that the enhancer encounters since they both |

contain pointers to the encapsulating code vector.

Where the cost function returns a positive result, a new concrete specialisation is

constructed. This is achieved by applying the compiler found in the persistent

environment to a version of the procedure’s source which has been transformed f

The new version is then included in the list of concrete specialisations attached to the

encapsulating code vector. If the closure found originally by the enhancer was a |
ipolymorphic specialisation then the new code vector overwrites the polymorphic 4

version.

The various operations performed by the enhancer are now described in more detail.

5.6.1 Compiling Concrete Specialisations

• The source code of the encapsulated procedure. This is attached to the J

encapsulated code vector and consists of the lexemes that make up the

procedure body and symbol tables for outer scope references.

• The tags for which the new concrete code vector is to be specialised.

These are available in the poly branch for this specialisation. «

• A compiler. As described in Chapter 4 a compiler is available in the

persistent environment for use by any program.

A source code transformation is performed over the polymorphic procedure to reflect

the particular specialising type tags. For example, consider the id procedure,

reproduced in Figure 5.21

Figure 5.21 Polymorphic id procedure.

If a version of id specialised to the int tag is to be constructed, the code is transformed

as shown in Figure 5.22.

proc(X : Int int) ; X

Figure 5.22 Code transformation of the id procedure.

The new concrete code vector is constructed by compiling the transformed source code

using the persistent compiler available to the enhancer.

The enhancer only has access to the tag information for a particular specialisation, and

not to a valid Napier88 type. However, in the source code transformation

polymorphic types may be replaced with any type that is consistent with the

specialising tags. For example, int and bool use the same tag and so either could have

been used in the transformation of Figure 5.22.

5.6.2 Finding Procedures in the Persistent Environment

The enhancer must be able to identify procedure closures in order to operate. One

method is for the compiler to record references to the code vectors of every

encapsulating polymorphic procedure that it constructs in a data structure at a known

location in the persistent environment. The enhancer may access these code vectors

provided it has access to the data structure.

Alternatively, polymorphic specialisation closures can be found by traversing the

persistent environment. The type information attached to values in the environment

may be used to determine the locations of such closures. Type information is attached

to values in two ways, as follows;

158

I
4

■1

I

I

• Values may be placed into infinite unions. An infinite union contains the

type of the associated value. The enhancer is able to determine the type

of the value contained in an infinite union in order to traverse the value.

Since the major structuring unit in the persistent environment is the

infinite union env, this is the primary method by which the enhancer |

traverses the environment.

• Values may be contained in procedure closures. Provided that the source

code is retained with all procedures, as is the case in the hyper­

programming environment [KCC+92], the enhancer can find the

appropriate closures using source code analysis. j

5.6.3 Overwriting Polymorphic Specialisation Closures

When a polymorphic specialisation closure is encountered by the enhancer, J?

enhancement may take place in one of the following two ways:
A
A

I
• Examination of the list of concrete specialisations accessible from the

closure may show that a concrete version for this specialisation has f

already been constructed.

• Otherwise, analysis of the execution profile for the specialisation may

indicate that a new concrete version should be constructed. If so, the
■?

enhancer constructs the new version. ÿ

Both cases produce a concrete code vector that is to be used in place of the

polymorphic version encountered by the enhancer. The existing procedure value may

be updated as shown in Figure 5.23. First, the location holding the polymorphic code

vector is overwritten by the new concrete version. Secondly, the location holding the

environment pointer of the polymorphic version is overwritten with the environment

pointer of the encapsulating polymorphic procedure. The latter pointer is contained in

the static link field of the frame pointed to by the former pointer as described in

Section 5.3.3.

159

' - i 'A. ' - ïi '!

,4

encapsulated code vector
concrete code vector

C O - M
frame created for encapsulating CV

polymorphic
specialisation

closure
polymorphic specialisation

closure after being
overwritten by a

concrete specialisation
environment of encapsulating CV

Figure 5.23 Overwriting a polymorphic specialisation closure in place.

5.7 Conclusions

The persistent environment simplifies the process of storing complex data in between

program invocations. In this chapter it has been shown how data may be collected

during execution that catalogues certain aspects of program behaviour. The data may

be stored in locations accessible to programs that browse over the environment.

Analysis of the data by the browsing programs may indicate optimisations for the

programs that originally produced the data. These optimisations may also be of

benefit to other programs.

The implementation of the polymorphic procedures of Napier88 has been described

here as an example of the this optimisation technique. From a starting point of a

complete but unoptimised implementation of the procedures it has been shown how

data describing patterns of use over the procedures may be collected. This information

cannot be determined statically. Enhancement programs traverse the persistent

environment analysing this data and constructing optimised forms of the procedures

where appropriate. The analysis is based on a trade-off between the cost of

constructing optimised versions and the benefit gained from their use. Subsequent

execution of the polymorphic procedures may access the optimised versions for

improved efficiency.

a!
a

160

I

6.1 Delivering the Benefits of Persistence

A persistent system has been used to implement an integrated persistent programming

environment. Such a system consists of a number of components as follows:

• An object store. The persistence abstraction hides the physical properties

of data. As a consequence, a persistent object store has certain perceived

attributes such as unbounded size, infinite speed and stability. The main

technical problems encountered when constructing a persistent object

store involve the simulation of these perceived properties [Bro89].

161

Ï

6 Conclusions

The motivation for the research contained in this thesis is the simplification of the I

construction, maintenance and execution of large-scale, long-lived and data-intensive

application systems. The complexity of these operations is increased by the plethora il

of independent sub-systems such as database systems, programming languages and

operating systems used to make up a complete application management environment.

Whilst the tasks performed by the environment are intrinsically complex the belief in

this thesis is that the complexity caused by lack of integration between sub­

components can be avoided.

The thesis assumes that the avoidable complexity may be removed by embedding all

programming processes within a single strongly typed persistent environment. There

are many accepted benefits of persistence to the software engineering process

primarily realised in the areas of data modelling and protection resulting from simpler

semantics and reduced complexity. The thesis demonstrates that many new benefits l |
t

for software construction and execution may be achieved when these operations are 1

performed within a single integrated persistent programming environment.

