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Abstract 

New ternary composites based on three dimensionally ordered macroporous 

(3DOM) SrTiO3 (CdS/Au/3DOM-SrTiO3) were prepared and used as photocatalysts 

in visible light (λ > 420 nm) photocatalytic water splitting for hydrogen evolution. 

Through optimizing the pore size of 3DOM-SrTiO3 materials and the loading amounts 

of Au and CdS, CdS/Au/3DOM-SrTiO3(300), templated by 300 nm sized poly(methyl 

methacrylate) colloids, was found to exhibit a remarkably enhanced photocatalytic 

hydrogen evolution rate (2.74 mmol/h•g), which was 3.2 times as high as that of 

CdS/Au/C-SrTiO3 catalyst based on commercial SrTiO3. This notably enhanced 

photocatalytic performance was mainly attributed to the slow photon enhancement 

effect of 3DOM-SrTiO3(300) material, which significantly promoted the light 

harvesting efficiency of ternary composite for the slow photon region of 

3DOM-SrTiO3(300) was well matched with the optical absorption band of 

photocatalyst. Further depositing Pt nanoparticles on CdS/Au/3DOM-SrTiO3(300) 

composite as a co-catalyst, an extraordinarily high hydrogen evolution rate (up to 5.46 

mmol/g•h) and apparent quantum efficiency (42.2% at 420 nm) were achieved 

because of the synergistic effect of efficient carrier separation, Au SPR effect, and 

slow photon effect. Furthermore, these ternary CdS/Au/3DOM-SrTiO3 composite 

photocatalysts were very stable and could be easily recycled four times in visible light 

photocatalytic water splitting experiments without any loss in activity.  

 

 



 3 

Keywords 

Three-dimensionally ordered macroporous material; CdS/Au/3DOM-SrTiO3; Ternary 

composite; Hydrogen production from water splitting; Slow photon effect. 



 4 

1. Introduction 

Since photocatalytic water splitting into hydrogen by TiO2 was discovered by 

Fujishima and Honda in the early 1970s[1], hydrogen production from water splitting 

has become one of the most promising strategies in scientific and technological 

research for utilizing renewable solar energy to solve the issues of energy crisis and 

environmental pollution[2-5]. However, because of the low quantum yield and light 

harvesting efficiency of conventional photocatalysts, especially in the visible light 

range, it is still a huge challenge to develop a highly efficient catalyst for 

photocatalytic water splitting. 

Perovskite strontium titanate (SrTiO3), one of the most important n-type 

semiconductors, has been widely investigated owing to its efficient photocatalytic 

properties, structural flexibility, good stability and low cost[6-12]. However, the wide 

band gap of SrTiO3 (ca. 3.2 eV) makes it unsuitable to be motivated by visible light, 

leading to a low solar energy conversion efficiency. Combination of SrTiO3 with 

narrow band-gap semiconductors would be an effective approach to address this 

issue[13-15]. In this respect, cadmium sulfide (CdS) has been regarded as an ideal 

candidate because of its narrow band gap (2.4 eV) and more negative conduction band 

edge than the reduction potential of H+ to H2
[16-19]. Meanwhile, the obtained 

heterostructured photocatalysts were found to be able to facilitate the spatial 

separation of photogenerated electron-hole pairs, further improving their charge 

utilization efficiency[20-22]. 

On the other hand, depositing noble metal, such as Au, in between two 
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semiconductors to form a ternary composite, could further increase their 

photocatalytic performance due to the facilitated transfer of photogenerated carriers[23, 

24]. Moreover, the surface plasmon resonance (SPR) of metal nanoparticles arising 

from the collective oscillation of electrons in the metallic nanostructure could also 

improve the performance of photocatalysts through hot electron transfer[25-31]. Many 

researchers had attempted to fabricate the ternary composites using two 

semiconductors and one noble metal, such as Au/CdS/TiO2
[23, 32-37], Au/CdS/WO3

[38, 

39], Pt/CdS/TiO2
[40-45], and Au/CdS/ZnO[46-48]. However, improving the light 

harvesting efficiency through a special nanostructure design is still an attractive 

research field. 

In the last decade, three-dimensionally ordered macroporous (3DOM) materials 

with an inverse opal structure have received much attention in photocatalysis field. A 

series of 3DOM semiconductors including TiO2
[49-51], WO3

[52, 53], InVO4
[54-56], 

BiVO4
[57-59], and g-C3N4

[35] have been fabricated and applied in the degradation of 

organic pollutants and the production of hydrogen and/or oxygen from water splitting. 

Notably improved photocatalytic performances were achieved over these 3DOM 

photocatalysts because of their slow photon effect as a photonic crystal, which could 

significantly enhance the photon-matter interaction, and further improve the light 

energy conversion efficiency of semiconductor[60-63]. 

