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ABSTRACT

This thesis is a conceptual and empirical approach to embody modelling of continuous
sequential behaviour in neural learning. The aim is to enhance the feasibility of training and
capacity for generalisation.

By examining the sequential aspects of the passing of time in a neural network, it is
suggested that an alteration to the usual goal weight condition may be made to model these
aspects. The notion of a goal weight path is introduced, with a path-based backpropagation
(PBP) framework being proposed.

Two models using PBP have been investigated in the thesis. One is called Feedforward
Continuous BackPropagation (FCBP) which is a generalization of conventional
BackPropagation; the other is called Recurrent Continuous BackPropagation (RCBP)which
provides a neural dynamic system for I/O associations. Both models make use of the
continuity underlying analogue-binary associations and analogue-analogue associations
within a fixed neural network topology.

A graphical simulator cbptool for Sun workstations has been designed and implemented
for supporting the research. The capabilities of FCBP and RCBP have been explored
through experiments. The results for FCBP and RCBP confirm the modelling theory. The
fundamental alteration made on conventional backpropagation brings substantial
improvement in training and generalization to enhance the power of backpropagation.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Introduction

» What are neural networks?

It is well known that the human brain contains massive numbers of rather slow processing
elements called “neurons” (on the order of 1010 and 1011) that are richly interconnected
(single cortical neurons can have average about 103 to 105 connections per neuron) (see,
for example, Chapter 4 Rumelhart, et al., 1986). The operational speed of each neuron is
estimated to be only between 100Hz and 1000Hz. However, the human brain is capable of
recognizing a visual scene and issuing a reaction within a fraction of a second, i.e., within
about 100 cycles. It is also noted that on complex cognitive tasks the human brain easily
performs better than the central processor unit of even the most powerful contemporary

serial computers, which operate at frequencies of tens of MHz.

To many people the solution to this puzzle seems a “massive parallelism” and learning
ability. Though individual components of the human brain are inherently slow, the system
as a whole operates quickly, since many computations are carried out in parallel. In
addition, the human brain has the ability to learn from examples. These are properties
which distinguish it from an ordinary serial computer system, which has to be programmed

to perform a meaningful task using one or a few central processor units.

In the past few decades, biologists and neurophysiologists have greatly improved their
understanding of the organizational principles of brains. In the picture which has emerged,
neurons are cells that can amplify and conduct electrical pulses. From the main body of
each neuron a long fibre, the axon, emanates branching into a number of dendrites, which
end on or near the bodies of other neurons. The coupling( or synaptic junction) between

the dendrite and the next cell body may be such that an arriving nerve pulse has an




excitatory or an inhibitory effect on the recipient neuron. The facts that biological
computation is so effective and the human brain can solve very complicated cognitive
problems suggest that it may be possible to attain and emulate similar capabilities in

artificial devices based on the design principles of neural systems.

As a subclass of neural system research, computer scientists are busy investigating the
properties of parallel models of “computation” that can be embodied in artificial neural
networks, sometimes called parallel distributed processing (PDP). This is to build neural
networks based on simplified neural system features and emphasize computational power

rather than biological fidelity.

Generally speaking, an artificial neural network is a dynamic, information processing
system composed of a large number of simple processing elements called artificial neurons
or units that interact one another using weighted directed connections called /inks which co-
operate to solve a computational task. The adjective “artificial” will be dropped from now
on and taken to be understood. A simplified general structure of the units is reviewed later

in §1.4.

* Why neural networks?

A simplified biological model and neural networks share a common mathematical
formulation as a system. Depending on which form of the interactions is embodied, this
results in different network models. These are characterised by differences in their neuron

behaviour, network topology and learning rules.

From a computer scientist’s point of view, there are two main reasons put forward here for

investigating neural networks:

(1) Firstly, as discussed above, these networks resemble the human brain much more
closely than conventional computers. Even though there are many differences between
artificial neurons and real neurons, neural networks are an analogy taken from the human

brain. A deeper understanding of the computational properties of connectionist networks
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may reveal some general principles that can be applied to a whole class of devices of this
kind, including the brain. In this way it looks as though neural network models have a
good chance at capturing some significant complexity of cognitive systems. Thus the study
of neural networks often involves trying to understand the complex phenomenon called
intelligence or to see how intelligence is embodied in brains and may be embodied in

machines.

(2) Secondly, the recent technological advances in VLSI (very large scale integration) and
computer aided design make it much easy to build massively parallel machines. Neural
networks are massively parallel, so that computations can be performed efficiently with

these networks making a good use of parallel hardware.

» What is this chapter about ?

In this chapter, a brief historical review of some of the earlier work on neural networks is
given in §1.2 which gives a general picture of the development in this field. In §1.3, there
is an explanation as to why sequential processing is investigated for parallel processing
systems. In §1.4, some basic concepts related to the aspects of learning are reviewed.

Finally, in §1.5 the thesis structure is outlined.

1.2 A view of historical development

The landmark paper of Warren McCulloch and Walter Pitts (1943) is of@en taken as the
starting point of neural network research. McCulloch and Pitts considered networks with
two state threshold elements and proved that every logical function could be implemented
using these kinds of neurons (1943). Their results imply that any finite state machine can

be simulated by a network of such neurons (Arbib, 1987).

In 1949, Hebb’s learning scheme paved the ground for many neural network models of

learning. The learning scheme is for formal neurons like those of McCulloch and Pitts in




which connections between neurons were strengthened whenever the neurons ‘fired’

jointly.

Enthusiasm for neural networks peaked for the first time when in the late 1950s Frank
Rosenblatt and his colleagues at Cornell University invented the Perceptron which is a
single layer neural network. Networks with multiple layers, however, were poorly

understood at that time.

Further study of artificial neural systems almost stopped in the mid 1960s after Marvin
Minsky and Seymour Papert, two pioneers of artificial intelligence, convincingly pointed
out that the Perceptron was incapable of solving simple, yet important classification
problems such as the well known “exclusive-or” problem (Minsky and Papert, 1969). By
showing that XOR cannot be learnt through any single layer perceptron, Minsky and
Papert had conclusively demonstrated a fundamental inadequacy of single layer perceptrons
in representing general I/O mappings. However, as Minsky and Papert knew, it is always
possible to convert any unsolvable I/O mapping problem into a solvable one in a multiple

layer perceptron.

As the original perceptron learning procedure does not apply to more than one layer, in
order to solve I/O mapping problems with intermediate layers, containing a kind of units
called hidden units which are units not having direct network inputs or outputs, a new
learning procedure is needed to make weights along input links for hidden units learnable.
Minsky and Papert focused on the question of what preprocessing must be done by the
units in intermediate layers to allow a task to be solved and believed that no general
procedure could be found for learning with hidden units. Their book led to a fading of

interest in neural networks generally.

Although reduced in intensity, research on neural networks was not abandoned totally.
Undeterred by the lack of interest and support from the rest of the world, a few researchers

in the areas of neurophysiology, biological control theory, cognitive psychology and




artificial intelligence still carried on their research into neural networks. Some

achievements are listed in the Table 1.1.

After a period of time, training algorithms were developed for multiple layer networks
(Werbos,1974; Le Cun, 1985; Parker, 1985; Rumelhart et al., 1986), which could solve
the ty‘pe of the well known “exclusive-or” problems. These algorithms were
generaliéations of those for single layer networks. Since this breakthrough, together with
other developments such as the dynamics of restricted classes of neural networks, neural
networks have been theoretically analysed and better understood (see, e.g., Rumelhart, et
al., 1986; Hopfield, 1982, 1984; ). The interest in neural networks revived again and has
reached the high level we can see today. Reprints of more than 40 important original
research articles scattered among diverse journals were assembled by Anderson and

Rosenfeld (1988).

As a selective review, three aspects related to the development in I/O associations in
multiple layer networks with state-based backpropagation (BP) approach (see §1.4 about

BP) should be mentioned:

» The generality and sufficiency of three layer feedforward neural networks for continuous
function mapping have been theoretically analysed, recognized and proved (Hornik, et al.,

1989; Cybenko, 1989; Funahashi, 1989).

» The dynamics of recurrent networks have been explored (e.g. Almeida, 1987;
Pineda,1987; Rohwer and Forrest, 1987; Robinson and Fallside, 1987; Williams and
Zipser, 1988; Pearlmutter, 1989; Rohwer, 1990).

» The importance of sequential processing in neural networks has been realised by some
workers and the approaches have been investigated (e.g. Jordan, 1986; Tank and Hopfield,

1987; Waibel et al., 1987; Elman, 1988).

Only a small part of the achievements in neural network learning has been listed here. This

gives us though a general idea about the major development of this field since 1943. For
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more details about the historical development see those listed in Table 1.1 below in addition

to the book (Rumelhart, et al., 1986).

Table 1.1 Highlights in the development of neural networks (1943 ~ 1987)

year names development
1943 McCulloch, W. & Pitts, W. threshold logic neuron

1949 Hebb, D. neuron leamning rule

1955 | Seliridge, O.G. pandemonium pattern recognition model
1957 Kolmogorov, A.N. function representation theorem

1959 Rosenblatt, F. Perceptron

1960 Widrow, B. & Hoff, M. E. Widrow-Hoff leaming rule, ADALINE
1961 Steinbuch, K. Learnmatrix

1966 Neumann, J.von cellular automata

1969 Grossberg, S. instar,outstar,avalanche, ART

1969 Minsky, M. & Papert, S. theory of Perceptrons

1970 Anderson, J.A. associative memory

1973 Anderson, J.A. Brain-State-in-the-Box (BSB)

1973 Malsburg, C.von der self-organization

1974 Kohonen, T. associative memory

1974 Werbos, P. error back-propagation (PhD thesis)
1980 Fukushima, K. Neocognitron

1982 Hopfield, J.J. stochastic binary Hopfield net

1982 Kohonen, T. Kohonen feature map

1983 Kirkpatrick, S.: Gelatt, C. & Veccji, M. simulated annealing

1984 Hopfield. 1.J. deterministic ‘sraded’ Hopfield net
1985 Cun, Y.L. learning in asymmetric nets

1985 Parker, D. error back-propagation (rediscovery)
1985 Ackley, D.: Hinton, G. & Sejnowski, T. Boltzmann machine

1986 Rumelhart, D.; Hinton, G. & Williams, E. | multilayer Perceptron

1986 Szu, H. Cauchy machine

1987 Carpenter, G. & Grossberg, S. Adaptive Resonance Theory (ART) IT
1987 Hecht-Nielsen, R. generality of three-layer network




1.3 Sequential processing in neural networks

4]
There are a number of areas in which neural networks can provide adequate models. One
area I would like to enhance the capability of neural networks in is modelling sequential

behaviour such as time dependent signal processing.

A common task for the Perceptron was to carry out visual character recognition. The
sequence underlying the presenting of characters is not intended affect the recognition of
those characters. Consequently, this kind of task does not strongly suggest that time
should be incorporated into the neural framework. However, it is also clear that the
processes of the human brain are not only highly parallel but also sequential. Hearing, for
example, is a different task showing a basic human capacity where time sequences are more
clearly involved. It is unlike the earlier visual recognition task, since hearing input
sequences involves dependence between current and past inputs, and so temporal structure
is involved in the hearing processing. This example suggests that time may need to be
imposed in neural networks in such a way that assists and enhances the capabilities of
sequential processing. Processing involving temporal structure will be called sequential

processing henceforth throughout this thesis.

Attention has been paid to the problems of learning sequences in neural networks (e.g.
Elman, 1988). However many of the associated problems remain unsolved or at least not
fully investigated. It will be put forward that this is at least partly because BP-based
learning has typically taken a single weight state to be the result of learning regardless of
whether the learning is to approximate an I/O function, dynamic system or I/O associations

with an underlying temporal structure.

The question being raised is what constitutes general justification for the weight state
approach and whether it is justified in all cases. One justification arises from the general
principle that with enough hidden units a single weight state can provide /O mappings of
any complexity (Cybenko, 1989; Funahashi,K., 1989; Hornik, K., Stinchcombe, M., and
White, H., 1989).




Neural knowledge represented through a set of weights as parameters embodied within the
system exists together with the system structure. Such knowledge as a set of parameters
may be fixed for the long term and so not be intended as a function of time. If the
knowledge is to be accessed at any time, this brings a random access feature to the system.
Theoretically then, the single weight state approach has the capability to represent any
complex long term knowledge and provide a system with random access and a

generalization capability.

However, consider Simpson’s definition of neural convergence (Simpson, 1989):" if the
mapping converges to a fixed value, or to some fixed set, then the learning procedure is

properly capturing the mapping. *

It would seem from the above that the single goal weight state approach in neural learning
is only one of several approaches which might be able to solve tasks. In particular, there
may be good reasons not to stick with the single goal weight state approach for solving

various kinds of sequential processing tasks.

For example, when only sequential access is required after learning, neural performance
may be viewed as drawing upon different knowledge sequentially. Each piece of
knowledge can then be adapted to act as a set of parameters for a certain moment in
sequence. In this way, an account of the temporal and sequential aspects of processing is
used. In this case, there is no reason to restrict the system to find a single instantaneous

knowledge state as the goal of learning.

In this thesis, efforts are made to explore a temporally based and analogue processing
capacity in neural networks based on gradient descent methodology. A simulator to
support the research has been designed and implemented. An approach with a more
complete account of the temporal as well as the sequential aspects of signal processing will
be shown conceptually and experimentally to improve the effectiveness and feasibility of

neural simulations.




1.4 Basic concepts

Fundamental concepts of neural networks used in the thesis are briefly reviewed here. For
more details see the papers and books (e.g., Lippmann, 1987; Rumelhart et al, 1986;

Crick, 1989; Kinoshita et al, 1987; Tazelaar, 1989).
« An _artificial neuron

In a neural network, each unit generally has an output activity that is determined by the

input received from other units in the network.

There are many possible variations within this general framework. One common,
simplified assumption is that the combined effects of the rest of the network on a unit are
mediated by a single scalar quantity. This quantity, which is called the excitation of a unit
is usually taken to be a linear function of the output activity of the units that provide input to

the unit;

xj=-9j+zi,yiw. (1.1)

Ji
where xj is the total input to unit j; y; is the output activity of unit ; wj; is the weight value
on the connection from unit i to unit j ; 6; is the threshold of unitj. The threshold term can
be substituted by giving every unit an extra input connection from a common unit called

bias whose activity level is fixed at 1. For unit j, the weight on this special connection is

the negative of the threshold 6}.' An artificial neuron is shown in Fig.1.1.

The output activity y; of unit i/ can be defined to be a linear or nonlinear function of its total
input excitation x;. For units with discrete states and a threshold 8, this function typically
has value 1 if the total input is great than 6 or O otherwise. For units with real-valued
states, a typical linear input-output function is: y; = Xj, a typical nonlinear input-output
function is the logistic function: y = f(x) = 1/ (1+eX) (Fig. 1.2). Because the latter

function is monotonic and “S-shaped”, it is often referred as a sigmoid function.
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Fig. 1.1 An artificial neuron Fig. 1.2 The logistic transfer function

» Perceptron procedure

This is a simple learning algorithm for the Perceptron (Rosenblatt,1962). If the output of a

perceptron unit i is y;, we have:
yi(t) = fn [Ziwji yi(t) ]

where fj is a step function fj (x) is 1 if x > 0; fu(x) is O otherwise. We adapt weights w; at

time r+1 according the following rules (dj denotes the target value of unit j):

if (¢vj = d) then wji(t+1) = wji(t);

if (yj = Obutdj=1I) then wji(t+1) = wji(t) + yi(t);
if (yj = 1 but d; =0) then wji(t+1) = wji(t) - yi(t);
» Delta_rule

This rule, proposed by Widrow and Hoff in 1960, uses the difference between the desired,
or target, activity and the obtained activity, which is called the delta, to drive learning in a
network. The idea is to adjust the strengths of the weight connections so that they will tend

to reduce this difference or error measure. The rule in its simple form can be written as:

Awji=¢€ 0j 0; (1.2a)

where € is a constant of proportionality called the learning rate, o; is the output of unit i

which is input to the link /j;. &; is the delta for a linear unit j given by :

& =t-0j (1.2b)
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which is the difference between the teaching activity # (to output unit j) and its actual
activity value oj. There is also though the feature of many patterns being learnt by the

network so that the rule becomes:

Awj; = ezp (Sjpo,'p (1.2¢)

where §jp and o, are defined for each pattern p , where the index p ranges over the set of

the input patterns, and  refers to the source unit for the link Jj;.

The delta rule is very similar to the Perceptron procedure for networks with*threshold units,
the differences are only that units with real-valued outputs instead of linear threshold units

are used in training.

In the perceptron, the error signal is used in the calculation of the modification of weights
and is equal to the binary difference between the weighted input sum after thresholding and
the desired result. There is no distinction made between the performance and the learning

rule as far as thresholding is concerned.

In the delta rule, there is a distinction. During training, the error signal is equal to the
difference between the weighted input sum before thresholding and the desired output.
During performance, the same linear thresholded units are used as in the perceptron, with
an output of +! if the weighted sum of its inputs is larger than the threshold or -1
otherwise. In other words, the delta rule modifies connection weights when the weighted
sum of the inputs of the neuron is not exactly equal to the binary target, even if the

thresholded response is correct.

» Gradient descent

In general, when a function f depends on one or more independent variables v;
(i=1,2,...n), gradient descent as a minimisation method can be used to find the values of

those variables where f takes on a minimum value. The method makes changes in the v;

P




proportional to the negative of the derivative of the function f with respect (o the variables

Vi
d
Avj: = - k-%v'f ;

In neural networks, gradient descent is used to find a minimum value for the error function
E, which depends on some independent variables. In techniques such as BP, we want to

find the values of weight variables W where E takes on a minimum value.

» L east-Mean-Square procedure

LMS is an error measure which has been applied by Widrow and Hoff (1960) to give a
version of the delta rule. The procedure makes use of the ideas of the delta rule, LMS error

and gradient descent for learning and adjusting connection strengths.

The total error of such a one layer linear network can be defined by a simple error function

as in Eq.1.2b or by a quadratic LMS error function such as :
E= Zp Ep = ZpZi (tpi - Opi )2 (1.3a)

where fp; denotes the target value of output unit i for pattern p. Gradient descent can be
then used to find a weight state that minimises the function E. The procedure is that after
each pattern has been presented, the error-weight derivatives for that pattern are computed.
The total error-weight derivatives of the patterns are used for making each weight moving
down the error gradient toward its minimum value for all the patterns. The learning rule is:

oE . dE do;
dwij = -k =k —awy = 2k Zpltpi- opi) opj (1.3b)

when o; = 3j 0j wj (for a one layer linear network).

* Network topology

The functional ability of a neural network is largely dependent on its net topology, i.e. the
number and arrangement of interconnections between the units. Depending on their

functions within the network, units can be grouped into three types which are: the input




units, which receive inputs from the network’s environment; the output units, which have
associated teaching or target patterns; and the hidden units, which neither receive

environment inputs directly nor give direct output to the environment.

Depending on the linking relationship among the units, there are two major different types
of networks: feedforward networks and recurrent networks. Networks may not

necessarily have all the above three kinds of units.

e F forward networks and r rrent _network

A feedforward network is a network with all links being feedforward. This implies that all
units are linked from units in a lower layer to units in a higher layer (closer to the output
layer), no links between units within the same layer. The structure of a fully connected
general feedforward network is shown in Fig. 1.3a. Where each unit of each layer is
linked feedforward to the units in all the higher layers. Feedforward networks may not

necessarily have all those links.

When a feedforward network’s unit of one layer is only linked to the units in the next layer
and not to any units in the other higher layers, the feedforward network is a strictly layered

network. As an example, the structure of a strictly layered network is shown in Fig. 1.3b.

There are no above linking limitations in recurrent networks. In recurrent networks, there
is at least one unit whose output can directly or indirectly feed back into the unit. The

structure of a recurrent network is shown in Fig. 1.3c for an example.

output layer output layer
hidden layer [ hidden ugis | hidden layer | hidden units |
hidden layer [ hidddn utfits | hidden layer | hidden units |
input layer  [Tnput unitg input layer

Fig. 1.3a A general feedforward network  Fig. 1.3b A strictly layered feedforward net
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output layer | output units |
| I ——
hidden layer {  mddenunjis

hidden layer
input layer [input units_|

Fig. 1.3c A recurrent network structure

* Backpropagation_learning procedure

The “backpropagation” (BP) learning procedure is a generalization of the LMS procedure
that works for non-linear networks which have layers of hidden units between the input
and output units. The basic idea of the learning method is to combine a nonlinear
perceptron-like system capable of making decisions with the objective error function of
LMS and using gradient descent method to minimise the error by finding a set of suitable

weight variables.

Variants of the BP procedure were discovered independently by Werbos (1974), Le Cun
(1985), Parker (1985) and Rumelhart, Hinton & Williams (1986). They are going to be
referred as conventional BP throughout this thesis, all approaches using the BP idea based
on a single goal weight state approach will be termed as state-based backpropagation

(SBP).
* Batch _and_on-line

The “batch” version of BP sweeps through all the cases of I/O training tuples accumulating
the measure of the derivative of the error function with respect to any weights in the
network dE/dWj; before changing the weights. This is guaranteed to move in the direction

of steepest descent at the current weight state.

The “on-line” version, which requires less memory, updates the weights after each input-

output case. This version can be made as an arbitrary close approximation of the steepest
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gradient descent after a complete sweep through all the cases provided each of the weight

changes is sufficiently small.
. I_an lobal (non-|

These two terms are used to point out what kind of information are needed when a

computation is carried out.

Local in computation implies that each unit requires information only from other units to
which it connects. When these information are called local information, global in

computation implies that some non-local information are needed.

* Error- weight _space and_error_surface

The LMS learning procedure has a simnple geometric interpretation. An n+/ multiple
dimensional “error-weight space” can be constructed in this way where » is the total
number of the weight links in a network : there is an axis for each weight, and one extra

axis corresponding to the error measure.

For each combination of weights, there is one weight state in weight space. The network
will have a certain error for current inputs which can be represented by the height of a point
above a weight state in weight space. These points form a surface called the error-weight

surface.
e | le, | h_and trainin sition

An I/O tuple is a list of input and output values. Each of the values is associated with an

output activity of an input or output unit in the network.

An I/O path, as used throughout the thesis, is comprised of an infinite sequence of I/O
states. Each of the states is an I/O tuple at a certain time. At an instant in time, an I/O tuple

in the path is seen whose values are the current associated signal values at that instant.
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Each of the individual I/O tuples occurring at the same evolved fractional distance in time
along each of a number of I/O paths are at the same training position. The fractional
distance is said to constitute a training position in the I/O paths’ state sequences. There are
infinite number of the I/O states along each path but only finite number of them are tested or

used, which consist of the sequence of the I/O states.

A diagram in Fig. 1.4 shows the relationship between training positions and I/O paths.
Suppose the training positions are at t/, 2 and tk along the time axis. The input axis
shows the input values of the paths at each moment associated with three fixed outputs

along the paths respectively.

input 4
output=0.2
W output=0.6
e © .
t1 2 tk time

output=0.8

Fig. 1.4 A diagram of showing the relationship between paths and time

» Fixed-point and non-fixed-point algorithm recurrent rk

Fixed-point algorithms enable kinds of dynamic behaviour which are designed to have the
networks converge to some stable fixed-points in error-weight space. In particular, when
an input pattern is given either as an initial condition (when a network has no input units) or
as a constant external input, the response of the network is taken to be the output state of

the network once it has reached its fixed-point.

Non-fixed-point algorithms on the other hand are able to learn non-fixed-point attractors in

time and to produce desired sequential behaviour over a bounded interval.
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» Time dependent signal processing

In this thesis, time dependent signal processing is defined as processing which involves

arbitrary approximation of I/O associations chosen along a number of I/O paths.
. i h _an | _weigh

The weight state path, as used in the thesis, is an infinite sequence of weight states
consisting of finite goal weight states and infinite interpolated weight states. Each of the

state is a set of weight values; each value is associated with each link in the network.

Each goal weight state belonging to the weight path is associated with each trained I/O
training position. Such a state enables the network to act as a machine which produces the
correct outputs for any inputs associated with the position. Each interpolated weight state
belonging to the weight path is associated with each untrained position, it also enables the
network to act as a machine which approximates the correct outputs for any inputs

associated with the position.

The goal weight state path is an ideal weight state path, each state along the path is the goal

weight state of the associated training position.

* Temporal association

Temporal association is that a particular output sequence is produced in response to a

specific input sequence.

1.5 Outline of the thesis

This thesis includes the review, analysis, design, implementation and empirical assessment
of learning models for solving problems involving sequential I/O associations where
analogue values may be involved. The models involve multiple layer networks based on

backpropagation as the core part of the learning method. The efforts made in the
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approaches are purely conceptual and methodological using artificial neural networks, no

other biological or psychological plausibilities are considered.

In Chapter 2, a general review is given to assess the capability of the existing neural models
in learning sequences. A detailed discussion on ten related models is presented. This gives

an insight of what is the inherent sequential processing capacity of those models.

In Chapter 3, It is argued that a new framework is needed. This is through both reviewing
related features of signal processing and analysing the inherent infeasibilities in training and
generalization for arbitrary approximation I/O signal associations underlying continuous
analogue functions using SBP approach. The philosophy of a new path-based framework

investigated in the thesis is presented.

In Chapter 4, a new approach using the new path-based framework called feedforward
continuous back-propagation (FCBP) is presented. The aim of the FCBP approach is to
provide a means for achieving arbitrary approximation of analogue signal associations
within a fixed neural topology. The notion of goal weight sequences is introduced and
applied; the training and generalisation capabilities of FCBP are analysed; the training and

generalization schemes of FCBP are given.

In Chapter 5, another path-based approach called recurrent continuous backpropagation
(RCBP) is presented. RCBP is a kind of path-based dynamic system. The notion of
activity sequences is introduced; the design and implementation details of the model are

described; the training and generalization schemes of RCBP are given.

In Chapter 6, several experiments based on FCBP and RCBP are presented and the results
are analysed. These experimentations are chosen not only to show the features of the two
models but also to demonstrate the capabilities and benefits for training and generalization

by employing the concepts and methodologies embodied in the two new models.

In Chapter 7, a simulator called cbptool is introduced here. This chapter is a guide of

how the design of cbptool has been evolved from conception and requirements for
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implementation. A detailed description of the functions, designing, internal representations
and user interfaces of the tool is given. Possible improvements in the design of the tool are

also discussed.

Finally in Chapter 8 a general conclusion is made based on the thesis. This includes

reviewing the general points of the research and recommending some future work.
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CHAPTER 2

SEQUENTIAL PROCESSING USING STATE-BASED BP MODELS

2.1 Introduction

As it is discussed in §1.3, this thesis is about investigation of the capability of neural
networks in dealing with sequential processing. Many approaches have been investigated
to strengthen this capability in neural networks. Three main kinds of approaches have been
used to explore the problem of learning sequences using neural gradient descent methods.
The first one is a simple spatial approach. This is to represent time as an explicit part of
inputs (§2.2.1). The second kind is to impose dynamic features in networks through
special network topology (§2.2.2). The third kind of approach is to employ complex
dynamics to train networks to be dynamic systems which can continuously react to the

sequences of inputs for temporal associations (§2.2.3).

This chapter is arranged to review the existing approaches related to those aspects. Firstly,
in §2.2, various general approaches related to time representation are outlined. Secondly,
in §2.3, several specific models which attempt to realise learning sequences are reviewed.
It is hoped that this review gives an insight into what the inherent sequential processing

capacity is of those models. Finally, a conclusion is presented in §2.4.

2.2 TIME REPRESENTATION IN NEURAL NETWORKS

Neural networks are parallel distributed processing systems. Because of the parallelism,

learning sequences implies a time representation problem (Elman, 1988).

In the conventional serial processing computer system, the question of how to represent

time interacting with sequential tasks generally does not arise. There is no such question




because sequential tasks are processed step by step in succession where sequences of
processing represent sequenced events. Compared with the traditional serial computer
system, neural networks have a major difference in dealing with sequences. For traditional
computer systems, a finite internal state representation is automatically present. In neural
network models, a time representation problem needs to be solved explicitly for learning
tasks which involve internal state sequences. In general there are three types of tasks
related to the problem of learning time sequences in neural networks, which are sequence
recognition!, sequence reproduction? and temporal association. Temporal association is a
general case, it includes pure sequence generation and the previous two cases as special

cases.

Many methods for implementing the above three tasks in neural networks have been
investigated. In this thesis only the approaches based on the SBP framework will be
concerned. It can be seen that the way of representing time in those SBP based models is
various. This section will discuss the three major methods mentioned in §2.1: representing
time spatially; imposing internal states using special network topology; embodying more

complicated dynamic features in fully recurrent networks.

2.2.1 THE SPATIAL REPRESENTATION OF TIME

This method is to treat the effect of time as an explicit part of the inputs, in other words to
represent the effect of time as additional inputs. Typically this approach uses a pool of

input units for the event presented at time t, another pool for t+1, and so on in what is

ISequence recognition is that a network produces a particular single output value when a specific input

sequence is presented.

2 Sequence reproduction is that a network is able to generate the rest of a sequence itself when it sees part of

the sequence.
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often called a ‘moving window’ paradigm. Time is represented explicitly by associating
the serial order of the pattern with the dimension of the pattern vector. The first temporal
event is represented by the first clement in the pattern vector, the second temporal event is
represented by the second element in the pattern vector and so on. Each entire window is
thus processed as a single parallel input tuple by the model (Fig. 2.0). A model called
time-delay neural network (TDNN) has been investigated based on this idea which will be

reviewed in §2.3.1.

network

pattern vector

{L]2]e= of Jui

1 st pool n th pool

Fig. 2.0 The diagram of spatial representation model

This spatial representation method may be used for solving some sequence recognition
problems as it can produce a particular output pattern for a number of input sequences with
a fixed length. This method has been applied to speech recognition (e.g., McClelland and
Elman, 1986; Cottrell, Munro & Zipser, 1987; Waibel et al., 1989 ). However, the system
needs to memorise an entire fixed length sequence which has proven itself to be
unsatisfactory in solving sequence recognition problems in general. This is because many
tasks do not know the length of all related sequences, or do not have all sequences with a
fixed length. As Elman (1988) pointed out, such implementation is not psychologically
satisfying, and it is also computationally wasteful since some unused pools of units must
be kept available for the rare occasions when the longest sequences are presented.
Therefore, the models based oﬁ this time representation can only be applied to a limited
number of real tasks. This representation is thus not a necessarily natural or practical

method for analogue temporal structure tasks in neural networks.

.
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2.2.2 DYNAMIC SYSTEM APPROACHES — SPECIFIC TOPOLOGIES

There are other two major methods used for learning time sequences. Both are trying to
give processing systems some designed dynamic properties to represent temporal states or
to represent time by the effect which time has on processing. This is to have the effect of

time implicitly in a network by introducing some internal states for the network.

One of the methods is to approximate dynamic systems through specific network
topologies that have internal states to represent time sequences. The other is to approximate
dynamic systems by providing the processing system with more complicated dynamic rules

than the topology approach.

As an example, the following shows how internal states can be imposed and used
effectively in a specially designed network. Suppose a two input unit network is required
to do sequential binary addition for two binary input sequences. The structure of the
network has been designed and shown in Fig. 2.1, with a suitable learning algorithm
described in §2.3.2.1. In this network, two inputs are used for representing the current
input values from the two binary sequences, the previous inputs and their effects in time
can be aggregated in a carry unit U by its state so that the inputs from the immediate past
are available as well as current inputs; that is, delayed inputs are available. The system thus
decides the output at time ¢ according to the two explicit inputs at £ and the implicit input

from the internal state, which is the state of the carry unit.

Fig. 2.1 The network for two string binary addition
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From the understanding of what the model can be used to learn to be instead of how to

learn, some discussions can be made based on this kind of neural model.

From the topology structure used in the above example, it is noticed that networks with a
limited set of carefully chosen recurrent connections are very interesting. When output
from a network system is fed back into the network as an extra input, this may enable the
network to learn and to choose the next output in a way at least partly based on the previous
one. These recurrent links (here the link from Us to Uc ) can help to provide internal states
for the networks and hence a dynamic system even when the simple learning rules applied
in the associated feedforward networks are used. Some models which have been

investigated for this purpose will be discussed in §2.3.2.

2.2.3 DYNAMIC SYSTEM APPROACHES - SPECIFIC DYNAMIC RULES

As mentioned in the last section, another method for dealing with temporal structure
problems is to further study the dynamic features embodied in fully recurrent networks.
This is one of the steps towards representing more complicated temporal structures in

neural networks.

The following is a review of why a recurrent network is needed for this dynamic system
approach. If a network is able to do one-many? associations, it implies there are some
internal states in the network. If we view the activity value of each neuron in a network as
the only source of the internal states of the network, when the network can do one-many
associations, this implies that some neurons' activity states have many different values
associated with the same input tuple. According to the conventional rule of evaluating

activity values in feedforward networks, each of the neurons will always have the same

3 Here we define that an one-many association in neural networks is that for a single input tuple, the

networks have different output tuples associated with it.
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activity value for the same weight state when the inputs of the network are the same, so that
there is no such kind of internal state in any feedforward networks, no feedforward

networks can have one-many associations in SBP.

However in SBP networks can have some internal states when there are some extra inputs
beside the inputs from input neurons to networks. Some dynamic features may be imposed
into networks with recurrent links to have this capability. The major features of recurrent

networks can be concluded as follows:

A logistic gradient-descent approach in Cartesian coordinates for recurrent networks is an
approach based on non-linear system with dynamic features. Exploration of recurrent
networks is to study dynamic systems of neural network sort. Recurrent links in a network
may allow the network to have internal states and produce complicated, time-varying
outputs in response to a simple input. So recurrent networks may be used to approximate

not only a formal automaton but also more complicated potential phenomena.

Note that recurrent networks intuitively can be used for embodying internal states and
representing time dynamically through imposing on a suitable dynamic rule. However the
network topology is not the sufficient condition of having a dynamic system. Pineda
(1987), Almeida (1987), Rohwer and Forrest (1987) have independently derived an
equivalent algorithm called recurrent back-propagation for fixed-point recurrent
networks. This is a learning algorithm based on recurrent networks, and a step to show
that conventional back-propagation can be extended to arbitrary networks. Because this
algorithm is only for recurrent networks which can converge to stable states, this model
cannot be used for problems related to learning time sequences. It can be seen that the

dynamics imposed on a network will decide the capabilities of the network.

Two existing approaches mentioned in §2.2.2. and §2.2.3 can be concluded as this: the
first one is a simple rule based dynamic system approach which is based on some specific
designed network topologies; the second one is to impose various dynamic rules and study

complex dynamic features by making full use of the inherent dynamic properties in a fully

-
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recurrent network. In other words, the first is a topology based approach which embodies
internal states through specially arranged recurrent links and context units. The second one
is a rule based approach which is to control the approximation of target trajectories by

imposing different ways of error propagation through time.

One common feature of the above three approaches is that they are all trying to represent
time sequences instead of to model the sequences in the parallel processing systems.
Models based on the three approaches for learning time sequences have been proposed and

investigated. Next section is arranged to review those typical models.
2.3 MAJOR APPROACHES
Particular methods according to the types described in §2.2 are reviewed here.

There are two major common features in all these existing approaches reviewed here: (1)
After training finished, all the networks converge to a single weight state; (2) gradient-
descent is used as an error correction method. Differences between these approaches
include: different dynamic rules are used by those models; some of the approaches are on-
line and some are on batch; some of the approaches are based on discrete time and some
based on continuous time; some are local and some are global. The major features of each

of these approaches will be reviewed next.

2.3.1 TIME-DELAY NETWORKS

As reviewed in §2.2.1, the simplest way to perform sequence recognition is within the
paradigm of spatial representation: this is by turning the temporal sequence into a spatial
pattern on the input layer of a network. A feedforward network and the backpropagation

learning algorithm can then be used to learn and recognize sequences.

A resulting model called a time-delay neural network (TDNN) has been used by many

people for speech recognition (e.g. Waibel et al., 1987; Lang & Hinton, 1988). TDNN
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can have two dimensional time representation, one from the spatial representation of input

patterns and another from the whole pattern shifting k times.