I

A persistent language. It is desirable that the language used in a

persistent system is suitable for the programming of large, long-lived,

data-intensive applications [AB87]. Hence the type system of the

language should support the modelling of data throughout its lifetime

[ABM85]. Powerful abstraction mechanisms are required to reduce the

complexity of large bodies of code [MBC+87]. Flexible binding

mechanisms are necessary that in conjunction with the type system

permit the safe and efficient construction and evolution of both program

and data [MAD87].

A compiler accessible within the persistent environment. Executing

programs may use the compiler in the construction and execution of new

programs that manipulate the persistent environment. This is a form of

reflection [Mae87] and has been used to attain high levels of genericity

[SFS+90], accommodate changes in systems [DB88], implement data

models[Coo90a], optimise implementations[CAD+87] and validate

specifications [FSS92].

A number of persistent languages and their associated object stores have already been %

implemented. These include PS-aigol [PS88], Napier88 [MBC+89], Galileo

[AC085], DBPL[MS89], Staple [DM90] and Quest [Car89]. The compilers for these

languages construct programs that can access and manipulate the persistent

environment, however the compilers themselves are not available within the

environment.

The starting point for the work required to support this thesis has therefore been the

construction of a compiler accessible within a persistent environment. The language %

Napier88 has been chosen for this task. The compiler is the first major application to

be constructed within the Napier88 persistent environment. Its construction has

permitted an analysis to be undertaken of the manner in which persistence benefits the

software construction process in general. The construction of a large application from

162

1
a number of small components has also required a major reassessment of the type I

system implementation with respect to efficiency in terms of both space and time. The

new implementation depends heavily on persistence. Having constructed an initial

implementation of the compiler, the persistence of the environment has been exploited

to gain new benefits in the areas of software construction and execution.

The major benefits derived from the construction and development of the integrated

persistent programming environment may be briefly summarised as follows: 4
i;
5

• Application construction. A methodology for the construction of S

applications from components has been developed which represents a

new compromise between safety, flexibility and efficiency in comparison

to existing techniques. Incremental component evolution is supported,

static type safety is maintained and efficiency during execution is reduced

marginally in comparison to the optimum efficiency. |

• Optimisation. A methodology for optimisation based on dynamically

gathered data has been developed. Both code and data may be optimised

based on information gathered during their use and retained within the

persistent environment. In addition the use of the persistent store as a

cache for structured data has been used extensively throughout this thesis

to avoid expensive recalculation or reconstruction.

• Extended compilation facilities. A compiler within the persistent

environment can manipulate the structured values retained there.

Development of this ability has lead to the construction of new interfaces

to the compiler that offer increased functionality over traditional

compilers. The interfaces increase the simplicity, flexibility and

efficiency of software construction and execution. Again, the new

facilities are entirely dependent on the persistent environment.

Both the methodologies and the new compilation facilities evolved together as the

compiler was developed. As a consequence of this, the first application of the

163

-"-4_________________________ :___ :__ u __ ̂'________________________ lA l___ i— ' ̂ -•____ '__ :___ ::________ : ' i * v . L- > /L-v ..A ^

methodologies was in the implementation of the compiler and conversely some of the |

first applications of the new compilation facilities were seen in particular instances of

the methodologies. It is these applications of the new technology that have been

described in this thesis as examples of its validity. However, the methodologies and

the compilation facilities need not be so closely inter-twined. The benefits derived

from each of them are general and they all have applicability in many other areas of the |

persistent environment.

6.2 Methodologies for Persistent Software Engineering

6.2.1 Constructing Applications from Components

The construction of applications from separate components depends on a conflict

between the following desires associated with the binding of components:

• Failure during execution caused by component binding should be

avoided.

• Component binding should not affect execution efficiency.

• Incremental evolution of individual components within an application

should be supported.

Existing application construction systems fall into one of the following categories:

• Applications execute safely and efficiently at the expense of flexible

evolution[Mil84,Car89, AC085].

• Components may evolve incrementally at the expense of safety and

efficiency during application execution[MAE+62, GR83].

• The construction system supports a compromise between the three |

desires. Applications execute efficiently but with less static safety than

those of the first category and the flexibility of evolution is between the

extremes of the first two categories [Wir71,KR78, DOD83].

164

•f..

I
The application construction methodology that has been described in this thesis f

represents a new compromise between safety, flexibility and efficiency. Incremental
'Icomponent evolution is supported, static type safety is maintained and efficiency f

during execution is reduced marginally in comparison to the optimum efficiency.

Using the construction methodology, an application consists of a number of strongly

typed persistent locations. The locations contain the executable components of the

application which are first-class values of the language. Bindings between

components take place between a component and the location of a component it uses.

In so doing, incremental component evolution is supported since a single component

may be updated by assigning the new version to its location. Safety is maintained

since the locations are strongly typed and the binding is performed before execution.

Update is slightly more complex when the component type changes. During execution

a location dereference is required in order to access the component contained therein.

Where locations may be bound into source code as described in Chapter 4 the

architecture may be used in a hyper-programming environment [KCC+92]. An

example of this is given in Section 4,3.2 where the techniques have been applied to the

construction of the compiler within the environment.

6.2.2 Optimisation techniques

Caching

The persistent environment is a conceptually infinite area for the storage of data. The

environment is directly accessible to aU executing programs and so may be used as a

cache for data of any type to avoid expensive recalculation or reconstruction.

The use of the persistent environment as a cache for structured data is widespread

throughout this thesis. In particular caching techniques have been used extensively in

Chapter 3 to optimise type system operations.

165

A

ë
LÀ: i. ;■ ■ . - ‘ -■ ■■___ . .-V .!.v & - . ' ' C 'f. '

Enhancement

The general optimisation methodology used in the example of Chapter 5 attempts to

enhance the operation of some feature of a system. This is achieved by using the

persistent environment as a cache for records of dynamic behaviour associated with

the particular feature. The records are analysed by enhancement programs as the basis

for a decision on possible optimisations. Generally, analysis and optimisation take

place in three stages:

• Using the cached records the enhancer determines whether a potential

optimisation exists. Optimisation involves altering trade-offs associated

with the implementation of some characteristic of the feature

• If an optimisation exists then the enhancer determines whether the

optimisation should be performed. The decision is made using a cost

function that may operate over both static and dynamic information and

determines whether the benefits of the optimisation outweigh the cost of

making it.

