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Abstract 

Electrolyte-soaked Nafion is commonly used as an ionic polymer in soft actuators. Here, a 

multi-technique investigation was applied to correlate the electrochemical behavior of Nafion 

membranes with their microstructures and nanostructures as a function of electrolyte type. The 

influence of electrolytes of Li salts with different counteranions on the Nafion membranes was 

investigated in terms of hydration level, structure (using x-ray diffraction and small angle x-ray 

scattering), stress-strain characteristics and electrochemical behavior (by cyclic voltammetery 

and electrochemical impedance spectroscopy). The effects of using ionic liquid, as the 

electrolyte, addition of different supporting solvent and the addition of Li+ ions to water-free 

ionic liquid (IL)-soaked membranes on the structural and electrochemical properties of Nafion 

were examined. The nano- and microstructure of the Nafion changed considerably as a function 

of the identity of the electrolyte solution. The electrochemical behavior of the IL-soaked 

samples was compared with that of the water-soaked Li+-exchanged Nafion. It was seen that the 

ionic conductivity of the Nafion membranes was reduced significantly when water was replaced 

by pure IL. Using the supporting solvents increased the conductivity of IL-soaked Nafion 

membranes dramatically. The presence of a small amount of Li+ ions together with the IL ions 

caused a significant decrease in charge transfer resistance and increases in double layer 

capacitance and in ionic conductivity over that of the water-free sample and also over water-

soaked Li+-exchanged Nafion. These findings can be useful to improve the knowledge on 

Nafion's microstructure and also to improve the electromechanical behavior of Nafion-based 

IPMC actuators. 
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1. Introduction 

Significant advances have been made in the area of so-called artificial muscles - or soft actuators 

- aimed at practical applications in bio-medical devices, [1] bio-mimetic robots and micro-

manipulators. [2] Ionic Polymer-Metal Composites (IPMCs) have attracted considerable 

attention as the basis for soft actuators because of their ease of processing, low power 

requirement, large displacements, flexibility, bio-mimetic activation and bio-compatibility. [2] A 

typical IPMC consists of a thin, ionic polymer membrane with metal electrodes deposited 

chemically at both faces. [3] When soaked with a suitable electrolyte, IPMCs will bend under the 

influence of a small potential applied between the metal electrodes. A great deal of research has 

been performed on IPMCs based on the cation-exchanged perfluorinated sulphonic acid 

membrane, Nafion, manufactured by Du Pont. Nafion has high ionic conductivity, [4,5] 

significant mechanical strength, [6] good chemical and thermal stability [7,8] and high selectivity 

to the desired ionic species. [9,10] These properties are a result of the hydrophobic perfluorinated 

molecular backbone and hydrophilic ionic clusters in this polymer. [11] Cluster diameters are 

about 4–10 nm depending on the water content of the membrane. Nafion is able to absorb large 

amounts of water and other protic liquids into these hydrophilic regions. It has been reported that 

the ionic clusters may contain up to 100 sulfonate groups, with up to 20 water molecules around 

each cluster. [12] The actuation performance of IPMC actuators is influenced by the type of 

charge balancing cations at the sulfonate groups, the material and the structure of the electrodes, 

the solvent, the level of solvation and the thickness and other dimensions of the membrane. [13] 

Several investigations indicate the strong influence of the cation type on the actuation 

performance of IPMCs. [14,15] It is reported that the Li+-exchanged IPMCs produce the greatest 

tip displacement and smallest back-relaxation and are superior to those containing other alkali 
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metals. [16] This is attributed to the strong solvation of the small Li+ cation and to high Li+ ion 

mobility. A typical chemical structure of Li+-exchanged Nafion is depicted in Figure 1(a). 

The bending deformation of IPMC actuators depends on the migration of cation species within 

the Nafion membrane [16] for which the solvent (often water) provides the medium. Therefore, 

an IPMC requires optimum solvent uptake in order to show its best actuation performance. 

However, IPMC actuators containing water should not be operated at voltages higher than 1.22 

V due to loss of water through electrolysis. To overcome this problem, solvents including 

ethylene glycol [17] and ionic liquid (IL) [18] have been used. Applying ethylene glycol and 

glycerol as inner solvent for IPMCs showed to have a reducing effect on the response rate of 

IPMCs compared to water-based IPMCs, due to the large size and high viscosity of these 

solvents. [17] ILs show superior electrical and thermal stability, compared to water. Since ILs 

consist of ions, they can be considered to act both as solvent and electrolyte. However, the 

actuation response of the IPMC is very slow in these cases. [18] Researchers have also 

investigated the effect of the polarity of the solvent, [19,20] on the electrochemical properties of 

Nafion membranes using cyclic voltammetery (CV) and electrochemical impedance 

spectroscopy (EIS). The electrical conductivity of Nafion containing different mixtures of 

methanol and water was higher at low water content than that of the individual constituents while 

the reverse was true at high water content. [16] The secondary structure of Nafion has been 

studied using techniques including small angle x-ray scattering (SAXS), neutron scattering, [21] 

magnetic resonance imaging (MRI), [22,23] transmission electron microscopy (TEM) analysis, 