For example, the values x(t;), x(t;-A), x(t;-24), ... x(t;-(k-1)A) from a signal x(t) will be
presented simultaneously at the input of a network with & time delay as one pattern for
training. In a practical network, these values could be obtained by feeding the signals into
a temporal window with a fixed size k and position for each time slice as shown in Fig.

2.0,

A TDNN can be implemented in a replicated feedforward network trained under
constraints. The replication implies that each input unit has multiple copies (each associated
with a particular time step) and uses a separate weight from each of the copy to each hidden
unit, each link carries information about activation at a particular time step, to impose a kind
of temporal window on the system — i.e. on the size of the number of time delay links.
The network can be trained under constraints which ensured that the multiple copies of each

unit applies the same set of weight to each part of the temporal window.

During training, all weights associated with different time frame but the same time delay
will have the same set of values, this constrained training in a replicated feedforward
network can be achieved through using a regime very similar to the conventional
backpropagation (e.g. Lang & Hinton, §4.3, 1988; Lang, 1989) or the regime applied in
the backpropagation through time (§2.3.3). Since a hidden unit applies the same set of
weights at different time frames after training, it can then produce similar responses to

similar patterns that are shifted in time.

For example, a set of sequences is with 12 time steps, suppose the number of the time
delay is 3 (or the size of the temporal window), then 10 training patterns need to be trained
for each of the sequences in TDNN using a multiple layer replicated feedforward network
shown in Fig.2.2 using constrained training algorithm, three sets of weights between input

and hidden units can then be applied in performance.
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Although the power of this model was demonstrated by showing a better performance than
all previously tried techniques on some speech applications (Waibel, 1987), several
drawbacks to this general approach to sequence recognition were also reported (Mozer,

1989).

Fig. 2.2 The constrained weights feedforward net

The length of the delay must be chosen in advance to accommodate the longest effective
sequence because the length determines how many context information can be provided for
recognition. This model cannot be used for sequence recognitions with arbitrary length of
context. And perhaps most important in signal processing, the input signal must be
properly registered in time and arrives at the exactly correct rate. This model may thus only

be used for solving some particular sequential recognition problems.

2.3.2 PARTIALLY RECURRENT NETWORKS

Another way to recognize and reproduce sequences is using partially recurrent networks.
These networks use special topologies as described in §2.2. Three models are reviewed

here.

2.3.2.1 Jordan networks

Jordan (1986) described a network containing the feature of internal states in a specially

designed partially recurrent network.

The general structure of this kind of network is shown in Fig. 2.3a; a network showing
more unitary details of the structure in Fig.2.3b ( not all links are shown). It can be seen

that the basic structure of the Jordan networks is similar to a feedforward layered neural
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network. The additional part is to augment the basic feedforward layered structure at the
input level with some additional units called state units which provide limited recurrence.
The number of the state units is equal to the number of the output units so as to buffer the
output state of the output units. This is achieved when each state unit receives a connection
with a fixed weight of 1.0 from its corresponding output unit. At the same time, the state
units also send connections with learnable weights to all hidden units and with a chosen
weight of | to all state units (including self-connection) to provide states. Except those
specially arranged links, all the other links of the network are learnable and the weights can

be modified according to the conventional back-propagation learning rule.

4 outputs of the network

| oulfaul umls|

| hidden units )|

1.0
Tl
[stateun ?S |
inputs of the network

Fig. 2.3a A Jordan Recurrent Network Fig. 2.3b The structure of the Network

In the network, the output states of the state units are derived from their own outputs and
those of the output units on the previous time cycle. This allows the current state to depend

on the previous state and on the previous output. The state at time 7 is given by:
St = M Sp-1 +Y1-1 (2.1)

where s; and y; denotes respectively the state vector and the network output vector at time #;

K (u<l) is the strength of the self connections. Iterating Eq. (2.1), we have:

t
St =y11 + W2 + B2 ye3 +.. P33 yo + pt2y; +ptlyy = EIH"I)’t-r (2.2)
=
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It can be seen that the self connections give state units themselves some individual memory.
According to Eq. (2.2), u value helps to define the state as an exponentially weighted
average of past outputs, so that the arbitrarily distant past has some representation in the
state. The value of i decides the decay rate of past information. By making p closer to 1
the memory can be made to extend further back into the past. In general the value of |t
should be chosen to suit the features embodied in the input sequences (Stornetta et al.,

1987).

In this way state units memorise outputs of the network at the previous time cycle; they act
as internal states imposed in the network. The known internal states which can be learnt
during training then can be used in the network. The current network outputs are
dependent on not only the current inputs but also the internal state — the previous state.

This enables the subsequent behaviour to be shaped by previous responses.

This kind of network can be used to solve certain tasks which involve learning and
representation of information contained in sequences. Some successes have been reported
when the network is trained to generate a set of output sequences with a fixed input pattern;
to prompt different output sequences with different input patterns (Jordan, 1986); to

distinguish different input sequences (Anderson et al., 1989).

In this model, the internal states to be retained by the network across time must be
manifested in the desired outputs of the network after a certain time. This is because the
internal states are produced through the actual outputs of the network (see Eq.(2.1)). This

means that only a certain type of temporal structures can be represented in the networks.

2.3.2.2 Elman simple recurrent network

Another kind of partially recurrent network architecture has been studied based on Jordan's
approach. In 1988, J. Elman investigated what he called a simple recurrent network

(SRN). A general structure is shown in Fig.2.3c.
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The basic structure of SRN is also similar to a feedforward layered neural network. At the
input level there are also some additional units which provide limited recurrence similar to
that in Jordan networks, but they are called context units. The number of the context units
is equal to the number of the hidden units so as to act as a buffer with the copy of the
output state of the hidden units. Each context unit receives a connection with a fixed
weight of 1.0 from its corfesponding hidden unit and sends connections with learnable
weights to all hidden units. This network copies the output values of the hidden units into

the set of context units to encode sequential structure in the network.

output unity

i T
Rl

input units context wnits

Fig. 2.3c Simple Recurrent Network

In Jordan’s network the state of the context units consists‘of the outputs of output units of
the previous time cycle and self-connections. In SRN hidden units are used to represent a
compressed form interior structure. This is that the state of the context units was derived
from the outputs of hidden units on the previous time cycle. In contrast to the output units,
as the hidden units are not taught to assume specific values, this means that they can
develop representation, in the course of learning a task, which encodes the temporal

structure of the task.

When using this kind of neural network architecture, the output values of the context units
at time t+1 are the same as the output values of the hidden units at time ¢t. Thus the context
units are able to remember the previous internal state. The context units provide the
network with memory by developing internal representations which are sensitive to
temporal context. The hidden units have the task of mapping both an external input and the

previous internal state to some desired output.
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The SRN model has been applied to some tasks which involve sequence recognition. It
has been shown in D. Schreiber’s paper (Servan-Schreiber et al., 1988) that a SRN could
learn to be a finite state recogniser for a grammar. This is because the encoding of
sequential structure depends on the fact that back-propagation enables hidden layers to
encode task-relevant information (using hidden units to compress temporally interior
structure). In the network, internal representations encode not only the prior event of the
network state, but also the relevant aspect of the representation that was constructed in
predicting the prior event from its predecessor. When fed back as inputs, these
representations provide information that allow the network to maintain prediction-relevant
features of an entire sequence. The hidden unit patterns can possibly achieve an encoding
of the entire sequence of events presented with finite length. Therefore with enough hidden
units, like some other approaches, this model can be applied to train a network to be a finite

state automaton.

However, it is noted that the number of time steps of history being maintained relies on the
number of the hidden units. So the question with SRN is whether the error from the
history that has been cut off is significant. This question can only be answered respect to a
particular task. This implies that in SRN the computational expense per time step scales
linearly with the number of time steps of history being maintained, because the greater the
number of steps maintained, the more hidden units are needed. This can cause problems
for both the training feasibility or the amount of storage in SRN. So that it is very likely
that the accuracy of approximation is gradually traded off against storage and computation

in this kind of network.

2.3.2.3 Stornetta network

Fig. 2.3d shows an architecture designed by Stornetta (1987), that can also perform
sequence recognition tasks without changing the conventional learning rule. Note that the

different between this approach and Jordan network is that now the inputs to the context




units are the external inputs and themselves, hence network external inputs only reach the
rest of the network via the context units. This implies that the inputs to the network are
preprocessed by the context units. This preprocessing serves to include past features of the
inputs into the present context values, hence letting the network recognize and distinguish

different sequences.

output units — _* ]

hidden units [T 1
f ]
” JE

Fig. 2.3d A structure of Stornetta’s network

context units [

Some other architectures along the line of the specific network topology approach have also
been investigated. Because the scope of this thesis, more discussions about those models

can be referred to the review paper given by Shimohara ez al. (1988).

It is concluded that: through employing a set of specifically arranged recurrent connections,
the partial recurrent networks can show some important features for imposing time
structure into neural networks without changing the conventional feedforward learning
rule. Similar behaviour can probably be obtained through any of the three partial recurrent
networks discussed above. This is regardless of whether the feedback is from a hidden, a
output or a context layer, though particular problems might be better suited to one rather

than the other.

2.3.3 DISCRETE BACKPROPAGATION THROUGH TIME

The networks reviewed above for sequential processing are either feedforward or partially
recurrent networks. Now let us see the models based on fully recurrent networks, in

which each unit may be connected to any units.
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It is retained that all models based on fully recurrent networks have synchronous dynamics;

most are using discrete time; and the appropriate update rule is :

yi (t+1) = f( xi(1) ) = £ (X wij yj(t) + Ii(1) ) 2.2)

where y;(t) is the output of the unit i in the network at time #; x;(t) is the excitation of the
unit at #; 7;(t) is the external input to unit i at £; f is the logistic function; wj; is the weight

value linking from unit j to i.

A general framework for learning in fully recurrent networks was laid out by Rumelhart,
Hinton and Williams (1986), who unfolded the recurrent network into a multiple layer
feedforward network which grows by one layer on each time step. This shows that the
behaviour of a recurrent network within a certain time n can be attained at the cost of
duplicating the topology n times over for the feedforward version of the network. Both the
recurrent network and the feedforward network will behave identically for n time steps.
Using this model to produce temporal association in a small maximum length n as an

example, the outline of the model is reviewed as follows.

Supposed we are interested in seq'uences of a length n, for sequences spanning the time
steps 1=1,2,... n, we simple duplicate all units in the recurrent network » times to have an
associated feedforward network. For each layer of the feedforward network, each unit in
the recurrent net has a copy in the layer. The source and destination of each link is
unchanged for any links associated with any two units in the recurrent network. However,
the links are from the units belonging to the layer i-/ to the current layer { in the forward
network. In this way, a separate unit Uit in the feedforward network holds the state Uj(t)
of the equivalent recurrent network at time t. Fig. 2.4b shows the idea for a general two
unit recurrent network (Fig. 2.4a) for 4 time steps. Note that the weight value wj; from th

to Ul.H'I is independent of #. That is, the same weight values must be used in each layer.
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Fig. 2.4a The recurrent network Fig. 2.4b The equivalent net of Fig.2.4a net.

The resulting unfolded network is strictly feedforward and can be trained by a slight
modification of the conventional BP rule. This is that the input and output specified for
unit { at time ¢ is applied to unit Ul.t. In the forward pass phase, the activity values of the
units at layer r are evaluated based on the activity values at the layer 7-/. Because the output
units can adopt the appropriate states during the forward iteration, the errors are assessed
not only at the final layer of the multiple layer feedforward network, but also at each time-
step by comparing the remembered actual states of the output units with their desired states.
The errors can then be injected backward from the layer in which they are produced.
Therefore the errors, delta values and the activity values at appropriate time should be used
in keeping track of the changes estimated for each weight at each level and then each of the
weights are changed according to the sum of these individual prescribed changes. This
implies that there is a weight change proposed for each link in existence at each time step.
These weight changes are then added to give an overall weight change for each link at the

last time step which is the actual weight change made.

The technique based on this model called backpropagation through time. Note that
once a task has been trained in the unfolded version, the network may be used for the
temporal association. Nowlan (1988) also obtained good results on a constraint
satisfaction problem. This shows that the backpropagation through time algorithm is
applicable to those tasks where enough information about the time structure of the tasks is

known. This information is needed to restrict the layers to a reasonable number. However,
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many tasks are not of this type. So if the requirement for memory corresponding to that for
a large feedforward equivalent network is one of the limitations of the model, being aware
of the time structure of the tasks is another one as is the fact that a delta value tend to zero
as the number of layers increase. The backpropagation through time model though has not
been widely applied, it has been largely superseded by the other approaches in recurrent

networks.

2.3.4 FORWARD PROPAGATION

This is a learning algorithm for continually running recurrent networks, derived by
Robinson & Fallside (1988) and later rediscovered independently by others (Williams &
Zipser 1988; Gherrity 1989). The learning algorithm is very similar to the discrete
backpropagation through time approach reviewed above, but instead of unfolding the j
recurrent network into a multiple layer feedforward network, an on-line technique with no
additional hard copies of network topology but using non-local knowledge in computation
is provided. The non-local in computation means that each unit must have knowledge of
the complete weight matrix and error vector. Here a review of this model is presented—
the dynamics of the network; the way to adapt the weights in improving the performance of

the network over time; the advantage and limitations of this model.

* Th nami nd w ing rul

The dynamics of a forward propagation network is the same as that of discrete back-
propagation through time described in Eq. (2.2). Let yi(t) denotes the output activity of
unit k at time ¢, and xx(t) denotes the external input signal to the unit k at time 7. Also
define zi(#) to be the output of unit k obtained :

xp(t) ifk el

z(t) = { yr(t) if k €U (2.3.1)

Here I denotes the set units which have external inputs, and U denote the set units which

do not have external inputs in the network.
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The dynamics can be described by the following two equations. Let sx(t) denote the net
input to the Ath unit at time ¢, for k € U, where U denotes the set of output units; / denotes

as the set of input units.

Sk(t) = %wuzz(t) (2.3.2)

where 1e v U1 and the external input at time ¢ does not influence the output of any unit
until time #+1:

yk(t+1) = fi (s (1)) (2.3.3)

Define a time-varying error signal for each unit e; by:

(=1  Ar(t) - yr(z) if keT
a {0 otherwise (2.3.4)

where T denotes the set of output units.

The network error at time T is denoted as:

N —

JO=5 ¥ [ex(1)]? (2.3.5)
k€ U

Now we want to minimise the total error over the trajectory when the network runs from

time 7 to time 71:

t

Jioul (f0, 1) = 3 J(0) (2.3.6)
T=10+1

Hence J otal ( 20, t+1) = J jotal (f0, 1) + J (t+1) (2.3.7)

Suppose Vw J denotes the gradient of a total error measure J in weight space w,
according to the gradient rule: V(J | +J2) = VJ 1 + VJ2 and Eq.(2.3.7), the gradient
satisfies the relationship:

Vw J total (70, t4+1) = VwJ total (10, 1) + VwJ (2+1) (2.3.8)




so we can simply accumulate the values of the vector VJ at each time step until the final

time step. After the network has run through the g to #1 trajectory, each weight w;j can be

altered by :
15
Awij= 3 Awij(t) (2.3.9)
t=to+1
According to : Awijj(t) = -0 %LS); (2.3.10)
1

where o is some fixed positive learning rate.

aJ(t)

t

We now need an algorithm to compute the at each time step £. As we know from

Egs. (2.3.4) and (2.3.5):

A0 OYk(®)
i L OB (2.3.11)

Now let us see what is implied in Eq.(2.3.11). First of all it can be seen that, from
Eq.(2.3.4), ex(t) is a term associated with target values. At each time t, ex(?) can be
calculated for eachk € U. Next, the term dy(t)/0w;; measures essentially the quantity of
the output value of the unit & at time ¢ to a small change in the weight value of wjj along the
entire trajectory from #p to . It is assumed that the initial output state of the network Y (tp),
the inputs over [tg, t), and the remaining weights are not altered when determining this
term. Since this term is only taking into account the effect of such a change, it does not

depend on any target values, it is only associated with internal actoal values.

We understand from Eq. (2.3.11) that weight modification in feedforward propagation is
associated with two kinds of terms. The two terms actually separate two features from
each other. One feature is the term associated with target values and the other is the term
only associated with internal actual values. Because both term could be calculated directly
from the network’s actual operation, this separation makes weight modifications without

backward pass possible in this algorithm.
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The following is about finding a way to compute the factor % at time step ¢. To
t

compute this term, we differentiate Egs. (2.3.3) and (2.3.2), and at the same time consider
two important assumptions: the input signals do not depend on the network weights and the

initial state of the network is independent of the weights:

By introducing an auxiliary variable p",-,-(t) = %X;kvﬁt_j) forall k€ U,i€ Uandje UV at
1

time ¢, Williams and Zipser et al. have worked out that

P+ = fi' @) [ 2w pli(®) + Birzi(V] (2.3.12)
leU

1 if i=k

where §;; denotes the Kronecker delta: 8 = 0 otherwise

with initial conditions: p*jj(tp) =0 (2.3.13)

So the precise algorithm consists of computing at each time step f to #1 the quantities pk;j(t)

using Eqgs. (2.3.12) and (2.3.13); getting the ex(t) using Eq. (2.3.5), and then computing

the weight changes:
Awyi(t) = - o 90 _ 4 5 ex(t) prii(t) (2.3.14)
aWU k€ U

The overall correction between #g and #; to be applied to each weight wy; in the network

then is given by the Eq. (2.3.9).

Instead of using Eq. (2.3.9) as above to integrate the overall correction between fg and #;
during the simulation and make a weight state transition, the weights can be continuously
updated according to Eq. (2.3.14) under the assumption that each on-line weight change
does not as an individual affect the trajectory taken very much when integrating Eq.
(2.3.14) between #g and ;. Since the auxiliary quantities pk,-j(t) have given initial boundary
conditions (zero at the start of time), all the computations can then be carried out forward in

time.
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* The summary

This is an on-line and non-local algorithm. Networks can run continuously in the sense
that they sample their inputs on every update cycle, and any unit can have a training target
on any cycle. The computation time on each update cycle is also completely determined by
the network topology, no relaxation or anything similar is required. Any weight value can
be updated according to the Eq. (2.3.14). As the storage and computation time on each
step are independent of length of training sequences and are completely determined by the
size of the network, so no prior knowledge are required of the temporal structure of the

task being learnt.

However this model is computationally very expensive. If there are n units (non-input
units) and n? weight-links in the network, as there are n3 auxiliary variables, a total of

O(n%) calculations need to be updated at each time step.

Efforts have been made to have a faster on-line technique and reduce the complexity of the
algorithm (Zipser,1990). Recently work has been done on an exact, stable variant of the
algorithm, which requires only 2n+n2 auxiliary variables so that they can be updated in just
O(n3) time (Toomarian & Barhen, 1991). This model may become a feasible technique for

on-line learning, or a model for further investigation of neural dynamic system features.

2.3.5 TEACHER FORCING NETWORKS

Williams and Zipser (1988) derived the Teacher Forcing algorithm which is an
interesting variant of the forward propagation algorithm discussed above. This method can

also be applied to other BP algorithms such as conventional backpropagation.

The algorithm is essentially the same as the earlier one, with one major alteration: using the
teacher-forced state (desired output values) to compute future activity in the network; thus

the teacher forces all the output units to have the correct states, even as the network runs.
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According to the idea, the new definition of zx(t) is :

xp(t) ifkel
Zk(t)={ dp(t) if k€ T(1)

yr(t) if k € U-T(1)
rather than the one in Eq.(2.3.1); here the T{(¢) is the set of indexes k € U for which dy(t)
exists. The dynamics of the network is also modified based on this alteration. In
implementation, network performs essentially the same computations as in §2.3.4 except
that at each time ¢+ the associated auxiliary variable p",-j(t) is set to zero for all k € T(t)

before computing any of the pk,-j( r+1). This is because now di(?) is used as zx(t) so that

oyk(t)/ow;; =0 for all k€ T(z).

The first version of this tea‘cher forcing algorithm can be only applied to discrete time,
clocked networks (Williams & Zipser, 1988). In a subsequent version, the model can be
applied to temporally continuous networks (Pearlmutter, 1990). Although others using
teacher forcing on networks with a large number of hidden units reported difficulties

(Pearlmutter, 1988), this model can learn to approximate some oscillation functions.

2.3.6 DYNAMIC RECURRENT NETWORKS

Pearlmutter (1989) derived a solution using the dynamics of recurrent networks which with
appropriate approximations? may serve as a basis of the learning algorithm for temporal

association. The model is a continuous time version of backpropagation through time.

Similar to the feedforward propagatrion approach, this model is also based on a technique of
computing JE/0W;; by doing gradient descent in the weight state W so as to minimise the
error E, where E is an error function which measures the total error differences over the

temporal trajectory of the states of a continuous recurrent network. But it is a local and

4 Using dy;j/dt = {y;j(t+At) - yi(t) } / At to approximate derivative dyj/dt.
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batch model. An error metric is introduced which measures how much a small change to y;
at time t affects E when this change is propagated forward through time and influences the

remainder of the trajectory. The metric has the form:

%(t) = 9+E /9y;(t) 2.4.1)

where d* denotes an ordered derivative, with variables ordered here by time and not unit

index.

The main idea of this technique is that a weight state transition is based on looking ahead a
few time steps to see the errors associated with the training patterns based on the current
weight state first and then decide the adjustment to the weight state according to JE/dWj;.

Pearlmutter has worked out the formulas for the calculations:

JE
owjj

3
= téyif'(xj) zj dt (2.4.2)

where z; is -;%Ij; and is also the limit of Z; as A#->0.

yi(t+At) = (1-A1) yi(t) + At f(x;(1)) + At I;() (2.4.3)

zi(t) = At ej(1) + (1-At) zi( 1+ At) + 3. wij f'(xj(1)) At zj(1+At) (2.4.4)
J
and zj(t;) =0

After the network has learnt in the manner indicated above, a task-dependent internal
representation has been set-up, so it is possible to approximate some time-dependent

functions with the internal states’ help.

This approach is also related in various ways to many other approaches in training fully
recurrent networks. Pearlmutter’s algorithm is a generalization of those algorithms derived

for fixed-point backpropagation through time in discrete time recurrent networks.

It is reported that this type of model seems particularly suitable for temporally continuous
domains such as signal processing tasks(Pearlmutter, 1990). Overall the Pearlmutter

approach is the best for temporal association using an SBP approach.

47




2.3.7 MOVING TARGETS METHOD

Rohwer (1990) has proposed the moving targets learning algorithm which provides a
training regime for discrete-time networks with arbitrary feedback links. This algorithm is
also applicable for dealing with tasks associated with processing of inputs presented

naturally in sequence.

The algorithm is similar to conventional BP in which an error function is minimised using a
gradient-based method. However the optimization is different to the one used by
conventional BP. The optimization in the moving targets algorithm is based on using an

‘activation deficit’ error function:

1
Exd=% % {xi-Xit )2 Q2350
(i) €T

where a unit-time pair iz is called an ‘event’, x;; is denoted as the excitation value or
“activation” of an event, Xj; denoted as the target excitation for an event, T is denoted as

the set of target events.

The basic idea of the approach is to treat the hidden unit activation as variable target
activation. The method seeks to achieve independent control over the changes in activation
which are dependent on the weight changes in standard back-propagation. Suppose the

dynamic variable x;; changes with time according to the rule:

Xit = 3, Wij fixji-1) (2.5.2)
]

and the output of each unit is :
Yit = flxit) (2.5.3)

The moving targets algorithm derives a modified form of Eq. (2.5.1) as a function of

weights and moving targets:
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E=

(S

2
> {Z wij f(Xjr-1) - Xig } (2.5.4)
(it)e TUHA |

where f{x) is the logistic function, w;j represents the connection strength from unit j to unit
i . H denotes the set of hidden events. The independent control over the activation
changes mentioned above are instigated by substituting target excitation values for actual

excitation values for both hidden and output units.

The substitution means that when the target excitations are chosen, the error is fully
dependent on the wj; explicitly displayed in the equation. On the other hand, fixing the
weights makes the error fully dependent on the target excitation. There are no a prior
desired values for the X;; with event (if) € H but any values for which weights can be

found that make the error vanish would be suitable.

The equations for the minimum, JE/dw;j = 0, form a linear system, these equations can
then be used to define the weights as functions of the moving targets, the solution of which

provides the optimal weights for any given set of moving targets.

For a set of suitable targets achieved using JE/9X;;=0, the network is able to control the

units so as to be not too far from their targets which is achieved through dE/dw;j = 0.

There are two phases in the training, in one phase the targets of hidden units are improved
so that if the targets are attained better performance would be achieved; in the other phase
the weight state is modified so that each unit comes close to attaining its activity target. The
equations for modification of moving targets and weights have been derived by Rohwer,
which are the derivatives with respect to the moving targets dE/dX;; and the optimal

weights for any given set of moving targets dE/ow;; (Rohwer, 1990).

This model, because it caters for recurrent networks, provides an alternative method for
learning time representation. It has a control on the evolution of both activity and weight

during the learning of weights.

Y S

o
5




The primary disadvantage of this model is: Each I/O tuple to be learnt must be associated
with a set of targets for the hidden units. Because the targets need to be learnt as the weight
state is, each tuple needs to be seen at least twice. This makes the technique inapplicable
for on-line learning. Another drawback of using this method is: when more I/O training
data is involved, more moving target values need to be trained as more hidden units are
required. This implies that the number of the variables is increased as the number of the
training steps which the network caters for is increased. This may heavily decrease the

training speed.
2.4 CONCLUSIONS

In this chapter, major existing SBP neural models which can be used to solve the problem
of learning time sequences have been reviewed. This review will be used in the next

chapter to show why a new framework is needed in neural networks.
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CHAPTER 3

A PATH-BASED FRAMEWORK

3.1 Introduction

In this chapter a new framework called path-based backpropagation (PBP) is presented.
PBP is evolved from the state-based back-propagation (SBP) framework and deals
especially with signal associations where temporal and sequential features are involved.
The aim of PBP is to provide a means for achieving arbitrary approximations of I/O signal
associations within a fixed neural topology with or without recurrent links using gradient

descent.

In §3.2 the role of hidden units and its relation with training feasibility in feedforward
networks using SBP are discussed. This gives an insight into the inherent infeasibilities
both in training and generalization for arbitrarily close approximation of continuous
functions in neural networks using the SBP framework. In §3.3, the common problems
in time-dependent signal processing using existing SBP models are summarized. Features
of these problems provide the basic requirements for a new framework. In §3.4 the
philosophy of the new framework is given, the notion of goal weight sequences is
introduced, and the PBP framework for time-dependent signal processing is proposed.

Finally a conclusion is presented in §3.5.
3.2 I/O patterns, weight state, role of hidden units and training feasibility

This section is arranged to discuss the relationship between the number of I/O patterns and
feasible training by asking the following two main questions: What are the necessary
conditions under which a solution weight state exists for an I/O training set in single layer
feedforward networks? What is the resultant essential requirement for the design of the
network topology in multilayer non-linear networks? As the section name suggests, the I/O

patterns, solution weight state and the hidden units will be shown to be interrelated one
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another 'and are closely associated with the training feasibility which may become a problem

when a large number of I/O training patterns are involved.

3.2.1 THE ROLE OF HIDDEN UNITS

The aim of training a neural network to realise I/O mappings in feedforward networks
using SBP is to search for a goal weight state. Training will be fruitless if the goal weight

state does not exist.

As Minsky and Papert (1969) pointed out, by showing that XOR cannot be learnt through
any single layer perceptron, there is a fundamental inadequacy of single layer perceptrons
in representing general I/O mappings. However, it is always possible to convert an
unsolvable I/O mapping problem for a single layer perceptron into a solvable one using a

multiple layer perceptron which gives rise to a need for hidden units.

This indicates that hidden units play a very important role to ensure that a solution weight
state exists for a set of /O patterns. The aim of training a neural network using SBP is to
search for a goal weight state. Although hidden units may not always be needed for a goal
weight state, they are still closely related with the existence of a goal weight state in many
cases. That is to say that enough number of hidden units is one of crucial factors for
realising training in SBP. The number affects training feasibility in two aspects. One is to
ensure a network is trainable in the first place and the other is about the training speed when
it is trainable. In this thesis, training infeasibility means that either the number of hidden
units required for finding a solution weight state becomes so large, memory resources are
exhausted; or the number becomes so large that training becomes infeasible in terms of

time.

Training feasibility is particularly important in arbitrarily closely approximating time-
dependent signal processing because a large number of analogue I/O patterns may underlie

the processing which tends to infinity in the continuous limit. This last point gets more and
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more of a grip as the error tolerance is decreased to accommodate approximation of more

and more I/O patterns.

An analysis on the tendency of the training feasibility is needed for networks realising tasks

such as time-dependent signal processing.

3.2.2 HOW VARIOUS CONDITIONS CAN BE USED FOR JUSTIFYING GOAL WEIGHT

EXISTENCE

To ensure a set of I/O patterns is trainable using a network, we need to investigate the
existence of a goal weight state in the network. If the weight state does not exist, more
hidden units are needed to have a new network with the existence of a goal weight state.
Four conditions to justify the sufficiency of solution weight state existence, abbreviated by
LPC, EE, LI, LS are discussed in this thesis. The subsequent analysis based on these four
conditions gives a better understanding of the role of hidden units and also helps to estimate

the number of hidden units in multi-layer networks.

* Linear Predictability Constraint (LPC)

McClelland and Rumelhart (1986) have given a necessary and sufficient condition for the
existence of a goal weight state in a single layer linear network for arbitrary I/O mappings.
This is called the linear predictability constraint: “Over the entire set of patterns, the
external input to each unit must be predictable from a linear combination of the activations
of every other unit” ( the external input here should be interpreted as the target output of the

output units).

More specifically, a set of formal equations showing the constraint for the various I/O
patterns to each output unit is given in Eq.(3.1a). Thus, for a set of I/O patterns there must
exist a set of solution weight states wy; for every output unit £ in the network for all /O
training patterns p. That is
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where txp is the target activity value for output unit & for I/O pattern p; ijp is the input value
for input unit j for VO pattern p and is also the input activity value for output unit & from
unit j. Eq.(3.1a) can be represented in a form of matrix equation:

T=IW (3.1b)

where each row of the activity matrix T is the set of target activity values for an I/O
mapping pattern. The number of the columns of T is the same as the number of the output
units in the network; each row of the input activity matrix / is one input pattern. The
number of the rows of matrix / is equal to the number of the I/O mapping patterns; the

number of the columns is equal to the number of the input units in the network.

Note that the LPC constraint can also be applied to non-linear networks if the excitation-
output function of each unit is one to one. The Sigmoid function is an example of such a

function.

Conclusion: LPC or a variant of it needs to be obeyed as a general condition if there is to be
a solution weight state for an arbitrary I/O training set (including binary output mappings;

analogue output mappings) for single layer linear and sigmoidal non-linear networks.

* Excitation equations (EE)

To represent further implications arising from LPC, here a set of excitation equations of
output units is used as a way to reveal the relationship between I/O mapping patterns and
weight link values in feedforward networks. This helps to show mathematically why

hidden units are necessary for solving some mapping problems.

Suppose the network receives an input pattern p, we have

X = L Wij- 4 (3.2)

JP

where a;jp, is the activity value of input unit j for the pattern p; ex. is the excitation value of
lip P J P P ip

the output unit i for pattern p, and Wi is a weight link value linking from unit j to unit i.
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Eq.(3.2) is an excitation equation of an output unit U; for achieving I/O mapping between
an output pattern Op and input pattern /p, through a single weight state based on a single
layer linear or non-linear feedforward network. To simplify the analyses in this section,

L
the bias unit will not be considered here.
There are three points implied in the excitation equation sets to be noted, which are
1) The goal weight state has to be the solution of a number of simultaneous equation sets.

If a network is able to achieve a number of exact value I/O mappings in the network using a
single solution weight state, a set of excitation equations in the form of Eq.(3.2) must be
satisfied simultaneously for each output unit in the network with regard to all the I/O

mapping patterns.
2) The solution weight existence can be examined by the rank of matrices.

LPC is obeyed if and only if each of ex;jp in Eq.(3.2) is one to one associated with the #;p.
This is regardless of how tp is produced by various networks. An important case for this
thesis will be where flex;p) = tjp for a single but non-linear layer network (where f (x) is
an one-one non-linear function such as the logistic or sigmoid function). For each output
unit the Eq.(3.2) can be represented in a matrix form which is

Ax=b (3.3a)

where A is the coefficient matrix with m*n input pattern elements (/n rows — number of
patterns and n columns — number of dimensions of each input pattern); x is the variable
vector with n weight elements; b is constant vector with m target output elements. An

augmented matrix of the equation set is matrix C, which is given by:
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A solution x exists if and only if the rank of matrix A and the rank of its augment matrix C
has a relation that

r(A)=r(C)<n (3.3¢)

This implies that the number of the independent equations is dependent on both values in
matrix A and the vector b. Only if the number of the independent equations is equal to or

less than the number of the variables x, will one or more solution values for x exist.

3) There are important cases that can be discussed using EE — binary output mappings and

analogue output mappings

— Analogue output mappings: these output mappings have potentially zero error tolerance
and are called exact value mappings in the thesis. In this kind of mapping, the target
excitation values in Eq.(3.2) is a set of fixed exact values rather than a range of values.

Finding a solution weight state means solving the equation set exactly.

— Binary output mappings: this kind of mapping has a broad error tolerance and is called
an inexact mapping in this thesis. Each target excitation value can be set to be any value
within a range (or within the error tolerance), the excitation equation set is associated with a
set of inequalities for each output unit. Finding a solution weight state means solving the

set of inequalities.

* Linear Independence condition (LI)

LI is an important corollary of LPC for input sets with arbitrary associations in single layer
networks. The LI condition implies that an arbitrary output pattern Op can be correctly
associated with a particular input pattern , without ruining associations between other I/O
pairs only if I, is not a linear combination of the other input patterns. This means that in
order to ensure arbitrary associations to each set of input patterns is learnable, the input

patterns must form a linearly independent set (McClelland & Rumelhart, 1988).
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Single-layer networks

For single layer networks, LI can be required directly for arbitrary associations for exact
value mappings in general for a given number of input and output units; and indirectly after

reduction in individual mapping cases.

Reduction means that some /O training patterns may be eliminated from the associated
excitation equation set to give a reduced equation set. More specifically, for a particular set
of I/O pattemns, there are the associated matrices A and C defined in Eq.(3.3). Reduction
needs to be carried out if an excitation equation associated with an I/O pattern can be
eliminated from the equation set without affecting the rank of r(A) and r(C). As part of the
rank condition, Eq.(3.3¢c), if the matrix A now has linearly independent rows there is a

solution weight state.

The direct application of LI means that LI is applied to the input training set without
reduction because the worst case of no reduction has to be included amongst the arbitrary
associations. LI should be applied to the input patterns associated with the reduced set in

individual mapping cases because a particular case may be reducible.
i-1 network

Based on the discussion of Eq.(3.3), for a multi-layer network, LI is directly relevant to
hidden units. This is because a multi-layer network can realise an I/O training set if and
only if a linearly independent reduced set of input values can be found for each output unit,

where the input values are derived from network processing.

A connected consequence to the discussion is that a training set of input patterns for an
output unit can be made linearly independent if and only if the number of linearly
independent columns of input values for each input appearing in the excitation equations is

at least as great as the reduced number of the excitation equations.
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Now that the relevance of linear independence to multi-layer networks has been
established, we may reach a conclusion about the role of hidden units for finding a single
goal weight state for multi-layer networks. Firstly, if the number of LI columns of input
values in the EE for an output unit is less than the number of excitation equations in the
minimum reduced set achievable over all weight states, then the associated reduced set of
input patterns for the output unit will always be linearly dependent. This fact leads to the
conclusion that there is then no solution weight state. For suppose this fact is the case, i.e.
that the rank of matrix A, r(A), is m and that m<n, where n is the number of linear
independent equations. For the matrix C defined in Eq.(3.3b), r(C) = n since there are n
linearly independent equations and hence r(A)#r(C). According to the rank condition in

Eq.(3.3), there is therefore no solution weight state.

The introduction of further non-linear hidden units feeding in directly or indirectly to the
output unit may provide a solution weight state in two ways. One is to achieve a sufficient
degree of linear independence by adding extra linearly independent columns to matrix A.
The other is to achieve a sufficient degree of reduction by increasing the linear dependence

amongst the rows of matrix C.