• The optimisation is applied to the persistent environment if the cost

function returns a positive result.

Subsequent execution of the program recording the profiles will benefit from the

optimisation. In addition, other programs in the environment that are associated with

the optimised feature may also benefit.

6.3 Enhancing the Functionality of the Compiler

Compilation is traditionally viewed as a process that translates unstructured source

code into executable code. Usually it is performed in an environment independent of

other software functions such as source code composition, component linking and

execution.

166

6.4 Future Work

I

In an integrated persistent environment, the source code may contain or be associated |
I

with structured values. Using such source representations, binding between code and %

data may take place at any time during the lifetime of a program, from composition

through compilation to linking and execution. The interface to the compiler described

in Chapter 4 supports all of these binding times. In particular hyper-programming is

supported [KCC+92]. Implementation of the interface has required a new protection

mechanism over intermediate code and type representations in order to maintain

system integrity. This was described in Chapter 4.

Future work will consist of new applications of the methodologies and techniques f

developed here to other aspects of the persistent environment. The use of the new

compiler interface in traditionally reflective areas of computation will increase the

availability of these computational models through a reduction in complexity. The

wide range of binding techniques supported by the compilation interface and the

construction methodology will be used in further fitting-out of the environment.
I

The optimisation techniques may be applied to many aspects of the environment. Any

program or process that must make a trade-off between possible options may use the

enhancement optimisation technique. Analysis of the chosen trade-off based on

dynamic measurements may be used to change the trade-off to improve performance.

6.5 Finale

The work described in this thesis attempts to improve the functionality and efficiency

of software construction and execution in a persistent system. This is an essential step

towards the eventual goal of widespread use of persistent systems outside the research

environment. If the work can help to avoid travel hold-ups, banking errors, I
reservation nightmares, dole cheque delays and b u rea u cra ticpas then so much the <|

better. I

Let us hope that such improvements may be made to the world without having to

"bring the system down".

167

4 !

picture, file and null.

2. The type image is the type of an object consisting of a
rectangular matrix of pixels.

3. For any data type t, *t is the type of a vector with elements of
type t.

168

Appendix 1 The NapierSS Type System
I

The Napier88 type system is based on the notion of types as sets of objects from the ÿ

value space. These sets may be predefined, like integer, or they may be formed by ̂|
I

using one of the predefined type constructors, like structure. The constructors obey |

the Principle o f Data Type Completeness [Mor79]. That is, where a type may be used |

in a constructor, any type is legal without exception. This has two benefits. Firstly, |

since all the rules are very general and without exceptions, a very rich type system |

may be described using a small number of defining rules. This reduces the complexity

of the defining rules. The second benefit is that the type constructors are as powerful %

as is possible since there are no restrictions to their domain. This increases the power I

of the language. J

Al l Universe of Discourse
Î

There are an infinite number of data types in Napier88 defined recursively by the i

following rules: |

1. The scalar data types are integer, real, boolean, string, pixel, î

4. For identifiers and types ti,...,tç , structure (Ij:
t l Iq: t^) is the type of a structure with fields and
corresponding types t̂ , for i = l..n.

5. For identifiers and types t^,...,!^, variant (1%: ti,...,Î :̂
tn) is the type of a variant with identifiers Ij and corresponding |
types ti, for i = l..n.

6. For any data types ti,...,tn and t, proc (t%,...,t̂ t) is the type
of a procedure with parameter types tj, for i = l..n and result
type t. The type of a resultless procedure is proc (ti,...,tn).

■t

7. For any procedure type, proc (t%,...,tn -> t) and type identifiers
Ti,...,Tm , proc [Ti,...,Tni] (ti,...,tn -> t) is the type proc)
(ti,...,tn —> t) universally quantified by types Ti,...,Tm. These |
are polymorphic procedures. 4

If

8. env is the type of an environment.

9. For any type identifiers Wi,...,Wm, identifiers and
types t l tn, abstype [Wi,...,Wni] (Ii: ti,...,In: t^), is the
type of an existentially quantified data type. These are abstract
data types.

10. The type any is the infinite union of all types.

11. For any user-constructed data type t and type identifiers,
Ti,...,Tji, t[Ti, .. .,Tjj] is the type t parameterised by
T i,...,T |j .

In addition to the above data types, there are a number of other objects in Napier88 to

which it is convenient to give a type in order that the compiler may check their use for

consistency.

12. Clauses which yield no value are of type void, as are
procedures with no result.

The world of data objects is defined by the closure of rules 1 and 2 under the recursive

application of rules 3 to 12.

A12 Context Free Syntax and Type Rules

The type rules form a second set of rules to be used in conjunction with the context

firee syntax to define well-formed programs. The generic types that are required for the

formal definition of Napier88 can be described by the following:

type arità is I

type is

type literiil is

type is lite a l I imang© I straetor© I

I I

type tjp® i s aaoEvmd I

In the above, the generic type aritlh can be either an m t or a r©al, representing the

types integer and real in the language. In the type rules, the concrete types and generic

169 a

types are written in shadow font to distinguish them from the reserved words. Each of

the type categories given above corresponds to one of the type construction rules.

To check that a syntactic category is correctly typed, the context free syntax is used in

conjunction with a type rule. For example, the type rule for the two-armed if clause is

It : if <clause> : lb®®! then <clause> : t else <clause> : t => t

170

This rule may be interpreted as follows: 1t is given as a typ© from the table above. It

can be any type including void. Following the comma, the type rule states that the

reserved word if may be followed by a clause which must be of type boolean. This is |

indicated by : The then and else alternatives must have clauses of the same

type t for any It. The resultant type, indicated by =>, of this production is also It, the

same as the alternatives.

The full context free syntax and type rules are included at the end of this appendix.