[24] MAS, 19F, and 129Xe NMR. [25] To study the relationship between the microstructure and 

actuation mechanism of IPMCs, the electrically induced diffusion of water in a commercial 

membrane [26] and in an operating IPMC soft actuator device [22] (both based on Li+-
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exchanged Nafion) have been investigated in situ by the authors by deploying a functioning 

electrochemical cell inside a magnetic resonance imaging (MRI) instrument. [13] In another 

study, diffusion-weighted imaging (DWI) was employed in MRI-based experiments to map 

directly the spatial variation of the diffusion coefficients of water molecules in a cast, Li+-

exchanged Nafion membrane and also in an operating IPMC sample.[23] The results of these 

studies were explained in terms of the electro-induced diffusion of [Li(H2O)x]
+ species through 

the Nafion material in which highly ionic regions exist within a highly hydrophobic major 

domain but where these ionic regions are interconnected by regions of intermediate 

hydrophillicity. [13]  

In this contribution, a comparative study of structural and electrochemical characteristics of 

water- and IL- soaked Nafion membranes was performed. Dry Nafion samples were soaked in an 

appropriate solution of LiOH, LiClO4 or LiBF4 electrolytes and the influence of the counteranion 

on water uptake and transport, polymer structure, stress-strain characteristics and electrochemical 

behavior was determined. Similar experiments were carried out on Nafion membranes 

incorporating the IL, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), shown in 

Figure 1(b). The effect of the supporting solvents on IL permeation within the Nafion membrane 

was also evaluated. Furthermore, a small percentage of Li+ ions were incorporated into IL-

soaked Nafion membranes to determine the joint effect of both. The results indicated that 

electrochemical and mechanical properties of Nafion membrane are changed considerably as a 

function of the identity of the electrolyte solution, due to the microscopic and macroscopic 

structural changes. It was seen that the ionic conductivity of the Nafion membranes was reduced 

significantly when water was replaced by pure IL. Using the supporting solvents increased the 

conductivity and capacitance characteristic of IL-soaked Nafion membranes dramatically. IL-
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soaked Nafion membranes incorporated with Li+ ions showed the highest ionic conduction and 

double layer capacitance. This implies a higher energy storage ability of these membranes that 

usually leads to a larger bending deformation of Nafion-based IPMCs under influence of an 

electric field. These findings can be useful to improve the knowledge on Nafion's microstructure 

and also to improve the electromechanical behavior of Nafion-based IPMC actuators. 

 

2. Experimental 

2.1. Materials 

DuPont Nafion-117 sheet with a thickness of 0.2 mm in acid form with an equivalent weight of 

1100 (Aldrich) was cut into 8×8 mm squares and cleaned to remove all impurities introduced 

during the manufacturing process.[22] This involved heating in 2 M HNO3 at 80oC for 2 h to 

exchange all cations on the sulfonate groups for protons and removal of organic impurities and 

small polymer fragments by ultrasonication in 50/50 b.v. ethanol-DI water for 2 h. The 

membranes were boiled in fresh DI water for 1 h after each of these steps. The samples were 

dehydrated in an oven at 70°C. These samples were soaked in aqueous 1M LiOH, LiClO4 or 

LiBF4 (all from Sigma-Aldrich) solution or pure EMIMBF4 (Research Institute of Petroleum 

Industry) at ambient temperature, for 7 days to allow population of all the ion exchange sites (the 

-SO3
- groups) with the appropriate cation. The amount of cation added was calculated to 

correspond to the number of ion exchange sites available in the dry mass of the Nafion 

membrane, which was estimated according to the definition of equivalent weight, EW, for each 

sample. [16] To study the effect of supporting solvents on the absorption of the IL by the Nafion, 

the EMIMBF4 was dissolved in DI water, methanol or ethanol in a 1:1 mole ratio and dry Nafion 
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samples were immersed in these solutions. The membranes were then dried under vacuum at 

70oC for 12 h to remove the solvents. Henceforth, the samples are named to indicate what had 

been added to them: aqueous LiOH (‘NH’), LiClO4 (‘NC’) or LiBF4 (‘NB’), pure IL (‘NPI’), or 

a mixture of IL and DI water (‘NWI’), methanol (‘NMI’) or ethanol (‘NEI’), where N stands for 

Nafion. Pure Nafion membranes in acid form are named ‘PN’ throughout this text. 

To study the combined effects of IL as non-aqueous media and Li+ ions on their physical, 

structural and electrochemical characteristics, water-free IL-soaked Nafion samples 

incorporating 1.5% Li+ ions were also prepared. Dry NEI samples were soaked in the 0.1M 

LiBF4 solution (2 ml) at ambient temperature for 2 h. The mass ratio of LiBF4/EMIMBF4 was 

chosen to be 1.5%. The samples were then placed under vacuum in an oven at 70oC for 12 h to 

remove the water. EMIMBF4 is chemically inert toward water; however, it slowly absorbs water 

when exposed to air. Therefore, the IL-soaked samples were placed in a dry box to avoid 

exposure to the humid air. Hereafter, these samples are referred to as NEIL. Of the IL-containing 

Nafion samples, NEI was chosen since it was found to have the highest IL content. This will be 

discussed later in the text. 

2.2. Physical Characterization  

Aqueous Li+- and EMIM+- exchanged Nafion membranes were vacuum dried in an oven at 80°C 

overnight and their dry mass, Mdry, measured and subtracted from their wet mass, Mwet and the 

percentage of solvent uptake calculated using Equation 1.   