* Linear Separability condition (LS)

LS is linear separability condition for justification of weight state existence for binary
output mappings in single or multi-layer networks. LS makes conclusions which are

consistent with that of LI

LS applies directly in single layer networks when considering networks as binary output
mappers. A necessary and sufficient condition for the existence of a solution weight state
is given by:
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where 6 is the threshold value of each output unit i. Eq.(3.4) defines a hyperplane so that
all of those inputs of associations with the output value 0 are on one side of the hyperplane

and those with output of 1 are on the other side.

Functions with such a hyperplane are called linearly separable. These functions define the

class of problems that can be solved by a single layer perceptron (Rumelhart et al., 1986).

In multi-layer networks, LS gives a geometric view of the role of hidden units in realising
binary output mappings: When no hyperplane associated with an output unit exists in the
input space formed by input patterns which consist of the input values fed into the output
unit, hidden units are needed to give another recoded input space to ensure the existence of

a solution hyperplane.

« Example

XOR is a binary output mapping problem. Both the LI and LS as conditions can be applied
to see whether a solution weight state exists in a single layer network. This example shows
that LI and LS will make the same conclusion for justifying the existence of a goal weight

state for a set of /O patterns.

There is no single hyperplane in the input space which can separate the two classes of input J
patterns. This implies that the set of I/O does not satisfy the LS given by Eq.(3.4). There ]

is no solution weight state for realising the I/O set using a single layer network.

The non-existence of a solution in a single layer network can be also checked through the :
LI after reduction. The following matrix equation: I*W = X needs to be satisfied
simultaneously to achieve XOR using a single weight state W:

I t3] I 00
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The equation associated with the input (0,0) and £3;=0 can be eliminated without affecting
the rank of r(A) or r(C). There are three further irreducible equations, given the ranges of
excitation for ¢33, £33 and r34. LI should be applied to the input patterns associated with the
reduced set. Because there is linear dependence in the input set such as I4 = I2+13, but 234
#132+133, this mapping cannot be realised using a single layer network. The conclusion of

applying LS or LI is therefore the same.

* Summary of §3.2.2

When designing a network topology for a particular I/O training set, a sufficient number of
hidden units is needed to provide a rich enough weight state description for accommodating

the I/O structure of a problem.

3.2.3 WHETHER TRAINING FEASIBILITY IS A PROBLEM

All three conditions discussed in §3.2.2, which are LPC, LS, LI, have been used to review
the existence of a solution weight state. It remains to find what the relationship is between

the number of I/O patterns and feasible training in general.

It has already been proved in theory that as long as there are enough hidden units, a multi-
layer feedforward network is able to realise any I/O mappings, not only for the binary
output mappings using multi-layer perceptrons (Minsky & Papert, 1969) but also for
continuous mappings using non-linear perceptron-like networks (Cybenko, 1989;
Funahashi,K., 1989; Hornik, K., Stinchcombe, M., and White, H., 1989). Funahashi
(1989) has also proved that any arbitrary discrete output mapping can be done by using a
three layer feedforward network. However those theories do not address an important
point — that is, how many hidden units are really needed for a solution weight state

existence.
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Actually the number of hidden units is crucial in justifying SBP training feasibility in terms
of training speed as well. To see how the number of hidden units is closely related to these
two aspects of training feasibility, we examine two particular cases. This analysis will
have important implications for the thesis where a large number of I/O training patterns are

involved in arbitrarily close approximation of /O mappings.
1) Network design intended for universal binary output mappings

As discussed in §3.2.2, for a particular binary output training set on a chosen topology, the
hidden units are added to accommodate the existence of a goal weight state for a minimum

achievable reduced EE or to achieve the LS condition.

From the geometrical view of LS it can be said that there are three interrelated factors in
each binary output mapping. Those are the number of hidden units, the decision regions
and I/O training set. The I/O training set determines the complexity of the decision regions
in terms of LS; By complexity here is meant an informal idea of number and linear shape of
distinct binary output regions. It is related to the degree of recoding needed for each output
unit to achieve LS of the input fed into it. The more complex the regions, the more hidden
units are needed for the I/O set. There have been more formal definitions of complexity

using simpler networks (e.g.: Lippmann, 1987; Baum, 1988).

Lippmann (1987) has pointed out geometrically the relationship among the I/O training set,
number of hidden units and decision regions using linear threshold units for binary output
mappings, i.e. a perceptron. As explained in Khanna's book (1990), for each output unit,
a single layer perceptron forms a half-plane decision region in the input space; a two
layered perceptron (with one hidden units layer) forms any convex region (including
unbound ones) in the space; a three layered perceptron forms any set of decision regions in

the space.

Baum (1988) has established various bounds for estimating the number of hidden units in

universal binary output mappings using multi-layer perceptrons. One result is that a
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network with one hidden layer requires a minimum number of [N/d] hidden units to
implement an arbitrary dichotomy ( 2-valued output) for N I/O values and d input units.
Another more general result is that a multi-layer perceptron requires at least
O(Ne /TogaN) units where N is as before and e is the number of output units. It can be
seen from the last expression that the more I/O training patterns there are, the more hidden
units are needed. Note that these results are also based on networks with linear threshold
units, they cannot be straightforwardly applied to sigmoidal networks. However, while the
more detailed conclusions of Lippmann and Baum cannot be used for sigmoidal networks,
the general theoretical trends for hidden units in terms of complexity are acknowledged

here.

The conclusion is: for arbitrary binary output mappings using sigmoidal networks, if more
I/O patterns form more complicated decision regions, the more hidden units are needed, the

less feasible the training is likely to be.
2) Network design intended for particular continuous mappings

Similar to the discussions for binary output mappings, for a particular analogue output
mapping training set on a chosen topology, we need to make sure that the number of
hidden units is enough for accommodating the existence of a goal weight state for realising

a minimum achievable reduced EE or LI

As concluded above, the number of hidden units is related to the number of the linearly
independent EE in the reduced sets. Consider a given topology which is successful for a
given training set of I/O patterns. When the number of I/O training patterns increases, the
number of EE that are linearly independent will tend to increase as well and thus eventually
prevent there being a solution weight state. In turn, the number of hidden units needed has
to be increased to ensure the increased amount of linear independence needed among the

input patterns for each output unit that will ensure the existence of a solution weight state.
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In principle, this type of mapping requires more hidden units compared with that of binary
output mappings for the same number of I/O training patterns. This is because, in EE, the
target values associated with exact value mappings are fixed exact values. This is unlike

binary output mappings where each target can be chosen flexibly within a certain range.

In order to keep the minimum number of hidden units unchanged, a match is required
between the excitation equation of a new I/O pattern and linear combinations of those
equations associated with other I/O patterns. This match is increasingly unlikely for an
analogue output as the error tolerance is shrunk for a closer approximation. Hence the
number of the independent equations will not be further reduced with less flexible target
values than in binary output mappings. An example of the OR problem is shown with this

feature in Apdx 2.

The more arbitrary I/O patterns to be trained, the more hidden units may be needed. Hence
the number of hidden units may become infeasible for large number of such I/O patterns

and infinite in the continuous limit.

From the geometrical explanation of LI it can also be seen that the number of hidden units
can only remain unchanged if the hyperplane in weight space associated with a new input
pattern has a common intersection with those hyperplanes associated with other I/O patterns

in weight space.

The conclusion is: the more arbitrary related I/O patterns there are in the training set and
more equations in the reduced EE, the more hidden units are likely to be needed, and hence
the less feasible the training is likely to be. This is consistent with Baum's theory for
threshold networks and the theoretical analysis mentioned above for continuous mappings
where Funahashi (1989) assumed that a continuum of hidden units are needed in the
mapping, while Cybenko (1989) and Hornik ef al. (1989) assumed that a large enough

number of hidden units are used.
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3.2.4 CONCLUDING REMARKS

For binary output mappings, the more complex the decision regions are, the more hidden

units are needed for finding a solution weight state.

For analogue output mappings, such as those underlying time-dependent signal processing,
the more I/O patterns that are chosen for training along the paths, for a closer
approximation, the closer the mapping is to an exact value mapping. The more arbitrary
I/O training patterns there are to be trained exactly, the more hidden units may be needed to

ensure linear independence for a larger reduced set of input patterns to output units.

This shows a theoretical trend of the minimum number of hidden units against the number
of independent I/O training patterns: the memory resources needed for hidden units and the
speed of training may become infeasible for large I/O mappings. This has implications for
complex binary output mappings and arbitrarily close approximation of analogue signal

processing.

3.3 Required features for time-dependent signal processing (TDSP)

There are many problems which need to be solved in neural networks in order to mimic the
nature of time-dependent signal processing in the real world. In this section, features of
time-dependent signal processing which are related to further explanation of the
infeasibilities of the existing models are reviewed. The features discussed below mainly
explain why a new type of neural framework is needed. Only those features which are
both important in the investigation of the analogue models and at the same time are related

to the work which has been tackled in the thesis are presented.
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(1) Time representation

A general network design for representing temporal structures should be independent of
particular tasks as much as possible. It will be shown that this implies that there should be
as little influence as possible on the training feasibility when the desired approximation

accuracy to a time-based signal is increased.
(2) Continuous function

An /O path can often be described by a continuous function in a coordinate system which
consists of infinite number of states, where each state consists of analogue signal values.
This means that analogue neural network systems should be able to approximate the /O
associations chosen along continuous functions to any variable finite accuracy within a

feasible time.
(3) Multiple I/O path associations

I/O associations based on more than one I/O path may need to be responded to by a single
system. For example, where an I/O path mapping is comprised of 9 I/O paths, one system

should be designed to achieve these associations rather than 9 separate systems.

During system performance, I/O associations may be based on different sequential features
of various paths. This implies that the system needs to learn not only all the instantaneous
/O associations within a feasible time but also the sequential features embodied in the /O
associations such as which of the ihput paths the network is performing along at a certain

moment.

3.4 Common problems using SBP

All the SBP models discussed in §2.3 embody some methods for representing the effect of

time in a neural network and have certain capacities in learning time sequences with the help
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of gradient descent techniques. There are some problems in those SBP models in dealing
with sequential processing in general and TDSP in particular. In this section, some of the
limitations of SBP approaches for implementing some common features of time-dependent
signal processing in neural analogue systems are discussed. An outline of those limitations

which indicate the exploration of a new framework would be fruitful are presented.
(1) The design of a net topology is imprecise generally

In SBP models, the network structures are very crucial for the existence of a solution
weight state. For example, in the Simple Recurrent Network (SRN) (refer to §2.3), when
a SRN is used to approximate a finite state automaton or to do simple sequential
recognition, there may be failure in sequential aspects if the number of hidden units is not
enough. For example, the network may not be able to distinguish two very similar but
different sequential paths of characters. Suppose identical output follows from a particular
finite length of input path, where this memory length is determined by the number of
hidden units. If the paths are different initially but identical over the current memory length
being used for output determination, then identical output will be given where different
ones should occur. For all types of networks, the smaller the problem solved at any time,
the easier it is to arrive at a solution topology. More precision would be available if the

sequential aspects did not rely on the design of the number of hidden units needed.
(2) A training feasibility problem

For all existing SBP models, the network is trained to find a single final weight state.
When a network is used to approximate a continuous function, it means that a single goal
weight state needs to be found for the network through a finite number of I/O analogue

training patterns chosen trom the function.

One important aspect in achieving this target is about training feasibility. As discussed in

§3.2, an adequate number of hidden units are needed to provide internal representations in
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order to get a single goal weight state for certain number of I/O training patterns in SBP

models.

TDSP in neural networks involves the recognition of an underlying continuous function
after training enough number of I/Q training patterns along the function. As analysed in
§3.2, the more I/O training patterns an I/O training set has, the more internal
representations may be required and the more hidden units are needed. The number of the
hidden units will be increased together with the number of the training patterns. The more
hidden units applied, the more complex the error-weight surface a network has and hence
the less feasible is the training. So training speed is very likely to be decreased as the
number of hidden units increases. This is borne out empirically (e.g. Sutton, 1986;
Hinton, 1987; Fahlman, 1988b). The potentially infinite number of I/O patterns in

analogue signal processing therefore may pose a training feasibility problem in TDSP.
(3) Generalization capacity is limited

In the existing neural network models, training is supposed to be able to discover the
underlying relationships amongst the I/O training patterns. For example, there may be a
family tree relationship underlying a certain number of satisfactorily chosen training
patterns which represent somebody’s ancestry. The relationship may also be an abstract

mathematical function underlying a set of training patterns.

Generalization in neural networks is to have an ability to do the correct associations for
untrained input patterns which are based on the same relationship as that of the training
patterns. If the underlying relationship has been learnt through the samples of the
relationship during training, the network should therefore have capability for
generalization. If the underlying relationship is partially or completely not captured during
training, the associations to the untrained patterns will be either very poor or meaningless.
When there is no generalization capacity, the trained network is just a look-up table for the
trained patterns (Hinton, 1987). This is not what we expect from neural networks. For a

formal discussion of generalisation in learning, see Valiant (1984).
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However as Chauvin (1990) pointed out: “generalization and interpolation properties of
non-linear networks are still theoretically obscure”. In SBP, it is not theoretically clear
both as to how the underlying relationship is captured during training and how to control
the accuracy in the generalization. Various practical attempts measuring the generalization
obtained for particular problems report some success which is nevertheless limited (e.g.

Yu, 1990).

Obtaining outputs for untrained inputs in SBP is not a problem, it is the fact that the outputs
may not correspond to those given by the trained network that is the problem. It may be
readily appreciated that an I/O path may be approximated by setting a finite number of /O
pairs distributed over the path as data points and interpolating the rest of the path. In neural
terms, this corresponds to approximating the I/O path by setting a finite number of weight
states to reproduce the I/O data points through training and interpolating the weight states to
produce the rest of the I/O path through generalization. For SBP the number of weight
states set is 1. Therefore the SBP approach has limitations in generalization in at least two
aspects: (1) the accuracy of generalisation is limited by the inherent weight interpolation
scheme, only a constant interpolation scheme through a single solution weight state during
generalisation; (2) the interpolation is also limited for a given network architecture because
a given network can only cater for a finite number of I/O data points— these two aspects

bring a problem termed as the Untrained Output (UO) problem in this thesis.

An I/O mapping may be thought of geometrically as a contour map where the contour
height corresponds to output value and the horizontal plane corresponds to the input values.
A geometrical interpretation of the UO problem for /O mappings is that a contour map of
the generalisation I/O set in input space may be different to the map associated with the
training I/O set. The contour map analogy applies to both analogue and binary I/O

mappings.

The resolution of the mismatch is to increase the number of I/O data points and/or to

increase the order of interpolation.




In SBP, there is no variability in the order of interpolation that can be used to tackle the UO
problem through weight state. The mismatch can only be tackled by increasing the number
of I/O data points. According to the discussion in §3.2 this implies adding hidden units in

the SBP approach.

So in SBP the Untrained Output problem may occur either due to the inherent limited
interpolation capability or due to an inadequacy in the size of the given network. Hence the

generalization capability is limited.
(4) Modelling time

In SBP, a single weight state is used to serve as a spatial parameter for all /O associations
which are presented over a period of time. This means that SBP treats time over a period
for training purposes as if it were a spatial whole instead of modelling the effect of time
seqﬁentially. This makes time representation in networks often over complicated in dealing

with some relatively simple sequential processing.

Approximating tasks which involve temporal associations may not always implies that a
neural network should approximate a dynamic system. It may only be required that a

network approximates a I/O function.

If a path such as one of those found in sequential I/O functions contains one-many VO
associations over a period of time then a dynamic system approach is forced for the SBP
approach. This is because a single weight state in a feedforward netwofk only allows
many-one associations over any period of time. Dynamic systemé approaches are more
complicated than I/O function approaches and so the forced change in category of approach

may be over complicated.

Therefore a framework with a different approach to modelling the effect of time may

simplify solving some tasks involving time structure.
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(5) Finite networks and infinite I/O associations

As discussed in §3.2, in arbitrarily accurate approximation of a continuous function, SBP

uses finite units to achieve representation of an underlying infinite structure.

With SBP, the entire I/O approximation is attempted using a single weight state of finite
dimension. The effect is analogous to attempting multiplication with a Finite State Machine

(FSM).

For an FSM, as the multiplicands grow in the number of digits, the internal states grow in

number correspondingly to act as sequential memories for past operations.

For SBP, as the accuracy of an approximation to a continuous function is increased in the
number of chosen training patterns, the weight state has to grow in dimension to produce

the increasingly complex I/O association.

A given finite mechanism is unable to fully anticipate the great complexity of its
environment no matter how well it is designed. As far as the dynamic computation is
concerned, both FSM and the analogue to FSM in neural networks have to provide infinite

temporal extension through what is naturally a finite space.

One approach which provides an infinite extension feature for neural networks has been
made, which is to dynamically add hidden units during training as the extra need arises
(Ash, T., 1989). The ability to find a solution topology for a training set is thereby

enhanced. This spatial augmentation is analogous to adding new internal states to a FSM.

As has already been discussed in (3) above, generalization requires not only a suitable
number of data points but also a suitable order of interpolation. Hence Ash's approach has

a limited potential for feasibly improving generalization.
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(6) Sequential processing and recurrent networks

When recurrent networks are used to provide one-many I/O associations, the extra internal
activity provides an internal state derived from past activity. What are the limitations using

the activity based approach?

One limitation is that the training surfaces are still superposed. Training is as slow (if not
slower) with recurrent networks as with feedforward networks (Sutton, 1986; Hinton,

1987; Fahlman, 1988).

A second limitation is that generalization is improved but still limited. Recurrent activity, as
internal network activity, may be considered for substitution for providing generalisation
through variable interpolation. Linear or higher order interpolation through varying
recurrent activity will be more accurate than constant or zero order interpolation with a fixed
or zero recurrent activity. However, no matter what order of interpolation is used, the
degree of approximation is inherent limited in two ways: One is that the weight state is
fixed. Hence the approximation is still a point approximation to a path in weight terms.
The second way is that further training data chosen cannot be added without a possible

increase in the number of hidden units being required.

The above is intended to show some inherent weaknesses in the single weight state
framework. A path-based framework investigated for a resolution of the weaknesses is

introduced below.

3.5 A path-based framework

In order to deal with the above weaknesses directly, it would seem possible to give equal
status to the trained weight state as to the internal activity state, that is to allow weights to
vary over time. Simpson’s definition of neural convergence allows this as a possibility: * if

the mapping converges to a fixed value, or to some fixed set, then the learning procedure is
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properly capturing the mapping. ** (Simpson, 1989). This equality of status leads to a new
framework for backpropagation. So in order to resolve the problems mentioned above, a
new framework based on dynamic extension in time is proposed. It will be seen later on

that such extension in time will lead to extension in space as well.

3.5.1 AN ABSTRACT MACHINE ANALOGY

For present purposes, the aim is to not only increase the number of data points that can be

captured but also to interpolate the data points to various degrees.

An abstract machine analogy is that a kind of Interpolating Turing Machine (ITM) may be
created. The extra feature relative to a Turing Machine (TM) is that there is more than one
symbol associated with each tape square. Suppose each tape square has a data point
number at the centre of the square. Other numbers are then able to be associated with other
points along the centre of the tape through interpolation (Fig. 3.1). Hence there is infinite
interpolation as well as infinite discrete extension.
XQ} 0.6
e
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Fig. 3.1 An Interpolated Turing Machine tape

A neural dynamic approach which has the mechanism of using dynamic interpolated
memories as the analogue to an infinite interpolated TM tape and embodies time sequences

in the system is investigated in this thesis.

Important points to this new approach to note are: (1) In SBP, finite representation
concentrated into a single moment of random access time is forced to correspond to an
infinite mapping over a period of sequential time. (2) A dynamic interpolated memory
approach provides, by contrast, one-one correspondence with an infinite sequential
mapping. Such a correspondence provides an analogue of the Interpolated Turing Machine

tape which evolves the FSM to cope with problems of infinite extension in time such as
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those mentioned earlier. (3) The more natural correspondence with time will be shown to
produce significant computational benefits with respect to the problems outlined in the

previous section.

The specific goal of the new approach: (1) to have a conceptual exploration to find a
resolution of the problems that occur in training potentially infinite analogue /O
associations where there are underlying continuous functions; (2) to explore the neural

realisation of the relationships empirically.

3.5.2 THE ROLE OF GOAL WEIGHT STATES IN NEURAL CONVERGENCE

In general, the aim of training a neural network to realise I/O associations is to search for a
goal as a condition for neural convergence. A machine is thereby obtained which provides
the desired I/O mappings in performance. This aim does not imply that there can
necessarily only be a single weight state as the goal of training. If the goal of the training is
to find more than one weight state or a single weight path, and during performance these
goal weight states at each moment can be associated with a particular I/O mapping

accurately, this also satisfies the above aim.

The goal of neural convergence in SBP framework is a single goal weig'ht state. The
benefits of the approach has been briefly reviewed in §1.3. The infeasibility of this
approach is also discussed in §3.2 and §3.4. A question being asked here is whether there
is any other goal of neural convergence which can be applied for the same aim but without

the training feasibility problem.

The new approach begins by appreciating that sequential access is suited to many types of
TDSP. This is because for each next step in time, a correct response is only required to the

next input value along one path and not to any other predecessors or successors.

The framework explored in the thesis is to define the goal condition to be a sequence of

weight states, a weight path rather than a single weight state. This trades off access to
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desired output in performance against the number of hidden units needed for training in

such cases.

The conclusion of this section is: a weight path approach as an alternative goal of neural

convergence is proposed for approximating the production of I/O associations.

3.5.3 MAJOR SPECIFIC FEATURES OF THE PATH-BASED APPROACH

In the path-based backpropagation framework PBP, instead of a single weight state as the
simultaneous solution for all the I/O training patterns as the goal of training, a sequence of
weight states, a weight path, is found and used. In general a weight path instead of a

weight state is used as the goal of training.

Each weight state in the goal path provides random access to just those individual /O
patterns occurring at the same evolved fractional distance in time along each of a number of
training I/O paths. The fractional distance will be said to constitute a position in the /O
paths' state sequences. Travel along the weight path in time during performance allows

sequential access to all the desired values at each position along the I/O paths.

More technically, suppose we wish to train m sequential I/O paths with n positions. Let the
i sequence be S;i, Soi, ..., Spl, where Sy is denoted as the pair of I/O at position n along
the i path. Then it is desired to find a sequence of goal weight states Wy, Wa, ..., Wy
where W; realises the set { S/, S72, ... Sfi, ... S } at sequential position j. Fig. (3.2) is
a diagram of showing the relationship between I/O and W for a 2-orbits problem. The one
orbit starting at the North has a binary target output of 0. The other starting at the West
position has a binary target output of 1. The two sets of end points of the straight lines are
shown in Fig.(3.2), each line constitutes a training position and is associated with a goal

weight state.

.
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In practice, this framework trades the storage needed for storing the goal weight path and
restricted access to desired outputs in performance against the variable number of hidden

units needed for training.

Fig. 3.2 The two training positions along 2-orbits

The following points should be born in mind and pursued throughout the design of the new
framework: (1) Representation capability will be independent of the number of data points
used sequentially as much as possible; for example the representation capability should not
change whatever the length of a chosen curve represented in coordinates will be; (2) The
network topology will be finite and relatively smaller than for SBP; (3) Accuracy in
generalization is controllable, the Untrained Output problem can be resolved to a significant
extent; (4) A single network can be trained to do I/O associations for multiple I/O paths.

During performance, I/O associations should be able to switch from one path to another.

The computational benefits of this approach lie in both the feasibility of training and the
provision of a trained weight path for use in generalization. These features will be further

analysed and discussed together with two models based on PBP.

The two PBP models are specially implemented for investigation of approximations of
sequences of I/O associations chosen from continuous functions or complex analogue-
binary mappings The first one is for feedforward networks, and is called Feedforward
Continuous Back-Propagation (FCBP). FCBP is a first step within PBP. It solves at least
some problems associated with time-dependent signal processing. However, the dynamic
capacity is still limited in FCBP. In order to further explore the dynamic systems of path-
based sort, another model called Recurrent Continuous Back-Propagation (RCBP) based

on both the weight path and a sort of internal state path approach on recurrent networks has
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also been preliminarily investigated. For more details about the PBP and the models FCBP

and RCBP, please refer to the chapter 4 and chapter 5 respectively.

3.6 Conclusions

The basic question raised in this chapter is whether or not SBP-based neural network
models are suitable for analogue sequential processing in general or time-dependent signal

processing in particular.

It has been pointed out that infeasibility is aggravated in training arbitrarily close
approximation of continuous functions and the associated Untrained Output problem for
generalization in SBP may be severe. Most importantly, analogue infinite I/O or complex
binary associations are not always easily represented by finite neural topologies with SBP
models. A dynamic interpolated memory approach is proposed instead resulting in the use

of goal weight paths.
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CHAPTER 4

A FEEDFORWARD CONTINUOUS BACKPROPAGATION MODEL

4.1 Introduction

In this chapter a new approach evolved from conventional back-propagation called

feedforward continuous back-propagation (FCBP) is presented.

FCBP is one of the two approaches which have been developed in the thesis using a path-
based backpropagation framework. The aim of the FCBP approach is to provide a means
for achieving arbitrarily close approximations of I/O mappings along paths within a fixed

neural topology.

In §4.2, a general introduction of FCBP, the roles of hidden units and weight states in
FCBP are reviewed. In §4.3 the notion of goal weight sequences introduced in PBP is
applied in FCBP to see if the additional sequential properties bring significant benefits in
training and generalization using feedforward networks. Then in §4.4 and §4.5
respectively, the training and generalization schemes of FCBP are given. Finally a

conclusion is given in §4.6.

4.2 FCBP model

This is the first model developed based on the PBP framework for feedforward networks.
The philosophy of the path-based approach framework PBP has been introduced in §3.4,
here the FCBP itself is studied.

As reviewed in §3.3, the training required in time-dependent signal processing is to have a
network produce desired output paths in reaction to independent switches in the input paths
during performance. Sequential access can be seen as a natural way of modelling the effect

of time in this case.
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In FCBP the sequential access to I/O mappings is modelled by extending the use of goal
weight states over time. This is to apply the PBP framework in a feedforward network,
which implies that the goal weight condition is a sequence of weight state transitions, a

weight path rather than a single weight state.

The aim of training in FCBP is to search for a goal weight path which can yield a sequence
of internal states within a network and provide I/O sequential mappings in performance.
Each goal weight state in the weight path only needs to enable the neural network to act as
an abstract machine at a certain moment which produces the correct outputs for the
associated inputs at that position. The abstract machine represented by the neural network
then changes as the weight state changes. It can be seen that training in FCBP is to find
each goal weight state for each training position using conventional BP, and then store each

the goal weight state indexed by position.

The aim of generalization in FCBP is to approximate the underlying continuous goal weight
path through the discrete sequence of goal weight states associated with the training

positions.

Following is a more detailed discussion on the role of hidden units in FCBP and the

relationship amongst I/O and weights in training and performance.

4.2.1 THE ROLE OF HIDDEN UNITS IN FCBP

Now that each weight state is associated only with I/O values at its associated position in
the paths instead of all I/O patterns at all positions in SBP, hidden units are no longer
needed in single I/O path cases. However, hidden units are still needed in FCBP if the

target I/O functions to be realised contain more than one I/O path.

At each position, training is performed in the same way as that of SBP. Hidden units are
needed to solve the simultaneous equations (Eq. (3.2) ) corresponding to the I/O values

which are from different paths but at the same position. In other words, the hidden units




provide a single weight state for all the /O values along the set of I/O paths that occur at the
same position, so that each weight state can be adapted to all the target I/O values associated
with each position. In this way, a single goal weight path may be used for the I/O
associations of many different I/O paths. The number of the goal weight states, which

consist of the goal weight path, is equal to the number of training positions.

In FCBP as the number of hidden units has to cater for only one position at a time, this
number is completely determined by the number of training sequence paths rather than the
number of training I/O patterns along the paths. The number of the paths are known before
training and is relatively much smaller than the number of the training patterns in general,
this is why that much less hidden units are needed for training in FCBP compared with that

in SBP.

It is also noticed because the number of I/O values at each such training position remains
the same and the number of hidden units required in FCBP remains fixed no matter how
many positions are chosen to train on to approximate the I/O paths, the size of networks
required does not need adjusting. Hence the problem of infeasibility in SBP training is

tackled by changing the goal of training and results in altering the role of hidden units.

4.2.2 THE RELATIONSHIP AMONG INPUT, WEIGHT AND OUTPUT

In SBP, hidden units enable a single weight state to be the goal of training. During
performance, access to any output values is always associated with the learnt single goal
weight state and an individual input value. This single weight state offers random access to
any trained individual output values, as the output values can follow independent switches

in the input values.

In FCBP, the outline of the relationship among input, weight state and output is: Each
weight state in the goal weight state path provides random associations to just the I/O

values at the associated training position both in training and performance.
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In training, each weight state is driven by the errors used in conventional BP through the
1/0 patterns at the position. The cost of the memory for storing the weight state path can

be calculated based on the positions involved.

In performance, the synchronization of sequences is involved between I/O and weights. If,
at an instant, an input pattern in the I/O paths is seen whose output pattern contains the
current associated signal values at that instant, the output signal values of the inputs can be
only seen when the weight signal values associated with that instant of time are presented
synchronously when the signal values of the input pattern are presented. Fig.4.0 is a

general picture of the I/O and weights association in FCBP.

w-path

input-paths * w-state output-paths
feedforward net >

Fig.4.0 An associator using a trained weight path to process a set of I/O paths

4.3 Training speed and generalization capacity

This section will address the FCBP training and generalization capability and explore why

FCBP in principle can speed up training and has a powerful capacity for generalization.

4.3.1 TRAINING

In conventional BP, a major cause of the slowness in training lies with the use of
component error-weight surfaces for individual I/O patterns. Weights are changed either
after the presentation of each I/O pattern value or after a cycle of all such values. In the first
case, the component error-weight surfaces for the individual I/O pattern values are used
separately to drive the training. In the second case the component surfaces are summed to

provide an overall error-weight surface for training.
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A zigzag tendency thus occurs whether it is seen as travel along ravines in an overall error-
weight surface or as travel between separate surfaces. For more detailed discussions about
ravines see, for example, Hinton (1987), Sutton (1986). Travel to a single goal weight
state is likely to become an ever more lengthy process as the number of I/O patterns which
are treated as independent increases. This is because the number of surfaces with opposing

gradients at any weight states increases.

In FCBP, the training path itself may now form a valid goal weight condition when it

contains a sequence of weight states yielding the desired I/O values.

The goal weight path approach considerably eases the ravine problem. For arrival at a goal
weight path, all that is required is that a separate goal weight state needs to be found for I/O
pattern values at a given position along the I/O target paths. If there is only one I/O target
path, there will be only one surface at each position. If there is more than one I/O target
path at each position, the number of the component surfaces summed at any position is still
much less than those associated with all the I/O values along all the paths. Therefore, in
FCBP each goal weight state should be found relatively quicker since only a number of
component surfaces local to the current I/O position are used to find the weight state and the

necessary network size is also relatively small.

Furthermore, when the size of the discrete training set of I/O values is increased in better
approximation of the underlying continuous I/O paths, the difference between consecutive
I/0 values is decreased and hence the closeness between the consecutive /O surfaces can
be increased to speed up training. Once the first goal weight state has been found, the next
goal weight states may be expected to be close together in their sequence. In FCBP, the
speed up in training is based on converting a single set of I/O pairs into many smaller and

closely connected sets.

Therefore the behaviour of a network may be described as: training moving along the

target I/O paths, where there is an underlying continuum, produces a sequence of suitable
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weight states for the desired I/O values along the paths. A change from the current input to
another input along the /O continuum may be associated with a corresponding continuous
change along the goal weight path. This feature will be referred as the property of
continuity. This means: if there is a continuous I/O mapping from I/O at time ¢ to I/O at
time r+1, it is reasonable to suppose that there is a continuous weight mapping from weight

at time ¢ to weight at time #+1.

A sequential problem is one where the order in which the input occurs has to be learnt as
well as the individual associated outputs. Another important feature in the PBP approach
then, is the order given by the training cycle for FCBP in which IO associations are
trained. The order of access after training may differ from the training order provided the

training time is used as a coordinate index in space rather than time. See Fig.4.1. for

details.
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Fig.4.1 Two sequential training paths in two dimensional space

The direction of the training order in Fig.4.1 is indicated by the arrows along the paths.
There is a weight state associated with each phase position g;. The g; may be used either
as describing the training time or as a coordinate index to access the weight state after

training. This feature can be very useful after training (see further discussion in §4.3.2).

4.3.2 GENERALISATION

Through the property of continuity described above, the analogue nature of neural

processing in conventional BP often provides the feature that an input will produce an
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output near to the outputs of the neighbouring inputs (in coordinates). This feature will

provide an underlying basis for production of outptits of untrained inputs in FCBP.

The aim of generalisation after training using the FCBP approach is to use a goal weight
path representing a transition sequence of internal states within the same network which
provides the desired I/O mappings for untrained as well as trained inputs in performance.
The untrained patterns may include the untrained patterns along the set of I/O training paths

or even outside the paths as discussed in §4.3.1.

More specifically, generalization in FCBP can consist of both spatial and temporal aspects
when an appropriate space-time scheme is introduced. This is a scheme whereby input
values are assigned unique times (which will be used later to refer to time slices). The
space and time are measured relative to the bounds of the input values and the period of the
training cycle respectively, so that each position corresponds to a specific moment of the
simulated time, each input conjoins with the unique goal weight state occurring at the
assigned time along the goal weight path. Any input value fitting the space-time scheme
will then always get the same response from the trained network through the weight state
which is associated with the position related to that particular time slice. Each time slice
corresponds to a set of all possible inputs related to the particular time, some of the inputs

may be along one of the training paths, some are not.

With the evolution of time some inputs are assigned to the time slices which correspond to
trained positions, some to untrained positions.  As an example, the diagram in Fig.4.2
shows a picture of assigning any input pattern represented in two dimensions (X, y) within
the ranges of x, y: [-a, a] a time value ¢ according to ¢ = Vx2+ y2. Three time slices are
shown in Fig.4.2, each is formed a circle in the input space. For example all input values
assigned to t=al and t=a3 could be associated with two trained time slices and those

assigned to t=a2 are associated with an untrained time slice.




2

Fig. 4.2 The picture of time slices in input space for a certain space-time scheme

()

Within a particular trained time slice, there are only two kinds of recognition patterns, one
kind is the trained pattern chosen from the paths; the other is the untrained pattern outside
of the paths. The generalisation properties to those untrained inputs here are the same as

those of SBP due to generalisation being based on a single weight state in both cases.

Between those trained discrete time slices, there are also two kinds of untrained inputs.
One is the untrained input chosen from the paths; the other is the untrained input outside of
the paths. For the first kind of untrained input, continuous variation of outputs
corresponding to the continuous inputs needs to be considered. A continuous production
of desired output can be attempted by having the goal weight path as a set of continuous
signal sequences rather than the trained discrete values for each weight link. Such a
continuous goal weight path may be simulated through interpolation of the trained discrete
sequence of the goal weight states. The interpolation of the sequence of goal weight states
constitutes the second form of generalisation in FCBP. This approximates the continuous
goal weight path underlying the discrete goal weight states associated with trained
positions, hence provides a suitable weight state for each moment in continuous time. The

interpolated weight states determine outputs for this kind of untrained input.

In digital simulation, FCBP uses the continuous mapping ability of a goal weight path by
training a finite number of discrete I/O chosen along the sets of I/O paths to produce a
sequence of the goal weight states. An approximation to the arbitrary continuous I/O paths

can then be produced by interpolating the rest of the goal weight path using the learnt goal

oz TR

1
1




weight states. In this way, a neural network trained on a finite number of I/O positions can
draw on a potentially infinite number of weight states to do generalisation for a potentially
infinite number of untrained inputs and desired output values along the I/O paths. Also as
indicatéd above, the accuracy of approximation may be increased by increasing the number
of training positions to get more goal weight states to approximate the goal weight path. As
training can be achieved with a fixed sized network, this implies that the accuracy of
approximation can be increased in FCBP without having to increase the number of hidden

units in the network.