A13 Type Equivalence Rule

Two data objects have the same type if they are structurally equivalent, that is the types

represent the same set of values. Thus, even if a type identifier is aliased, for example,

type quintin is int

the fact that objects of type quintin are integers cannot be hidden. Abstract data types

can be used for this purpose. The meaning of structural equivalence for two types is

that they represent the same set. For scalar types, the construction of these sets is

obvious. For constructed types, it is not so obvious and is defined as part of the

semantics of the constructor.

vector Two vector types are equivalent if the type of the elements is

equivalent.

A.... ’., i- ^44

structure Two structure types are equivalent if each structure contains the same

set of (identifier,type) pairs. The ordering of the fields is not

important.

variant Two variants are equivalent if each variant contains the same set of

(label,type) pairs. The ordering of the branches is not important,

procedure Two procedures are equivalent if the ordering and types of the

parameters are equivalent as are the result types,

universally quantified procedure Similar to a monomorphic procedure. In

addition, the two procedures must have the same number of

quantifiers. The names of the quantifiers is not important,

env All environments have the same type, env, and are hence type

compatible.

any All anys have the same type and are hence type compatible,

existentially quantified abstract data type Similar to structures. In addition,

the two types must have the same number of witness types. The

names of the witnesses is not important.

For example, the types,

type man is structure (age : int ; size : real)

and
type house is structure (size : real ; age : int)

have the same type since they both represent the same set of objects.

I

171

. i 'i

A1.4 NapierSS Context Free Syntax

Session:

<session> ::=

<sequence> ::=

<declaration> ::=

Type declarations:

<type„decl> ::=

<type_init> ::=

<type_parameter_list> : :=

Type descriptors:

<type_id> ::=

<parameterisation>

<type_identifier_list>

<type_constructor>

<structure_ type >

<named„param__list>

<sequence>?

<declaration>[;<sequence>] I <clause>[;<sequence>]

<type_decl> I <object_decl>

type<typeJnit> I

rec type<type_init>[&<type_init>] *

<identifier>[<type_parameter_list>]is<type_id>

<lsbxidentifier listXrsb>

int I real I bool I string I pixel I pic I

null 1 any I env I image I file I

<identifier>[<paraineterisation>] I

<type_constructor>

<lsb><type_identifier_listxrsb>

<type_id>[,<type_identifier_list>]

<starxtype_id> I <structure_type> I

<variant_type> I <proc_type> I <abstype>

structure([<named_param_list>])

[constant]<identifier_list>:<type_id>

[;<named_param_list>]

172

I

i- ■ ■■ A -

<variant_type>

<variant_fields>

<proc_type>

<parameter_list>

<abstype>

variant([<variant„fields>])

<identifier_list>:<type_id>[;<variant_fields>]

proc[<type_parameter_list>]([<parameter_list>]

[<arrowXtype_id>])

<type_id>[,<parameter_list>3

abstype<type_parameter_list>

(<named_param_list>)

Object declarations:

<object_decl>

<object_init>

<rec_object_init>

<mit_op>

let<object„init> I

rec let<rec_object_init>[&<rec_object_init>] *

: : = <identifierXmit_opXclause>

::= <identifierxinit_op><literal>

Clauses:

<clause> <env_decl> I

if<clause>do<clause> I

if<clause>then<clause>else<clause> I

repeat<clause>while<clause>[do<clause>] I

while<clause>do<clause> I

for<identifier>=<clause>to<clause>

[by<clause>3 do<clause>l

use<clause>with<signature>iii<clause> I

use<clause>as<identifier>[<witness__decls>]

in<clause> 1

case<clause>of<case list>default :<clause>

173

I

<raster> I

drop<identifier>from<clause> I

project<clause>as<identifier>
4

onto <project_list>default: <clause> 1

<name>:=<clause> 1
■i

<expression> i;

<signature> <named_paramjist>

<witness_decls> <type_parameter„list>

<case_list> <clause_list>: <clause>; [<case_Hst>]

<raster> <raster_op><clause>onto<clause>

<raster_op> ror 1 rand 1 xor 1 copy I nand 1 nor 1 not 1 xnor 4

<prqject_list> ::= <any_prqject_list> 1 <variant_project_list> <

<any_prqject_list> <type„id>:<clause>;[<any_project_list>] j

<variant_project_list <identifier>: <clause>; [<variant_project_list>] 1

<env_decl> ::= in<clause>let<object_init> 1 J
'f

in<clause>rec let<rec_object_init> Î
■

[&<rec_object„init>3* ■;

Expressions:

<expression> <exp 1 > [or <exp 1 >] *

<expl> <exp2>[and<exp2>] *

<exp2> [~] <exp3>[<rel_opxexp3>]

<exp3> <exp4>[<add_opXexp4>] * s

<exp4> <exp5>[<mult_opxexp5>] *

<exp5> [<add_op>]<exp6>

<exp6> <literal> 1 <value_constructor> l(<clause>) 1 ,-r

begin<sequeiice>end 1 {<sequence>} I

174

1

<dereference> : :=

<specialisation> ::=

<application>

<structure„creation> ::=

<variant_creation> ::=

<name> ::=

<clause list> ::=

<expression>(<clausexbar><clause>) I

<expression>(<dereference>) 1

<expression>'<identifier> I

<expressionxlsbXspecialisationXrsb> I

<expression>([<applicati.on>]) I

<structure_creation> I <variant_creation> I

<clause> contains [constant]

<identifier>[:<type_id>] I

any (<clause>) I

<name>

<clause>[,<dereference>]

<type_identifier_üst>

<clause_list>

<identifier>[<lsbXspecialisationxrsb>]

([<clause„list>])

<identifier>[<lsbXspecialisationXrsb>]

(<identifier>: <expression>)

<identifier> I

<expression>(<clause_list>)[(<clause_list>)]*

<clause>[,<clause_Hst>]

Value constructors:

<value constructor>

<vector constr>

<vector_constr> j <structure_constr> I

<image_consti> I <subimage_constr> I

<picture__constr> I <picture_op>

[constant] vector<vector_element_init>

175

L l j ...