Solvent Uptake% = (Mwet –Mdry)/Mdry                                                                                                                (1) 

Pre-cleaned Nafion membranes in protonated form were vacuum dried in an oven at 80°C until 

constant weights were obtained. The membranes were then soaked in aqueous 1M LiOH, LiClO4 
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or LiBF4 (all from Sigma-Aldrich) solution or EMIMBF4 at ambient temperature, for 7 days to 

exchange H+ with the appropriate cation. Both the pH and the conductivity were measured 

before and after electrolyte incorporation to determine the concentration of ions inside the 

membranes. The incorporation degree (mol/m3) was determined using Equation 2, where k0 and 

kequl represent the conductivity of the initial electrolyte solution and equilibrium solution, 

respectively, while λH+ is the proton conductivity.   

Incorporation degree = (kequl - k0)/  λH+                                                                                       (2) 

The quantity of absorbed ions (mol/membrane mass) was determined by taking into account the 

solution volume and the mass of the Nafion membrane. [27] The ion exchange capacity of 

Nafion (0.90 meq / g) indicates the number of sulfonate groups within a fixed volume of the 

polymer, and is defined as the milliequivalents of H+ per weight of the dry membrane. The mole 

ratio of the absorbed ions to the ion exchange sites present within the Nafion samples were also 

calculated.   

The stress-strain measurements were conducted on an Instron 5566 with a 1 KN load cell using 

samples of about 20 ×5 mm at 25oC. The preload force was 0.006 N, the force ramp rate, 0.165 

N.mm-2 and the cross-head speed, 5 mm/min. These experiments were carried out in accordance 

with the ASTM D882-91 standard test protocol for thin film tensile tests.  

XRD was applied to identify the changes in the degree of crystallinity of dry Nafion samples on 

absorption of the electrolytes described above. An EQUINOX3000 Intel instrument with Cu Kα 

source operating at a voltage of 40 KV and a current of 40 mA was used. The samples were 

scanned at 10°/min for 2θ =2–120°. The regular arrangement of atoms or molecules in perfectly 

crystalline materials gives sharp diffraction peaks whereas x-rays scattered from material with 
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less long-range order produce broad diffraction peaks which are called amorphous halos. In 

Nafion, which is a semi-crystalline polymer, a superposition of both sharp and broad features 

occurs and the XRD pattern is the sum of crystalline and amorphous peaks. The XRD patterns of 

the samples were deconvoluted into their constituent peaks using the software Origin. The 

crystalline and amorphous peaks were identified and the percentage of crystallinity was 

calculated using Equation 3. [28] 

100%
peaksallunderAreaTotal

peaksecrystallinunderArea
nity%Crystalli                                                                           (3) 

SAXS was also applied to study the nanostructure and swelling behavior of the water- and IL-

soaked Nafion samples. The SAXS patterns were recorded on an X’Pert Pro MPD PANalytical 

instrument, equipped with a theta-theta goniometer and a Cu/Ka source operated at 40 kV and 40 

mA. The samples were scanned at 0.5o/min between 2θ values of 0.8oand 5o. Intercluster spacing, 

d, were calculated from SAXS peaks using X’Pert software as d=2π/q where q= 4πsinθ/λ, and 

where λ and θ are the wavelength of the X-ray radiation and the measured diffraction angle, 

respectively. [29] 

2.3. Electrochemical Characterization 

Electrical properties of Nafion membranes were studied using CV and EIS experiments. These 

measurements were performed using a potentiostat/galvanostat (Auto Lab), controlled by NOVA 

software. The samples were placed in a sample holder consisting of a pair of platinum contacts 

within an insulating clamp. [13] CV scans were performed in the potential range from +1 to -1 V 

at a scan rate of 100 mV s-1. Impedance spectra were obtained by applying an AC potential of 

amplitude 10 mV and varying the frequency from 10 KHz to 100 mHz. The ionic conductivity 

http://www.panalytical.com/index.cfm?pid=1355
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(σ) was obtained from the ohmic resistance found by extrapolating the Nyquist curve at high 

frequencies to the real axis. Uncompensated (ohmic) resistance, R, charge transfer resistance, 

Rct, and double layer capacitance, Cdl, were also obtained from the Nyquist plots using Fara 

software.  

 

3. Results and Discussion  

3.1. Physical Characterization 

The results presented in Table 1 reveal that the NH, NC and NB samples had higher water 

content – approximately 2.5 times – than the PN samples. This suggests that Li+ ions generally 

facilitate the penetration of water molecules into the Nafion membranes. The observed higher 

water content of the NH, NC and NB samples can be explained by the higher concentration of 

Li+ ions in the Li electrolytes used (1 M) compared to the hydronium ion concentration (1×10-7 

M) in distilled deionized water. That is, the more concentrated ionic solutions experience greater 

uptake into the ionic environments of the Nafion than does pure water. Regardless of the type of 

Li electrolyte used, Nafion generally absorbed more Li+ ions (~10 times) than the number of ion 

exchange sites available. This suggests that in addition to the Li+ ions that replace the protons on 

the sulfonate groups, more ions were either dissolved in the hydrophilic regions with their 

counteranions or in water-filled voids present within the hydrophobic regions of the polymer. 

This can be attributed to the lack of formal cross-links in the Nafion membrane and its flexible 

structure which can imbibe solvated ions in different levels depending on the electrolyte nature. 