For the second kind of untrained input outside training paths and associated with a
untrained time slice, the approximated goal weight state associated with the time slice is
also used for generalization. The generalisation properties to those untrained inputs are
also similar to those of SBP, the generalisation is based on a single approximated weight

state in this case.
* The fundamental difference in generalization

In FCBP, generalization of untrained inputs within trained time slices is the same as that of

SBP, but very different in dealing with untrained inputs between trained time slices.

The following is a more detailed view of generalization based on the untrained inputs in
FCBP. There may be the Untrained Output problem if untrained inputs are chosen within

an untrained time slice. A method has been imposed to resolve the problem in FCBP.

As discussed above, in FCBP each I/0O value in the input space can find the associated time
slice whether it belongs to trained I/O paths or not. The I/O can be realised by either
finding a learnt weight state associated with the time slice or working out a weight state
based on the associated learnt weight states according to the time slice. For the latter case,
an approximation to the weight state associated with the untrained time slice is needed.
Generalisation for untrained inputs may be viewed as getting the I/O associations through a

trained network by interpolation.
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For an interpolation between inputs and outputs, an interpolation mechanism and the related
parameters are needed. There are many existing interpolation methods, related to many
ways for choosing the parameters for the method in order to have a good approximation.
For example, one approximation method makes use of the nearest neighbouring I/O as its

parameter, another method uses the average value of a set of neighbouring I/Os instead.

For untrained inputs along the training paths, generalization is also related to the way of
selecting parameters and approximation mechanisms. Based on SBP and FCBP, one
question to be asked is which of the two approaches have imposed parameter choices and
flexible interpolation mechanisms in the model to perform a better generalization in

principle for untrained inputs.

Learnt weight states may be viewed as acting as a set of parameters for a chosen
interpolation method. In the SBP model, the networks have only a single set of parametric
values, but in FCBP models, the networks have a sequence of such sets. In the SBP
model, only constant interpolation can be used for approximation of a suitable solution, but
in FCBP many orders of variable interpolation are available. These inherent features of the
two models provide a theoretical basis for expecting the FCBP model to perform better

generalization.

Refer to §3.3.2, another view of the fundamental differences between SBP and FCBP in
realising untrained patterns is that the mismatch of the contour maps has to be solved using
a new network topology or by adding more hidden units in SBP. This will be achieved in
FCBP by increasing the number of training I/O patterns chosen from the paths without

changing the network topology.

It can be seen that the difficulties and limitations of the Untrained Output problem
mentioned in §3.3.2 using a single weight state may be resolved in general by FCBP

approach.
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4.3.3 THE OUTLINE OF FCBP

Replacing a single weight state by a weight path as the goal of training, FCBP not only
removes the limitation of SBP for arbitrarily close approximating continuous functions in
feedforward networks, but also increases the speed for training a large number of I/O

sequential target values by using an underlying sequential nature.

A method of control over the number of hidden units is described. Using this method,
each weight state needs only to produce correct responses required by the I/O values along
any sequential paths at the related time. Each goal weight state should be trained relatively
quicker since the .associated problem size for each weight state and the network size are

both relatively small.

In generalization, the Untrained Output problem can be resolved to a significant extent and
many existing approximation methods can be explored and introduced into the FCBP
model as the tools of generalization for untrained inputs. A suitable interpolation method

chosen from a generalization tool kit can then be applied to solve different problems.
The specific features of FCBP can be summarised as follows:

(1) It is a feasible approach for training networks to approximate a kind of mapping when a
large number of sequential I/O target values or complex binary mappings are involved; this
is especially useful for approximation of I/O analogue output mappings chosen along

continuous functions with arbitrary approximation accuracy.

(2) Because the number of the hidden units are decided by the number of the I/O target
paths, no adjusting of the network topology is needed when the number of training data

chosen along the paths is increased.

(3) A method has been imposed in FCBP to resolve the problem of Untrained Output:
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Any higher order interpolation methods for weight state approximations can be

employed by FCBP for realization of some untrained inputs.

The mismatch of the contour maps can be resolved through adding more training
data along the training paths without changing the network topology or increasing the

number of hidden units.

(4) FCBP also suggests a reasonable analogous method within SBP to decide the order of
choosing I/O training patterns even in search of a single weight state as the goal of training
in the SBP models. The path idea may speed up the training for finding a single weight

state if there is an underlying continuum.

4.3.4 THE TRADE OFFS IN FCBP

It can be seen that there are some trade offs in FCBP:

(1) Many small stored weight states are used in FCBP instead of a single large weight state
used in SBP. Since the total memories required in FCBP can be more than the amount
needed in SBP, there is trade off between memory to store the whole sequence of the learnt

weight states for the number of hidden units and the time needed for training.

(2) Although FCBP is a software technique, it is an approach which may be used as a
hybrid of neural and digital computer architecture. There may therefore in practice be
random access and automatic synchronization to the correct weight state for any input
through the indexing of the weight matrix. In strict neural terms in FCBP, there is limited
random access allowed to trained individual output values along paths during performance.

Input must synchronise with weights in time for each correct I/O association in FCBP.

Conclusion: The aim of the FCBP approach is to provide a means for achieving arbitrarily

close approximations of I/O mappings along paths within a fixed neural topology. In
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FCBP this can be achieved with a fixed sized network with the help of using dynamic

interpolated memories.

4.4 The FCBP Training Schemes

Two training regimes of FCBP have been explored in the thesis. The implementation of
the regimes has been carried out using simulated neural network digital computer programs
with the simulator cbptool which will be described in Chapter 7. Experiments based on

the regimes can be found in Chapter 6.
.Regime 1

In regime 1, a single weight state transition is made for every change in input using the
error-weight gradient and learning rate as in conventional BP. Training continues with
many traversals of the I/O paths until there is a complete traversal of the paths with the
associated weight state for each position along the paths generating an error below a fixed

universal tolerance. A goal weight path has then been achieved.
.Regime 2

The direction and amount of each weight state transition is also computed using
conventional BP. The difference from regime 1 is that consecutive weight state transitions
are repcatedly made at each particular I/O position until the errors of the I/O patterns chosen
from all the /O paths at the position are below a fixed universal tolerance. Only then the
training moves to the next /O position. The last weight state resulting from the sequence
of weight state transitions made for each training position is taken for the overall training
termination test at that position. This test has the training under this regime continuing until
the ends of the I/O paths. The last weight states at each position then form the goal weight

state path.




The two regimes may be characterised thus: the first regime is aimed to merging its weight
path with a goal path over a number of I/O cycles while the second regime is to keep its
path intersecting the goal path over a single /O cycle. The empirical issue raised by the

two regimes is which one provides a more effective training.

4.5 The FCBP Generalization Schemes

Generalization in FCBP uses a suitable interpolation method to produce approximations of
continuous functions by using the sequence of the trained goal weight states as the
parameters. All the standard interpolation techniques can be considered and explored for
weight interpolation. Two main factors need to be considered in choosing the interpolation
techniques. One is the time expense in computation in working out the approximated
weight state, the other is about the approximation accuracy. For example, if we aim to
spend as little time as possible in the approximation of a goal weight state, a neighbourhood
approach may be applied. This means that the goal weight state associated with the last
trained position is used to approximate all the goal weight states associated with the
untrained positions until another trained position is met. It can be seen that this approach
spends no time in computing the approximated goal weight state. However this approach
may lack sufficient accuracy in approximation for some cases. For higher accuracy, the
standard Fourier interpolation may be a more complete but time consuming approach
comparing with the neighbourhood approach. This is to approximate a goal weight states
based on the Fourier analysis of the sequence of learnt weight states. By taking the n goal
weight states associated with the n trained time slices in the goal weight path, Fourier
analysis is used to generate the approximated goal weight states for the untrained time

slices.

In the thesis, a simple and standard linear interpolation technique (LIT) which has both a

relatively high degree of accuracy and limited computation involved has been explored.
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The implementation of the LIT regime has been carried out in the simulator cbptool.

Experiments using the LIT regime are shown in Chapter 6.
Regime Linear Interpolation Technique (LIT) approach

This generalization regime uses a conventional linear interpolation technique to approximate
the weight state of a untrained pattern. The approximation is based on a linear interpolation
of two learnt weight states associated with two trained time slices. The trained time slices

are the neighbouring trained slices associated with the time slice of the untrained pattern.

For the ith untrained I/O patterns amongst k such patterns regularly spaced between two
neighbouring trained time slices, its weight state can be calculated using the two learnt
weight states Wjand W associated with the two time slices through LIT. Each
component weight has the form: w  t (kﬁ)- (w2 =Wy ), where w 1 and w, are component

values of the weight states W, and Wa.

4,6 Conclusions

In this chapter, the FCBP model has been introduced and the reasons for why FCBP may
have better training and generalization results comparing to that of SBP have been
analysed. It is clear that FCBP is evolved from conventional BP but is a very different

approach in both concept and methodology.

In general, FCBP is designed for the investigation of temporal associations and sequential
signal processing in a parallel processing system. FCBP offers an extension of the
feasibility of the back-propagation approach to training; and better approximation in
generalization. FCBP is able to use temporal structure to allow variable approximation
within a small and fixed sized network. The major features of FCBP itself have been

presented in §4.3.3. It is concluded that:




(1) FCBP is a neural system with a way of modelling the effect of time which is

appropriate for dealing with the temporal and sequential signal problems.

(2) More than one sequential path can be trained and generalized within a single system as
long as two constraints are obeyed, which are: each of the single paths has the same
number of the training positions, at each of the positions if input values chosen from
different paths have the same input values, they will be associated with the same output

values.

(3) Training is feasible for arbitrarily close approximation of I/O mappings where there is
an underlying continuity. The more I/O training data chosen along paths, the closer a
network will provide approximation of I/O mappings along the paths. In FCBP this can be

achieved with a fixed sized network with the help of using dynamic interpolated memories.

(4) The Untrained Output problem is less severe in FCBP compared with that in SBP. The
interpolation of weight states provides additional generalization power through a theoretical
and feasible basis for resolving the Untrained Output problem for finite sets of I/O paths.
Also, generalization can be achieved with a variety of approximation methods. Compared
to the zero order weight interpolation in SBP, a much higher order approximation can be

employed by FCBP.
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CHAPTER 5

RECURRENT CONTINUOUS BACKPROPAGATION MODEL

5.1 Introduction

Another new approach called recurrent continuous back-propagation (RCBP) is presented
in this chapter. Like FCBP, RCBP is also an approach based on the path-based
backpropagation (PBP) framework using recurrent links to embody temporal and
sequential capacity in neural networks. It provides a neural dynamic system for I/O

associations by generating sequences of internal activity states and weight states.

This chapter is arranged to discuss what RCBP is, how its features compared with other
approaches, and how to define internal states in terms of the activities. In order to get a
clear picture of RCBP, detailed features are given with emphasis on how internal states can

be embodied in PBP at each position.

In §5.2 the desired features of RCBP are presented and the role of the activity states of
neurons in recurrent nets is reviewed. The notion of activation sequences is introduced to
see if the additional activity dynamic brings significant additional power for the path-based
approach. Then in §5.3 and §5.4 respectively, the training and generalization schemes are

given. Finally a conclusion is presented in §5.5.
5.2 The RCBP model
* Why is RCBP needed?

A dynamic system differs from an I/O function in providing one-many I/O associations
through varying internal states. In general FCBP is not always powerful enough to deal

with the one-many associations needed for the following two reasons:
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1) At each training position, FCBP is the same as SBP. There is a single weight state at

each position for the feedforward network.

2) The source of internal state variation in FCBP through the weight state path is therefore
not able to provide one-many associations at each position because the internal state at each

position is constant.
* Connections between RCBP and SBP

If internal states independent of inputs and weights can be dynamically induced in a
network, the network can become a dynamic system with inputs. Some investigation has
been made in SBP (see §2.3). It will be shown here how a recurrent network, with a
suitable dynamic rule for achieving the dynamic feature, can also support such dynamics in
PBP when the three features of PBP — time modelling, weight state sequence and fixed

neural network topology are incorporated in the new approach RCBP.

The subsequent subsections are to discuss four aspects related to the design of RCBP. The
first one is about how internal states can be embodied in PBP at each position. This shows
that a suitable dynamic rule is needed for recurrent networks to represent the internal
activity states. The second is about how such a dynamic rule is established in RCBP and
how the activity sequence works. The third reviews the relationship amongst I/O pattern,
weight state and activity state in RCBP. An outline of the RCBP model is then presented in

the last subsection.

5.2.1 THE INTERNAL STATE MODEL

As internal variation both weight states and activity states can be viewed as internal states in
a neural network, this section requires a specific view of internal states as provides of one-

many associations.

.
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Now let’s consider embodying a dynamic system's internal states at each training position
in PBP and in particular whether there are any means which can make outputs be driven not
only by current inputs and the weight state but by something which is related to the effect

of past history.

Because PBP uses a single weight state at each training position, the requirement for the
internal states is similar to that of solving the one-many association problem in SBP. As
shown in §2.3, many approaches for achieving the associations have been explored in SBP
using recurrent networks and suitable dynamic rules. According to the similarity of PBP
and SBP, this implies that there should be some ways to embody the internal states in PBP

as well.

In this thesis a similar solution as for SBP is attempted in PBP, namely the prearrangement
of one-many /O associations through a recurrent network and its activity states. This is to
say that dynamic activity states are used for modelling the dynamic system's internal states

in PBP at each position.

Since a recurrent network has been chosen as the topology for the approach, the next

question that arises is how to design the dynamic rule for the network.

5.2.2 HOW TRANSITIONS CAN BE DESIGNED TO ACHIEVE DYNAMIC BEHAVIOUR IN RCBP

The general dynamic features that we wish to implement in RCBP include: embodying the
internal states; without losing the continuum features among I/O paths and weight states

path.
1) The control of activity transitions is needed

Compared with feedtorward networks, the main additional problem in recurrent networks
is how to control the recurrent activity during training and performance. The reviews given

in §2.3 have shown us many existing approaches. Some approaches may have control
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over the activity in indirect ways, such as the forward propagation model (Williams and
Zipser, 1988), which compensates for poor activity changes through succeeding weight
changes. More direct methods directly controlling the activity changes during training are

also possible, for example the moving targets model (Rohwer, 1990).

In SBP, when recurrent networks are made to be at equilibrium, the equilibrial activity state
is completely determined by the current I/O and weight state. That is, a single weight state
recurrent network at equilibrium, as demonstrated in papers such as that in Almeida’s
(Almeida, 1989b), can only provide an I/O function. This relationship is therefore unable

to provide activity states as the required internal states mentioned above.

In RCBP, non-equilibrial activity states are needed to provide one-many associations
through internal states which are independent of the current I/O and weight state. The
inherent dynamics of such networks needs to be designed, which entails the design of the

activity state and weight state transition rules.

The review of the existing models in §2.3 reminds us that different transition rules will
provide very different network behaviours, therefore before designing the dynamic rules

for networks, the desired type of network behaviour must be established.
2) The desired type of network behaviour for RCBP
The desired type can be viewed in terms of two aspects:

In performance— a goal weight state together with a generated activity state associated with
each training position enables recurrent networks to act as a machine with internal states to

produce the correct output for its given input at the particular position.

In training— a set of activity sequences is generated together with a goal weight sequence

to be found according to the set of I/O training tuples chosen from the training paths;
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3) The existing dynamic approaches in SBP

In SBP, an approach will be referred to as static RBP when the aim is for a recurrent
network to provide a I/O function through achieving equilibrium and as dynamic RBP
when the aim is for a recurrent network to provide a dynamic system. The latter is the main

focus of attention here.

As reviewed in §2.3, dynamic RBP has a homogeneous time delay scheme whereby every

link has an one-step time delay.

Although dynamic RBP can train an I/O set and generate an activity sequence in the trained
order for the set, this kind of approach is not suited for incorporation into RCBP. This is

for the following reasons:

* When a recurrent network is not at equilibrium, the activity state is not only dependent on
the weight state and input values but is also dependent on the activity values at the previous
moment. In this way, the change in the non-equilibrial recurrent activity is only partially
dependent on the change in environment input. When the activity is far away from
equilibrium, a sudden large change in recurrent activity may occur for arbitrarily small

change in environment input.

* Such sudden large change in activity undermines the property of continuity (see §4.3.1)
used by PBP to speed up training and enhance generalization. In particular, dynamic RBP
has no control over recurrent activity between positions through the continuity underlying
I/O training patterns. Training is undermined because the consecutive goal weight states
are far apart. Generalization is undermined because the weight data points are far apart and

the intermediate variation may be wild.

» Interpolation of weight values is improved in PBP by exerting control through continuous

weight mappings. For this reason, dynamic RBP will not be used in RCBP.




4) The scheme employed in RCBP

A scheme is needed which makes effective use of the continuity underlying the I/O training
sequence to control the evolution of the sequence of activity and to have a continuous

mapping underlying the goal weight state sequence.
* The one-step delay scheme

The constraint for RCBP is to have a dual time delay scheme with one scheme for the

recurrent links and another for feedforward links.

Two kinds of links may be made between a pair of neurons, one labelled feedforward, the

other recurrent (if each exists).

The recurrent links have a one-step time delay where the output from a source neuron takes
one step in time to travel along the link and become input to the destination neuron. The
step length is given by the interval between environmental input changes. This scheme
ensures that present recurrent input is determined by previous recurrent output so that there

is both independence from current environment input and a dependence on past history.

The scheme is designed to fit with non-recurrent SBP at each training position except the
first (see below). The weight changes are calculated from information attached to each
moment in isolation. The feedforward links have zero time delay so that weight changes
are calculated from information attached to each moment in isolation as in standard (non-

recurrent) back-propagation.

The activity states at the previous training position along any recurrent links are taken
together with current I/O and weights to evaluate the activity values at the current training

position. The dynamics of the activity states in the recurrent networks can be described as:

and y;(t) = f(xi()) (5.1)
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where f(x) is the logistic function; RL denotes a set of index pairs (i,j) for recurrent links /;
linking from unit j to unit i; ¢ is the moment associated with training positions;wjj (t) is the
weight link values linking from unit j to unit i; x; (t)and y;(t) are the excitation and activity

value of unit i. It remains to decide the initial conditions for Eq.(5.1).
* The static RBP employed at the first training position

The initial condition is that static RBP is employed at the first training position to establish
recurrent activity near equilibrium for each I/O pattern. Equilibrium will be used for the
first training position to set the initial activity values in order to establish control over the

recurrent activity and have a continuous weight mapping (see discussions in 5) below).

The single weight state and the static recurrent network at the first position dictate that only

an I/O function is to be targeted at this position.
5) The dynamic behaviour of RCBP

At the first position, an activity A is obtained when the network is at equilibrium. By
sitting at an equilibrium state, the set of activity states of the network at the training position

is fully determined by the set of /O values and the learnt weight state at that position.

The non-equilibrial evolution rule Eq.(5.1) is applied to calculate activity for all the
positions barring the first one. By setting the network at equilibrium for the I/O patterns at
the first training position and the second position’s I/0O patterns close to the first I/O values,
according to Eq.(5.1) the two associated activity states will be close as well. This will form
a basis for evolving the activity path with a certain level of control through underlying /O

continuity.

The input and weight state values are thus more loosely coupled with the equilibrium
activity state at each position after the very first one. Input.and weight changes might
appear to move the activity states further away from equilibrium at successive positions.

However the activity transitions accompanying positional change also allow the activity to
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move towards a new nearby equilibrium for each new input. Provided the input changes
are small, the activity should remain reasonably close to each new equilibrium. This in turn
controls the size of the activity transitions to keep them small enough to aid training and

generalisations discussed earlier (§4.3.1).

The loose coupling of 7 and W with A means that the dynamics of A is only partially
determined by 7 and W. A is also determined by the dynamics of A itself except at the first
position. The intention is for A to be able to provide the required internal states while

remaining under continuous control.

As far a training is concerned, at each training position (except the first one), the recurrent
network may be viewed in a feedforward fashion. The recurrent links for each unit can be
seen simply as extra inputs, whose values are those of the previous outputs from the source
neurons. The excitation of each unit in the net is then calculated as that in an ordinary
feedforward net. For example, at position pg associated with time ¢, if a unit U; has two
feedforward links from units Uj;, Uj2 and three recurrent links from units Uyy, Ugz, Up3
respectively shown in Fig. 5.1a, the evaluation of activity U; in the recurrent network as
shown in Fig. 5.1a is equal to the evaluation based on the equivalent feedforward network

at that time shown in Fig.5.1b.

> -

Fig.5.1a A recurrent net Fig. 5.1b A feedforward view of Uj

The scheme for changing the weights in the network is therefore the same as that for an
equivalent feedforward network using conventional back'propagation at each of those

training positions.
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5.2.3 THE RELATIONSHIP BETWEEN THE NETWORK VARIABLES

At each position, there is one weight state along the weight state path acting in the system,
which together with a set of activity states at the position along each activity path
corresponding to each IO path provide the desired I/O associations. The goal weight path
amd activity paths therefore act to provide a sequential store of I/O machines with internal

activity states. Fig.5.2 shows a picture of the relationship in RCBP.

weight path
input paths * weight state output paths
RNoarT [inemal states (activity paths) -
e e S M

Fig. 5.2 The relationship among the I/Opaths, w-path and activity-path in RCBP

Along the paths, continuous control is aimed at by using equilibrium at the first training
position and the Eq.(5.1). The property of continuous control means that a small change
from the current input to another input along an I/O continuous path may be associated with

a small continuous change along the goal weight path and the activity path.

RCBP like FCBP is also able to closely approximate I/O associations along continuous
paths by training on a finite number of discrete I/O tuples chosen along the paths. The
generalization in RCBP is based on an approximation through interpolation in both the
weight state sequence and the activity state sequence. As for FCBP, various interpolation

techniques may be applied.

In RCBP, the minimal number of hidden units are again determined according to the
number of I/O paths. However due to extra inputs to neurons provided by the recurrent

links the solution weight state may exist for a given number of I/O paths without as many
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hidden units as FCBP requires. As for FCBP, the number of hidden units is relatively
much smaller than the number for all the I/O training tuples in all the /O paths. The same

number of hidden units is used for each different position.

5.2.4 SUMMARY FEATURES OF THE RCBP APPROACH :

The approach serves as an example to show the basic concept and methodology of the path-
based approach with internal activity states. The aim is to make a contribution to the

control of recurrent activity through the property of continuity.
» The effect of time appears through the sequential change of position:

During training, the set of activity states at the current position are evolved from the set of
activity states at the previous position together with the learnt weight state and I/O set
associated with current position. The first goal weight state is found using RBP. The rest
of the goal weight states, each associated with one position, are found using feedforward
SBP with the activity states treated as extra inputs at a position. The effect of past history

is represented through the activity state transitions.

» Each activity state at the previous position contributes to determining suitable internal

states at the current position. This provides a dynamic system with one-many associations.

» Continuous control over the activity path may be derived from underlying continuity
amongst the I/O. The activity path may be evolved under a degree of continuous control.

This is achieved through equilibrium and the dynamic rule described in Eq.(5.1).

* The sequential nature of I/O associations has been further developed in the RCBP
approach compared with that in the FCBP approach through the activity sequence. RCBP
should be considered as an approach to providing path-based dynamic models in neural
networks. Although RCBP only has a single internal state at the first training position, the
technique nevertheless provides a path-based dynamic system for dealing with one-many

associations




5.3 The RCBP Training Scheme

An RCBP training regime has been designed based on the theory in the previous section.
The implementation of the regime has been carried out using the simulator cbptool and
will be described in chapter 7. Some experimental results based on the regime can be

tound in Chapter 6.

In RCBP, the regime can be used for training more than one I/O target path. The error-
weight gradient, learning rate and momentum coefficient values are all calculated as in
conventional backpropagation. The direction and amount of each weight state and activity
state transition however are computed by one of two methods depending on the two kinds

of training positions: the first training position or the others.

The strategy of the weight state transitions in RCBP is similar to that used by the regime 1I
of the FCBP approach. That is, consecutive weight state transitions are repeatedly made at
each particular I/O position until the errors are below a fixed universal tolerance. At each
position the last weight state therefore results from a sequence of weight state transitions
which are made for the position. The termination of overall training on the position is
tested by this last weight state. Only then does the training move on to the next /O
position. This test has training under the regime continue until there is a complete traversal
of /O positions on the paths with satisfactorily low error. All the last weight states at each

position then form the goal weight state sequence.

The activity state transition and the calculation of the gradient descent along the error-
weight surface for finding a goal weight state can be described in the following way: At the
first training position, a goal weight state is found by using the fixed-point recurrent
network learning algorithm RBP (see Pineda, 1987; Almeida, 1987; Rohwer, 1987). The
set of current activity states are obtained for the network at equilibrium. An activity state is
trained for each training path at the first position. This forms the first set of activity states

for the generated activity sequences. For the second and all subsequent positions, the set
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of generated activity states at the previous training position and the I/O values at the current
position act as parametric indexes for the error-weight surface used for finding the goal
weight state at the current position. When a goal weight state has been found, a correct set
of activity states for producing the desired outputs is generated by the set at the previous
position, together with the current environment input. This set of activity states is then

taken to be the set of generated activity values for the position.

Suppose we are to train I/O values along m paths, where each of the paths has n training

positions. Let the k% of such sequences be:

k > .
Tl T 8
where Sf‘ denotes the combination of input value I:c and output value 0:‘ at ™ training
position along the kth sequence. We wish to find a sequence of learnt goal weight states

W], WZ, ...Wn,

and a learnt goal activity states sequence

k Lk k
AI’ Az, An.
A more formal representation can be written showing the relationship of input, target
output, activity and weight through two sequences of sets below in Fig.5.3. Each set in
both sequences corresponds to each training position. The first is the sequence of variable
sets for training, the second represents the sets of results which show the goal of weight
state and the generated activity state when the training has completed at the position during

training.

In Fig.5.3, A%

init and Wiy denotes the initial activity state and weight state before training

commences respectively. Each learnt goal activity and weight state is carried forward to the

next training position.
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It can be seen that training in RCBP finds each goal weight state for each training position
using conventional BP. The technique then computes the set of generated activities at the
current position and stores these weight and activities indexed by position.

ko ok ko k ko k
beforetra'ming:{ ] Ainit}, { S2 Az}, { Sp An-]}
Wn-l

init Wi

VA

after training: { W, Al;} { W Ag } { W AI:!}
Fig. 5.3 A picture of RCBP training

During training, at each position the set of generated activity states from the previous
position need to be present so that current activities can be computed. During performance,
only the set of activity states at the first position together with the sequence of the goal
weight states need to be stored. The whole sequence of the activity state sets does not need
to be stored because this sequence can be generated from the very first set with the help of

the learnt goal weight state sequence and I/O sequences during performance.

5.4 The RCBP Generalization Scheme

A major aim of the RCBP approach is to use a goal weight path representing a transition
sequence of I/O machines within the same network with a generated activity path as internal
states to provide the desired I/O associations for untrained as well as trained inputs. In
principle, generalization in RCBP is very similar to that in FCBP. All the interpolation
techniques applied in FCBP for approximating a goal weight state path can be considered

and employed here for approximating a goal weight state path and activity state path.

Generalisation in RCBP can also be considered in both spatial and temporal aspects when

an appropriate space-time scheme is introduced (refer to the discussions in §4.3.2).
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However, discussion of these aspects would be very similar to FCBP. Consequently,

discussion of generalisation technique is restricted here to interpolation aspects.

The linear-interpolation technique (LIT) as a generalization regime described in FCBP
(8§4.5) has also been explored and implemented in RCBP. The implementation of the LIT

regime has been carried out in the simulator cbptool (§7.5.5).
.Linear interpolation technique for RCBP

For approximating a goal weight state for an untrained I/O pattern associated with an
untrained position, a linear interpolation is employed. This uses two leamt weight states
associated with two trained positions which are the neighbouring trained positions of the

position associated with the untrained pattern along the training or generalization path.

The approximated weight state for the untrained pattern is carried out by using the learnt
weight states. If the untrained pattern is the it untrained pattern for recognition out of &
such patterns regularly spaced between two neighbouring trained patterns, the
approximated weight state can be calculated where each component of the weight has the
form: W, + (7:1—) (w2 - W, ), where W, and w, are the values of corresponding

component weights in the two trained weight states.

For approximating an activity state associated with an untrained position, a slightly more
complex way of approximating can be done. The untrained activities will be computed in
the same way as the trained activities. That is, in order to approximate the activity
associated with the untrained position (i+k), O<k<1(where k is the k! untrained pattern for
recognition out of n such patterns regularly spaced between two neighbouring trained
activity states A; and A;4j), the previous activity state at position (i-/+k) is used in
conjunction with the weight state and environmental input at (i+k). A recursive
approximation of the previous activity would involve all previous moments and hence be

time consuming. Instead, an interpolation similar to that for the weights is used based on
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the trained activities at (i-7) and i. That is, the activity state at (i-/+k) is calculated

according Lo :

k
a+ o (%279

where a; and ay are the values of the corresponding component activity values in the two

trained activity states at (i-7) and i.

This rule of finding suitable training positions can be applied to all the untrained positions
except the positions between the first and second training positions. For these positions,
there is no previous activity information available. For approximating any untrained
activity states between the first and second training positions, the generated learnt activity
states at the first and second positions are used to directly interpolate the required activity

state using the above expression.
5.5 Conclusions

The RCBP approach has been introduced in this chapter. Through a close look and
discussion of the approach from the structure design to the inherent features of the model, it
is clear that RCBP is similar to the FCBP approach in the sense that both approaches are
based on paths, but RCBP is a very different approach in comparison with FCBP, by
controlling the dynamics of activity states of units in networks, RCBP provides an

approach of path-based dynamic system.

The major features of RCBP have been summarised in §5.2.4. A comparison with the

features of PBP and FCBP is as follows:

(1) Like FCBP, RCBP is a sequential technique which allows arbitrary approximations of a
set of continuous I/O associations within a given topology. RCBP provides a dynamic

system with input in contrast to FCBP's I/O function.

(2) A trained network in RCBP produces multiple I/O associations in the form of desired

output paths when the two constraints similar to that in FCBP are obeyed. The first
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constraint is that each of the paths has the same number of the training positions. The
second is that there are no one-many associations involved at the first training position.
The desired output paths can be produced in reaction to independent switches in the input
paths and associated internal state paths during performance though it is much more
restricted in the independence than that in FCBP. The restriction on the independence
switches is that in RCBP the switch cannot happen at each moment but after complete

traversal of a training path.

(3) In providing a version of a path-based approach with dynamic system features, RCBP
offers an extension of the FCBP approach. The temporal structure and internal states allow
variable approximation within a controlled and fixed size network with controllable internal

states.
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CHAPTER 6

EXPERIMENTS AND ANALYSIS ON FCBP AND RCBP

6.1 Introduction

In this chapter, several experiments based on both the FCBP and RCBP models are
presented and their results are analysed. These experimental examples are not only chosen
to show the concepts and methodologies of both new models in practice, but are also used
to explore the basic features associated with the particular capacities of training and

generalization in dealing with temporal and sequential signal processing using the models.

In §6.2, a simple example is chosen to demonstrate what FCBP can do within a fixed
topology with enough memory while SBP needs increasingly many hidden units and hence
takes a longer time. This gives an insight into the analogue and sequential aspects of
FCBP. In section §6.3, more capabilities of FCBP are shown in exploring generalization
and features of the hidden units in FCBP. In §6.4 comparisons of the training speed and
generalization accuracy of both FCBP and SBP models are presented. In §6.5 a set of
experiments are carried out to test if the concepts embodied in the FCBP will also help to
speed up training when the goal of training is a single weight state. In §6.6 an example
shows that training on RCBP can be carried out and used to approximate complicated
signal processing tasks which are not achievable by applying FCBP. Finally conclusions

are presented in §6.7.

6.2 What FCBP can do without hidden units

Here we present how the training by FCBP is fundamentally different from the SBP

approach.
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6.2.1 CXOR TASK DESCRIPTION

A feedforward neural network will be trained on a task to exemplify the analogue and
sequential aspects of FCBP. The general task is to associate correctly the inputs from
particular positions around the edges of an unit square in a 2-D input space with desired
output values. The network has two input units and one output unit. Suppose the

associated output value & is based on a continuous function of the form:
0= (1-2¢) |l input; - inputy | + € (6.1)

where € is a constant within a range such that 0 < € < 0.5. According to this equation,
when the paired combinations of input values are chosen along the edges of the unit square,
the output value § will either increase or decrease linearly from one extreme value, €, to the

other, 1-¢, along each side of the unit square. The I/O relationship is shown in Fig. 6.1.

The four input pairs at the corners of the unit square are (0,0), (1,0), (1,1) and (0,1).

According to Eq (6.1) the output values have the extreme values of € or 1-e. Both values
are found at the corners in alternation around the unit square starting with the value €
associated with (0,0). It can be seen that this problem is equivalent to the well known
XOR problem. Because the XOR problem can be considered as a special case within the

continuous unit square problem, we name this task a Continuous XOR problem (CXOR).

CXOR is a kind of problem which involves continuous analogue I/O mappings based on
using a given discrete /O mapping to approximate the underlying continuous one. There
are two major reasons for selecting this general task. Firstly, the incorporation of the XOR
problem will allow us to show results which are comparable to those familiar in
conventional BP. Secondly, since there is only a single I/O path associated with the task, it
helps to show clearly the difference between FCBP and SBP both in training and

generalization at a simple level.
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Several specific tasks are derived from this general task by varying the training set. In the
following two sections, training is carried out based on the I/O tuples chosen from the
square using a simple network structure shown in Fig. 6.2. This problem serves as an
introduction to FCBP without hidden units. The experimental results show some

fundamental differences between FCBP and SBP.

6.2.2 TRAINING CXOR WITHOUT HIDDEN UNITS

Three experiments are carried out on two sets of I/O training tuples which are all chosen
along the edges of the unit square but with two different step sizes between tuples; the
associated output values are assigned based on the I/O relationship described in Eq. (6.1)
with € =0.2. One set of the input training tuples are chosen along the edges with step 1.0
(4 tuples) and the others with step 0.25 (16 tuples). All three experiments are based on 100
different initial weight states initialised randomly within the range of -1.0 and 1.0. The

output tolerance B is chosen to decide the universal error tolerance 0.582 in training.

The learning rates displayed in the results were found as follows: A preliminary
investigation shows that the interval of [5,15] yields fixed learning rates producing
successful training for most cases. This interval was explored by randomly searching for
the first successful integer learning rate. If no integers in the interval produced successful
training, failure was recorded. In all successful cases, the learning rates of either 0.5 above
or below the successful integer learning rate value were tried out to make a final

improvement in finding the best of the three learning rates for each experiment.
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Fig. 6.1 The VO relationship of CXOR Fig. 6.2 The 2-1 network

According to the chosen training tuples and parameters described above, the training results
based on both FCBP and SBP approaches are shown in Table 6.0 using the network
shown in Fig. 6.2 and regime FCBP-IL

Table 6.0 Training on CXOR using FCBP

index training output learning rate { number of weight | successful
step size tolerance transitions trials
@] 1.00 0.2 11.0 4.96 100
@2 0.25 0.2 11.0 16.01 100
@3 0.25 0.05 10.5 21.83 100

The experiment in @2 is based on chosing more discrete I/O analogue tuples along the
square compared with that in @1. The experiment in @3 is based on increasing the

accuracy required at each training position.

The results in Table 6.0 show that (1) when based on the same output training tolerance
0.2, the average number of weight transitions per position (i.e. the inverse of the training
speed) is slightly decreased when the number of the training tuples is increased, but the
total number of transitions is significantly increases; (2) Compared with those in @2, the
results in @3 show that the accuracy of the training can be substantially increased without

an excessive increase in training time.




The results confirm the theory that: 1) no hidden units are needed in these training cases; 2)
the accuracy of approximation to the underlying continuous function can be raised by
increasing the number of I/O tuples without changing the structure of the network (see

§4.2.1).

The above training problems cannot be tackled using the conventional SBP approach if no
hidden units are used. A number of hidden units are needed for the SBP approach because
the 4 or 16 training tuples are linearly inseparable without hidden units for any output
training tolerance (See §3.2). Therefore the training of the network shown in Fig. 6.2 fails
when based on the SBP approach. However, training succeeds and is fast when based on

the FCBP approach.