<vector element init>::=

<range>

<image_constr>

<image_init>

<subimage_constr>

<structure_constr>

<struct„init__list>

<pictui’e_constr>

<picture_op>

Literals:

<Uteral>

<int_literal>

<real_literal>

<bool_literal> :

<string literal>

<char>

<range>of<clause> I <range>using<clause> I

@<clause>of<lsbXclause>[,<clause>]*<rsb>

<clause>to<clause>

[constant] image<clause>by<clauseximage_init>

of<clause> I using<clause>

limit<clause>[to<clause>by<clause>]

[at<clause>,<clause>]

struct([<struct_init_list>])

<identiflerXinit_opXclause>[;<sti’uct_imt_list>]

<lsbXclause>,<clauseXrsb>

shift<clause>by<clause>,<clause> I

scale<clause>by<clause>,<clause> I

rotate<clause>by<clause> I

colour<clause>in<clause> I

text<clause>from<clause>,

<clause>to<clause>,<clause>

::= <int_literal> I <real_literal> I <booLliteral> I

<string_üteral> I <pixei_literal> I <picture_literal> I

<nuU_literal> I <proc_literal> I <image_Hteral> I

<fUe_literal>

::= [<add„op>]<digit>[<digit>]*

: : = <int_literal>. [<digit>] * [e<int_literal>]

true I false

::= <double_quote>[<char>]*<double_quote>

: := any ASCII character except " I <special_character>

176

- 3 l

<special_character>

<special_foUow>

<pixel_literal>

<nuU_literal>

<proc_literal> ::=

<picture_literal>

<image_literal>

<fjle literal>

: := <single_quoteXspecial_follow>

::= niploltlbl<single_quote>I <double_quote>

::= on I off

::= nil

proc[<type_parameter_Ust>]([<named_param_list>]

[<arrowXtype_id>]);<clause>

::= nilpic

::= nilimage

::= nilfile

Miscellaneous and microsyntax:

<lsb> ::= [

<rsb> ::=]

<star> *

<bar> ::= I

<add_op> + 1 -

<mult„op>

a

<mt„mult_op>

<real_mult_op>

<string mult op>

<pic_mult_op>

<pixel_mult_op>

<rel_op>

<eq_op>

<int_mult_op> ! <real__mult_op> I

<string_mult_op> I <pic_mult_op> I

<pixel_mult_op>

<star> I div I rem

<star> 1 /

++

^ I ++

++

<eq_op> I <co_op> I <type_op>

177

<co_op> ::= < 1 <= 1 > 1 >=
. p

<type_op> ::= is 1 isnt j

<arrow> > i

<single_quote> ' i

<double_quote>

<ddentifier_list> <identifier>[,<identifier_Hst>]

<identifier> <letter>[<id„follow>]
;,V:

<id_follow> <letter>[<id_follow>] 1 <digit>[<id_follow>] 1
/

[<id_follow>]
1

<detter> ::= a l b l c l d l e l f i g l h l i l j l k l l l m l

n i o l p i q l r l s i t l u l v l w l x l y l z l

Al BI Cl Dl Ei FI GI HI I I J I KI LI MI
1

NI OI PI QI RI SI TI UI VI WI XI YI Z
'%:

<digit> 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

1

178

\c::i

A Ï S NapierSS Type Rules

These should be interpreted in conjunction with the context free syntax as described in

Section A 1.2.

Session :

<sequence> : void ? => void

t : type, <declaration> : void ; <sequence> : î ~> t

t : type, <clause> : void ; <sequence> : t => t

t : type, <clause> : 4 => t

Object Declarations

<declaration> =>

e <object_decl>

<object_init>

<rec_object_init>

<init_op>

[in<clause> : mv]let<object_init> I

[in<clause> : mvjrec let<rec__object_init>

[&<rec_object_init>] *

<identifier><init_opXclause> :

<identifierxinit__opXliteral> :

Clauses :

<clause> : eav contains [constant] <identifier>[: <type_id>] =>

if <clause> ; bool do <clause> : void => void

Î : type, if <clause> : bool then <clause> : t else <clause> : t =>

repeat <clause> : void while <clause> : bool [do <clause> :

while <clause> : bool do <clause> : void =>

179

for <identifier>=<clause> : mt to <clause> : mt

[by<clause> : mt]do<clause> :

t : type, use<clause> : env with<signature>in<clause> : t =>

=>

use<clause> :

<case_list> ::=

<clause_list> ::=

<raster_opXclause> :

as<identifier>[<witness_decls>]

in<clause> : void => void

, case <clause> : t l of <case_list>

default : <clause> ; t => t

<clause_list>:<clause> : t ; [<case_list>]

<clause> : tl [,<clause„list>]

I onto<clause> : image =>

drop<identifier>from<clause> : env =>

t : type, project<clause> : any as<identifier>onto<any_project_list>

default : <clause> : t => t

<type_id>:<clause> : t ; [<any_project_list>]

as<identifier>onto<variant_project_list>

default : <clause> : t => t

::=<identifier>:<clause> : t;

<variant_project_list>]

I, <name> : t := <clause> : t =>

<any_project_list>

e, project<clause> :

<variant_project_list>

Expressions :

<expression> : bool or <expression> : bool =>

<expression> : b®@l and <expression> : bool =>

[~]<expression> : bool => bool

i, <expression> : t <eq.op> <expression> : t =>

<eq_op> ::= =\=^

180

,1

I

I

A
A ' A . ' 4 ; ■■ À æ A-

t : ordered, <expression> : t <co_op> <expression> : t =>

where <co_op> < I <= I > I >=

<expression> : Y@riamt<type_op><identifier> => bool

<type_op> ::= is I isnt

l,any (<clause>) : t => any

<expression> : env contains [constant]<identifier>[:<type>] =>

t : arità, <expression> : t <add_op><expression> : t => t

t : üotih, <add_op> <expression> : t => t

t : int, <expression> : t <int_mult_op> <expression> : t => t

where <int_mult_op> ::= <star> I div ! rem

t : real, <expression> : t <real_mult_op> <expression> : t => t

where <real_mult_op> ;:= <star> I /

t : string, <expression> : t <string_mult_op> <expression> : t =>

where <string_mult„op> ::= ++

t : pic, <expression> : t <pic_mult_op> <expression> : t => t

where <pic_mult_op> ::= ̂I ++

t : pixel, <expression> : t <pixel_mult„op> <expression> ; t => t

<pixel_mult_op> ::= ++

l, <literal> : t => t

t : nonvoid, <value„constructor> : t => t

t : type, (<clause> : t) => t

t : type, begin <sequence> : t end => t

î : type, { <sequence> : t } => t

<expression> : string (<clause> : int <bar> <clause> : int) => i

<expression> : image (<clause> : int <bar> <clause> ; int) =>

<expression> : pixel (<clause> : int <bar> <clause> : int) =>

i, <expression> : *t (<clause> : int) => t

181

' L - A''-' ■■■'I L4 Ü- ' i" 5.