[30] In other words, the excess absorbed ions might have penetrated within the Nafion 

membrane over non-exchange mechanism. [31,32] The choice of electrolyte counteranion also 
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dramatically influences the Li+-content of the samples. NH and NB samples have higher Li+ 

content - approximately 3.5 times - than the NC samples. This can be attributed to the variations 

in the solvation of Li+ ions and the ionic association interactions resulting from the difference in 

anion structure and coordination strength. [33] The BF4
- and ClO4

- anions are both tetrahedral, 

approximately of the same size and they are larger than the OH- ions. Thus, hydroxyl ions, with 

the highest charge density, are expected to be solvated with a greater number of water molecules 

and to have the lowest tendency to form coordination bonds to the Li+ ions since they possess 

only one donor atom in their structure. This leads to a higher concentration of highly solvated 

solute ions in the LiOH electrolyte than in the LiBF4 and LiClO4 electrolytes, assisting the 

penetration of more Li+ ions into the polymer (See Table 1). Similarly, the higher content of Li+ 

in the NB sample than in the NC sample can be explained by a greater tendency of BF4
- anions to 

be solvated with water molecules through hydrogen bonding interactions since they contain F 

atoms with higher electronegativity.  

The data presented in Table 2 show that, the number of absorbed IL cations in the IL-soaked 

Nafion samples shows a strong increase in the order NPI < NWI < NMI < NEI (the NMI and 

NEI having an IL-exchange site ratio well over unity). This trend shows that the physical 

properties of Nafion change considerably with the presence, and with the identity, of the 

supporting solvent. [34] Ethanol is a more effective supporting solvent than methanol or water as 

it facilitates the penetration of a higher percentage of the large organic cations of the IL into the 

membrane. Thus, ethanol was chosen as the supporting solvent for subsequent studies of IL-

soaked Nafion. The mole ratio of absorbed ions to ion exchange sites in the NEI sample was 

however lower than that observed for water-soaked Nafion samples, probably due to the larger 

size of EMIM+ ions and their lower mobility.  
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SEM images showed Nafion surface becomes rougher in water-based Li+-exchanged NH, NB 

and NC samples ((Figure 2 – parts (b) to (d)) compared to the H+-exchange PN sample (Figure 

2(a)). This might be attributed to the formation of larger ionic clusters in the Li+-exchanged 

samples and their higher water content. NH sample appeared to have the roughest surface among 

all samples. The formation of larger ionic clusters within the water-based Li+-exchanged Nafion 

membranes, especially in the case of NH samples, was confirmed by data obtained from SAXS 

study of the samples, which would be discussed later. Water interacts preferentially with the 

hydrophilic regions (minor domain) of the Nafion membrane and causes microscopic swelling. 

However, EMIMBF4 can reduce the cross-linking dipolar interactions inside the polar domains 

and increase the mobility of the main fluorocarbon backbone chains in hydrophobic regions 

(major domain) and cause macroscopic swelling. Thus, it is expected that smaller ionic clusters 

to be formed within the IL based samples due to weaker electrostatic interactions between large 

organic EMIM+ cations with the fixed ion exchange sites. Therefore, the observed blisters at the 

surface of the NEI sample (shown in Figure 2(e)) can be attributed to the higher degree of the 

macroscopic swelling of the polymer. The presence of Li+ ions in the NEIL sample (Figure 2(f)) 

also made the membrane surface rougher. This similarly can be attributed to the formation of 

larger ionic clusters within the NEIL compared to NEI sample. (See Figure 2(e)) 

The degree of crystallinity of the samples as a function of electrolyte type was studied by XRD. 

XRD patterns of PN, NB and NEI samples which present protonated, Li+- and EMIM+-

exchanged Nafion samples, respectively, are compared in Figure 3. Since Nafion is 

semicrystalline, a superposition of both sharp and broad features occurs. Thus all peaks include 

contributions from crystalline and from amorphous regions. The XRD pattern of the PN sample 

showed a peak at 2θ~39.1°, which is assigned to scattering from the interfaces between the 
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hydrophilic ionic clusters and the hydrophobic perfluorinated molecular backbone. The peak at 

2θ~=28.0° is attributed to diffraction from the crystalline domains and the peak at 2θ~16.4° 

corresponds to scattering from polymeric segments which form clusters in the membrane. 

[35,36,37] Comparing all three patterns in Figure 3, the highest peak intensity was observed for 

PN while the broadest peaks with the lowest intensity were observed for NEI. This indicates that 

Nafion in the protonated form generally possesses the highest degree of crystallinity. Li+-

exchanged (NB) and EMIM+-exchanged (NEI) Nafion membranes showed to possess the peak 

maximum at the similar 2θ, but these maximums were slightly shifted to the lower 2θ for NB and 

to the higher 2θ for NEI. This means that the largest ionic clusters have formed in NB while the 

smallest formed in NEI. [29,38] As mentioned earlier, the XRD pattern of Nafion, which is a 

semi-crystalline polymer, is the sum of crystalline and amorphous peaks. Thus, the crystalline 

and amorphous peaks were identified by deconvoluting the XRD pattern of each sample into 

their constituent peaks. Figure 4 shows the results of a peak profile fitting analysis in the range 