6.2.3 TRAINING CXOR TO EXPLORE THE FEATURE OF STEPPING STONES

Another set of experiments on CXOR is made for testing the feature of ‘stepping stones’ in
FCBP using the network shown in Fig. 6.2 and regime FCBP-1. Each ‘stepping stone’ is
an extra training position chosen along I/O paths and it is employed to play a role in the
training process but is not used in testing the goal weight state for stopping training. It is
used to explore experimentally what the relationship is between adding extra training tuples
and the training feasibility with various training accuracies. The accuracy is the output

tolerance in training.

All experiments are based on 100 trials and a set of suitable learning rate values, which
both are chosen or found in the way described in §6.2.2. Here experiments tested training
feasibility through three groups of recognition and training sets. Each recognition set
consists of the tuples which are the desired I/O after training. These tuples are selected
along the edge of the unit square with a certain training step size. Repeatedly halving the
training step size relative to the recognition step size produces the related training sets in the
group. The training tuples which are not in the recognition sets are extra tuples, they act as

stepping stones for speeding up the training. The total number of weight transitions is
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recorded when the first loop of the learnt weight states for the associated recognition tuples

has been found. Table 6.1. shows the results.

Table 6.1 Training on FCBP-I

index | recognition training output |learning [number of weight |successful
step size step size |tolerance| rate transitions trials
@l 1.00 1.00 0.2 14.5 5.278 36
@2 1.00 0.50 0.2 7.8 16.04 100
@3 1.00 0.25 0.2 15.0 16.00 100
@4 1.00 0.125 0.2 15.0 32.00 100
@5 1.00 0.0625 0.2 15.0 64.00 100
@6 0.50 0.50 0.1 - - 0
@7 0.50 0.25 0.1 10 19.31 100
@8 0.50 0.125 0.1 13 32.18 100
@10 0.25 0.25 0.05 - - 0
@11 0.25 0.125 0.05 13.5 36.01 100
@12 0.25 0.0625 0.05 15.0 64.25 100

It can be seen that training is very fast in most cases. But there are also some poorer results
and complete failures. The failures here all happened when the training step size is the
same as that of the recognition step size. In those cases, training was either mostly or

entirely unsuccessful over the learning rate range [5,15] (in @1, @6 and @10).

It is suggested that the above failures arise because FCBP-I requires a degree of precision
in the single weight changes between error-weight surfaces. There is a need to land at a
weight state for the current I/O tuple which has a suitable error-weight gradient to generate
an immediately successful next weight state for the next I/O tuple. As this need is generally
uncertain to be satistied for all the consecutive I/O tuples around the /O cycle, this regime's
training may take a longer or infeasible time as in the cases with more I/O tuples in the

training set (such as that in @6 and @10).
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In all other cases, the results show that : (1) There were no training failures in all those
cases with stepping stones; (2) The average number of transitions per position was not
increased but decreased with the increase of the number of the training positions. This
suggests that extra training tuples bring extra intermediate error-weight training surfaces

which benefit the smoothness of training.

6.3 FCBP training and generalization with hidden units

In §6.2, the experiments have shown that hidden units are not needed in some situations by
FCBP where SBP needs them. However hidden units still play an important role in the
FCBP approach. Details of the role of hidden units in FCBP models have been discussed
in section §4.2.1. Here experiments show the results for the training and generalisation
involved in more complex problems where hidden units are needed in FCBP. It is hoped
that this set of experiments can help us to explore and see the FCBP capability more
completely. The training results for FCBP are also intended to show the trade-off between
doing several searches in a number of relatively small weight space against doing a single

search in a relatively large weight space.

6.3.1 TASK DESCRIPTION AND DISCUSSION

A 4-spirals problem is used to show how the training and generalization are carried out
using the FCBP approach where hidden units are required. In this section a description of

the task is given.

The 4-spirals problem is a sequential variant of Wieland’s 2-spirals problem (Lang &
Wiltbrock, 1988). That is, there is a natural set of 4 1/O paths given by the 4 spirals. In the
4-spirals problem, there are four nested spirals used as the 4 paths, the ones starting in the
north and south positions have an associated analogue target output range between 0.0 and

0.4 interpreted as 0, and the other two starting in the east and west positions have a target
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range between (.6 and 1.0 interpreted as 1 (Fig. 6.3). A single system is needed to

approximate the associations of the 4-spirals.

4-spirals input

10
N
input 2 01 *+ E
S
LI
'10 T T T
-10 0 10

Fig. 6.3 The 4-spirals picture
As mentioned in §4.6, FCBP can be applied to approximate a single system for
associations along several /O paths as long as the I/O paths are subject to the two

restrictions summarised in §4.6.

In the 4-spirals problem, each position consists of I/O tuples at the same distance along
their respective spirals. At each position there are four linearly inseparable I/O values along
the different spirals which need to be assigned the same goal weight state. The four
inseparable values entail an architecture for FCBP with a power similar to that needed for
solving the XOR problem using conventional BP. That is, at each training position the
training is similar to solving the XOR problem. So the 4-spirals problem requires the use

of hidden units in FCBP.

Two kinds of network topologies for the 4-spirals problem have been examined. One has a
single layer of 2 hidden units (Fig. 6.4) which, being equivalent to solving XOR in SBP,
is one of the smallest strictly layered architectures for training the 4-spirals problem in
FCBP. The other is a fully connected (§1.4) feedforward network with three hidden layers

as shown in Fig. 6.5 which is not just an example of an over rich structure for training the

— 111 —




problem in FCBP but also is the structure used by Lang and Witbrock’s SBP approach for
the 2-spirals problem (1988). It was chosen since it will help to do comparisons with
SBP. All experiments on the 4-spirals problem use these two network topologies.

5 hidden 5 hidden 5 hidden

Ik 1 output

E|

Fig. 6.4 The 2-2-1 Network Fig. 6.5 The 2-5-5-5-1 network

]

i

6.3.2 TRAINING RESULTS AND ANALYSIS

Training on the 4-spirals problem was made using the two network topologies mentioned
in the previous section. Both topologies were tested for a good pair of learning rate and
momentum coefficient values over 100 trials where the initial weight states were chosen
randomly within the range -0.1 and +0.1. As suggested by Fahlman (1988), the learning
rate and momentum coefficient values were preliminarily investigated within the range of
[0,1], in the way described in §6.2.3. The average number of weight state transitions
taken for a successful trial was computed where a goal path was found within 20,000 and
40,000 weight state transitions at each training position for the 2-2-1 and 2-5-5-5-1

topologies respectively.

The training regime used is that of regime II for each 97 training positions. The training
positions start from the inside and go towards the outside of the spirals with a constant
angle of change. The results of training the 4-spirals problem using FCBP are shown in

Table 6.2.
Table 6.2 Training results for the 4-spirals problem

index | network [learningmomentumbuccessful average total wt| ave. wt transitions
topology rate value trials transitions on first position
@1 2-2-1 1.0 0.9 89 10,600 1,973
@2 |2-5-5-5-1| 0.15 0.9 100 22,916 20,906

Here output tolerance = 0.2;
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As discussed in chapter 4, an important feature of FCBP is that when the input training data
are chosen with an underlying continuity, there is the inherent feature of closeness between
weight states associated with consecutive training positions. This again implies that the
FCBP approach can make use of this feature in training to achieve the goal weight sequence
quickly. The training speed should increase significantly after training has been completed

at the first training position.

The data obtained is in support of this hypothesis. The succeeding weight states are
obtained very much more quickly compared with getting the weight state for the first
position — the average number of the weight state transitions for the first I/O position is
7,973 and 20,906 for the two test cases, and the total weight state transitions are much less

than 7,973*97 and 20,906*97 respectively.

It is also noted that the number of weight state transitions at each training position is
affected by the number of hidden units. Training with a single strict layer of hidden units
based on a simple network topology is much faster than that based on the more complicated
topology. This can be seen from the data recorded for the total average weight state
transitions in @1 and @2 in Table 6.2. These results are consistent with those of Samad

(1988) for XOR using SBP and those of Plaut, Nowlan and Hinton (1986).

6.3.3 GENERALIZATION AND RESULTS ANALYSIS

As discussed in §4.3.2, generalization in FCBP is aimed at approximating continuous
paths. The testing of generalisation ability involves assessing the tuples belonging to a
performance set! defined in each task with a given tolerance after training on a finite
training set2. It is then supposed that, given a small enough distance between consecutive

test members, all members of the actual trained continuous sequential functions are close

1 Each element of the set is an input tuple used for testing of associations, no matter if the tuple has been
trained or not.

2 Each element of the set has been trained and a suitable weight-state has been found for the I/O association.
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enough to the target functions. In FCBP, a linear interpolation technique is applied to
approximate a goal weight state using a discrete sequence of learnt weight states for the
generalization. If the difference between the actual output and its target value for each input
pattern to be performed is less than a given tolerance, this is a satisfactory generalisation.
An absolute output tolerance for generalisation independent of any tested finite performance
set is used to define a particular level of approximation. This is called generalization
tolerance throughout this thesis. Suppose the tolerance is (.2, this means that actual

outputs within the range of (8-0.2, 8+0.2) will be acceptable, where 8 is the desired target

output value.

For the 4-spirals problem, generalization is carried out by choosing a performance set
based on the training set described in §6.3.2. That is, three extra positions were interposed
between each pair of consecutive trained I/O positions for performance. So a total of 385
I/0 positions, i.e. a total of 1540 I/O tuples, makes up the performance set for
generalization. As for the output tolerance for training, the generalization tolerance is 0.2

here.

Two sets of generalization experiments have been made based on the same performance

sets using two different network topologies.

In the first experiment, the generalization is tested on the 89 successfully trained goal
weight state sequences based on the 2-2-1 network; the second is based on the results of
the 100 successtully trained goal weight sequences based on the 2-5-5-5-1 network. The

results are shown in Table 6.3 below.

Table 6.3 The generalization of 4-spirals problem

index network topology | No. of average successful generalisation tuples
@l 2-2-1 1540
@2 2-5-5-5-1 1534

Here No. of trained tuples = 388; No. of performance tuples =1540; generalisation tolerance =0.2;
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The data obtained show that the generalization accuracy is decreased for training on the
more complicated topology. From the results in @1, there is no failure in the
generalisation based on the 2-2-1 network. However, for each trial there are about 0.5% (
i.e. 6/(1540-388) ) untrained tuples which cannot be approximated within the tolerance 0.2
when the generalization is performed based on the 2-5-5-5-1 network. These results are
consistent with the analyses on the relationship between the number of hidden units and the

generalization accuracy made by Hinton (1989, 1991).

6.4 Comparison of FCBP and SBP

Besides showing the features of FCBP, one of the other reasons for choosing the two
problems in the experiments is that the problem types are well known as benchmarks in the
SBP approach This allows us to compare the FCBP results with those existing results for

SBP in both training and generalization.

There are two kinds of comparisons throughout the set of experiments. One comparison is
based on what will be called general comparison, where each experiment has its own
suitable training parameters. The training speed and generalization accuracy of both the
FCBP and SBP approaches can be compared based on each one’s suitable network
topology and the other parameters. The other comparison is called strict comparison in the
sense of both training being carried out within the environment of having common features

for the two approaches.

The first comparisons are made for the' XOR problem. When the step size is 1.0, the
CXOR problem is to train a single path with 4 training positions in FCBP, and this
becomes the XOR problem in SBP. Two kinds of comparisons have been made, each
involving experiments based on the two approaches respectively. Here two strict
comparisons are made using the parameters and topology which are suited to SBP and

FCBP respectively.
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Another set of comparisons are made for the spirals problems. Because the 2-spirals
problem is only a simple problem for FCBP — a single layer network without hidden units
can solve it, the 4-spirals problem is used instead to show a problem in FCBP where
hidden units are needed. The training and generalization results have been compared with
those obtained in the 2-spirals problem. Results have also obtained from the two different
problems using the two approaches: 2-spirals in SBP and 4-spirals in FCBP each based on

two kinds of topology: one is in favour of FCBP, the other is in favour of SBP.

6.4.1 TRAINING

* Training of the CXOR problem

The method employed for the strict training comparison is to find the optimum results for
each approach using two sets of parameters: for two different topologies, learning rates and

momentum coefficients.

The version of SBP used is the same as that of conventional BP on feedforward networks
described by McClelland and Rumelhart (Jones and Hoskins, 1987) except in the
termination criteria which are altered to be the same as for FCBP-II at each training position

(8§4.4). The results are shown in Table 6.4 below.

Table 6.4 The comparison of training on CXOR problem

index [topology |learning rate /momentum |regime weight- training
transitions failures
@1 2-1 11.0 0.0 FCBP-11 4.96 0
@2 2-2-1 0.9 0.9 FCBP-11 22.82 0
@3 2-2-1 0.9 0.9 SBP 815 9
@4 2-2-1 10.0 0.0 FCBP-II 4.80 0
@5 2-2-1 10.0 0.0 SBP 852 23

Here training step =1.0; output tolerance =0.2; Maximum no. of weight transitions = 2000
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The best set of training results on FCBP are shown in @1 and @4 for the two different
topologies. @1 shows the result of FCBP without hidden units. This can only be used for
a general comparison with the best result for SBP. The best set for SBP is shown in @3.
The strict comparisons use a 2-2-1 structure with two sets of momentum coefficients and

learning rates, each set’s parameters are made to suit one of the approaches.

Note that FCBP training here is significantly faster than SBP. It can also be seen that
training speed and training failure vary in their weight state transitions according to the
learning parameter values. FCBP’s training speed slows down as the learning rate is less
suitable but training is still always successful. For SBP, the training speed slows down
but also the training failures increase for less suitable learning parameters. This suggests

that the FCBP training is more robust, at least for this problem, compared with SBP.

* Training of the spirals problem

The 4-spirals problem in FCBP is similar to the 2-spirals problem in SBP in the sense of

hidden units being needed in both cases.

For the SBP approach the 4-spirals problem is just a similar but more complicated problem
than the 2-spirals problem. More training tuples and more complex decision regions are
involved in finding a single weight state in the 4-spirals problem. Thus it is very likely that
more hidden units and a longer training time may be needed compared with the resources
needed in solving the 2-spirals problem (refer to §3.2 for more discussions on the
relationship between the number of hidden units and I/O training tuples). A effort has been

made for solving the problem using SBP in order to see the training feasibility.

There is no precise formula for how to design a topology for sizeable problem (§3.2).
Lang and Witbrock (1988) use a formula of 1 bit per I/O pair and 1.5 bits of information
per link in designing their network for the 2-spirals problem. The network used here is

designed as a fully connected feedforward network with two input units and one output
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unit in the input and output layer respectively, three hidden layers with 5, 14 and 5 units at
each layer. Together with the links from the bias units, there are total of 264 links in the
network and 396 bits of information. This is sufficient to meet the requirement of a total of
97*4 i.e. 388 bits of information for training in the 4-spirals problem when there are 97
training tuples chosen along each spiral. An experiment with three trials has been made to
train the 4-spirals problem on the designed network topology with learning rate 0.001 and
momentum coefficient value 0.5 using the SBP approach. For each trial, the initial weight
states were randomly chosen within the range of -0.1 and 0.1 as suggested by Lang and

Witbrock.

All experimental results are shown in Table 6.5. From @1 to @4, a successful trial is the
one which has found a goal weight state for each of the 97 I/O positions within 20,000
weight state transitions. For @5, a successful trial is one finding a goal weight state for the
388 (i.e. 97*4) 1/O tuples within 50,000 epochs which is 19,400,000 weight state

transitions.

Table 6.5 A comparison of training on 4-spiral and 2-spirals problems

index] topology {problem|training| learning rate [momentum| regime weight-
failures transitions
@1 2-1 2spirals| 0/100 0.45 0.0 FCBP-II 714.46
@2 |2-5-5-5-1]2spirals{ /3 |[0.001,0.002]] [0.5,0.95] | SBP 3,666,600
@3 2-2-1 |4spirals| 11/100 1.0 0.9 FCBP-1I 10,600
@4 | 2-5-5-5-1]4spirals| 0/100 0.15 0.9 FCBP-II 22,916
@5 |2-5-14-5-1f 4spirals| 3/3 0.001 0.5 SBP >19,400,000

Here output tolerance is 0.2 for FCBP and binary for SBP.

@1 and @2 show the results of training based on the FCBP and SBP for the 2-spirals
problem. This tell us that in FCBP the 2-spirals problem can be solved without hidden
units in an average of 714.46 total weight state transitions for each trial. This is compared

with 3,666,600 total weight state transitions for the same number of I/O positions but half
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the number of I/O tuples for the best result reported by Lang and Witbrock (1988) with the

SBP approach.

Also, it is noted that FCBP needs less hidden units for training but more weight states to be
stored comparing to the SBP approach. In FCBP the number of hidden units is dependent
on the number of the independent training tuples at each position. This number is much
less than the number required by the SBP approach for solving the problem. However,
extra memory is required to store the learnt goal weight states sequence in FCBP. In a
particular cases, this is dependent on the number of training positions and the size of the
network topology. For the 2-spirals problem, FCBP uses 291 weight values (i.e. 97*3
links) whereas Lang and Witbrock uses 138 weight values (1 weight state * 138 links)
against speeds of 714.46 for FCBP and 3,666,600 for SBP, this gives an example of the

trade off between the memories and the training speed in FCBP.

As described in §6.3.2, in FCBP the 4-spirals problem can be solved using the 2-2-1
structure in an average of 10,600 total weight state transitions for each trial. This is also
compared with the 3,666,600 weight state transitions reported for the 2-spirals problem
using SBP. According to Lang and Witbrock's formula, FCBP uses 873 (i.e. 97*9 links)
whereas SBP uses 264 weight values against speeds of 10,600 tor FCBP and at least
infeasible for SBP.

The 4-spirals problem is also trained in FCBP using the more complicated topology,
employed by Lang and Witbrock’s SBP approach for the 2-spirals problem to compare the
training speeds. Results in @4 show that the network topology is significant for the FCBP
training. The richer topology doubles the training time, this time is still significantly less
though than that of SBP’s training for the 2-spirals problem (in @2). Finally the data in
@5 shows that no training has been successfully completed within 50,000 epochs for 4-
spirals problem in SBP. This gives an indicator as to SBP’s infeasibility for the 4-spirals

problem.
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6.4.2 GENERALIZATION

In FCBP, generalization involves interpolating weight states for the untrained tuples
through the learnt weight state sequence. In SBP generalization, as a single learnt weight
state is used for all the untrained tuples, it is then, in weight space, a constant interpolation,
i.e. of order 0. The comparisons for generalization presented here are based again on the

CXOR problem and the spiral problems.

* Generalization of the CXOR problem

Several experiments have been made for both showing generalization for the FCBP
approach itself with various topologies and parameters and for comparisons based on both

the SBP and FCBP approaches.

Both general and strict comparisons are made for generalization (§6.4). The training
parameter equalities in strict comparison especially are intended to eliminate unwanted

interference from training differences on generalization.

Within the FCBP approach, differences are examined by having the training accuracy o
vary so as to reveal trends in the generalizations based on different learnt goal weight state

sequences.

For comparisons made between the two approaches, generalization differences are explored
based on learnt goal weight sequences obtained by having a suitable network topology and
training parameters with different training accuracies. This is to see if the topology and
other training parameters are a factor in the generalization results. FCBP and SBP have
been compared for their approximation accuracy to the continuous target function described
in Eq. (6.1) when the performance step generating both trained and untrained inputs is 0.25
using those goal weight sequences which obtained when the training step size is 1.0. The
network topology is shown in Fig. 6.4. Three sets of training parameters with various

training tolerances were used.
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The results are shown in Table 6.6. The best set of the generalization results on FCBP are
shown in @1, @2 and @3 with three different training tolerances. The data shows that the
total error in generalization is significantly decreased when the training tolerance is reduced
in FCBP. The associated network topology without hidden units is not able to learn a
single goal weight state for CXOR in SBP. Hence no strict comparison may be made

based on this topology.

The strict comparisons with SBP are shown from @4 to @9 using a network topology
which is suitable for SBP. @4 to @6 show the results using a set of good training
parameters (learning rate and momentum coefficient) for SBP, @7 to @9 show those using
a set of the good parameters for FCBP. The results of the FCBP approach are significantly
more accurate than SBP regardless of which set of training parameters are taken in @4 to

@9.

Table 6.6 Comparison of generalization on CXOR

index | network |learning fmomentumitraining output| SBP average |FCBP average
topology rate value tolerance total error total error
@1 2-1 11.0 0.0 0.20 - 0.003
@2 2-1 11.0 0.0 0.10 - 0.0015
@3 2-1 11.0 0.0 0.05 - 0.0007
@4 2-2-1 0.9 0.9 - 0.20 0.006 0.0046
@5 2-2-1 0.9 0.9 0.10 0.005 0.0009
@6 2-2-1 0.9 0.9 0.05 0.005 0.0004
@7 2-2-1 10.0 0.0 0.20 0.016 0.0034
@8 2-2-1 10.0 0.0 0.10 0.014 0.0004
@9 2-2-1 10.0 0.0 0.05 0.014 0.0002

For each trial: No. of training tuples=4; No. of performance tuples=16;

As an aside, it was found that the final learnt weight states vary slightly in their closeness to

the ideal goal weight state path according to the learning parameter values. However, the
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major trend is shown in the table and is that FCBP’s error per I/O performance tuple
decreases rapidly with respect to that of SBP as the training tolerance is reduced. At the
smallest training tolerances shown, the difference of both approaches in error of is 1(in
@6) or 2 (in @9) orders in magnitude. This suggests that the loops of ideal weight
variation between consecutive trained inputs for SBP are relatively significant for
producing accurate output whereas the non-linear variation in the ideal weight states for
FCBP is relatively insignificant (see Fig. 6.6 for two intuitive pictures of the ideal goal
weight paths). Also the data in the two columns showing the total average errors suggest
that the training parameters for SBP are relatively significant for producing an accurate
generalization whereas the parameters for FCBP are less relatively significant. This is

shown in the following two graphs in the Fig. 6.7a and Fig. 6.7b.

path b

Fig. 6.6 An intuition picture of the ideal goal weight path for FCBP (path a) and SBP
(path b). The filled circles represent the learnt weight states. The polygon shows the
weight path produced by linear interpolation for FCBP.
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In the above pictures, the black filled bars represent the errors when the less suitable

training parameters are used and the grey bars represent the errors with suitable parameters.

* Generalization of the spirals problem

The comparisons made show the generalization capability and accuracy of FCBP when the

associated network has hidden units.

The 2-spirals problem is already a complicated problem for SBP, and considerable effort is
needed in order to design a suitable network and to implement the training for the 4-spirals
problem in SBP approach. A limited attempt at the 4-spirals problem with SBP training
has been made without success, therefore no strict comparison can be made with SBP.
However, the 4-spirals problem in FCBP may show a significantly better generalization
compared with that of SBP for the simpler version of a spiral problem — the 2-spirals

problem. This comparison is still a useful indicator of FCBP’s relative power.

Table 6.7 Comparison of generalization on the spirals problem

index net “tcarn. rate pencralizatio | problem regime no. incorrect
topology jnomentum{ n tolerance perform. tuples
@1 2-1 0.45/0.0 0.2 2-spirals FCBP-II 0
@2 | 2-2-1 1.0/ 0.9 0.2 4-spirals FCBP-11 0
@3 [2-5-5-5-1} 0.15/0.9 binary 2-spirals SBP 56
@4 [2-5-5-5-1} 0.15/0.9 binary 4-gpirals FCBP-I1 3

Here No. of performance tuples is 770 for 2-spirals problem and 1540 for 4-spirals problem.

The experiments have been made based on three network structures. The first two
structures ( in @1, @2) are satisfactory for carrying out the 2-spirals and 4-spirals
problems respectively in FCBP but are insufficient for successful training in SBP. The
other structure is that chosen by Lang and Witbrock for the 2-spirals problem in SBP
approach. Although this is an over-rich structure for the 4-spirals problem using FCBP, it

is also used for the 4-spirals problem in FCBP to aid comparison by removing differences

v




due to topology. This is because the differences may be explored by having different

number of hidden units that reveal trends of the generalization in FCBP.

Three extra positions are interposed between each pair of consecutive trained I/O positions
for generalisation. The total of 1540 I/O tuples are used as the performance tuples for
testing 4-spirals generalization. The results presented by Lang and Witbrock in their paper
are used here for comparison with FCBP. Lang and Witbrock also interpose three extra
positions between each pair of consecutive trained I/O positions for performance. This

gives total of 770 I/O tuples for testing 2-spirals generalization.

From the results in @1 and @2, it can be seen that there is no failure in generalization with
a tolerance of 0.2 over the performance set for the 2-spirals or 4-spirals problems in FCBP.
This can be compared with the 56 failures reported in @3 for the 2-spirals problem in SBP
approach with binary classification as the generalization criteria. As binary classification is
less accurate than using (.2 as the generalisation tolerance, the number of the failures in

SBP is very likely increased if the criteria is 0.2.

The result of the 4-spirals problem in FCBP is shown in @4, for all the successful trained
trials, 3 out of a total of 1540 performance tuples are misclassified in FCBP according to
binary interpretation when the over-rich topology 2-5-5-5-1 is used. This is compared
with 56 binary misclassifications out of 770 performance tuples for the best results reported
by Lang and Witbrock for the 2-spirals problem in SBP. Again, the results show the

significant improvement of generalization accuracy by FCBP.

6.5 FCBP and single goal approach

Some basic experiments to explore the relationship between SBP and a hybrid of FCBP

with the single goal weight state approach (FCBP-SBP) are presented here.
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6.5.1 TASK DESCRIPTION

The idea is to see if the stepping stones technique used in FCBP (refer to §6.2.3) can also
speed up the training in finding a single weight state. A number of extra training tuples are
used to help in finding a single weight state for those recognition tuples. As defined in
§6.2.3, the extra training tuples are employed in the training process but are not used in

testing the goal weight state for stopping training.

A feedforward neural network has been used by solving the CXOR problem to explore the
training of finding a single weight state using the stepping stones method. The task is:
training on 32 training tuples chosen along the edges of the unit square but where the single
goal weight state applies only to 4 of the tuples, those consisting of the XOR problem, out
of the 32 tuples. The 28 extra tuples in the 32 training tuples function as stepping stones.

Each of them is one of 7 training tuples between any two recognition tuples.

The aim is to see if these stepping stones can be used to speed up the training for finding a
single goal weight state by smoothing the weight transitions and using a regime similar to
FCBP-I in making one weight change per I/O position, but which continues until a single

goal weight state is found or failure occurs.

6.5.2 TRAINING

In neural terms, this task requires a network having two input units, some number of

hidden units, and one output unit.

The simple network structure used for this set of experiments is shown in Fig. 6.8. The
experiments are carried out with two training approaches. One is the SBP approach; the
other is the modified single goal weight state approach described in §6.5.1, which is

denoted as FCBP-SBP here.
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The FCBP-SBP regime is a combination of the FCBP-I regime and SBP. At each training
position, a single weight state transition is made for all inputs at the position using the
error-weight gradient, learning rate and momentum coefficient as in conventional BP using
the batch method (§1.4). A test for the single goal weight state is made each time a
complete traversal of the all training positions occurs. Training continues until the testing
for the goal weight state is successful or failure occurs. The success implies that the weight
state has errors below a fixed universal tolerance for all training tuples. A single goal

weight state is then found.

For the experiment on the stepping stones method described in §6.5.1 using the FCBP-
SBP approach, the training set consists of 32 training tuples along the edges of the unit
square with a fixed step size 0.125 and has the output associations based on the same I/O
relationship described in Eq. (6.1) with training tolerance 0.2. Both SBP and FCBP-SBP
use a learning rate and momentum coefficient pair over 100 trials where the initial weight
state were chosen randomly within the range -1 and +1. The learning rate and momentum
coefficient values were found again within a suggested range of [0,10] in the way
described in §6.2.3. For the two approaches, the average number of weight state
transitions taken for a successful trial was computed where a goal weight state has to be

found within 10,000 weight state transitions.

6.5.3 RESULTS AND ANALYSIS

The two sets of training results based on the FCBP-SBP and SBP approaches are shown in

Table 6.8.
Table 6.8 Training on CXOR using FCBP-SBP and SBP
index |training fecog. step| regime learning [momentum { weight |fuccessful
step size f size rate value transitions trials
@1 1.0 1.0 SBP 10.0 0.0 377.84 100
@2 0.125 1.0 FCBP-SBP| 0.9 0.5 4192.32 100

Here training output tolerance =0.2; No. training trials= 100; topology 2-5-1.
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Both results are collected for the best set of training parameters for the approaches

respectively.

The experimental result shows that the single weight state can be found through the FCBP-
SBP approach. It also shows that this approach may be much slower compared with that
of the SBP approach using the same network. This implies that the stepping stones used in

FCBP may not be helpful for finding a single weight state. A possible explanation follows:

If we consider the weight state set for each I/O training tuple, the size of the weight state set
depends on both the network architecture and the error tolerance in recognition. Finding a
single weight state as the goal of training is to find a single weight state within the common
goal weight state set intersecting all the goal weight state sets associated with each
recognition I/O tuple. The common weight state set is decided by the recognition tuples,
the network topology and the error tolerance, and it is independent of the existence of the

sets associated with the stepping stones.

During training, the extra stepping stone tuples may prolong the training because the extra
tuples may drive the current weight transition away from goal weight states located within

the common goal weight state set. An intuitive picture is given as follows in Fig.6.9:

Fig. 6.8 The 2-5-1 network Fig. 6.9 The picture of weight state sets

Suppose W1, W2 and W correspond to the three sets of goal weight states associated with
the two training positions and one stepping stone position respectively; p; denotes a goal

weight state within a weight state set. The shaded part in Fig. 6.9 is the common weight
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state set of the sets W and W7, Without the stepping stone method, the weight transitions
in weight space may form a route of pj toward p2. As p2 is within the common weight
state set, the training has succeeded. With the stepping stone method, the weight
transitions may form another route, which is from pj to ps and then on to p3 instead of pa.
As p3 is not in the common set, further transitions to the common set are needed before the
training can stop. This effect appears to have outweighed the extra smoothness of weight

state transitions inherent in the stepping stone methodology.

Conclusion: Adding a number of intermediate training tuples may well make the finding of

a single goal weight state more difficult.

6.6 RCBP training and generalization

In this section, an example is presented to illustrate the features of the Recurrent
Continuous Back-Propagation model (RCBP). It will be shown that problems which
cannot be solved by FCBP are amenable to solution through this path-based dynamic

model.

6.6.1 TASK DESCRIPTION

The task here is to correctly recognize inputs from particular positions around each of 4

elliptical orbits in an I/O space.

All the orbits are of the same shape but ditferent in their direction or orientation (see Fig.
6.10). Each orbit is a path in I/O space which has a projection corresponding to its input
path within the input square in 2-D dimensions. Each orbit’s input path starts from a
different position and moves in either a clockwise or anti-clockwise direction. All the

orbits’ I/O paths lie on a plane with a unique orientation and gradient.

In more detail, the input paths all have the form of an ellipse with centre (0.5,0.5) and

major and minor semi-axes of 0.5 and 0.25. This can be described as follows:
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Let o be the polar angle of an input value from the centre of an orbit’s input path; r the

polar radius of an input value from the centre of an orbit’s input path :

r = (a*b) / V (bcosa )2+(a sinat )2 (6.2)

where a and b are the semi-axes of the ellipse. Then each orbit can be defined by the two

variables x and y in Cartesian coordinates:
x=0.5+ r cosat and y= 0.5 + r sinx (6.3)

The relationships of the orbits’ input paths and output paths z; (i=1,2,3,4) can be defined

as four continuous functions by Eq. (6.4a) to Eq. (6.4d):

z1 = 0.2*%(1-x)+0.6 (6.4a)
z3 = 0.2*y+0.6 (6.4b)
z3 = 0.2*%x+0.6 (6.4¢)
z4 = 0.2*(1-y)+0.6 (6.4d)

for the four orbits respectively. We name this task an intersecting orbits problem.

in2 A input
1.0

in2 ‘ input i input

in2

—_—

i .
orbit 1 e in 1

orbit 4

orbit 2
Fig. 6.10 The I/O relationship of the intersecting orbits problem
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The motivation in selection of the orbits problem is: it is difficult enough to be interesting
because hidden units and internal activity states are involved and hence shows the power

and capability of RCBP.

The intersecting orbits problem cannot be solved by employing FCBP because some one-
many associations are required at some training positions along the paths — different
output values are required at the orbits’ input path intersections (such as when x=y in input

'
space). One-many I/O associations in themselves do not require a recurrent network for
PBP as they do for SBP. It is the fact that the orbits intersect at some training positions

and have different desired output values.

6.6.2 TRAINING AND RESULTS ANALYSIS

Training based on I/O tuples chosen from the 4 orbits are carried out. This serves as an

introduction to see how the RCBP works.

In neural terms, the intersecting orbits problem requires the network to have two input
units, some number of hidden units, one output unit and some connections with recurrent
links. A simple recurrent network has been chosen to meet this requirement and shown in

Fig. 6.11.

r: recurrent link

Fig. 6.11 The 2-2-1 recurrent network

The training was carried out over 30 trials where the initial weight states were chosen

randomly within the range [-1,1]. The learning rate and momentum coefficient values were
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explored within the range of [(),1]"in the way described in §6.2.3. The average number of
weight state transitions taken for a successful trial was computed where a goal weight state

was found within 40,000 weight state transitions at each training position.

The input tuples in training set are chosen along the edges of the ellipses with a constant

step size for the phase ¢ of the orbital period. That is, the set of input training tuples are
chosen along each of the ellipse edges with step size ¢ = n/40, which entails 80 training
positions along each ellipse. The corresponding output values z were derived from the
four I/O relationships described in Eq. (6.4). The position number starts from 1 and is
increased along the direction described in Fig. 6.10 for each of the paths. The training

results are shown below.

Table 6.9 Training results of 4-orbits problem

index | net LO learningmom. jsuccessful| max_wt | ave. wt |ave. wt trans
topology [step rate trials [fransitions ftransitions on first
@1 |2-2-1r* |n/40| 0.7 0.9 25 40,000 11853 642

Here No. of the training trials = 30; output tolerance=0.1 * see Fig. 6.11

From the data, two important conclusions emerge. The first is that the RCBP approach is
viable. Secondly, the training speed is acceptable though the control through continuity

may be not as good as that in FCBP.

At the first training position, although training speed is slower compared to that of the most
of the subsequent positions, the continuity feature of finding weight states along the
training paths is not as good as that in the FCBP approach. In some training positions,
training takes even longer than training at the first training position. This may be explained
as that the weight state is now indexed not only by the underlying continuum of the I/O
training tuple values but also by the activity values of the network. The latter may show
sizeable changes in transition despite the attempts at control through continuity which are
inherent in the design of RCBP. However, the RCBP approach still makes significant use

of the continuity feature in training to achieve the goal weight sequence. When the input
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training data are chosen with underlying continuity, the average training speed over all
training positions is still much faster than that at the first training position. This can be seen
through the number of the average weight transitions needed at each position. The number
is 642 at the first training position and is about 142 at each of the other training positions.
The inherent feature of closeness between consecutive weight states associated with

consecutive training positions plays an important role in RCBP training.

A final aside is that it is more difficult to find a set of suitable training parameters for
satisfactory training in RCBP compared with that in FCBP. Hence the error-weight

surface may be relatively complex for this problem.

6.6.3 GENERALIZATION RESULTS AND ANALYSIS

As presented in §5.4, generalization in RCBP is in principle very similar to the
generalization in FCBP. It is aimed at approximating continuous functions within a given
tolerance by training on a finite number of tuples chosen along the functions. All the

interpolation techniques applied in FCBP for weight states can also be applied here.

In this RCBP experiment, a linear interpolation technique is applied to the learnt goal
weight state and activity state sequences to carry out the generalization. If the difference
between the actual output and its target value for each input pattern in performance is less

than a given tolerance, this is taken to be a satisfactory generalisation.