Value constructors:

=>

I, vector<range>of<clause> : t =>

t : nonvoid, vector<range>using<clause> :

1, vector@<clause> : int of<lsb><clause> : t

[,<clause> : t]* <rsb> =>

<range> ::= <clause> : int to <clause> : int

image <clause> : int by<clause> : int of <clause> : pixel =>im&ge

image <clause> : int by<clause> : int using <clause> :

limit<clause> : image [to<clause> : int by<clause> :

[at<clause> : int ,<clause>

struct(<struct_init_list>) => stmoture

where <struct_init„list> ::= <identifier><init_op><clause> :

[,<struct_init_list>]

Û ,<clause> : m

by<clause> : r

by<clause> : i

by<clause> :

in<clause> :

from<clause> :

=>

<lsbXclause> :

shift<clause> :

scale<clause> :

rotate<clause>

colour<clause>

text<clause> : g

=>

=>

<rsb> => pk

, ,<clause> :

i ,<clause> :

=>

îl =>

Bal ,<clause> :

to<clause> : real ,<clause> :

182

"I

I

t - • 'I ", V '

Literals :

[<add_op>]<digit>[<digit>]* => mt

<int_literal>.[<digit>]*[e<int_literal>] => real

true I false => bool

<double_quote>[<char>] *<double_quote> =>

on I off => pixel

nil => null

t : type, proc[<type_parameter_list>]([<named_param_list>]

[<arrow><type_identifier> : t]);<clause>

nilpic => pic

nilimage =>

nilfile =>

183

A " A -.X-

References

[AB87]

[ABC+83]

[ABC+84]

[ABC83]

[ABM85]

[ACC82]

M.P. Atkinson and O.P. Buneman

“Types and Persistence in Database Programming Languages”

ACM Computing Surveys 19,2 (1987) pp 105-190.

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott

and R. Morrison

“An Approach to Persistent Programming”

Computer Journal 26, 4 (1983) pp 360-365.

M.P. Atkinson, P.J. Bailey, W.P. Cockshott, K.J. Chisholm

and R. Morrison

“Progress with Persistent Programming”

Universities of Glasgow and St Andrews Report PPRR-8-84

(1984).

M.P. Atkinson, P.J. Bailey, W.P. Cockshott, K.J. Chisholm

and R. Morrison

“PS-algol Papers: a collection of related papers on PS-algol”

Universities of Glasgow and St Andrews Report PPRR-2-83

(1983).

M. Atkinson, P. Buneman and R. Morrison

“Data Types and Persistence”

(1985).

M.P. Atkinson, K.J. Chisholm and W.P. Cockshott

“PS-algol: An Algol with a Persistent Heap”

ACM SIGPLAN Notices 17,7 (1982) pp 24-31.

I

A?

184

[AC085]

[ACP+91]

[AG088]

[AM85]

[AM88]

[AMP86]

[atk78]

A. Albano, L. Cardelli and R. Orsini

“Galileo: a Strongly Typed, Interactive Conceptual Language”

ACM ToDS 10, 2 (1985) pp 230-260.

M. Abadi, L. Cardelli, B.C. Pierce and G. Plotkin

“Dynamic Typing in a Statically Typed Language”

ACM ToPLAS 13,2 (1991) pp 237-268.

A. Albano, G. Ghelli and R. Orsini

“The Implementation of Gahleo’s Values Persistence”

In Data Types and Persistence, Springer-Verlag (1988) pp

253-263.

M.P. Atkinson and R. Morrison

“Procedures as Persistent Data Objects”

ACM ToPLAS 7 ,4 (1985) pp 539-559.

M.P. Atkinson and R. Morrison

“Types, Bindings and Parameters in a Persistent Envii'onment”

In Data Types and Persistence, Springer-Verlag (1988) pp

3-20.

M.P. Atkinson, R. Morrison and G.D. Pratten

“A Persistent Information Space Architecture”

Universities of Glasgow and St Andrews Report PPRR-21-85

(1985).

M.P. Atkinson

“Programming Languages and Databases”

In Proc. Very Large Databases, (1978) pp 408 - 419.

185

Ï

:

[Atk92]

[BBB+88]

[BCC+88]

[BD90]

[BMM+92]

M.P. Atkinson

“FEDE2 Technical Annex for Basic Research Action 6309”

(1992).

F. Bancilhon, G. Barbedette, B. Benzaken, C. Delobel, S.

Gamerman, C. Lecluse, P. Pfeffer, P. Richard and F. Valez

“The Design and Implementation of 02, an Object-Oriented

Database System”

In Lecture Notes in Computer Science 334, Springer-

Verlag (1988) pp 1-22.

A.L. Brown, R. Carrick, R.C.H. Connor, A. Dearie and R.

Morrison

“The Persistent Abstract Machine”

Universities of Glasgow and St Andrews Report PPRR-59-88

(1988).

V. Benzaken and C. Delobel

“Enhancing Performance in a Persistent Object Store: Clustering

Strategies in O2”

In Implementing Persistent Object Bases, Morgan

Kaufmann (1990) pp 403-412.

A.L. Brown, G. Mainetto, F. Matthes, R. Müller and D.J.

McNally

“An Open System Architecture for a Persistent Object Store”

In Proc. 25th International Conference on Systems Sciences,

Hawaii (1992) pp 766-776.

1

.ft

186

1

[BOP+89] B. Bretl, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H.

Williams, M. Williams and D. Maier

“The GemStone Data Management System”

In Object-O riented Concepts, Applications, and

Databases, Morgan-Kaufman (1989)

[Bro89] A.L, Brown

“Persistent Object Stores”

Ph.D. Thesis, University of St Andrews (1989).