2θ = 11-23°. For each sample, the raw data and the fitted line “a” is shown by the dashed line, 

the de-convoluted components “b” and “c” corresponding to amorphous and crystalline peaks are 

shown by red and green lines, respectively. The crystallinity of the PN samples was calculated to 

be about 31% while it decreased to 28% and 18% for Li+-exchanged (NB) and EMIM+-

exchanged (NEI) samples, respectively. This implies that the ionic interaction between protons 

and sulfonate groups is strongest and it decreases slightly in the Li+-exchanged membrane, 

because of the small differences in size and charge density between these two cations. However, 

the weakest ionic interactions occur for the large organic cations in the EMIM+-exchanged 

sample. The difference in the crystallinity observed between the PN and NB samples can also be 

partly attributed to the presence of a higher percentage of ions and water in NB, which increases 
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the size of the ionic clusters within the membranes. [29] As is seen in Table 2, the NEI sample 

absorbed more EMIM+ cations than the number of ion exchange sites calculated to be present in 

this sample. Therefore, it is expected that a part of the relatively hydrophobic IL could be 

distributed in the per-fluorinated molecular backbone (major domain) of the polymer. Therefore, 

it seems that the incorporation of large organic cations in the ionic clusters (minor domain), and 

also use of ethanol as the supporting solvent - which predominately affects the major domain of 

the polymer - leads to a significant decrease in the crystallinity of the polymer. These results are 

consistent with the SAXS results for these samples. 

The secondary structure of Nafion focuses on the cluster-network model proposed by Gierke 

[39] who described the membrane as a series of clusters or inverted micelles, interconnected by 

narrow pores. In this model, the term clusters refers to the tightly packed regions formed by 

aggregation of ionic groups (–SO3
-Li+, in Figure 1) in Nafion, as a result of electrostatic 

interactions.  The cluster reflection appears in SAXS patterns of Nafion and it is considered to be 

caused essentially by scattering resulting from the density contrast between microscopically 

phase-separated domains of fluorocarbon matrix and absorbed electrolyte solution in the ionic 

clusters. [40] In order to interpret the SAXS results, it was assumed that Nafion polymer consist 

of two regions, the hydrophobic backbone phase and the hydrophilic ionic phase. Figure 5 shows 

the SAXS curves for the swollen NB, NEI and NEIL samples. It can be seen that the cluster 

reflection – the main peak - moved to lower scattering angles on moving from NEI to NEIL to 

NB. The corresponding intercluster spacings for these samples were 37.7Å for NEI and 54.4 Å 

for NB. The value for NEIL was intermediate between the latter two at 48.1 Å. This is logical 

since this sample contains both IL, like NEI, and LiBF4, like NB. The results clearly indicates 

that the intercluster spacing increases as large EMI+ cation is replaced with Li+ ions with lower 
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ionic radius, due to the formation of larger ionic clusters in NB. Additionally, the value of 

intercluster spacings for NEIL (IL-soaked membrane incorporated with Li+ ions) shows that 

larger ionic clusters are formed in these samples compared to NEI. The difference in intercluster 

spacing of the samples can be followed in the schematic images depicted in Figure 6. It was also 

found that the intercluster spacings depends on the choice of electrolyte counteranion. The SAXS 

curves of NH, NC and NB are compared in Figure 7 to evaluate the effect of the type of Li 

electrolyte on the microstructure of the Nafion. The low peak intensity for the NH sample 

indicates a dissimilar microscopic swelling behavior to that of the NC and NB samples. The 

intercluster spacings corresponding to the main SAXS peaks were 40.8, 45.1 and 54.4 Å for NH, 

NC and NB, respectively. The lowest intercluster spacing for NH indicates the formation of the 

smallest ionic clusters in this sample. Since there is no significant difference between the water 

contents (see Table 1) of these samples this feature might be attributed to the effects of 

penetration of counteranions into the Nafion membranes during the cation exchange stage or to 

differences in their effect on the polymer structure. [34] Of these three Li electrolytes, Nafion 

absorbed a higher number of Li+ ions from LiOH. It is expected that this leads to the formation 

of larger ionic clusters in NH samples. However, the peak position and its low intensity in the 

SAXS pattern of NH indicate that this did not happen. The results suggest that the number 

density of the clusters over the whole membrane has increased for NH while for NB the size of 

clusters increased [29] possibly due to a higher plasticizing effect of the BF4
- ions on the per-

fluorinated molecular backbone of the polymer. 

Polymer chain orientation, crystallinity, size and shape of crystal and ionic interactions can have 

strong effects on the stress-strain curve of Nafion. [41]. The curve gives information about the 

Young modulus (slope at the origin), yield point, break point and elongation at break. As 
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discussed earlier, the ions and water molecules absorbed by the Nafion membrane are 

incorporated into the ionic clusters and channels. These clusters swell according to the water 

content or the nature of solvents, changing the mechanical and chemical properties of membrane. 

[42]  It has been established that Young’s module of Nafion membrane decreases by increasing 

the water content of the membrane and increases by incorporating larger cations within the 

membrane. [43] Figure 8 shows the stress-strain curves of the PN, NB, NEI and NEIL samples. 