For the 4-orbits problem, generalization is carried out by choosing a performance set based
on the same rule for choosing a training set. That is, three extra positions were interposed
between each pair of consecutive trained I/O positions for generalisation. So for each trial,
a total of 317 I/O positions or total of 1268 I/O tuples makes up the set for generalization.
The same output tolerance is used as for training, i.e. the generalization tolerance is 0.1

here.
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The generalization is carried out based on the 25 successfully trained weight states and

actlivity state paths based on the 2-2-1 recurrent network. The results are shown in Table

6.10 below.
Table 6.10 The generalization of 4-orbits problem
index | no. of performance tuples no. of successful failure rate of
per trial eneralization tuples per trial | untrained tuples
@1 1268 1261 0.74%

Here generalization tolerance = 0.1; No. of trained trials=25;

The above data shows that the generalization is good. For 25 successfully trained trials,
for each trial, there are 4 paths; each path has 317 generalization test tuples (80 trained
tuples and 237 untrained tuples); the average number of incorrectly performing tuples is
only 0.52, 0.6, 1.7 and 3.3 for the four paths respectively. The average failure rate of the

untrained tuples is about 7/948 for each training trial.

6.7 Electrocardiogram (ECG) addressable memory

In this section, a simple example is chosen to view the features of PBP in dealing with real

world problems.

6.7.1 TASK DESCRIPTION

The task here is to associate each of 4 subjects' analogue ECGs with a particular different
constant output signal through a discrete approximation of the ECGs. The length of the
ECGs was taken to be one complete period of the subject (DYH) with the lowest
frequency. The graphs of those ECGs are shown in Fig.6.12, the chosen data are shown

in Apdx 3.
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Fig.6.12a The ECG of the subject (MKW)
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Fig.6.12b The ECG of the subject (VW)

Fig.6.12b The ECG of the subject (DYH)
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There are four |-D input training paths, where each path consists of a subject's ECG and
four 1-D output paths, one for each input path, where each output path consists of a signal
at a different constant analogue value. In more detail, the output paths z; (i=1,2,3,4) can
be defined as four constant analogue values, which are z1 = 0.2, z3 = 0.4, z3 = 0.6,
24=0.8 for the four ECGs numbered 1,2,3 and 4 respectively in Fig.6.12. We name this

task the ECG addressable memory problem.

The motivation in selection of this problem is that as a real world problem it is small but

difficult enough to be interesting because hidden units and real analogue data are involved.
6.7.2 TRAINING AND RESULTS ANALYSIS

Experiments have been carried out on four sets of input training tuples which are all chosen
along the paths of the ECGs either with or without normalisation of the raw real world
data. The input tuples in the training set are chosen along the paths of the ECGs with each
path value at a position corresponding {0 a common moment in time and with various time
steps between positions. The latter variation occurs because the set of input training tuples
are chosen along each ECG to ensure that all the peaks and troughs of each ECG are
chosen. This entailed 27 training positions where each position contains at least one peak
or trough value. The position number is increased in the direction of increasing elapsed
time for each ECG path. The associated output values z were assigned based on the I/O

relationship described above.

In neural terms, the ECG problem requires a network to have one input unit, some number
of hidden units and one output unit. According to the raw data, there are no identical inputs
with different outputs involved in the ECG problem. In principle then, a feedforward

network and the FCBP approach should be able to be used for solving the problem.

Each of the four experiments was carried out over 30 trials where the initial weight states

were chosen randomly within either the range [-0.01,0.01] or [-0.1,0.1]. The learning rate
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and momentum coefficient values were explored within the range of [0,1] in the way
described in §6.2.3 using a strictly layered feedforward network with 3 hidden units. The
average number of weight state transitions taken for a successful trial was bomputed where
a goal weight state was found within a given number of weight state transitions at each

training position.

Training has been attempted using FCBP with both the raw data and three other sets of data
which are different normalisations of the raw data. The training results on the raw data are

shown below.

Table 6.11 Training results of the ECG problem on raw data

net range of learning|mom. kuccessful|l max_wt no. successful trials
topology linitial weights rate trials kransitions at the first position
1-3-1 [-0.1, 0.1] 0.7 0.9 0 120,000 30

Here no. of the training trials = 30; output tolerance=0.1.

The result shows that although the FCBP approach should be able to train the ECG
problem in principle, all attempts at training failed. Some important conclusions need to be
made. Specifically, there are three major aspects to be noted here which can undermine the

training feasibility of FCBP.

Firstly, large jumps should be avoided in input values between consecutive training
positions within an input training path. If there are sizeable irregular changes in
consecutive input training values, the FCBP approach cannot makes significant use of the
continuity feature underlying the design of FCBP to achieve the goal weight sequence.

Training may be undermined because the consecutive goal weight states are far apart.

Secondly, closeness should be avoided between input values among training paths within
the same training position. In principle, RCBP is only needed in preference to FCBP in
dealing with true one-many associations where many identical input values are associated
with different output values at a training position. In practice, when inputs are very close

and the associated outputs are significantly different, the goal weight states are so extreme
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that training is infeasible. Hence a recurrent network may be required instead to generate

the I/O associations more easily.

Finally, the goal weight states should not be too large. This is because if they are, even a
small input change between positions may lead to large excitation and output changes under
the final goal weight state for the previous position. If the desired output at the new
position does not match these changes, it may be very different from the actual output

which implies that large weight changes are needed, thus making training difficult.

By having the input values regularly distributed throughout a range of [-r,+r] for r>>0, this
may prevent goal weight states having large weight values. This is because the goal weight
states can be put reasonably close to the origin in the weight space. The training feasibility
is increased as a consequence. Fig.6.13a and b for example show two different goal
weight states in 2-D weight space. In Fig.6.13a, the lines /; and /> are associated with the
I/O tuples 7;/0; and 12/0; respectively; in Fig.6.13b, /7 and I; are associated with 7;/0}
and -12/0;. The pair of /> lines have gradients which are the negative of each other, while
the pair of /; lines are the same as each other. It can be seen that the goal weight state of the

second mapping is closer to the origin compared with that in the first one.
‘ w2 ‘ w2
12 12
N 11 L
11
wl / \ wl

Fig.6.13a Goal weight state with large values Fig.6.13b Goal weight state close to origin

The first and third aspects mentioned above were focussed on first in the present problem
to see if FCBP could be made to work with normalised data. The first aspect is significant
here since taking the peaks and troughs as the primary sampling determinants leads to weak
continuity in the sample data. The third aspect is seen to be significant from inspection of

the weight states successfully trained in the first attempt described above.
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Table 6.12 Training results of ECG using log(x)

net learning|mom. kuccessfulL max_wt |ave. weight| ave. wt transitions on
kopology rate trials ransitions | transitions the first position
1-3-1 0.9 0.9 21 120,000 83,417 25,449

Here no. of the training trials = 30; output tolerance=0.1; initial weight range: [-0.01,0.01]

Table 6.12 shows the results of an initial attempt at smoothing the raw data to attend to the
first aspect mentioned above by applying the logarithmic operator to each raw input training

data x.

Although the failure rate is 30%, this experiment shows that training feasibility is improved
compared with using raw data. Inspection of the failures showed that the failure is not now
caused by the irregular variations in inputs but large values in goal weight states.
Compared with finding a goal weight state containing smaller values, training is more
sensitive to learning rate and momentum values and becomes infeasible when relatively

significant weight changes are required as suggested above.

Table 6.13 shows the results after further normalisation of the data according to avoid the
third aspect discussed above. This experiment was carried out by changing each input

training data x into a;* log(x)+b; where a; and b; are chosen values (see Table 6.14).

Table 6.13 Training results of ECG on normalisation

index net learning|mom. jsuccessful| max_wt [ave. weight |ave. wt trans. on
topology rate trials |transitions |transitions [the first position

@1 1-3-1 0.9 0.9 28 40,000 17,646 769

@2 1-3-1 0.25 0.9 30 40,000 3,686 2772

Here no. of the training trials = 30; output tolerance=0.1; initial weight range: {-0.1,0.1]

Table 6.14 Chosen values for two normalisations

first normalisation (@1) second normalisation (@2)
no. path aj bi aj bi
pathl -1 5 -0.5 3.5
path2 1 -3 0.5 -2
path3 -1 4 -0.5 3
path4 1 -2 0.5 -1.5
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b; is chosen for both distinguishing the four input paths more strongly and making the
input training data large enough to have smaller weight values in goal weight states. a; is
chosen to regularly distribute the input values throughout a range [-r, ] in the first case
(@1) and to also further smooth the data in the second case (@2). The results show that
the better normalisation further substantially improves the training feasibility. The high

success rates meant that a recurrent approach was not needed after all.

Conclusion: In dealing with real world problems, normalisation of data is important for
PBP as it is for SBP. All normalisation techniques used by conventional BP should be
taken into consideration in case they can help with the three major aspects mentioned above

for PBP.

6.8 Conclusions
Several experiments have been done to show:

(1) The features of FCBP are exemplified: the role of the hidden units; the stepping stones
feature; the simpler network structure needed in solving problems; the trade-offs for
training speed and memories. These features and the results show that FCBP offers the
possibility of extending SBP’s feasibility through the use of continuous temporal structure

to control the network size and improve training and generalisation.

(2) Comparison of FCBP with SBP: the experiments show significant differences in
training speed and generalization accuracy between the two approaches in solving the same
problems. It is also noticed that the values of the training parameters in the FCBP approach
are not as sensitive as those in SBP regarding the speed and accuracy of training and

generalization.

(3) The search for a single goal weight state by using extra intermediate I/O tuples. The

goal achievable but training may not be faster than that using SBP.




(4) The features of RCBP are exemplified: the need for recurrent links; the role of the
internal states; the training speed; the generalization capability. These features and the

results show that RCBP extends the capability of the FCBP approach.

(5) The capability of PBP in solving real world problems is tested. It is realised that

normalisation of data is important for PBP as it is for SBP.
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CHAPTER 7

CBPTOOL DESIGN CONSIDERATION & OVERVIEW

7.1 Introduction

A simulator called cbptool is designed and implemented in the thesis. cbptool,
supported by a graphic user interface, is a neural network tool written in ‘C’ that supports
path-based back-propagation (PBP) and the conventional back-propagation learning

models.

The cbptool provides a user-friendly tool for investigating the back-propagation of neural
networks, especially the new learning models of PBP. Useful facilities for PBP research
and development are built into an easy-to-use environment that takes advantage of the
SunView! graphical interface. All user interfaces of the tool are, wherever and whenever
possible, mouse and menu driven in the window environment. The graphical interface
enables a user to design a neural network interactively on screen and helps the user to
turther study the PBP models and observe the dynamic behaviour of the networks. It can
also be used to investigate both SBP and PBP-based applications and carry out associated

researches.

The cbptool works on all Sun (from series 3 up) workstations running 'C' under Unix

and using the SunView window management environment.

1L If the user wishes to know more about the SunView environment, please refers to the

SunView System Programmers Guide and the SunView Programmers Guide.




This chapter is a guide to how the design of cbptool has been evolved from conception
and requirements for implementation. A detailed description concerning about the
functions, designing, internal representations and user interfaces of cbptool is presented
in this chapter. In §7.2, the design purpose, design features, and the chosen environment
are reviewed. In §7.3, the user interface is outlined. In §7.4, the major internal
representations and implementation of the tool is presented. In §7.5, the major simulator
parts are introduced; In §7.6 the discussion of some design issues is summarised. Finally

in §7.7 the conclusion is presented.

7.2 Design Considerations

7.2.1 DESIGN PURPOSES

The fundamental aim of the tool is to provide an environment in which a user, who may not
necessarily have any knowledge of either computer programming or the internal principles
involved in neural networks, may design and simulate the actions of a neural network in
performing learning and generalization. Such kind of neural network operations are

supported by FCBP, RCBP and conventional BP learning models.

The tool is not intended, however, merely for beginners but should be sufficiently flexible
as a research tool by users who have sufficient knowledge of neural networks. It is hoped
that cbptool can be used as a handy tool for users to further explore the new learning
framework PBP, to develop some interesting applications; or as a tool to teach the basic

concepts of neural networks.

7.2.2 DESIGN FEATURES

The following features will be pursued throughout the design of the tool:
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* Graphic interactive interfaces

A simulator is easier to use if graphical images and interfaces are provided. In the
meantime, it is important to keep the CPU cost as low as possible if a graphical interface is
involved. It was thus decided that the tool should contain only as many graphical interfaces
as necessary for providing both a good graphic tool and a relatively low CPU cost. More

concrete points in cbptool are as follows:

(1) mouse and menu driven

The tool will be, wherever and whenever a user interface is needed, mouse and menu
driven. This allows a great degree of easiness and user-friendliness. This will help users
to carry out user-machine conversations easily and set up all necessary parameters for any

operation.

(2) network scrolling on the screen

The user will be able to design a network larger than the screen or window in which he is
working. To this end the design window will be a mobile virtual mapping onto a world
coordinate system. With the mouse and menus, the user can not only design a network
topology on screen but also save a network or load in a previously created network into the

tool.
(3) graphical output display

Users can display output data graphically. What output results are displayed and in what
form will be user-definable at a certain stage. This allows for maximum flexibility. The
following two main points are relevant for users to represent or interpolate results:

» The tool depicts the data which would provide the user with a good overall representation

of the most important dynamic behaviour during the operations of the network.
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* The tool records other less important but relevant data produced by the tool operations
into some working result files in a textual form. This enables the user to have possible

access afterwards.

» A Backpropagation environment

The training and generalisation regimes used to exemplify the path based approach all
involve variants of BP. In order to provide the necessary completeness, flexibility and
richness for BP, it was decided that only the PBP and conventional BP models are
implemented in the tool. Training and generalisation facilities are provided for feedforward

and recurrent networks.

* Flexibility and simplicity

Most functions and parameters used by the operations of the tool can be chosen from a
menu which is either designer defined or entirely user defined. The user can provide his
own code fragments which can be linked into the main program, which allows maximum

flexibility.

The initial weight values associated with links can be set using mouse, menus or through a
file interface. Some of the values are observable dynamically. The user can communicate

with the tool in a relatively simple way.

* Choice of running ground

To separate the parameter setting from the performing environment will be one of the
features which makes a more powerful simulator in order to fulfil different requirements by

different users.

The simulator operation can be run with or without the interactive window environment

after the required parameters have been set up. This implies that when the user has

e Jl s




completed his own network topology design, set up all required initial values and chosen
his operation, the ground of running the operation can be selected as well. It enables the
operations to be run in the background without occupying a window system if desired.
This feature enables the user to save CPU expenses on graphics especially when the user
wants to apply the simulator to an application or some calculation intensive research which
does not require any graphic interfaces. It also enables the user to run several cbptool
processes at the same time on one machine, in other words, to save computer resources in

general.

7.2.3 CHOICE OF THE DESIGN ENVIRONMENT

All Sun workstations from series 3 up have both sufficient processing power and memory
available to cope with this simulator. Also the Sun workstations provide the SunView

window environment which is compatible with 'C' language.

The SunView is a good design environment for supporting interactive, graphics-based
applications running within windows; it is also relatively easy to be understood and used

due to its powerful and high-level functions.

Another reason for choosing SunView rather than other environments was that SunView is
a well-implemented product and the necessary documentation of it was readily accessible.
Recently, newer more portable software has been developed such as X-windows. It is

entirely feasible for future development to change the environment if desired.

7.3 Interface QOutline

The user interface is one of the most important features of any application. No matter how
outstanding the underlying code, if the user interface were not well designed, the user
would suffer, and the application would be non-productive and even be worthless in the

worst case. This means if the application designer could not distance the user from the
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complexity of the underlying code, and not provide a user-friendly environment, the
application would be lifeless. Considerable effort has been made in achieving user-friendly
interfaces. Four major types of interface have been provided by cbptool and they are

described one by one below.

7.3.1 WINDOW, MENU AND MOUSE INTERFACES

(1) Design Canvas:

This is the main window of the tool. Within this window, the user can design the actual

topology of the network.

The canvas is implemented as a virtual SunView canvas. As the design canvas is only a
viewing window onto a larger virtual canvas, it is necessary to include two scrollbars: one

horizontal and one vertical to allow the user access the whole of the canvas.

A balance between the canvas dimensions and the memory allocation has to be considered f
in the design of the interface. If the canvas is too small, the dimension of neural networks
is limited; if the canvas is too large, the memory allocation for the canvas would be wasted. 3
Currently, the user is limited to a design canvas of 20 by 20 elements i.e. a maximum of

400 neurons. This number can be altered easily.
(2) Menu Bar

This window is implemented as a SunView panel, which allows the user to choose from a

number of menu options. Each menu option deals with a different area of the tool.
(3) Mouse Panel

The main function of this interface is to display some text messages detailing the function
of each mouse button. The text messages are updated each time according to the current

choice of tools.




(4) Popup windows

Popup window is a common feature of the tool. It is mostly used as an interface to access
files (described below). For example, the user can specify the directory and filename of a
file through this interface. This kind of interface also allows the user to select or tailor

some operation parameters to suit various needs.
For more details of the above four windows please refer to §Apdx 1.3.
(5) Output display windows

There are three output windows designed for display, representation and graphical
interpolation of the data produced by the training or performance operation currently

underway.

The concern here is to provide as much useful data as possible without overburdening the
user with superfluous information nor taking too much computing time. This implies:

» Depicting the data in a good manner. The user should find it easy to extract any
meaningful information and see the dynamic changes as quickly and clearly as possible.

* Avoiding losing some information which needs to be referred by the user after the
simulation has finished.

There are three display windows named as: the Display Frame, Display Equaliser and
Display Plotter. Each of them has a specific function. Display Frame is used for setting
operation parameters and displaying on-line information in text; Display Equaliser and
Display Plotter are for displaying network error in two different ways after a certain period

of time. Further details are described in §Apdx 1.5.

Some other windows were also designed in the tool. For example, an on-line help window
provides information and help to the user to efficiently use the tool; a TTY window is
implemented in order to provide the user with an environment incorporated with direct

access to the Unix. All these can be referred in details in §Apdx 1.3.
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7.3.2 FILE INTERFACE

Full use of the I/O facilities provided by the 'C' language and Unix operating system has
been made so as to have a good interface for users. A file interface based on the Unix file
system has been adopted to enable an easy I/O conversation between the user and
simulator. This interface can improve the communication flexibility. For example the user
can prepare some input data in an environment outside the tool or some operation results of
the tool may be saved into a file which is accessible in any Unix environment. The
following text explains through an example of loading training tuples why a file interface is

needed by the tool.
loading traini ]

One of the user's motivations to use the tool is to speed up and simplify work on neural
networks. Therefore the tool was designed carefully in order to reduce the user's work as

far as possible.

First of all, suppose a tool can produce all the training tuples automatically as long as a
mathematical expression is provided, the tool would be a perfect tool for those users who

know the mathematical expression of their training tuples.

However, most of the training tuples are chosen from experimental results. It may be
infeasible to represent the experimental results in a single mathematical equation, especially
in a n dimensional space. Moreover when the training tuples can be described as a real n
dimensional mathematical equation, the single equation may still not sufficient enough for
the tool to generate the training tuples which are needed by the user. For example, when
the user wants to train some tuples which should be chosen from a continuous function
within a certain range along a certain path in a certain direction, it is impossible to expect

the tool to generate these training tuples if only the overall function is provided. Some
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other information such as the training direction and range are needed in order to get the

desired tuples.

From the discussion above, it can be seen that it is not essential and appropriate to embody
a facility such as a universal training tuple generator inside the tool. Instead the user is
required to prepare a complete list of the training tuples as real-valued /O tuples in a
working file before the user is able to do any training. The user can prepare this working

file in the background and write a small program to do it if it is necessary.

The above example explains some reasons why a file interface is needed and provided in

the tool.

The user can also use the file interface to load, save and print out a network tepology. O
tuple files can contain a list of training or generalization tuples. The user can also load a list
of initial weight states, a learnt weight or activity path through the file interfaces. At the
same time, the tool can put some operation results into one of those working files. This
ensures the user can reach the operation results from Unix files when the operation is

completed.

The fact that both the 'C' language and Unix allow a line length and the size of a file to be
unlimited enables working files to contain a great deal of information. For example, the

dimensions for the training tuples are included in the file itself.

For more details about the file formats and specifications refer to the relevant section in

§Apdx 1.4.

7.3.3 FUNCTION INTERFACE

This interface is designed to provide the tool with a degree of power and flexibility. It

provides an opportunity for the user to design their own procedures for setting some
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operation parameter values. Also it enables the tool designer to develop a new version of

the tool with only a few custom-made new modules.

As an example, the function interface may be used as a parameter interface for calling a
self-adaptive learning rate algorithm to set a suitable learning rate parameter for any three
layer feedforward network during training. In the tool, an algorithm developed by Dr. M.
K. Weir (1990) for this purpose has been built into it. This means that the algorithm has
been compiled and combined into the tool. The user can apply the function, through the
function interface to some of the training regimes provided, to calculate the training

parameter value learning rate during the training.

By re-writing the procedure and re-compiling the tool, both the user and the designer can

get a different version of the tool if it is necessary.

The same interface has been provided for setting another training parameter momentum
coefficient. This interface has been reserved in cbptool in order, for example, to allow

the user to write their own self-adaptive procedure for the momentum attribute in the future.

Besides being used for setting parameters, the function interface may also be used to
choose one of the training and generalisation regimes. For example, the interface can be

used to choose one of the interpolation regimes.

7.3.4 SPECIAL DUMPING INTERFACE

This is a kind of indirect interface in the sense that facilities obtained through this kind of

interfaces involve using system utilities.

This is a facility to dump a graphic screen to a printer, which enables a user to get a hard
copy of a network graphic image. This facility is only available indirectly (see the

discussion in §7.6.3 ). The procedure is as follows:
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» Firstly Sun rasterfiles are ported across the network: the Unix command screendump is
used to get the screen image and store into a file; it is then ported across the computer

network.

* Secondly the rasterfile formatted graphic files are converted into a Macintosh
compatible bitmap image: using a convert application package to convert the Sun raster
file into a Mac bitmap file. For example, using convert of Mac's package to do the
conversion.

* The bitmap file is then read into a Macintosh graphic package such as SuperPaint;

* Finally this image can be dumped to the Apple LaserWriter which supports
PostScript.

7.4 Main Internal Representations and Implementations

As for design and implementation of all other computer applications, the tool designer has
given a consideration of how to abstract, represent, handle and store the great number of
data and relationship involved throughout the design and implementation. The discussions
about neural network concepts in general or PBP in particular have been described in
chapters 2,3,4 and 5. This section describes some of the major issues and methods related
to the internal representations and the data structure design in cbptool. The discussion is
focused in particular on the internal representations of a neuron, a network topology, and

the main data structures.

7.4.1 CONSIDERATIONS

Data structure design is one of the most important tasks in any computer application. Many
factors have to be taken into account, for example, the data structure should be simple
enough for a quick, easy and efficient access; powerful and flexible enough to store all the
necessary information in order to support all the operations which are likely to be

performed on the logically related data structures in the application. Also a certain degree
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of expansion of the data structures should be taken into consideration in order to be

compatible, with any further extension of the application.

In cbptool, attention has been paid to the following three major aspects.

* Dynamic memory management

Because a network topology is user-defined, the size of many simulator variables which
support the user-designed network is unknown at the time of compiling or generating the
tool. It is both wasteful and difficult to pre-assign memory for these variables when
generating the tool. Fortunately, the ‘C’ language provides with functions supporting
dynamic memory allocation. These functions allow the application designer to allocate
storage at running time and are particularly useful for implementing data structures of
unknown size. However it should be remembered that ‘C’ language is not one of those
languages, such as PS-ALGOL or LISP which have built-in routines to recognize and
automatically release garbage, so that both the appropriation and release of dynamic
memory need to be designed and implemented in cbprool. All the data structures used in

the tool have been created using calloc and released using cfree.

* Trade off between memory size and speed of operation

It is important to design data structures with consideration of both the method of internal
representation and speed of operation. This is especially important for the design of a
neural network simulator, because a neural network tool requires both a high operation
speed and large data storage. For example, the more complicated a network topology is,
the more numerous the weight links are in a big neural network, and so the more data
storage is needed. The way of represent the data can make a big difference to the

requirement of storage memories and the speed of operation.

In order to support a large user-defined network, or a user-chosen operation with a great

number of I/O operation tuples involved, it is important to consider the tool design in both
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ways: saving memory and fast search. There may be a trade off between memory size for

internal representation and speed of operation.

» Support operations

There is also another balance between the number of data structures and the speed of
operations. With reference to this, a certain number of redundant data structures may be
needed to support the speed of some operations. For example, a vector is used to store the
number of input links for each unit in the network after the network is designed. This
vector is not necessary as the information can be found through searching each I_LINK list

of each unit, but it does help to speed up major operations.

7.4.2 IMPLEMENTATION

To go into exhaustive details about the step by step design and implementation of all the
data structures used in the tool would be a time-consuming business. Here only the
implementation approach to the main issues mentioned previously are described. For all
further implementation details the user can refer to the commented simulator code included

separately.

* Data Structures of Networks

Essentially, there are four main data structures which have been used in implementing a
user-designed neural network. The following two pictures show the relationship between a
network and its internal representation. The example of the user-designed network
topology is shown in Fig.7.1 and a picture of a simplified data structure of the relevant

network is shown in Fig.7.2.
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Fig. 7.1 A part of a user-designed network. Three neurons in the network as shown.
There are two incoming links leading to the neuron i2, one link is from neuron il and
another from neuron i3, There is only one outgoing link from the neuron i2. For neuron
i3, there is one incoming and one outgoing link respectively.

A picture of a simplified internal representation of this network is in Fig.7.2:
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Fig. 7.2 Picture of a simplified data structure of the network

Fig.7.2 shows the internal data structures of the neural network in Fig.7.1. The four types
of the structures are: Lookup_Table, Neuron_List, I_List, O_List which are the structures
for internal representation of any network in the tool. In this example there is one

Lookup_Table, one Neuron_List with 4 elements, 4 I_List, and 4 O_List lists respectively
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with various numbers of elements in each /_List and O_List. The first element in each
structure is a sentinel value, a zero structure. Each type of data structure is described

below.
(1) Lookup_Table list

This is used as a table for holding all the neuron IDs of a network. For each neuron in the
network, its ID needs to be stored in this table, then the table can serve as a key index table

in order to refer to any neurons of the network by the IDs.

Although referred to as a table, this data structure is implemented as a linked list with each
node representing an integer neuron identifier ID. Every other structure that has a reference

to a neuron ID points to the Lookup_Table.

The main design motivation here is it will be easier to keep all the data interrelated and
unanimous with the centralized ID management. The main benefit of this technique is that
if a change to a neuron ID is necessary then a simple change of the ID in the Lookup_Table

ensures that all references to that neuron have been changed.
(2) Neuron_List list

This data structure is designed for storing a number of neuron structures each of which
consists of some information about the neuron (such as ID, activation value etc) and the
interfaces associated with representation of the inter relation of the network to which the

neuron belongs to.

In essence the internal representation of the neurons in a user-designed network is a linked
list, each element of the list associated with a neuron is implemented as a structure of the
‘C’ language. Each structure consists of five types of fields. One is used for the relevant
information about the associated neuron, the other four are used for pointers pointing to the
other structures for representing the associated network. The following points give the five

major fields one by one:
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(i) ID-pointer field: This field is used to store the pointer pointing to the associated ID
which is stored in the Lookup_Table.

(ii) Neuron-information field: This field is used to store a certain number of variables
associated with the neuron such as error_value, output_value etc.

(iii) Input-link-pointer field: Points to the 7_LIST of the neuron. See description below
about the I_LIST list. '

(iv) Output-link-pointer field: pointing to the O_LIST of the neuron. See description
below about the O_LIST list.

(v) Next-link-pointer field: This field is used to store the pointer pointing to the next
neuron structure in the Neuron_List. The value will be NULL for the last neuron
structure in the Neuron_List.

(3) I_LIST list

This data structure is provided to support some operations which may be necessary in

searching all the neurons feeding into a given neuron.

As described above within every neuron structure associated with each neuron, one field

called Input-link-pointer is defined and pointing to the associated 7_LIST.

Each neuron has its own I_LIST list. Each J_LIST is a linked list. The number of the
elements of each I_LIST is dependent on the number of the units linking toward the unit
associated to the I_LIST. Each element contains two pointer fields. One field is either
pointing to the Lookup_Table or is O for the first element in each I_LIST. The other field
is either empty or points to the next element of the /_LIST. All incoming neuron IDs of a
neuron can be found by searching through the associated I_LIST of the neuron. Therefore
for each given neuron, its /_LIST can be used to find out all the neurons leading to it. The
direction of each link is from one of the neurons in the I_LIST list to the neuron which

owns the I_LIST.
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(4) O_LIST tist

Similar to the /_LIST list, O_LIST list is provided to support some operations which may

be necessary in searching all the neurons receiving output value of a given neuron.

For each neuron, one field called output-link-pointer is defined in its neuron structure.

This is to point to its own O_LIST.

As for the I_LIST, each unit has its own O_LIST. The number of the elements of each
O_LIST is dependent on the number of the units linking from the unit associated to the
O_LIST. The structure of O_LIST is implemented as a linked list with two fields. For a
given neuron, its O_LIST can be used to find out all the neurons which associate with the
given neuron. Butin O_LIST, the direction of each link is from the given neuron to one of

the neurons in the O_LIST.

* Weight structure

Two neuron IDs are needed to refer uniquely to the strength of the link if there is a
connection between any two neurons. Several aliernatives were considered in order to
design the weight data structure, e.g. a quadratic array or a directed graph. A balance is
needed among the memory space requirement and the accessing time as well as the
programming complexity. It was finally decided that the weight structure should be
implemented as a ragged array in which the depth of the array is equal to the number of the

locations required.

Comparing with a quadratic array or a directed graph, a ragged array technique maximises

storage efficiency, and has a reasonable accessing speed.

The technique works by allocating a single vector for the network first, and then a variable

size vector for each element of the single vector is allocated.




The number of the elements in the single vector is equal to the number of neurons in the
network, The size of each variable vector depends on each associated neuron. It reflects
the number of connections leading into the neuron. The contents of each element in each
variable size vector is a pointer to an abstract data type which stores the following

information:

(1) The ID of a neuron;

(2) The information associated with that link. For example: the weight value; change in
weight per training tuple presentation; previous change in weight; some data to support the

learning rate function, etc.

As an example, Fig. 7.3a is a simplified picture to represent the internal structure of a part
of the network shown in Fig. 7.3b. There are 3, 2, 2 and 4 incoming links respectively for
the neuron 3, 4, 5 and 6 of the network. Fig. 7.3b shows the ragged array of the 4

neurons and the related abstract data structures.

|

Fig. 7.3a The topology Fig. 7.3b The data structure

Thus a ragged array is used to store the weight data which requires only two index values.
For example, the weight value between unit 6 and 2 will be found by the following

procedure:

(i) Locate the position associated with the unit 6 in the first row of the ragged array;
there is a various size vector associated with this position;
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(i1) Go through each element of the vector and do (iii) until either a correct abstract data
structure is found or a failure is reported, which is that no required data type is found
after going through all the elements associated with the vector;

(iii) Access the content of the element to get the pointer, which points to the abstract
data type defined for each link;

(iv) Use the pointer to check the content of the ID field of the associated abstract data
type. The search succeeds when the number in the ID field stores the ID of the
required unit. Then the weight value between the two units can be found in the
associated data field.

* The internal representation of the tuples

Using the file interface mentioned above, the tool is able to access the training or
performance I/O tuples through working files specified by the user. A data structure is
needed to support the interface and store the data in the system. It was decided that the
tuples should be stored in an array as shown below. Thus, the horizontal length of the
array is the sum of the number of the input and output neurons, the depth of the array is the

number of the tuples.

Number of Inpuls  nNymper of Outputs

Number of tupies

Fig. 7.4 A simplified picture of data structure of the tuples

¢ Other data structures

Some of the data structures used for the main variables of the operations such as training

and performance are mentioned below. The sizes of these data structures depend on the
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number of the neurons of a user network so that they vary from one network to another.
More details about the working data structures can be found from the enclosed code. The

more important structures are described as follows:

(1) Input vector: This is used for storing the external input information for each neuron of

a network.

(2) Activation vector: This is used for dealing with the activation value of each neuron.
(3) Delta vector: This is used for the delta value for each neuron during the training.
(4) Target vector: This is used to store the target value of each neuron.

(5) Pattern_Error vector: This is used to store the pattern error value of each neuron when

performing an operation such as training.

(6) Link_number_to vector: Each element in the vector is associated with each neuron to

store the number of the links leading to the associated neuron.

7.5 Main simulator parts

All the tool facilities can be divided into the following six distinct aspects: Design, Build,

Train, Performance, Batch, and Display.

7.5.1 THE DESIGN MODULE

This is a module to support the design of a user network in a mouse and menu driven
environment. The function of the module includes enabling the user to directly access
neurons and connection weights, to design a network with arbitrary interconnection
between all the neurons. A feedforward or recurrent network can be designed through this

module. For more details please refer to the User Manual in the appendix §Apdx 1.3.
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7.5.2 THE BUILD MODULE

This is to support the automation of the construction of the internal representation of a user

designed network.

In order to fit with the whole system design requirement and without loss of freedom in
designing the user's network, a method is necessary for reorganising a newly designed

network before passing it to the training or performance operation for the reasons:

(1) the training or performance operation expects the network topology to be in a fixed
format (i.¢. all input neurons precede all hidden neurons, all hidden neurons precede all

output neurons, all output neurons precede the bias neuron);
(2) a most recently created neuron is always guaranteed to have the highest ID number;

(3) neurons of any given type can be positioned anywhere by the user on the canvas during
the design of a network so that some neurons may be redundant (i.e. unconnected to any

other neurons in the network).

Before any operation taking place on a user-designed neural network, it is also important to
ensure the validity of the network topology. Some common problems occurring in
validating a network for example are the existence of unconnected neurons within the

network, the existence of an invalid connection between two neurons.

It can be seen that procedures are needed to enable the screen topology to be both valid and
tidied up and then to create a real internal topology for manipulation during performance.
This module brings more freedom and on-line help for the user to design his networks.

For more details please refer to the User Manual in the appendix §Apdx 1.3.3 Menus D.
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7.5.3 PARAMETER SETTING MODULE

Some interfaces are needed for the user to set up specific parameters for the operations.
For example, one interface is provided for the user to load in the initial weight states for a
batch training operation; another enables the user to decide whether the operation is carried

out in background. For more details refer to the User Manual in the section §Apdx 1.3.3C.

7.5.4 THE TRAINING MODULE

This module is designed to support the training operation on a user-defined network
through one of training regimes. The module has a total of six training regimes, of which
five of them are based on the PBP approach for training feedforward or recurrent networks;
one is based on SBP— the state-based BP for training feedforward networks. For more

details please refer to the User Manual in the appendix §Apdx 1.3.3 E.

7.5.5 THE PERFORMANCE MODULE

This module is designed to do generalization for any trained feedforward or recurrent

networks through one of the regimes.

Two kinds of regime have been designed here. One is a path-based regime which implies
that the I/O tuples must be chosen from a certain training path. The other is a more general
time-based regime. It means that the performing tuples can be arbitrarily chosen from a
trained surface but a training time must be provided explicitly as an additional parameter.
Two path-based regimes have been implemented in cbptool. One is for feedforward and
the other is for recurrent networks. One time-based regime for feedforward networks has

been also implemented.

For the three regimes above, a linear interpolation technique has been employed to perform

generalization. Two extra function interfaces are also provided for the user to design their
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own interpolation technigues. For more details refer to the User Manual in the section

§Apdx 1.3.3F.

7.5.6 THE DISPLAY MODULE

This module deals with the display of all outputs generated by the network operations.
Two types of information need to be displayed on windows provided by the simulator.
One is about the internal dynamic results or final results of an operation. The other is

general messages about the operation errors Or warning prompts.

In the simulator, all general messages are displayed through a popup window. Operation
results are shown in two ways. One is to interpret, represent and display graphically the
data produced by the training operation. This kind of output can give the user a good
overall representation of the dynamic changes occurred within the training operation. The
other is to store some operation results into files through a file interface. These output data
are available in a textual form which enables the user to access the data when it is

necessary. For more details please refer to the User Manual in the section § Apdx 1.5.

7.6 Discussions

As for any tool, limitations in the design or implementations need to be discussed. Some
issues encountered throughout the implementation of the user interface or data structure
design will be discussed below. It is hoped that with additional consideration or

modifications, the tool could work even better.