[CAD+87] R.L. Cooper, M.P. Atkinson, A. Dearie and D. Abderrahmane

“Constructing Database Systems in a Persistent Environment”

In Proc. 13th International Conference on Very Large Data

Bases, (1987) pp 117-125.

[Car83] L. Cardelli

“The Functional Abstract Machine”

AT & T BeU Laboratories Report TR-107 (1983).

[Care89] M. Carey

“The EXODUS Extensible DBMS Project; An Overview”

In Readings in Object-Oriented Databases, Morgan-

Kaufmann (1989)

[Car89] L. Cardelli

“Typeful Programming”

DEC Report 45 (1989).

-f

187

[CBC+90] R.C.H, Connor, A.B. Brown, Q.I. Cutts, A. Dearie, R.

Morrison and J. Rosenberg

“Type Equivalence Checking in Persistent Object Systems”

In Implementing Persistent Object Bases, Morgan

Kaufmann (1990) pp 151-164.

[CBC+90] R.C.H. Connor, A.L. Brown, R. Carrick, A. Dearie and R.

Morrison

“The Persistent Abstract Machine”

In Persistent Object Systems, Springer-Verlag (1990) pp

353-366.

[CDM+90] R.C.H. Connor, A. Dearie, R. Morrison and A.L. Brown

“Existentially Quantified Types as a Database Viewing

Mechanism”

In Lecture Notes in Computer Science 416, Springer-

Verlag (1990) pp 301-315.

[Con88] R.C.H. Connor

“The Napier Type-Checking Module”

Universities of Glasgow and St Andrews Report PPRR-58-88

(1988).

[Con91] R.C.H. Connor

“Types and Polymorphism in Persistent Programming Systems”

Ph.D. Thesis, University of St Andrews (1991).

[Con92] R. Connor

“Panel on Persistent Type Systems”

In Proc. 5th International Workshop on Persistent Object

Systems, San Miniato, Italy (1992)

188

.■-J • -Æ :

[Coo90a] R.L. Cooper

“On The Utilisation of Persistent Programming Environments”

Ph.D. Thesis, University of Glasgow (1990).

[Coo90b] R.L. Cooper

“Configurable Data Modelling Systems”

In Proc. 9th International Conference on the Entity Relationship

Approach, Lausanne, Switzerland (1990) pp 35-52.

[CW85] L. Cardelli and P. Wegner

“On Understanding Types, Data Abstraction and Polymorphism”

ACM Computing Surveys 17,4 (1985) pp 471 - 523.

[DB88] A. Dearie and A.L. Brown

“Safe Browsing in a Strongly Typed Persistent Environment”

Computer Journal 31, 6 (1988) pp 540-544.

[DCK89] A. Dearie, Q.I. Cutts and G.N.C. Kirby

“Browsing, Grazing and Nibbling Persistent Data Structures”

In Persistent Object Systems, Springer-Verlag (1990) pp

56-69.

[Dea87] A. Dearie

“A Persistent Architecture Intermediate Language”

Universities of Glasgow and St Andrews Report PPRR-35-87

(1987).

[Dea88] A. Dearie

“On the Construction of Persistent Programming Environments”

Ph.D. Thesis, University of St Andrews (1988).

189

[Dea89]

[DM81]

[DM90]

[D0D83]

[Far91]

[FDK+92]

A. Dearie

“Environments: A flexible binding mechanism to support system

evolution”

In Proc. 22nd International Conference on Systems Sciences,

Hawaii (1989) pp 46-55.

A.J.T. Davie and R. Morrison

Recursive Descent Compiling

Ellis Horwood (1981)

A.J.T. Davie and D.J. McNally

“Statically Typed Applicative Persistent Language Environment

(STAPLE) Reference Manual”

University of St Andrews Report CS/90/14 (1990).

“Reference Manual for the Ada Programming Language”

U.S. Department of Defense Report ANSI/MIL-STD-1815A

(1983).

A.M. Farkas

“ABERDEEN: A Browser allowing intERactive DEclarations and

Expressions in Napier88”

University of Adelaide Report Honours Project (1991).

A.M. Farkas, A. Dearie, G.N.C. Kirby, Q.I. Cutts, R. Morrison

and R.C.H. Connor

“Persistent Program Construction through Browsing and User

Gesture with some Typing”

In Proc. 5th International Workshop on Persistent Object

Systems, San Miniato, Italy (1992) pp 375-394.

190

%
!

Î
i

4

OFID90] “The FIDE Project”

Esprit n Basic Research Action 3070 (1990).

[FID91] “A Proposal for Basic Research Action - FIDE Phase 2”

Esprit m (1991).

[FS91] L. Fegaras and D. Stemple

“Using Type Transformation in Database System

Implementation”

In Proc. 3rd International Conference on Database Programming

Languages, Nafplion, Greece (1991) pp 289-305.

[FSS92] L. Fegaras, T. Sheard and D. Stemple

“Uniform Traversal Combinators: Definition, Use and

Properties”

In Proc. 11th International Conference on Automated Deduction

(CADE-11), Saratoga Springs, New York (1992)

[GR83] A. Goldberg and D. Robson

SmalItalk-80: The language and its Implementation

Addison Wesley (1983)

[Har85] R. Harper

“Modules and Persistence in Standard ML”

In Data Types and Persistence, Springer Verlag (1988) pp

353-368.

[IBM78] “IBM Report on the Contents of a Sample of Programs

Surveyed”

IBM, San Jose, California (1978).

191

4:

[Joh71]

[KCC+92]

[KCC+92]

[Kir92]

[KR78]

[Leh80]

[LR89]

J.B. Johnston

“The Contour Model of Block Structure Processes”

ACM SIGPLAN Notices 6 ,2 (1971) pp 56-82.

G.N.C. Kirby, Q.I. Cutts, R.C.H. Connor, A. Dearie and R.

Morrison

“Programmers’ Guide to the Napier88 Standard Library, Edition

2 . 1”

In preparation (1992).

G.N.C. Kirby, R.C.H. Connor, Q.I. Cutts, A. Dearie, A.M.