The initial slope – giving Young’s modulus - of the curve decreased in the following order: 

NEIL>PN>NEI>NB, reflecting a decrease in the stiffness of the membranes as a function of the 

type of electrolyte they contained. The higher ion and water content of water-soaked Li+-

exchanged Nafion samples (NB) leads to a lower Young’s modulus, delayed yield point  and 

greater elongation than for water-soaked H+-exchanged Nafion samples (PN). [42] Nafion 

samples containing IL show a higher Young’s modulus and greater elongation than membranes 

containing only aqueous electrolytes. IL-soaked NEI sample presented the highest degree of 

elongation and a higher Young’s modulus compared to the NB sample. The ionic clusters in 

Nafion act as physical cross-linkers. Thus, the formation of smaller ionic clusters in the NEI 

sample seems to lead to an increase in the polymer chain mobility and the polymer has become 

softer. This was observed as the lower crystallinity of the NEI sample in the XRD results shown 

in Figure 3. However, the presence of a small amount of Li+ ions in IL-soaked NEIL sample 

caused an increase in stiffness and a decrease in elongation than for NEI (without Li+) due to an 

increase in the ionic interactions. IPMC actuators prepared based on Nafion membranes with 

greater Young’s modulus and elongation characteristics can show enhanced electromechanical 

performances. [16] 

 



17 
 

3.2. Electrochemical Characterization 

The variation in characteristic capacitance of Nafion membranes as a function of the electrolyte 

and solvent type was followed by CV measurements, the traces of which are presented in Figure 

9. For CV the samples were sandwiched between two equally sized platinum electrodes and 

fixed in a sample holder, this assembly being similar to a parallel plate capacitor. The current, I, 

through an ideal capacitor subjected to a varying applied potential, V, can be expressed in terms 

of accumulated charge, Q, Capacitance, C, V and time, t, as in Equation 4.  

dt

dV
C

dt

dQ
I                                                                                                                            (4) 

Since for all CV measurements dV/dt was constant, large differences in I implied significant 

differences in sample capacitance, C. For each Nafion sample (assuming ideal behavior), C can 

be considered to be constant and can be expressed in terms of the surface area, A, of the platinum 

contacts, the dielectric constant of the Nafion membrane, ε, and the distance, d, between the 

electrodes (the thickness of the polymer), as given in Equation 5. 

d

A
C


 , A>>d2                                                                                                                           (5) 

The values of d and A for all the Nafion samples were approximately the same. Therefore, 

variations in C can be attributed (to a first approximation) to variations in ε. 

Figure 9(a) shows the voltamograms of NH, NC and NB. The three voltamograms are similar in 

shape but the size of the current varies, indicating different values of characteristic capacitance 

of the Nafion, depending on the identity of the counteranion in the electrolyte solution. Since 

there was no significant difference in thickness between these samples, dielectric permittivity 
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(see Equation 5) increased in the order: NH < NC < NB.  The high value for NB can be 

attributed to its having the greatest plasticizing effect because of the interaction of the BF4
- 

anions with the per-fluorinated molecular backbone of Nafion, as indicated in the SAXS study 

described above. In Figure 9(b) the CV response of the IL-soaked samples, NEI and NEIL, are 

compared with that of NB. It can be seen that replacing water with IL generally led to a higher 

current response - and therefore higher characteristic capacitance and higher dielectric 

permittivity - the higher of the two being for NEIL, which contains two dissimilar cations, 

EMIM+ and Li+. Three polarization mechanisms can occur within materials; electronic 

polarization, ionic polarization and orientational polarization. In non-conducting materials only 

electronic polarization occurs while the ionic and orientational polarization mechanisms are 

available to materials possessing ions and permanent dipoles respectively. [44] Nafion consists 

of non-polar tetrafluoroethylene segments and the polar perfluorosulfonic vinyl ether segments. 

Thus, all three mentioned polarization mechanism can occur within this polymer. The more 

easily the various polarization mechanisms can act, the larger the dielectric permittivity will be. 

Ionic and orientational polarization happens easier in more plasticized Nafion samples (i.e. with 

a lower degree of crystallinity) because the intermolecular forces that must be overcome to 

polarize are smaller. Therefore, the highest degree of ionic and orientational polarization would 

be expected in NEIL, which did indeed show the highest current (Figure 9(b)). These results are 

consistent with the results obtained from EIS experiments of the samples.  

Impedance is the response of an electrochemical system to an applied alternating voltage. The 

frequency dependence of impedance can reveal the underlying processes in electrochemical 

systems. The complex response of the electrochemical system is usually displayed in Nyquist 

form, the plot of the real part of impedance against the imaginary part. In these plots a semicircle 
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is fitted as a resistor and capacitor in parallel. In highly conductive systems, the semicircle in 

Nyquist plot is not observable. However, for less conductive systems the semicircle is present, 

sometimes in a distorted form. The frequency reaches its high and low limit, respectively, at the 

leftmost end and rightmost end of the semicircle. The impedance of the Nafion samples is a 

function of three variables: the mobility of ions in the Nafion membrane, the polarization of the 

Nafion structure and the double-layer capacitance at the Pt electrode/polymer interfaces. The 

degree of mobility of ions determines the conductivity of the Nafion membrane. Typical Nyquist 

plots of imaginary impedance, Z’’, versus real impedance, Z’, for the NH, NC and NB samples 

are illustrated in Figure 10(a). Of these, NB showed the lowest impedance which corresponds to 

the highest ionic conductivity. Comparison of impedance values obtained from the spectra in 

Figure 10 parts (a) and (b) shows that the ionic conductivity of the Nafion membranes was 

reduced significantly when water was replaced by pure IL (in NPI). Also, using the supporting 

solvents increased the conductivity of IL-soaked Nafion membranes dramatically. It seems that 

the supporting solvent acts as a plasticizer and facilitates the free rotation of the molecular 

backbone causing an increase in backbone segment mobility. [34,45,46] Components which 

increase the number density or the size of ionic clusters or the free volume available to polymer 

chain segments are expected to increase the conductivity of the Nafion membrane. [16] Amongst 

the IL-soaked samples, the ionic conductivity is highest for NEI. This implies that ethanol has 

the most plasticizing effect on the Nafion membrane and provides the highest percentage of free 

volume within the polymer since it can interact preferably with the polymer molecular backbone. 