7.6.1 SYSTEM ENVIRONMENT LIMITATIONS

(1) SunView limitation

Although SunView is a very powerful tool in many aspects, it is not an industry standard

tool and so portability is limited. There are also some other limitations in SunView. One
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example is subsequent access to any panel item which has been dynamically created.
Although the dynamic allocation of panel items is possible, difficulties were encountered to
allocate static handles dynamically. It is very problematic in attempting to access a
dynamically created panel item within SunView at a later stage, as it is necessary to refer a
panel item through its associated handle, allocated to the item statically. This limits

flexibility of the window interface in the tool.
(2) File system limitation

There is a constraint on the maximum number of open files allowed for a single user in the
file system of the Unix. This is a major problem encountered throughout the
implementation of the tool user interface. The current system (Sun’s release 3.0 system)
has a limit of 30 file descriptors per Unix process. As each active frame in the SunView
environment is represented by an open file, it means that the tool is limited to a maximum
of 30 windows active at any time. When file interfaces are needed to access external files
for certain operations, the limitation on the number of the active windows at any time
becomes increasingly severe during operation. This problem has been overcome by
destroying windows or files as soon as they are not in use and then recreating them when

they are needed.

The second limitation is that the file formats depend very much on Unix, they naturally

restrict portability to non-Unix systems.

7.6.2 FLEXIBILITY AND SPEED

There is a trade off between providing a flexible interface for the user to choose an
operation from and the tool speed. Many memory sizes of data structures used in the tool
are unknown before compiling the tool. This is why so many memories are assigned
dynamically. Some associated operations provided by the tool can operate on the same data

structure if the operations are executed one after another. But in order to increase the
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flexibilities for the user in choosing operations, the memory has to be released after
completing one operation and re-allocated before performing a new operation. Although
this is not a major problem, it does waste time and causes the tool to run more slowly than

would otherwise be the case.

7.6.3 GRAPHIC SCREEN DUMPING

This facility is only available indirectly (refer to the description in §7.3.4 ) in cbptool.
The user can get a hard copy of his network image on screen by dumping the graphic image
from the screen to a printer. However, the complexity and relatively low significance for
the thesis of actually implementing this feature meant that direct implementation is currently

unavailable.

7.6.4 ACCESS SPEED

As the data structure of NEURON is designed as a linked list, and a sequential search on
the linked list has been implemented, this could slow down the access speed for a big

network.

Some future effort could be made to improve ihe access speed for locating a neuron in a big
network. For example, creating a two dimensional array that maps onto the grid
coordinates of the canvas, each element in the array would contain either a pointer to a
neuron or NULL. The biggest disadvantage of this design is that it would then be
extremely wasteful in memory space for a small network user with most of the array spaces
being empty. One resolution of the problem might be to use a hash array to achieve both a

faster access speed and less waste of memory space.
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7.6.5 FORMAT OR LANGUAGE

A great deal of further time and effort could be expended to ensure that the data entered
through the file interfaces is valid. For example, all file formats in the file interfaces would
be much less rigid if a function called ‘strtok’ provided by ‘C’ language had been used.
However, a large amount of machine time is needed to do the on-line check if there is a
large amount of data in the file. No matter how much effort is exerted in verifying input
information, it is still impossible to protect a system from invalid data. So data verification

is left to user.

A suggestion for improvement in this aspect is that the file interface for this purpose be
replaced by implementing a kind of language in the tool, which can then be used by the

user to describe the data more conveniently.

7.6.6 FURTHER FUTURE FACILITIES

At present there are no short cuts to design a network without specifying the units one by
one; no way of running the tool in a completely batch mode without starting in SunView or
running the tool without interacting with SunView, where all parameters can be described
in a login file in text. This later facility could be useful if the user wants to set up long

experiments without SunView.

7.7 Conclusion

The tool cbptool firstly has been used as an introductory tool to the PBP based models.
Secondly it has been used as a research tool to complete all the experiments on the basic
research and case studies for FCBP and RCBP. It has been found that the cbptool is an

easy to use, flexible and graphic based tool which works satisfactorily.
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The cbptool provides a solid base for the user to work on. A lot of thought and
consideration has been put into the design and implementation in order to have a good
balance among different requirements which may be requested by different users. cbptool
has also been designed with strong expansion possibilities. It currently functions as a

valuable research tool with further possible development in the future.
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CHAPTER 8

CONCLUSION AND RECOMMENDED FUTURE WORK

8.1 General remarks

The objective of the research work is to understand and further investigate the way artificial
neural networks may deal with learning sequential processing. A major learning algorithm
— backpropagation, is chosen to explore the possibility of further extending the strength of
the standard model to achieve this goal. The thesis is a primarily conceptual and
fundamental approach. The design, theoretical and empirical understandings are concluded

here.

8.1.1 GENERAL ACHIEVEMENTS

New concepts and methodologies were evolved from the notion of using the continuity
underlying a path in design and the implications for training and generalisation of
converging to a goal weight path. These aspects together show how that the fundamental

capabilities of SBP may be generalised.

The two path-based models FCBP and RCBP have been explored in this thesis. They
suggest considerable advantages over SBP for sequential and other problems. In

particular:

(1) They allow arbitrarily close approximation of a continuous function or dynamical

system within a fixed topology.

(2) Problems involving sequential I/O associations with underlying continuity can be
trained as accurately as required more feasiblely by using the FCBP or RCBP training

models.
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(3) Interpolation techniques may be applied through the weight or activity states for
generalisation. In generalization, the fundamental change made is for various interpolation
techniques to be appliable to the states. This increases the level of approximation of goal
weight states for untrained I/O associations from zero order (SBP) to a higher orders (PBP)
depending on the order of the approximation and the type of the approximation method

used.

(4) Algorithms explored for the SBP approach in a forward or recurrent network may be
employed as sub-tools by the two path-based models at each training position. This allows

a general extension of SBP approaches.

The features of FCBP and RCBP are exemplified through experiments, and the results
support the above concepts and analysis. Training results show the trade-off between
doing several searches in a number of relatively small weight spaces against doing a single
search in a relatively large weight space. Generalisation results show significant
improvement in accuracy when models can make use of higher order interpolation

methods.

Applications in complex analogue-binary classification, signal processing or, in general,
problems where analogue I/O associations or complex binary classifications are involved,
may be investigated by using these new models. To support this, in addition to the
exploration of the new models, the work that has been done in this thesis also includes the
design of a path-based simulator cbptool. The simulator provides a convenient tool with a
graphic and user friendly interface for workers in this area to further explore PBP and

related applications.
8.1.2 LIMITATIONS
The PBP approach is intended to offer a higher level extension to the SBP framework. It

has been designed to deal with aspects of sequential and temporal signal processing in
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artificial neural networks. However, as a first approach of its type, there are limitations in
applying the models to solve some real world problems. The limitations can be listed as

follows:

(1) In both models, the number of the training positions along each of the I/O training paths

must be the same,

(2) During performance, correct associations rely on the weight signals synchronising with
the associated input signals and internal state signals. Since BP is a software technique,
synchronization is straightforward in practice. However, synchronization becomes a future

issue with analogue hardware implementation.

(3) In RCBP, one-many associations cannot be targetted at the first training position in the

current regime employed by the RCBP approach.

8.2 Recommended future work

Some work can be done to further the exploration of the path-based framework:
(1) Applying the PBP approach.

The basic intention of the PBP approach is that tasks involving sequential problems (refer
to §4.3.1) can be investigated using the PBP models. A sequential problem is one where
the order in which the inputs occur has to be learnt as well as the individual associated
outputs. Also though, as a software simulation, any tasks which can make use of the time

and weight index feature described in §4.3.1 can also be investigated using PBP.
(2) Improvement of the RCBP capability:

Some other dynamic system associated with finding a single weight state in recurrent
networks might perhaps be considered to try to eliminate the limitation on the first position

in RCBP.
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(3) It is relatively straightforward to consider incorporating some other state-based

approaches into FCBP to speed up the training at each training position.

(4) Compared with the linear interpolation used in the thesis, higher level interpolation
techniques may be used to produce a better approximation for weight state or activity state

paths.

(5) Improvements may also be made in the design and implementation of the cbptool
simulator, such as to increase the processing speed, save more computational resources,

improve the user interface, develop more facilities, etc.

(6) A neural mechanism for inputs and weight state associations could be explored.
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APPENDIX 1

THE CBPTOOL USER MANUAL

1. Introduction

The vser manual serves as a guide for the use of the simulator cbptool. It describes the facilities provided
and how the cbptool works. It has four parts: (1) How to access the simulator; (2) What the main
facilities and parameters of the simulator are; (3) What the forms of the specification files are; (4) How and

in what forms to store and display the results.

2. Accessing the simulator

To access the simulator, the user needs first to get into the working directory and then ensure that the

executable file cbptool exists before running the simulator. The following routines explain the details:

« To get into the correct working directory: use the Unix command cd to locate the directory under which

the simulator is located.

* To check the executable file cbptool: if the executable file cbpteol exists under the working directory,
it means that the simulator has already been built and is ready to run. If not, the simulator needs to be
built.

« To build or recompile the simulator: the simulator can be built and recompiled or updated. To do so, the
user should check if a working file makefile, related to the Makefile in the Unix system, is present in
the user’s working directory and the contents of the makefile are satisfactory, then carry out the Unix

commands touch and make. More details are as follows:
(i) Check the contents of the makefile file using: vi makefile.

(ii) Type in the command: touch neural.c

The Unix command touch will alter the time-stamp on the simulator main program neural.c and ensure

the associated Unix command make builds the simulator.

(iii) Type in the command: make

The Unix command make will initiate the makefile program and build the simulator by compiling the
‘C’ source code and linking to the necessary libraries. This process normally takes a few minutes,

depending on the system. If any errors occured at this stage, the user should refer to the Unix Makefile

manual.
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* To run the simulator: in order to run the simulator, the user should be in the SunView environment. This
can be achieved by typing suntools or sunview and then cbptool to run the simulator. The
simulator itself will take about 10 seconds to come up, as many SunView windows, menus, panel items
need to be created and the memory of the canvas need to be allocated during this time. A number of

windows, menus, and tools should then appear on the screen.

» To quit the simulator: to quit the simulator, siinply choose the quit option in the Quit menu and

confirm the action.

3. Main Facilities and Parameters

All the facilities provided by the simulator can be divided into three different aspects: Windows, Aid-Tools
and Menus. Each aspect includes a number of particular facilities. Each of the facilities in turn is described

and their basic features are outlined.

3.1 WINDOWS

The whole Sun workstation screen is divided into six different windows providing a design environment
with menus and aid tools for the user to work within the simulator. A picture of the screen is shown

below.
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Fig. Apdx 1.1 The over view picture of cbptool
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A, The Canvas Design Window

This is at the centre of the screen, occupying the most screen space. It is also the main window of the
simulator on which the user can design his network using the tools in the Toolbox. This window is
scrollable in both horizontal and vertical directions for networks larger than the window. Currently, the
user is limited to a design canvas of 20 by 20 elements. This means that the maximum number of the

neurons in one user-designed network is 400.

B. The Terminal Emulator

On the left side of the screen just below the design window, the Terminal Emulator window enables the
user to interact with the Unix operating system while remaining in the simulator. Essentially this is a
shell, in which the user can perform any tasks which could performed within the operating system

completely independent of the simulator.

C. The Text Window

This window is immediately on the right side of the Terminal Emulator window. It is used to display text
messages such as the on-line help files associated with each tool. The window is scrollable for large text

files to be displayed without loss of any contents.

D. The Toolbox

The Toolbox is on the left side of the Design Canvas Window. Itis a box containing all the tools needed
for the design and creation of a neural network topology in the simulator. Each tool is represented by an
icon with an associated label. All the functions of each tool will be described in details in section §Apdx
1.3.2.

E. Menu Bar

Across the top of the screen frame is the Menu Bar. It contains a number of menus, each dealing with a
special part of the simulator operations. Each of the menus and associated options will be described in
depth in the section §Apdx 1.3.3.

F. The Mouse Panel

This is a thin horizontal box below the Menu Bar starting from the right of the Toolbox. It provides the

user with an indication of what each of the mouse buttons does for a given tool. The Mouse Panel contains
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three image icons representing three specific mouse buttons. Each button has different functions for each
chosen tool. Each icon is associated with a text message which is updated according to the current choice of
a tool from the Toolbox. As an example, the following texts describe what are the messages for some of

chosen tools.
(1) For Input, Output, Bias, and Hidden tools:
Left button: place neuron; Right bution: delete neuron.

(2) For Connect, Disconnect, and Modify tools:

Left button: source neuron; Middle button: destination neuron; Right button: confirm.
(3) For Select tool:

Left button: place neuron;  Right button: confirm

3.2 AID-TOOLS

All the aid tools are presented on the screen within the Toolbox window which has been described in § Apdx

1.3.1D. The following text discusses the general use of the tools and the functions of each tool.

A. To select a tool

In order to use a tool in the Toolbox, the user must choose the tool first. This can be done by placing the
mouse cursor over the tool icon and then pressing the leftmost mouse button. When a tool is selected, the
tool is highlighted, and any previous tool choice is deselected. This ensures that only one tool is active at a
given time. An on-line help message associated with the tool will be displayed in the Text Window (refer
to §Apdx 1.3.1C).

B. Tools and their functions

(1) Input neuron Tool

The Input tool allows the user to create or delete input neurons. If a user wants to create an input neuron,
the user should position the mouse cursor on a free space of the design canvas and press the lefanost mouse
button. A new neuron will be created at the grid position which is the closest to the chosen point on the

canvas with the chosen parameters specified by the user through the menu option: set parametexs.

If a user wants to delete an input neuron, the user should position the mouse cursor over the neuron on the
design canvas and press the rightmost mouse button. The target neuron body and all associated links to

other neurons from the target neuron will be removed.

Note: A new neuron will not be created if a neuron already exists at the chosen point on the design canvas,
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(2) Hidden Neuron Tool

This Hidden tool allows the user to create or delete hidden neurons. The guide-line to create or delete

hidden neurons is the same as for the input neurons.

(3) Output Neuron Tool

This Output tool allows the user to create or delete output neurons. The rules to create or delete output
neurons are also the same as for the input neurons. The Output tool will only delete output neurons.

(4) Bias Neuron Tool

This Bias tool allows the user to create or delete the bias neuron. The rules are very similar to the rules

for input neuron except that only one bias neuron is allowed in each network.

(5) Connection Tool

This Connect tool allows the user to create feedforward or recurrent links between two neurons. Links can

be created either individually or in group.

To create a link (or links), the user must position the mouse cursor over an icon of a desired source neuron
on the design canvas to select the source neuron by pressing the leftnost mouse button. A number of the

source neurons can be selected in this way.

Similarly, to select a destination neuron, the user must position the mouse cursor over an icon of a desired
destination neuron on the canvas by pressing the middle mouse button to confirm the selection of the

destination neuron, A number of the destination neurons can be selected in this way.

Once all of the source and destination neurons in a group to be fully connected have been selected, links
between them can be made by pressing the rightmost mouse button. All valid links will be drawn on the

design canvas.

Each link created has an associated weight, the value of which is determined by the chosen parameter

options specified by the user through the set parameters menu option.

Note:

« In order to get a nice or clear topology picture on the screen, the user should have a well-prepared topology
before drawing it on the screen. A careful design that avoids any overlaps among links is necessary,

because links can be hidden if an overlap exists.

» The validity of all possible links is displayed below. Here v denotes that the connection is valid, Inv

denotes invalid.
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Destination Neurons

Source Neurons Input Hidden Qutput Bias
Input Inv v " thiv

Hidden Inv v " i

Output Inv v v Inv

Bias Inv v v inv

Fig. Apdx 1.2 The valid relationship of links
(6) Disconnect Tool

This Disconnect tool allows the user to disconnect links between two neurons. It works on exactly the
same principle as the Connect tool, except it deals with disconnecting existing links rather than creating

links.

In order to keep the integrity of the network, checks are made to see if the target links to be disconnected

exist. If the links exist, they are disconnected, otherwise nothing happens.
(7) Select a Neuron Tool

The idea of having the Select tool is to allow the user to view and modify existing neuron attributes. Any
confirmed changes or settings made to the neuron are stored within the network topology and will be
applied during any operations associated with the neuron. In cbptool, this tool is only provided for

viewing the attributes.

In order to select a neuron, the user must position the mouse cursor over the icon of the target neuron on
the design canvas by pressing the leftmost mouse button to confirm the selection of the target neuron. A
popup display, shown in Fig.Apdx 1.3, will appear on screen, which shows the neuron attributes as well as

details of links to and from the neuron.

(i) The detailed information associated with the features of the target neuron, e.g. its ID and type is
displayed in the centre panel. Except that the two latter values are unalterable, all other displayed attributes

are user-alterable within the panel.

All the functions associated with the neuron can be selected in any of the two ways: one is to use the
SunView cycle facility to cycle through the available options; the other is to select through the function
menu. The first method is by clicking on the appropriate function option with the lefthand mouse button
when cycling through all the options with the mouse button; the second method is to press the righthand

mouse button to bring up the menu.
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In order to select some other attributes such as all the values listed in the centre panel, the user should do

the following things:
« Position the text cursor near to the appropriate text item using the mouse;
« Edit the text in the normal manner to get a new valid value for the associated attribute.

(ii) Values for the incoming and outgoing links to the target neuron are displayed in the left and right side

panels respectively.

These values are for display only and cannot be altered through editing the text on the screen. The Modify

tool allows the user to alter the link attributes.

Each link related to the target neuron is represented by a neuron ID and the associated weight value, where
the ID can be a source or destination neuron ID associated with the link. Each of the two panels has an
associated scrollbar, it enables the user to view ali of the links without missing any links in case that the

target neuron has too many incoming or outgoing links for the panel windows.

(iii) When a user has made any changes on the alterable items, it is the time for the user to save or discard
the changes. The changes to the topology will be saved if clicking on the confirm button, or discarded by
clicking on the gance] button. In both cases, the neuron popup will disappear after clicking.

(8) Modify Weights Tool

This Modify tool enables a user both to view and modify any weights on existing links. The last change
made to the weights will be stored within the network topology and will be applied by any operations
where the weights are needed.

In order to modify a weight, the user must select the source neuron of the link by pressing the leftmost
mouse button, confirm the destination neuron with the middie mouse button and press the rightmost mouse

to bring up the weight popup. See Fig. Apdx 1.3 below.

R

From : Unit 2
To : Unit 4

w Set Weight: 0.786000

Fig. Apdx 1.3 The Modify weights popup
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The weight popup displays the weight value between the two linked neurons. The user can modifly weight
within this popup.

All methods of using the Modify tool are very similar to those of the Connect tool described above,

except in the following three aspects:
« The user is only able to access one link or modify one weight value at each time;

» The modification cannot be cancelled after the user has modified the weight. In other words, there is no

closing of the dialogue box without saving the modification.

+ No effort has been made in the simulator to ensure if the data entered are valid, the verifying of data is left

to the user.

3.3 MENUS

This is the end-user interface of all operations provided in the cbptool. There are seven menu items in the
Menu Bar. Each item contains various numbers of optional sub-items in order to deal with an operation.

The following text will illustrate the usage and function of each item in the Menus Bar window.

A. File Menu

This menu contains a number of options dealing with file manipulation. There are three sub-items for the

user to create, load and save a network topology. A picture is shown in Fig.Apdx 1.4a.

Load Topo ] ogy Load Network Topolopy

Save Topology

Directory : /staple/rsch/chen
File i 321.str,

Fig. Apdx 1.4a The File menu. Fig. Apdx 1.4b The loading popup.

(1) New

By choosing this sub-item, the user can design a new network topology on the design canvas. The

previous contents on the design canvas will be cleared and discarded.
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(2) Load Topology

This is designed to load in a previously stored network topology from an external file into the design

canvas. The previous contents on the design canvas will be cleared and discarded.

When this item is chosen, a load topology popup will be called automatically in the simulator and
displayed (see Fig. Apdx 1.4b). The popup enables the user to specify both the directory and filename of
the topology file.

To load the topology file, the user should type in both the directory and filename correctly. When it is
checked that both the names typing are correct, the operation can be confirmed by clicking on the lgad

button. If the file does not exist or is of incorrect format, an error message will be displayed.
There are two things to remind ourselves in this kind of operation:

« The default directory is the current working directory;

« The Terminal Emulator is available to verify whether the file exists;

(3) Save Topology

This is designed to store a network topology currently on the design canvas to an external file.

Again when this item is chosen, a popup for saving topology will be called automatically in the simulator
and displayed on the screen. The popup enables the user to specify both the target directory and filename for
saving the topology file.

The operation will be confirmed by clicking on the save button. The file will be stored in a textual form,

If the directory specified by the user does not exist, an error message will be displayed. Also the Terminal

Emulator can be used to verify whether the topology file exists after the operation.

B. View Menu

This is a menu for a user to deal with all the display canvases designed in the simulator. The menu

contains three sub-items, each of which enables the user to clear a canvas.

View| Clear Design Canvas
Clear Plotter Canvas

Clear Equaliser Canvas

Fig. Apdx 1.5 The View menu
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(1) Clear Design Canvas

Identical to the new menu option in the File menu, this option allows the user to clear the design

canvas, and enables the user to design a network topology within a clear window.
(2) Clear Plotter Canvas

The plotter canvas in the simulator is provided to plot dynamically a graph which shows the network error
at a certain training time when some operations are performed on a training network. This option enables

the user to clear the plotter canvas.
(3) Clear Equaliser Canvas

The equaliser canvas in the simulator is provided to display graphically the dynamic changes of error for
each training tuple when some operations such as FCBP1 and DBP training regimes are performed on a

network during training. This option enables the user to clear the equaliser.

For further details about the functions of the Plotter and Equaliser canvases, the user should refer to sections
§Apdx 1.5.1.B and C.

C. Set Parameters Menu

This menu contains only one item. The related function is to enable the user to set some parameter values

in the simulator. See Fig. Apdx 1.6a below.

Set defaults g

SRR SRR

Defaults

Fig. Apdx 1.6a The Defauits menu

When this item is chosen, a popup will be displayed on the screen (Fig. Apdx 1.6b). The popup enables
the user to customize the parameter values (o suit his own needs. By modifying the contents shown in the

popup and confirming the modifications, the associated attributes will be set in the simulator.

Note that the parameter values will only affect neurons and links created after the parameters have been set.
The user should do the parameter setting before creating his new network. The following text describes

each parameter in turn.




Activation Function £ Sigmoidal
Excitation Function C  Weighted Sum
Threshold Function C  Linear
Excitation Value : 0.00000‘
Activation Value H 0.00000
Pravious Activation & 0.00000
Output Value :  0.00000
Error Value z 0.00000
Set Default Weight:

. v/ Random

S
Fixed

Range : 2.0
Yalue : 0.50000

Fig. Apdx 1.6 The Default popup

(1) Activation Function

This is a function interface which enables the user to choose an activation function from a list of functions.
The activity value of a given neuron in the network will be calculated according to the chosen function.
The default is the Sigmoidal function. Other functions listed are the reserved interfaces for possible future

implementations.
(2) Excitation Function

This interface enables the user to choose an excitation function from an excitation function list. The
excitation value of a given neuron will be calculated according to this choice. The default is the Weight
Sum. As for the Activation Function interface, the other functions listed are the interfaces for future

implementation.
(3) Threshold function and values

The user can decide the function and values through the menus. In cbptool, these interfaces listed are

reserved only for future implementation,
(4) Initial-Weight-Setting Parameter

The user has to decide in which way to set the initial weights for his network when applying the training

operation. There are two options for setting this parameter value: RANDOM or FIXED.
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If the user chooses RANDOM option, the initial weight values will be randomly set within a desired range.
The desired range is a range decided by the user by typing the associated value within the item RANGE.
For example, if a range of 1.0 has been decided by the user, then the simulator will produce all initial

weight values randomly within the range (-1.0,+1.0).

If the FIXED value option is chosen, fixed initial weight values will be set by the user through either
another facility: the Medify tool during creation of the network or the file interface provided together with

training during training.
Note:

When the user chooses the FIXED option as a default, care should be taken to avoid to have a symmetrical
network. This is because the network will be unable to be trained properly for neural reasons (McClelland
and Rumelhart, 1988).

D. Build Menu

Facilities are provided as aids to the user to make sure if a network topology is valid and the internal
representation of the network is tidy. This menu contains two options fidy and valid which help the user to

tidy up a user-designed topology and ensure the user-designed topology is logically valid.

Build

Tidy Net
Yalidate Net

Fig. Apdx 1.7 The Build menu

(1) Tidy Net

As a menu option, the user can tidy up his own network design by applying this option to the network
currently on the design canvas. This procedure enables the screen topology to be tidied up and then goes on

to create a real internal topology for manipulation during performance.
(2) Validate Network

Similar to the Tidy Network, Validate Network is to do with the validity of the network as a whole.
The aim of this facility is to check the topology currently on the design canvas to ensure if the topology is

correct and suitable for the simulator operations.

The criteria for a valid network are as follows: (i) A network must have at least one input and one output

neuron. (ii) For each type of neuron, there must exist several certain valid connections.
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This means that an input neuron must have a connection to other neurons and there is no incoming
connections from any neurons. A hidden neuron must have both connections from input and output
neurons. The bias neuron is only able to link to the hidden or the output neurons (Fig. Apdx 1.2 shows

the valid relationships among the units).

E. Training Menu

This menu conlains many options for training a user-designed network and displaying dynamically the data

produced when performing the training operation(Fig. Apdx 1.8a).

Open Display Plotter

Open Display Equaliser
Open Training Display Frame
Train Net

Fig. Apdx 1.8a The training menu
(1) Open Display Plotter

This is to open the plotter window which enables the user to see dynamically the graph of the summed error
of a training network over certain number of weight state transitions when performing a chosen training

operation. See section §Apdx 1.5.1B for more details.
(2) Open Display Equaliser

This is to open the equaliser window which enables the user to see dynamically the graphs of the error
change for each training pattern of a network during some training operations (see section §Apdx 1.5.1C for

more details),
3) Open TRAIN-DISPLAY-FRAME

This is to open the training display popups, to set some parameters and see dynamically the on-line
messages of a training operation in a textual form. The messages help the user to trace operation results
and final reports e.g. the number of the weight state transitions; or whether the network has been trained

successfully (see section in §Apdx 1.5.1A for more details).

(4) Training Network
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This is the option for setting and performing training on a user-designed network. Two main popups will
come up in turn and help the user to set up all the training attributes necessary before any user-designed

network can be trained.
(i) TRAIN-PATTERN POPUP

First of all, the training option brings up the TRAIN-PATTERN POPUP (Fig. Apdx 1.8b) which allows the
user to specify the desired training patterns through a file interface provided by the simulator, This popup
interface enables the simulator to receive a number of Input/Output training tuples specified by the user and

perform training based on both a user-designed network and user-designed training tuples.

Lead Required Pattern File

Directory : /staple/rsch/chen
File

Fig. Apdx 1.8b The loading file popup

The popup works in the similar way to the LOAD TOPOLOGY POPUP discussed in section §Apdx 1.3.3A.
Once the directory and filename of the file for the training patterns have been typed in by the user, an
integrity check will be made by the simulator to see if the contents of the pattern file are compatible with
the current network topology. If the contents are incompatible with the current network topology, an error
message will be displayed on the screen. Otherwise the file will be loaded into the simulator, and two
popups related (o training will be brought up next. The format of the training pattern file will be specified
in §Apdx 1.4.2. The three popups are described below.

(ii) TRAIN-DISPLAY-FRAME and other working windows

Once the training patterns have been loaded, the TRAIN-DISPLAY-FRAME will be opened. Another two
display windows: DISPLAY-EQUALISER and DISPLAY-PLOTTER will also be opened automatically. But
these two will be closed automatically if the chosen training regime is not going to use them during

operation,

DISPLAY-EQUALISER and DISPLAY-PLOTTER allow the user to view the training dynamically. They will
be discussed in §Apdx 1.5.1C and B.

The TRAIN-DISPLAY-FRAME is a main training window. On top of the frame, there is a specification menu

which allows the user to tailor the training attributes to suit his needs before training, the lower section of

— 185 —

Y




the TRAIN-DISPLAY-FRAME enables the user to see some data or training messages displayed during the
training operation. For descriptions about the messages displayed within the section of the TRAIN-

DISPLAY-FRAME, refer to §Apdx 1.5.1A.

The following text will specify each item in turn within the section of the specification in the TRAIN-

DISPLAY-FRAME in order to help the user to set up the training parameters.

P g la

E Training Regimes:

Number of Trials:

Set Default Initial Weights: O Randomly
Scale of Init_WT: 1

Bias seed d 100

Initial WT States File Directory : /staple/rsch/chen
Initial WI States File Name: init_uweights.tmp

Set Default Learning_rate: C  Fixed

Learning_rate Value : 1

Set Default Momentum: C  Fixed
Momentum Yalue 0

T Paths-FCBP

<

Haximuam iterations 2 200
Output Taolerance : 0.2
Display after... : 1

Store Weight States File Directory : /staple/rsch/chen
Store Weight States File Name: store-wloop.tmp

Store Activities File Directory : /staple/rsch/chen
Store Activities File Namas: store-aloop.tmp

%|Until now 122 total subloops taken for this trial, 1 total epochs taken
W4 average number of loops for each position = 30.500 X

average number of total_loops for suc.trials = 122.000
average number of epochs for each trial= 1.000
nunbcr of failures = 0

Fig. Apdx 1.9 The training display popup
(1) Training Regimes

There are six different training regimes available in the simulator. The user can choose one regime either

by cycling through the options available or by clicking on the right regime with mouse.

The regimes provided here are all based on backpropagation. The direction and amount of each weight
change in the weight state transition is estimated using gradient descent method. Each regime has though a
different way to control the training. A brief introduction of each training regime is described below. More

details about the regimes refer to Chapter 4 and Chapter 5.
« FCBP1

In the training regime FCBP1, one single weight state transition is made for each change in input training

tuple as it is in standard backpropagation without momentum coefficient. Training continues until there is
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a complete traverse of the training path with the associated weight state for each /O training tuple having

an error within a certain tolerance. A goal weight state path is then achieved.

The message of failed training will be displayed if the training is stopped when a critical value of the

training time is exceeded.
* FCBP2

In the training regime FCBP2, the direction and amount of each weight change in the weight state transition
is also estimated using standard back-propagation without momentum coefficient. The difference from

FCBP1 is the rule of the weight state transition.

In FCBP2 when training an I/O tuple, consecutive weight state transitions are repeatedly made until either
the error of the associated weight state is within a certain tolerance or the training is compulsorily
terminated (the tuple cannot to be trained) if the training time is exceeded. It is the last weight state
resulting from the sequence of weight state transitions made for an I/O training tuple that is taken for the

training termination test.

Upon coming across a tuple along the training path that cannot be trained, the training will be stopped and
a training failure message will be displayed on the TRAIN-DISPLAY-FRAME.

In the normal case, training under this regime continues until there is a complete travesal of the I/O tuples

along the training path with low error.
* DBP

DBP stands for a discrete backpropagation regime for feedforward networks, it is a slight variation on the
conventional backpropagation (Rumelhart et al, 1986) in the rule of the tuple error test: there are two /O
passes for each training tuple. It is the error of the second pass resulting from applying the current weight

state made for the I/O tuple that is taken for the test.
* PATHS-FCBP

PATHS-FCBP is a regime very similar to the FCBP2 except it deals with training based on multiple training
paths and at each position, DBP is applied to find a single goal weight state. If the user is interested in the
details about the concepts of the multiple training paths, refer to the relevant section in Chapter 4.

» FCBP-SBP

This is a regime provided for finding a single goal weight state based on the PBP approach. FCBP-SBP
denotes: feedforward continuous back-propagation for a single weight state. This is to use two different

training and recognition sets to guide training. A regime like a multi-paths based FCBP1 is applied for each
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training loop (and varies the training direction one after another loop) based on the training tuples in the
training set until a single weight state is found according to the testing tuples in the recognition set or

failure occurs. More details about this approach can be found in §6.5.
* RCBP

RCBP is the regime used for the recurrent network in the PBP approach. More details about the regime refer

to the chapter 5.
(2) Number of Trials

This attribute allows the user to decide the number of the training trials and enables the user to do some
operations in batch. Different training trials start from different initial weight states, initialised in a user-
specified way, but all the other training parameters are the same. The default value of this attribute is 1,

and a suggested number is 100.
(2) Bias Seed

This attribute allows the user to generate the same sequence of data which may be used as a set of randomly
chosen initial weight values. This enables the user to have different experiments using the same randomly

chosen initial weight values.
(4) Set Parameter for Initial-Weight states

This attribute allows the user to initiate the initial weight states for the training in batch ( For the training
on a single trial, see section §Apdx 1.3.3F ). There are two types of options: randomly and user-defined.

They are described as follow:
* Randomly

This means the simulator to set the initial weight state for each training trial. Each weight link within the
network will be set randomly within a range which is decided by an attribute provided through the field:

scale,.
« User-Defined from a prepared file

This is to set the initial weight state in a user-defined way when performing the training in batch. Clearly
in order to train more than one trial based on a network with the user-defined initial weight states, a file
interface should be used. The specifications can be obtained through the file interface in a certain format.
The directory and file name of the file should be provided through the following two fields: File
Directory of Initial-Weight states, File Name of Initlal-Weight states.
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* User-Defined from screen setting

This is to set the initial weight state through screen setting. It is only valid when training is on a single

trial, This is only to provide one more interface for the user to set up his initial weight.
(5) Scale of Initial weight

This is used to set the range of the initial weight values. Each weight link within the network will be set

randomly within the range such as within (-0.1, 0.1).
(6a) File Directory of Initial-Weight states

This field allows the user to specify the a directory under which there is an external file containing all the

user-defined initial weight states. The default directory is the current working directory.
(6b) File Name of Initial-Weight states

As described above, this field allows the user to specify the file name.

(7) Set Parameter for Learning rate

There are two different parameter settings available in the simulator. One is to set the parameter as FIXED

and the other is as FUNCTION.
FIXED

If the user wants to have a fixed learning rate set by himself before training and keep it fixed during the
whole training procedure, then the user should choose this option and type in the real learning rate value in
the very next attribute field LEARNING RATE-VALUE,

*FUNCTION

If the user wants to have a self-adaptive learning rate during training, he should choose this item. The
parameter will be calculated through an associated function. Any values typed by the user in the
LEARNING RATE-VALUE field will be discarded then. An algorithm to adapt the learning rate for any
three layer feedforward networks, designed and implemented by Weir (Weir, 1990 ), has been compiled into

the simulator as an example.
(8) Set Parameter for Momentum Coefficient

As for the learning rate setting, there are two different parameter settings available in the simulator. One is
to set the parameter as FIXED and the other is FUNCTION.
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*[IXED

If the user wants 1o have a user-decided nmomentum parameter, the user should choose this option and type

in the momentum value into the very next attribute field MOMENTUM-VALUE.
*FUNCTION

In comparison to learning rate parameter, this is just a function interface in the simulator, no example
function procedure itself has been implemented. It is an extension interface provided for the user to write
his own self-adaplive procedure for the momentum attribute if it is necessary in the future. If he chooses
this item, any values typed in the MOMENTUM-VALUE field will be discarded, and the momentum value
will be calculated by a user-designed function.

(9) Output Tolerance

This is one of the training parameters which is used to decide the training accuracy. The default value is
0.2.

(10) Maximum Number of Weight state Transitions

This is a variable to decide when the training will be terminated. The number of the weight state
transitions is a critical training attribute because a training to some networks, for various reasons, would
last infeasibly. Using this parameter, if the network has not been trained by the time when the critical

attribute is reached, the training can be aborted.
Note:

« It is impossible to say in general what a prior value is for this training parameter. It depends on the
network being trained, the training regime being applied and the other training attributes being chosen. The

user should choose this parameter with a great care, and not set it too small or too large.
» The parameter has different way to explain the critical training attribute for the different kinds of regime.

(i) In FCBP1, DBP or FCBP-SBP regime, this number controls the total number of loops. When training
along one training loop has been completed, the total number of the weight state transitions of this loop is
equal to the number of the training positions. Therefore the maximum number of the loops, which is equal
to the number of the training positions divides the maximum number of the weight state transitions, will

be used as the critical attribute.

(ii) For regime FCBP2, PATHS-CBP, RCBP: this number controls the number of weight transitions at each

training position. The maximum number refers to the total weight state transitions for all the tuples at
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each position. The number of the weight state transitions at each training position will be the number of

the training positions divides the maximuin number of the weight state transitions.
(11) Display after

This allows the user to control the display. The graphs can be display after every various number of weight

transitions. In cbptool, the default number is one.
(12a) File Directory of Stored-Weight states

As described in (6a), this attribute allows the user to decide a directory under which an external file

containing all learnt weight states will be saved.