Farkas and R. Morrison

“Persistent Hyper-Programs”

In Proc. 5th International Workshop on Persistent Object

Systems, San Miniato, Italy (1992) pp 73-95.

G.N.C. Kirby

“Reflection and Hyper-programming in Persistent Programming

Systems”

Ph.D. Thesis, University of St Andrews (1992)

B.W. Kernighan and D.M. Ritchie

The C programming language

Prentice-Hall (1978)

M.M. Lehman

“Pi'ograms, life cycles and the laws of softwai e evolution”

Proc. IEEE 15, 3 (1980) pp 225-252.

C. Lécluse and P. Richard

“The 02 Database Programming Language”

In Proc. 15th VLDB Conference, Amsterdam (1989)

192

[MAD87] R. Morrison, M.P. Atkinson and A. Dearie

“Flexible Incremental Bindings in a Persistent Object Store”

Universities of Glasgow and St Andrews Report PPRR-38-87

(1987).

[MAE+62] J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart and

M.I. Levin

The Lisp Programmers’ Manual

M.I.T. Press (1962)

[Mae87] P. Maes

“Concepts and Experiments in Computational Reflection”

In Proc. OOPSLA’87, (1987) pp 147-155.

[MBC+87] R. Morrison, A.L. Brown, R.C.H. Connor and A. Dearie

“Polymorphism, Persistence and Software Reuse in a Strongly

Typed Object Oriented Environment”

Universities of Glasgow and St Andrews Report PPRR-32-87

(1987).

[MBC+89] R. Morrison, A.L. Brown, R.C.H. Connor and A. Dearie

“The Napier88 Reference Manual”

University of St Andrews Report PPRR-77-89 (1989).

[MBC+90] R. Morrison, A.L. Brown, R.C.H. Connor, Q.I. Cutts, G.N.C.

Kirby, A. Dearie, J. Rosenberg and D. Stemple

“Protection in Persistent Object Systems”

In Security and Persistence, Springer-Verlag (1990) pp 48-

66 .

■I
I

■

193

[MDC+91] R. Morrison, A. Dearie, R.C.H. Connor and A.L. Brown

“An Ad-Hoc Approach to the Implementation of Polymorphism”

ACM ToPLAS 13,3 (1991) pp 342-371.

[Mil78] R. Milner

“A Theory of Type Polymorphism in Programming”

Journal of Computer and System Sciences 17, 3 (1978) pp 348-

375.

[MÜ84] R. Milner

“A Proposal for Standard ML”

In Proc. ACM Symposium on LISP and Functional

Programming, Austin, Texas (1984) pp 184-197.

[Mor 79] R. Morrison

“On the Development of Algol”

Ph.D. Thesis, University of St Andrews (1979).

[MP88] J.C. Mitchell and G.D. Plotkin

“Abstract Types have Existential Type”

ACM ToPLAS 10,3 (1988) pp 470 - 502.

[MMS92] F. Matthes, R. Müller and J.W. Schmidt

“Object Stores as Servers in Persistent Programming

Environments—The P-Quest Experience” ^

ESPRIT BRA Project 3070 FIDE Report FIDW92/? (1992).

194

I

Î

■i

I

[MS89]

[Org72]

[PS87]

[PS88]

[QL91]

[RCS89]

[RT78]

F. Matthes and J.W. Schmidt

"The Type System of DBPL"

In R. HuU, R. Morrison and D. Stemple (Editors)

Proc. 2nd International Conference on Database Programming

Languages

Morgan Kaufmann (1989) pp 219-225.

E.I. Organick

The Multics System: An Examination of its Structure

M.I.T. Press (1972)

J.L. Peterson and A. Silberschatz

Operating System Concepts

Addison Wesley (1987)

“PS-algol Reference Manual, 4th edition”

Universities of Glasgow and St Andrews Report PPRR-12-88

(1988).

R.W. Quong and M.A. Linton

“Linking Programs Incrementally”

ACM ToPLAS 13,1 (1991) pp 1-20.

J. Richardson, M. Carey and D. Schuh

“The Design of the E Programming Language”

Computer Sciences Dept., University of Wisconsin Report 824

(1989).

D.M. Ritchie and K. Thompson

“The UNIX Time-Sharing System”

The Bell System Technical Journal 63,6 (1978) pp 1905-1930.

195

I

-

-T T iT T ".—

[SFS+90]

[SSF92]

[SSS+92]

[Str67]

[Str86]

[Sun87]

D. Stemple, L. Fegaras, T. Sheard and A. Socorro

“Exceeding the Limits of Polymorphism in Database

Programming Languages”

In Lecture Notes in Computer Science 416, Springer-

Verlag (1990) pp 269-285.

D. Stemple, T. Sheard and L. Fegaras

“Linguistic Reflection; A Bridge from Programming to Database

Languages”

In Proc. 25th International Conference on Systems Sciences,

Hawaii (1992) pp 844-855.

D. Stemple, R.B. Stanton, T. Sheard, P. Philbrow, R.

Morrison, G.N.C. Kirby, L. Fegaras, R.L. Cooper, R.C.H.

Connor, M.P. Atkinson and S. Alagic

“Type-Safe Linguistic Reflection: A Generator Technology”

University of St Andrews Report CS/92/6 (1992).

C. Strachey

Fundamental Concepts in Programming Languages

Oxford University Press (1967)

B. Stroustrup

The C++ Programming Language

Addison-Wesley (1986)

Sun Microsystems Inc.

The SPARC Architecture Manual, Version 7

(1987)

I

196

.1. t ... ^

[Amm73] U. Ammann

“The Method of Structured Programming applied to the

Development of a Compiler”

In Proc. International Computing Symposium, (1973)

[Wai87] F. Wai

“Distribution and Persistence”

In Proc. 2nd International Workshop on Persistent Object

Systems, Appin, Scotland (1987) pp 207-225.

[Weg90] P. Wegner

"Concepts and Paradigms of Object-oriented Programming"

ACM SIGPLAN OOPS Mess. 1,1 (Aug 1990) pp 7-87.

[Wir71] N.Wirth

“The Programming Language Pascal”

Acta Informatica 1, (1971) pp 35-63.

197