The presence of a small amount of Li+ ions together with the EMIM+ ions in NEIL caused a 

significant increase in conductivity over that of the water-free sample (NEI). In fact, the spectra 

of NEIL and NB are very similar as shown in Figure 11. EIS data are commonly analyzed 
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by fitting them to an equivalent electrical circuit model. The Randles model (shown in Figure 11) 

is one of the simplest and most common models. This model includes an ohmic resistance (also 

called solution resistance), Rs, a double layer capacitor, Cdl and a charge transfer resistance, Rct. 

The high frequency intercept on the real axis is used to calculate Rs. The low frequency intercept 

on the real axis is used to calculate Rct of the system. The frequency corresponding to the top of 

the semicircle is used to calculate Cdl according to Equation 6, where ω is frequency in radians 

per second and f is frequency in Hertz.  

ωmax = 1/Cdl Rct, ω = 2f                                                                                                 (6) 

The ionic conductivity (σ) was obtained from the Rct according to Equation 7, where L and A are 

the sample thickness (in cm) and surface area (in cm2), respectively. 

 = L/ARct                                                                                                                                                 (7) 

The calculated values of Rs, Rct, Cdl, and ionic conductivity, σ, are summarized in Table 3. The 

electrical double layer is formed on the interface between electrode and Nafion membrane by 

ions interacting with the electrode surface. Values of Cdl depend on factors including ionic 

concentration and type of ions. The variation in dielectric permittivity of Nafion on changing the 

identity of electrolyte solution can be followed more clearly as changes occurring in the double 

layer capacitance of the samples. Of the water-soaked Nafion membranes, NB showed the lowest 

Rct and the highest σ and Cdl. This corresponds to the highest ionic conductivity and diffusion of 

ions towards and away from metal electrodes and the highest concentration of Li+ ions on the 

interface between electrode and Nafion membrane, respectively. [47] As discussed before, this 

can be attributed to the lowest degree of crystallinity of this sample. Comparison of Rct, Cdl and σ 

values obtained for IL-soaked NPI sample with NB shows that ionic conductivity and diffusion 
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of EMIM+ ions are more restricted which can be attributed to the hydrophobic nature of EMIM+ 

ions and their lower charge density. However, using the supporting solvents increased the ionic 

conductivity and diffusion of ions in IL-soaked Nafion membranes dramatically. Amongst the 

IL-soaked samples, the Rct is lowest for NEI while the Cdl and σ are highest. This implies that 

ethanol addition facilitates the diffusion of large cations of EMIM+ within the polymer more than 

water addition. The presence of a small amount of Li+ ions together with the EMIM+ ions in 

NEIL caused a significant decrease in Rct and increases in Cdl and σ over that of the water-free 

sample (NEI) and also over water-soaked NB. Consequently, it is reasonable to consider that 

incorporation of Li+ into IL-soaked Nafion improved the electrochemical and electromechanical 

properties of these Nafion – based IPMC actuators and sensors. Such an approach might also be 

applied in other applications such as electrolytes for Li+ ion batteries where high dielectric 

permittivity, capacitance and ionic conduction are required. 

 

4. Conclusion 

Solvent uptake, ionic content, ionic conduction, double layer capacitance and mechanical 

properties are important parameters to consider and control to improve the electromechanical 

performance of Nafion-based IPMC actuators. This study demonstrated how the above 

mentioned properties can be varied as a function of electrolyte type. To this end, Nafion 

membranes were immersed in aqueous solutions of LiOH, LiClO4 or LiBF4 and these samples 

were compared in terms of water uptake, structure, stress-strain behavior and electrochemical 

properties. The structural and electrochemical changes occurring in Nafion membranes soaked in 



22 
 

an imidazolium-based IL as the electrolyte, on addition of a supporting solvent and on addition 

of Li+ ions were also followed.  

It was shown that, the nano- and microstructure of the Nafion changed considerably as a function 

of the identity of the electrolyte solution. For water-soaked Nafion, both the type of cation (Li or 

imidazolium) and also the counteranions in the Li electrolytes showed a significant impact on the 

physical and structural properties of the Nafion. Of the four electrolytes, the smallest ionic 

clusters were formed in IL-soaked Nafion and the largest formed in water-soaked Li+-exchanged 

Nafion prepared using LiBF4. Amongst water-soaked Li+-exchanged Nafion samples, the 

maximum characteristic capacitance and ionic conductivity were observed for the membrane 

immersed in LiBF4 solution.  