(12b) File Name of Stored-Weight states

This attribute allows the user to decide the name of the external file mentioned above.
(13a) File Directory of Stored-Activations

Similar to (12a), this attribute allows the user to decide a directory under which an external file containing
all learnt activation values will be saved. This operation is only valid when the RCBP training regime

applied.
(13b) File Name of Stored-Activations

This attribute allows the user to decide the name of the external file mentioned in (13a).

Once all of the training attributes in the TRAIN-DISPLAY-FRAME have been set up, training operation can
be initiated by clicking the top left icon within the popup. When started, the operation cannot be stopped
until the network either is trained as desired or its critical training attribute (see Maximum Number of
Weight state Transition) is reached. It is therefore very important to make sure that all the attributes

set up are satisfactory before starting the operation.

A popup is provided for the user to decide in which way to run operations. There are only two options for
this parameter: BACKGROUND and FOREGROUND. The default is FOREGROUND. If the user
chooses BACKGROUND option, the operation will be performed in the background, and cbptoel no
longer occupies the Sun window system. Otherwise the chosen operation will be performed within the

window environment. When the running ground has been chosen, operation starts.

When the training has been completed, it should be noticed that the weight state related to the network
topology is not altered permanently by training. This means that the weight state of the network before




training is reinstated automatically when training is completed. This allows the user to run subsequent
trials on exactly the same network, for example, to train on the same network with the same initial weight

state but different other training attributes.
Note:

(i) The background facility is mainly provided for a user who wants to do a chosen operation in batch mode.
This enables the user to save CPU expenses on graphics and window system when he wants to apply the

simulator with intensive calculations.

(ii) If the chosen operation is running in the background, the user has actually released most resources of the
simulator, and the user will automatically be forced to quit the simulator when the operation finished. The
results can be either placed in an external file if the file interface has been applied before the operation or
output directly onto the screen. If the user needs to use some other facilities of the simulator, he will need

to access and run the simulator again.

F. Performance Menu

This menu contains three options for the performance on a trained network and displaying dynamically
the data produced during the operation. (Fig. Apdx 1.10)

Performance Open Performance Display Frame
Path_Based Performance

Time_Based Performance

Fig. Apdx 1.10 The Performance menu

(1) Open Performance Display Frame

This facility is provided to open the display popup, set some operation parameters and see dynamically the
on-line messages of the operation in a textual form. The messages help the user to trace operation results
and final reports e.g. the number of the tuples which are generalized successfully. See section §Apdx

1.5.1A for more details.

Another two menus are for setting and performing two kinds of performance operation for a trained-
network. One operation is based implicitly on the training time, it is a path-based performance. The other
is based explicitly on the training time, it is a time-based performance. The both opcrétions can be either a
supervised or an unsupervised. If the user wants a supervised operation, the target output tuples should be
included in the performance-pattern specification file (refer to §Apdx 1.4.3, §Apdx 1.4.4). The
description about how these two performances differ from one another is presented below together with

more details about the two operations,
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(2) Path-Based performance

This is the option to do the performance along a training path. All patterns for the performance must be
either trained patterns or the patterns close to one of the trained patterns along the training path. The first
pattern of the performance must be a trained pattern. All patterns are provided by the user in a file served as

the performance-pattern specification file.

The operation continues, while reading in a performance pattern and applying a suitable weight state which,
is carried out through one of the generalization regimes, to calculate the actual network output until there is

a complete travesal of the performance patterns.
(3) Time-Based Performance

This is the option to do the perfo}-mance based on a real time. Each pattern together with an associated
time is specified by the user. The pattern is not necessarily along any of the training paths, but simply on

the trained space with real time.

The training time is needed for generating an associated weight state by the generalization regimes. This is
a real index value of a training order based on the training position. For the trained tuples in the first
training position, the value is 1.0; for those in the second position, the value is 2.0 and so on. The
integral part of the value indicates the closest training position associated with the performance tuple, and
the fractional part indicates the distance from the position. For example, if a performance tuple is halfway

between the training positions 2 and 3, its training time will be 2.5.

Whatever the option chosen by the user, the following two main popups will come up in turn and help the

user to set up all the necessary attributes before performance.
(i) LOAD PERFORMANCE-PATTERN POPUP

Similar to the training operation, performance options bring up the LOAD PERFORMANCE-PATTERN
POPUP (Fig. Apdx 1.11) which allows the user to load in the desired patterns through a file interface.

Load Trained & Performance Pattern Files

Trained Directory : /staple/rsch/chen
Trained File i xor.pat

Performance Directory : /staple/rsch/chen
Parformance File

Fig. Apdx 1.11 The loading popup for generalization
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This enables the user to specify a number of performance tuples to the simulator. The popup works in a
similar way to the LOAD TOPOLOGY POPUP discussed in section §Apdx 1.3.3A. Once the directories and
filenames of the training pattern file and the performance pattem file have been typed in by the user, an
integrity check will be made to see if the contents in the two pattern files are compatible with each other,
with the current network topology. A check is also needed to ensure if the file is compatible with itself.
An incompatible of example is incompatibility: when the user wants 10 do a supervised operation but there
are no output tuples in the file. If the contents of the loaded pattern files are incompatible with the
topology, the training patterns or the context, an error message will be displayed on the screen. Otherwise
the file will be loaded into the simulator, and the popup PERFORMANCE-DISPLAY-FRAME will be brought
up next. The format of the performance pattern file will be described in §Apdx 1.4.3 and §Apdx 1.4.4.

(i) PERFORMANCE-DISPLAY-FRAME

Once the performance patterns have been loaded, the PERFORMANCE-DISPLAY-FRAME will be opened (Fig.
Apdx 1.12). This is a main conversation window for the performance operation. On top of the frame,
there is a specification menu which allows the nser to tailor the operation attributes, the lower section of
the PERFORMANCE-DISPLAY-FRAME enables the user to see some data or operation messages displayed
during the performing. The following text will discuss each item in turmn within the section of the
specification menu to help the user to set up the operation parameters, the descriptions about the data and

operation messages displayed within the lower section of the frame refer to §Apdx 1.5.1A.

Fortorpene Doplz: Frans

.E Interpolation Regimes: C  Linear interpolation

Performance Accuracy: 0.2

Number of trained trials: 1

Number of performance trials: 1
Trained Regimes: Z  FCBP-based

Learnt Weights File Directory : /staple/rsch/chen X
Learnt Weights File Name: store-wloop.tmp
Learnt Activation File Directory : /staple/rsch/chen

Learnt Activation File Name: store-aloop.tmp
File Directory of Performance Results : /staple/rsch/chen
File Name of Performance Results: store-generalize.timp

B I am here and doing Generalization

ith trial succeed
number of failures for success traipned trials= 0
number of failures of trained trials= 0

number of total_suc_positions of success trained trials= 4

Fig. Apdx 1.12 The generalization disply popup
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(1) Interpolation Regimes

There are three functions for three different generalization regimes in the simulator. The user can choose
any regime either by cycling through the options available or by clicking on the right regime with mouse.
The default regime is the linear interpolation: LINEAR-INTERPOLATION. The interfaces of the other two

functions have been reserved for the future implementation of the associated procedures.
* LINEAR-INTERPOLATION

LINEAR-INTERPOLATION refers to generalization based on the linear interpolation technique. This regime
means that the generalization to the untrained patterns is based on a linear interpolation of the two
neighbouring weight states of two trained patterns along the training and generalization path. The
definition of the neighbourhood is described above.

* NEIGHBOURHOOD

NEIGHBOURHOOD regime is orie of generalization regimes. The interface of this procedure is implemented

but the procedure itself is for future implementation.
* FOURIER-INTERPOLATION

FOURIER-INTERPOLATION refers to generalization based on the Fourier analysis on the learnt weight states.

The interface of this procedure is implemented but the procedure itself is for future implementation.
(2) Performance Accuracy

This is a parameter associated with the training tolerance, used to decide the accuracy of individual activities

in a supervised performance. The default value is 0.2,
(3) Number of Trained Trials

If the network has been trained in batch, a performance operation in batch is then possible. This
parameter helps the simulator to decide what the maximum number of the operation trials is allowed if the

user wants to do performance in batch.
(4) Number of the Performance Trials

This specifies the number of the trials in batch. The valid number of the performance trials must be less or
equal to that of the trained trials.
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(5) Trained Regimes

There are three types of regimes. Again the user can choose a regime either by cycling through the options

available or clicking on the right regime with the mouse.
* FCBP-BASED
FCBP-BASED stands for the performance based on the two FCBP-based training.

This regime means that the performance is based on a weight state path. The performance for the patterns
will be done by applying the associated weight state based on the learnt path which has been obtained by

applying one of those continuous backpropagation training regimes.
* DBP-BASED
SBP-BASED stands for the performance based on the Discrete BackPropagation training.

This regime means that the performance is based on a single weight state. The operation patterns will be

performed by applying a single learnt weight state which has been obtained through training.
* RCBP-BASED
RCBP-BASED stands for the performance based on the RCBP training.

This regime means that the performance is based on both a weight state path and a activity path, The linear

interpolation technique is then applied to both the learnt weight state and activity state paths.
(6) File Directory of Leamnt-Weight states

This enables the user to specify the directory of the file which contains all the learnt weight states of a

trained network. It is those weight states that enable the user to do the performance.
(7) File Name of Learnt-Weight states

Similar to (6), this allows the user to specify the name of the file.

(8) File Directory of Learnt-Activity states

This enables the user to specify the directory of the file which contains all the learnt activity states of a

trained network.
(9) File Name of Learnt-Activity states

Similar to (8), this allows the user to specify the name of the file.
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(10) File Directory of Performance-Results

This allows the user to specify the directory of the file which will contain all performance results of the

chosen operation: the actual network input and output values generated by the performance operation.
(11) File Name of Performance-Results
This allows the user to specify the name of the file described above.

Once all of the attributes in the PERFORMANCE-DISPLAY-FRAME have been sct up, the operation can be
initiated by clicking the top left icon within the PERFORMANCE-DISPLAY-FRAME. A popup will be
provided to set the running ground (this is the same as that in §Apdx 1.3.3E). When started, the operation
cannot be stopped until it has completed. Therefore it is very important to make sure that all the attributes

set up are correctly before starting any operation.

G. Quit Menu

This menu (rather a button) provides for the user to exit the simulator (Fig. Apdx 1.13).

Are you sure you want to Quit?

"

Fig. Apdx 1.13 The Quit menu

When this menu is selected, a QUIT POPUP will be displayed. If the user wishes 1o remain in the simulator
at this stage, the cancel button should be selected, otherwise confirm the operation by clicking on the

confirm button.

4. Forms of the Specification Files

Four different specification files are used in the simulator as file interfaces for training and performance
operations. As discussed earlier, the file formats used in the simulator depend on the Sun operating system
and are very rigid. If the format is not adhered to, the simulator will not complain but will try and operate
on the erroneous pattern values, it will totally nullify the results of the operations. Therefore carefully and
correctly specifying the working files to the simulator is a primary condition to be met for running any
simulator operations. The following sections will describe the formats for the four files: initial-weight

state file, training-pattern file, path-based-performance-pattern file, and time-based-performance-pattern file.
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4.1 INITIAL-WEIGHT STATE SPECIFICATION FILE

This is the interface that enables (he user to do training based on a set of user-designed initial weight states.

As an example, a corresponding specification file, formatted for setting the initial weight states for two

training trials in a designed network, would look like the following:

w31, w32, w36,
w41, w46,
w53, w54, w56,

0.10012, 0.21000, 0.70021,
0.08001, 0.19251,
0.01003, 0.52009, 0.11027,

Fig. Apdx 1.14a The specification file Fig. Apdx 1.14b The user-designed network

Fig. Apdx 1.14a shows the information about the specification file for the user-designed network topology
shown in Fig. Apdx 1.14b: the two groups information correspond to two training trials. The contents of
the first group information is an example to show the format and the details of each item for one trial, the
second group is as a real example for setting initial weight state for a training trial. The new-line in the file

is represented by a short horizontal dashed line.
The file format can be described in text as follows:

(1) For each training trial, There are a single new line and a number of lists associated with it in the

specification file.

(2) The number of the lists depends on the total number of the hidden and output neurons related to the

user-designed network. The order of the lists is decided by the neurons’ ID.

(3) The length of each list depends on the number of the incoming links to the neuron. The items of the
list are the weight strengths of associated incoming links to the current neuron, ordered according to the

associated neuron ID related to the incoming links, and separated by comma.

4.2 TRAINING-PATTERN SPECIFICATION FILE

This is the file which enables the user to do training based on a set of user-designed training 1/0 tuples.
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Number_of_I/O_Tuples:
Number_of _I/O_Inputs:
Number_of_I/O_Outputs:
Number_of_Paths:

[SEON S I

Path_1
Inputs

0.000, 0.000, 1.000, 1.000,
0.000, 1.000, 0.000, 1.000,
Qutputs

0.100, 0.900, 0.900, 0.100,
0.100, 0.900, 0.900, 0.100,

Path_2
Inputs

1.000, 1.000, 0.000, 0.000,
1.000, 0.000, 1.000, 0.000,

Outputs

0.100, 0.900, 0.900, 0.
0.100, 0.900, 0.900, 0.

100,
100,

il

Fig. Apdx 1.15a The specification file Fig. Apdx 1.15b The network topology

The above picture Fig. Apdx 1.15a shows a real example of the specification file for specifying four
training tuples for the user-designed network topology shown in Fig. Apdx 1.15b. The new-line in the file

is represented by a short horizontal dashed line. The two groups correspond to two training paths.

In a general case, there are seven parts in the specification file in order to specify the training. More details

are given below.

(1) Basic information. This part provides the basic information for the training. There are four items, each
item is specified in an individual line in the file. The form is all the same for the four lines: a string
follows an integer number. The specification string starts from the first column and must not include any
space among the string; at least one space is needed to separate the number and the string. The four

numbers specify:

* The number of the I/O training tuples.

« The number of the input neurons in the network.
» The number of the output neurons in the network.,
» The number of the training paths in the training.

(2) A space line. This is a space line in the file, used to separate the basic information described above and

the others in the file.
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(3) A Path prompter. This is a special line in the file. It is used as a prompter to specify the number of

the path in the file.

(4) An Input prompter. This is another used line in the file. It can be used as a prompter to specify the

input tuples which will be provided next in the file.
(5) Specify the inpul tuples.

This part consists of as many lists as the number of the input neurons. The order of the lists depends on

the input neuron’s ID. Each list is a line in the file.

The items in each list are the real input values of the training tuples, ordered according to the order of the
training tuples. The number of the items in each list depends on the number of the training I/O tuples.

All items in each list are separated by comma.

(6) An Output prompter. This is another used line as a prompter to specify the output tuples will be

provided next in the file.
(7) Specify the output tuples.

Very similar to the Part (5), this part provides the information for the output tuples, consists of as many
lists as the number of the output neurons. The order of the lists depends on the output neuron’s ID.

Each list is a line in the file.

The items in each list are the real target output values of the training tuples, ordered according to the order
of the training tuples. The number of the items in each list depends on the number of the training I/O

tuples. All items in each list are separated by comma.

Both an example and description of each part of the specification file have been given above. It is clear that
the part (3) to part (7) associate with only a single training path in the file. If a group is defined and
referred to the part(3)-part(7), the number of the group depends on the number of the training paths.
Therefore each training specification file consists of the part (1), part(2) and a number of the group.

4.3 PATH-BASED-PERFORMANCE-PATTERN SPECIFICATION FILE

This file enables the user to do performance based on a set of user-designed performance tuples. All the
tuples provided by the user must be along a training path. Both the format and the contents of the file

provided by the user are very similar to those of the Training-Pattern Specification file.




Here is an example, the formatted file enables the user do an unsupervised performance on a trained network
based on the second training path for eight performance tuples. The corresponding specification file appears

like the following:

Number_of_I/O_Tuples: 8
Number_of_Inputs: 2
Number_of_Outputs: 2
Paths_no.: 2

Performance_Tuples:
1.0,1.0,1.0,0.5,0.0,0.0,0.0,0.5,
1.0,0.5,0.0,0.0,0.0,0.5,1.0,1.0,
Outputs:

0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,

Fig. Apdx 1.16a The specification file Fig. Apdx 1.16b The user-designed network

Fig. Apdx 1.16a shows the real example of the specification file for the user-designed network topology
shown in Fig. Apdx 1.16b. The new-line in the file is represented by a set of short horizontal dashed line.

In general, there are four or six parts (depending upon if it is a supervised operation) in the specification file

in order to specify the performance. This is listed as follow:

(1) Basic information. This part provides a set of basic information for the operation. There are four items,
each item is specified in an individual line in the file in the same form as that described in Apdx 1.4.2 (1).

The numbers represent:
« The number of the performance tuples;
« The number of the input neurons in the network;

« Information about the targets: if this is a supervised performance, the value of this field should be the

number of the output neurons, otherwise should be zero.

« The number of the path (it starts from the Xth column): this value indicates the operation is based on

which training path.

(2) A space line. This is a space line in the file, used to separate the basic information described above and

the others in the file.

(3) A Performance prompter. This is used as a prompter.
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(4) Specify the performance tuples. This part is very similar to the part(5) in the training-pattern-

specification file, il is used to specify the performance tupies.
(5) An Target prompter. This is another prompter line.

(6) Specify the target tuples. This part is very similar to the part (7) in the training-pattern-

specification file, and is used to specify the target tuples when performing a supervised performance.,
Note:

There are two main different points comparing this specification file with the training-pattern-

specification file:

» As each performance is only based on a single training path, there is no more than one group defined in

the fraining-pattern-specification file.

« In the performance specification file, the part (5) and part (6) are only needed when the user wanis to do a
supervised performance and provide the targets to the output neurons. This is implied by representing the
real number of the output neurons in the third line of the part (1). When doing a unsupervised performance,

this value is set to zero, part(5) and part(6) do not exist then.

4.4 TIME-B ASED-PERFORMANCE-PATTERN SPECIFICATION FILE

This file enables the user to do performance based on a set of user-designed performance tuples together with
the assoctated training time. Both the format and the contents of the file provided by the user are similar to

those of the path-based-performance-pattern-specification file.

As an example, a file has been formatted in order to ensure the user to do a supervised performance on a
trained network which has two input, two output neurons, with eight performance tuples chosen from a
training surface and each one together with a training time specification. The corresponding specification

file appears like the one shown in Fig, Apdx 1.17a below.

Numbver_of_IVO_Tuples: 8
Number_of_Inputs: 2
Number_of_Outputs: 2
Performance_Tuples

1.0, 1.0,1.0, 0.5, 0.0, 0.0, 0.0, 0.5,
1.0, 0.5,0.0, 0.0, 0.0, 0.5, 1.0, 1.0,
Training-Times
1,1.5,2,25,3,3.5,4,45,
Qutputs
02,0.2,02,02,02,0.2,02,0.2,
02,02,02,02,02,0.2,02,02,

Fig. Apdx 1.17a The specification File Fig. Apdx 1.17b The user-designed network
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Fig. Apdx 1.17a shows a real example of the specification file for the vser-designed network topology

shown in Fig. Apdx 1.17b. The new-line in the file is represented by a set of short horizontal dashed line.

In general case, there are six or eight parts (depending upon if it is a supervised operation) in the

specification file in order to specify the performance. More details can be described below.

(1) Basic infonmation. Except the last item in the part (1) of the fraining-pattern-specification file,

the other three items in this part are the same as those in the training-pattern-specification file :
» The number of the performance tuples.

» The number of the input neurons in the network.

» Information about the targets.

(2) ~ (4) Refer to the associated parts in the path-based-performance-pattern-specification file.
(5) A Training_Time prompt.

(6) Specify the training_time of the tuples. This is similar to the part (7) in the fraining-pattern-

specification file, but it is used to specify the training time of the associated performance tuple.
(7) A Target prompt. This is a line as a prompter.

(8) Specify the Target tuples. This part is very similar to the part (7) in the path-based-performance-
pattern-specification file, il is used to specify the target tuples when performing a supervised

performance.

5. Display and Store the Results

This section describes the facilities used to display, store the internal or final operation results and general

messages. This also explains to the user how and in what forms to use the facilities.

5.1 DISPLAYS

As a whole, four types of display subwindows have been provided in the simulator. Each serves as a
separate specific function. Three of them are to display the outputs generated by the network in graphics.
The other one is to display general messages. They are: Display Frame, Display Plotter, Display Equaliser
and General Message Popup. The following text describes the features of each facility in detail.

— 203 —



A. Display Frame

In cbptool, both operation: training and performance have their own display frame popup. There are
two functions for each of the display frame popups. The first function of the popups is to set up the
operation parameters, which has been discussed in section §Apdx 1.3.3E and §Apdx 1.3.3F. Here the
second function of the popups is discussed which is to display some operation information generated by the

two operations in a textual form. They are shown in the lower section of the frames (see Fig. Apdx 1.9).

In the training, the text information consists of the information about each of the training tuples. For
example, the number of the weight state transition taken or the failure information for the trail. Once the
operation has been completed, general information is displayed to report the performance of the operation.
For example, the number of the successfully trained trails, the failure number, the average weight state

transitions. etc.

In the performance, the information shows that the performance results (see the lower section of the

frames shown in Fig. Apdx 1.12). For example, the number of the successful generalized trials.

All text shown in the second section of the training or performance FRAME will be saved into the external
files: train.display.tinp* or perform.display.tmp¥* respectively for further perusal when the user
quits the simulator. The * here denotes an integer number generated according to the number of the current
procedure. This implies that the user will get different file name when he/she executes the operations each

time. The exact file name of the current procedure is displayed in the Suntool window.

The display frames can be closed as any SunView windows: moving the mouse pointer to the window
label, pressing the righthand mouse button and selecting the Done option. The frames can be re-displayed

by either choosing the open display frame option in the Training or Performance Menu, or

performing the associated operation.

B. Display Plotter

Fig. Apdx 1.18a and Fig. Apdx 1.18b show the picture of Display Plotter and Display Equaliser
respectively. The Plotter popup window is provided to plot a graph of the error changing dynamically
against a certain number of the weight state transitions in the training. Only three training regimes:

FCBP1, DBP, and FCBP2 have been suppoited to plot the graph during the operation.

The graph is drawn on an extensible window, the horizontal width of the window can be larger than the
actual physical window displayed, hence there is a scrollbar along the bottom. During the training, the
plotter will automatically track the graph as it is drawn, allowing the user to view the progress of the

dynamically changing of the training on the network,




! | ! !
100 150

Number of Iterations

Fig. Apdx 1.18a The Plotter window

Both of the plotter axes are calibrated; a number is shown along the horizontal axis every certain number of

the weight state transitions and the error is shown along the vertical axis. More descriptions on the two

axes scale follow:

» Each scale represents two different number of the weight state transitions in the three kinds of the training

regimes:
(1) X-calibration for regime FCBP1 and DBP

For FCBP1 and DBP, one scale in the x-axis is one training loop. This means that between any two
adjacent scales, the number of the weight state transitions is equivalent to the number of the training tuples

along one training path.
(2) X-calibration for regime FCBP2
For regime FCBP2, one scale in the x-axis is one weight state transition.

* The error value shown in the y-axis also have two different meanings for three kinds of the training

regimes:

(1) Y-calibration for regime FCBP1 and DBP




For FCBP1 or DBP, the error values shown in the y-axis are the overall network errors. Therefore the y-
axis calibration is scaled depending on the total number of tuples being presented to the network for

training.
(2) Y -calibration for regime FCBP2

For FCBP2, the error values shown in the y-axis are the errors of the current training tuple. Therefore the

y-axis is calibrated between 0.0 and 1.0 as any individual pattern error will néver exceed 1.0

Similar to the display-frames, the Display Plotter can be closed just as it is done on any SunView
windows, and can be re-displayed by choosing the Open Display Plotter option in the Training

Menu and cleared by selecting the Clear Plotter Canvas option in the View Menu.

C. Display Equaliser

This popup window (Fig. Apdx 1.18b) is provided to display dynamically the changing error of individual

training pattem.

Pattern j 5—
Error

1 2 3 4
Pattern

Fig. Apdx 1,18b The Equaliser window

Each pattern error is displayed in the form of a bar graph which changes size dynamically on the screen,

somewhat similar to a graphic equaliser, hence been named as Display Equaliser.




Similar to the Display Plotter, only two training regimes: FCBP1 and DBP have been supported to
plot the graph during training. For both regimes, the equaliser shows the changing error of individual

pattern once a (raining loop.

Again, both of the plotter axes are calibrated, the number of the bars associated with the tuples presented to
the network will be shown on the horizontal axis and the individual pattern error shown on the vertical axis.
It is noticed that the equaliser does not need scrollable along the vertical direction and the vertical axis can
be calibrated between 0.0 and 1.0 as any individual pattem error will never exceed 1.0. Because the number
of the patterns presented to the network is determined at running time, it is necessary to make the equaliser
scrollable along the horizontal, the graph is drawn on a horizontal window larger than the actual physical
window displayed. Thus if there are more patterns than can be displayed in the physical window, the user

can scroll along the horizontal window to view all of the bar graphs.

Very similar mechanisms can be applied in Display Plotter to close, re-display and clear the Display
Equaliser. Following in Fig. Apdx 1.19 is an overview picture of three windows in training: plotter,

equaliser and training display frame.
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Fig. Apdx 1.19 The Plotter, Equaliser and training frame windows

D. General Message Popup

The last type of popup window is the General Message Popup window which is used for displaying

warming or error messages. The message is always displayed at the centre of the popup, when this happens,
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processing cannot continue as normal unless the popup is closed by clicking on the warning icon. An

example is shown below.

Load Network Topology

Directory : /staple/rsch/chen
File i 34l.atr

serning Sepop

load_f1ile
File not found.

Fig. Apdx 1.20 A warning popup for a loading file operation

5.2 STORE INTO FILES

This section discusses the forms of files which used to store operation results in order to help the user to

interpret the information recorded in a textual form.

Four types of information are stored into external files: the text display part of the display frames; the learnt
weight states or the learnt weight sequence; the learnt activation values; and the performing inputs and

outputs in the performance operation. The following text will describe all these files in detail.

A. Store the Display Text

Two designed working files: train.display.tmp* and perform.display.tmp* are used to record the
text displayed on the two related display frames: TRAIN-DISPLAY-FRAME and PERFORMANCE-
DISPLAY-FRAME. This enables the user to further perusal the information after the training or

performance.

The formats of these two files are the same as what have been displayed in the display-frames. The user can

easily interpret the information.

B. Store the Learnt Weight-Sates

Learnt weight state is one of the most important training results, it is not only needed by the

performance, but also helps the user to further analyse the training.




As mentioned before, each set of the learnt weight states is the results of one successfully trained trial. The
number of the learnt weight states is equal to the number of the training positions along one or several

chosen training path(s). All these weight states can be recorded in a user-defined external file,

The form of the recording is very similar to the form of the file for setting initial weight states through the
Initial-Weight state Specification file described in section §Apdx 1.4.1. There are only two
different aspects in the two files: the number of the groups for each trial is different; one additional line is

needed in the Learnt-Weight states file. These will be described below.
(1) The number of the states for each training trial is different in the both files.

» In the Initial-Weight state Specification file, for each training trial, there is only reserved line and one

group consisting of a number of lists,

+ In the Learnt-Weight states file, each training trial no longer corresponds to only a single group defined
above. The number of the groups for each training trial is equal to the number of the training positions.
Each group still starts from one and only one new-line for either a new training trial or a new training

position.
(2) The additional line.

Compared to the Initial-Weight state Specification file, each Learnt-Weight states file has an
additional line at the bottom of the file to tell the user which trial has been trained successfully.

The length of the line depends on the number of the training trials. In other words, the number of the items
in the line separated by comma is the same as the number of the training trials. Each item value is either

1(successful) or O to tell whether the related trial has been successfully trained or not.

C. Store the Learnt-Activation-Values

Besides the learnt weight states, the learnt activation-values is another operation result to be stored when the
RCBP training is perfored. Together with this information, the user is able to further analyse the RCBP

operation and perform the generalization operation.

The learnt activation-values are also corresponding to successfully trained trials. All these activation values
are recorded in a user-defined extemal file in a simple format similar to the learnt weight states file without
the additional line. The format can be described as: for each learnt trail, there is a package of activition
values. Each package consists of as many groups as there are I/O training positions. Each of the

group has as many lists as there are /O paths. Each of the list starts with a new-line and follows a line



of information. The information provide the activition values associated with each unit except the input

units in the units’ ID order and separated by a comma,

D. Store the Performance QOutputs

This is another user-defined external file to keep ali the I/O dynamic information stored in a textual form for
the performance operation. In other words, the related operation results can be either observed through

the display-frame to get some general inforiation or to get more details through the file interface.

The form of the files is simple. It consists of a number of lines with an equal length. The number of the

lines is dependent on the number of the performing tuples. Each line represents a pair of the I/O
information of the performance: ‘X;;, X;2, ... Xin, Oj1, Oj2, ... Ojy," where Xj; (j=1, 2... n) denotes

for performing tuple i the real value of the j;; input neuron and O,-j /=1, 2... m) denotes for performing

tuple i the real network output value of the jg; output neuron,
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APPENDIX 2

EXAMPLE: THE OR PROBLEM

Following is an example which shows the role of hidden units in the two kinds of particular I/O mappings.

This shows the similarity and difference between finding a solution weight state in the two particular cases.

The OR problem

The requirement of hidden units can be seen through the Boolean OR function in two different types of

particular mappings in a sigmoid-unit single layer network.
1) A binary output mapping OR
The network (Fig. Apdx 2.1) consists of two input ‘O>O
units Uy and Uy, and one output vnit U3, .;..O
Fig. Apdx 2.1 The network topology

For the topology, the following matrix equation: A¥W = X shows the set of excitation equations that

needs to be satisfied sitnultaneously to achieve OR using a single weight state W:

00 131
01 |[ wa1 ] _| 132
10 [W32 | taz (Apdx 2.1)
11 134

where A is the input activity matrix and X is an excitation matrix of the output unit Us.

For binary output mappings, the target excitation values for the four /O mapping patterns are {31€ [0,01,
t32 € (8,1}, 33 € (0,1] and t34 € (8,1] respectively. The output vnit is turned on when the excitation Z;p
is above the threshold O or is turned off otherwise. The derived inequalities w32 >0 in the second row,

w31 >0 in the third row, and w31+w32 26 in the fourth row, yield a solution leading successful learning

possible.

The above conclusion can also be deduced through the set of reduced excitation equations in a matrix form.
Suppose 6 = 1/3; Eq.Apdx 2.1 can be associated with a matrix equation with a set of chosen target

excitation values which satisfies the OR binary mapping condition:

(1) (1) ] [ :z; ] = [ ig or Ax=b; Augment matrix is C denoted in Eq.(3.3) (Apdx 2.2)
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It is clear in Eq.(Apdx 2.2) r(A)=r(C)=2, there are two weight variables too, so the weight state exists.
2) An analogue output inapping OR

Now let us see if a solution weight can also be found for an analogue exact value OR mappings. Suppose
the target excitation values for the four I/O mapping patterns are t31 =0.0; t32 =1.0; t33 =1.0; and t34=1.0.
It can be seen through solving the set of reduced equations in Eq.(Apdx 2.1) with the specific set of target

excitation values in a matrix form:

01 1
[ 1 0] :g; ] =|: 1 ] or Ax=b; Augment matrix is C denoted in Eq.(3.3) (Apdx 2.3)
11 1

This derived equations w32=1 in the first row, w3i=1 in the second row, and w31+w32=1 in the third row,

yield a contradiction leading successful learning impossible.

The result can also be deduced through checking the ranks of the matrix A and C in Eq.(Apdx 2.3). It can
be seen that r(A) is 2; r(C) is 3; there are three equations in the reduced equations set with only two weight
variables w1 and wy. From a mathematical point of view, in order to find a weight state as the solution of

the equations set, more independent weight variable terms are needed, otherwise the set of weights does not

exist.

This analogue output OR problem shows that sometimes analogue value mappings may need hidden units

where binary mappings do not.

From the OR problems discussed above, one example has suggested that the number of hidden units needed
in binary-analogue mappings is more than that needed in the binary-binary mappings when the same

number of I/O patterns is based on.
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APPENDIX 3

THE DATA: THE TRAINING DATA OF THE ECGS
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Apdx3.1 The raw chosen data
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log(mkw) log(lhc) ilog({vw) log(dyh)
0.845 0.477 0.602 0.301
0.778 0.477 0.602 0.301
0.699 0.544 0.602 0.301
1.130 0.556 0.602 0.301
0.477 0.447 0.623 0.301
0.699 0.431 0.633 0.301
0.716 0.415 0,568 0,398
0.740 0.176 0.544 0.301
0.778 1.255 0.477 0.301
0.903 0.477 1.000 0.301
0.845 0.477 0.491 0.301
0.756 0.477 0.505 0.954
0.740 0.477 0.505 0.301
0.716 0.602 0.505 0.279
0.763 0.699 0.519 0.230
0.778 0.602 0.544 0.176
0.699 0.477 0.602 0.255
0.653 0.477 0.602 0.322
0.623 0.477 0.602 0.398
1.114 0.477 0.602 0.431
0.176 0.477 0.602 0.398
0.544 0.477 0.602 0.301
0.613 0.477 0.602 0.255
0.623 0.477 0.602 . 0.255
0.699 0.477 0.602 0.255
0.845 0.477 0.602 0.255
0.740 0.580 0.602 0.176

Apdx3.2 The log(x) of each chosen value x




n1(mkw) ni(lhec) ni(vw) ni(dyh)
4,155 -2.523 3.398 -1.699
4.222 -2.523 3.398 -1,699
4.301 -2.456 3.398 -1.699
3.870 -2.444 3.398 -1.699
4,523 -2.5563 3.377 -1.699
4.301 -2.569 3.367 ~-1.699
4.284 -2.585 3.432 -1.602
4.260 -2.824 3.456 -1.699
4,222 -1.745 3.523 -1.699
4.097 -2.523 3.000 -1.699
4.155 -2.523 3.509 -1.699
4.244 -2.523 3.495 -1.046
4.260 -2.523 3.495 -1.699
4.284 -2.398 3.495 -1,721
4.237 -2.301 3.481 -1.770
4.222 -2.398 3.456 -1.824
4.301 -2.523 3.398 -1.745
4.347 -2.523 3.398 -1.678
4.377 -2.523 3.398 -1.602
3.886 -2.523 3.398 -1.569
4.824 -2.5623 3.398 -1.602
4.456 -2.5283 3.398 -1.699
4.387 -2.523 3.398 -1.745
4.377 -2.5283 3.398 -1.745
4.301 -2.523 3.388 -1.745
4.155 -2.523 3.398 -1.745
4.260 -2.420 3.398 -1.824

Apdx3.3 The first set of data after the further normalization




n2(mkw) n2(lhce) n2{(vw) n2{(dyh)
3.077 -2.261 2.699 -1.349
3.111 -2.261 2.699 -1.349
3.151 -2.228 2.699 -1.349
2.935 -2.222 2.699 -1.349
3.261 -2.276 2.688 -1.349
3.151 -2.284 2.683 -1.349
3.142 -2.293 2.716 -1.301
3.130 -2.412 2.728 -1.349
3.111 -1.872 2.761 -1.349
3.048 -2.261 2.500 -1.349
3.077 -2.261 2.754 -1.349
3.122 -2.261 2.747 -1.023
3.130 -2.261 2.747 -1.349
3.142 -2.199 2.747 -1.361
3.118 -2.151 2.741 -1.385
3.111 -2.199 2.728 -1.412
3.151 -2.261 2.699 -1.372
3.173 -2.261 2.699 -1.339
3.188 -2.261 2.699 -1.8301
2.943 -2.261 2.699 -1.284
3.412 -2.261 2.699 -1.301
3.228 -2.261 2.699 -1.349
3.194 -2.261 2.699 -1.372
3.188 -2.261 2.6998 -1.372
3.151 -2.261 2.699 -1.372
3.077 -2.261 2.699 -1.372
3.130 -2.210 2.699 -1.412

Apdx3.4 The second set of data after the further normalization
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