The ionic conductivity of the Nafion membranes was reduced significantly for the membrane 

immersed in pure IL. Using the supporting solvents increased the ionic conductivity of IL-soaked 

Nafion membranes dramatically. Of the IL-soaked Nafion samples, the maximum ionic 

conductivity was observed for the membrane immersed in IL/EtOH solution. However, the ionic 

conductivity of this sample was still about five times smaller than what was considered for 

water-soaked Li+-exchanged Nafion prepared using LiBF4. Nafion samples containing IL 

showed a higher Young’s modulus and greater elongation than membranes containing only 

aqueous electrolytes.  Furthermore, these samples showed a higher characteristic capacitance 

compared to water-soaked Li+-exchanged samples while they possessed lower ionic content. 

This was attributed to the lower crystallinity of these samples which can facilitate polarization 

processes.  
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It was found that Li+ ions can contribute to the formation of larger ionic clusters in water free IL-

soaked Nafion membranes. The presence of a small amount of Li+ ions together with the EMIM+ 

ions in these samples caused an increase in stiffness and a slight decrease in elongation. A 

significant increase (~10 times) in ionic conductivity and capacitance characteristic over that of 

the water-free IL-soaked samples were observed. IL-soaked membranes incorporated with Li+ 

ions also showed to have higher ionic conductivity (~1.5 times) and double layer capacitance 

(~18 times) over water-soaked Li+-exchanged Nafion (immersed in LiBF4). IPMC actuators 

prepared based on Nafion membranes with improved ionic conductivity, double layer 

capacitance and mechanical properties can show enhanced electromechanical performances. 

Thus, water-free Nafion membrane incorporated with Li+ and EMIM+ ions can be considered as 

a good choice for this application. 
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Table 1: Effect of the type of Li electrolyte on water uptake and ion exchange capacity of Nafion 

membranes 

Samples Dried 

weight (g) 

Swollen 

weight (g) 

Water 

uptake (%) 

Ion exchange sites 

(×10
-5

mol/g) 

Absorbed Li
+
  

ions (×10
-4

mol/g) 

Mole ratio of 

ions to ion 

exchange sites 

PN 0.036 0.042 14.0 2.99 -  

NC 0.036 0.049 35.8 3.24 1.37 4.60 

NB 0.030 0.042 34.6 2.72 4.70 15.8 

NH 0.033 0.045 35.6 2.97 5.00 16.8 
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Table 2: Effect of the type of supporting solvent on IL uptake and ion exchange capacity of 

Nafion membranes 
Samples Supporting 

solvent 

Dried 

weight (g) 

Swollen 

weight (g) 

Ion exchange sites 

(×10
-5

mol/g) 

Absorbed IL 

(×10
-5

mol/g) 

Mole ratio of 

IL to ion 

exchange sites 

NPI - 0.037 0.039 3.41 1.41 0.410 

NWI DI water 0.037 0.042 3.41 2.53 0.740 

NMI Methanol 0.038 0.047 3.46 4.73 1.38 

NEI Ethanol 0.038 0.049 3.46 5.36 1.57 
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Table 3. The calculated values of ohmic resistance (Rs), charge transfer resistance (Rct), double 

layer capacitance, (Cdl) and ionic conductivity () for all samples. 

 

 

 

 

 

 

 

 

 

 

 

Sample  
Names   

R s (  )   R ct   (  )   C dl   ( µ F)     (  µ s/cm)   

NH   1.80   10420   3.4 0 6.90   

NC   7.11   87 86   5.10   8.19   

NB   8.94   5100   6.03   14.1   

NPI   6450   78950   4.1 0  0.91 0  

NWI   2270   36110   6.78   1.99   

NEI   1520   25509   11.4   2.82   

NEI L   82.64   3521   108.0   20.2   
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Figure captions 

Figure 1. Chemical Structure of (a) Li+-exchanged Nafion and (b) 1-ethyl-3-methylimidazolium 

tetrafluoroborate (EMIMBF4). 

Figure 2. Longitudinal SEM images of Nafion membranes (a) PN, (b) NH, (c) NB, (d) NC, (e) 

NEI and (f) NEIL. 

Figure 3. XRD patterns of Nafion membrane in protonated (PN), Li+-exchanged (NB) and 

EMIM+-exchanged (NEI) forms. 

Figure 4. XRD patterns of water-soaked PN and NB samples and IL-soaked NEI samples. 

Curves fitted to experimental data “a” were de-convoluted into amorphous “b” and crystalline 

“c” peaks. 

Figure 5. Comparison of SAXS patterns obtained for water-soaked NB sample and IL-soaked 

NEI and NEIL samples. 

Figure 6. Schematic representation of intercluster spacing in Nafion membranes (a) NEI, (b) 

NEIL, (c) NB 

Figure 7. SAXS patterns obtained for Nafion membranes with different Li+ electrolytes. 

Figure 8. Variation in stress-strain curves of Nafion membrane samples as a function of cation 

and solvent type. 

Figure 9. Dependence of cyclic voltammetery behavior of Nafion membranes on (a) the type of 

Li+ electrolyte and (b) solvent type. 

Figure 10. Impedance spectra of Nafion membranes with (a) different Li electrolytes for water-

soaked samples and (b) different supporting solvents for IL-soaked samples. 
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Figure 11. Comparison of Nyquist plots for water-soaked NB sample and IL-soaked NEI and 

NEIL samples. Inset is the diagram of a simplified Randles model describing the electrochemical 

interface between an electrode and electrolyte. 
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