Recently, we reported the 3DOM-SrTiO3 materials with notably improved 

catalytic performance for hydrogen evolution via water splitting compared with 

solid-state SrTiO3 under UV-Vis light irradiation[64]. In order to further extend their 
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visible light absorption and develop a highly efficient visible-light-driven 

photocatalyst, herein, we designed and fabricated a novel form of catalysts: 

CdS/Au/3DOM-SrTiO3 ternary composites. The influences of CdS/Au composite 

ratio and pore size of 3DOM-SrTiO3 were investigated. An extraordinarily excellent 

efficiency for visible-light-driven photocatalytic hydrogen evolution can be expected 

over these ternary CdS/Au/3DOM-SrTiO3 composites because of the synergistic 

effect of slow photon effect, efficient charge separation and hot electron transfer 

enhancement. 

2. Experimental 

2.1 Materials 

Tetrabutyl titanate [Ti(OBu)4], cadmium nitrate tetrahydrate [Cd(NO3)2•4H2O], 

gold(III) chloride hydrate (HAuCl4•4H2O), and chloroplatinic acid hexahydrate 

(H2PtCl6•6H2O) were purchased from Aladdin. Acetic acid (CH3COOH) and 

methanol (CH3OH) were acquired from Concord Technology (Tianjin) Co., Ltd. 

Strontium nitrate [Sr(NO3)2] was purchased from Tianjin Bodi Chemical Co., Ltd. 

Citric acid monohydrate (C6H8O7•H2O), trisodium citrate dihydrate 

(Na3C6H5O7•2H2O), sodium sulfite (Na2SO3), and sodium sulfide hydrate 

(Na2S•9H2O) were obtained from Tianjin Guangfu Fine Chemical Research Institute. 

Commercial SrTiO3 (C-SrTiO3) was provided by Energy Chemical. All of the 

reagents were of analytical grade and used as received. 

2.2 Characterization 

The X-ray powder diffraction (XRD) patterns of the photocatalysts were 
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obtained on the Bruker D8 X-ray diffractometer with Cu Kα radiation operating at 40 

kV and 40 mA over 2θ range of 10°-90°. The JEOL JSM-7500F field-emission 

scanning electron microscope (SEM) was employed in order to observe the 

morphology of samples. The images of high-resolution transmission electron 

microscopy (HRTEM) were acquired using a Philips Tecnai G2 F30 instrument. 

Diffuse-reflectance UV-vis (DR UV-vis) spectra were recorded on a Shimadzu 

UV-2550 spectrophotometer with the integral sphere in the measurement range from 

200 nm to 800 nm. Photoluminescence (PL) spectra were carried out employing an 

Edinburgh Instrument FLS 920P fluorescence spectrophotometer. The online gas 

chromatography (GC) analysis in photocatalytic hydrogen evolution experiments was 

performed on a FL9790II gas chromatograph equipped with a thermal conductive 

detector (TCD) and a carbon molecular sieve column, using argon as the carrier gas. 

The photocurrent-time characteristic, electrochemical impedance spectroscopy (EIS) 

and Mott-Schottky measurement of these photocatalysts were carried out on a CHI 

660D electrochemical workstation in a standardized three-electrode-configuration. 

The photocatalyst on a FTO glass was used as the working electrode. And a platinum 

plate and an Ag/AgCl electrode were served as the counter electrode and reference 

electrode, respectively. 

2.3 Synthesis of 3DOM-SrTiO3 

The poly methyl methacrylate (PMMA) colloidal crystal templates with average 

diameters of 200 nm, 300 nm, and 400 nm, and the 3DOM-SrTiO3 materials with 

different pore sizes were synthesized according to our previous reports[53, 64]. More 
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specifically, firstly, the precursor solution was prepared as follows. 10 mL of acetic 

acid was added to 0.01 mol of Ti(OBu)4 under stirring, followed by the dropping of 

10 mL of deionized water. Then, 10 mL of Sr(NO3)2 solution (1 mol/L) and 10 mL of 

citric acid solution (2 mol/L) were consecutively added into this mixture at room 

temperature and the precursor solution was obtained. Secondly, the PMMA colloidal 

crystal template was placed into this precursor solution. After 2 h, the impregnated 

colloidal crystal template was filtrated to remove the redundant precursor solution. 

The sample was dried in a vacuum oven at 50 °C for 12 h and then calcined in air 

using tube furnace at 650 °C for 4 h. According to the diameters of PMMA 

microspheres (200, 300, and 400 nm), the as-synthesized 3DOM-SrTiO3 materials 

were named as 3DOM-SrTiO3(200), 3DOM-SrTiO3(300) and 3DOM-SrTiO3(400), 

respectively. 

2.4 Synthesis of ternary CdS/Au/3DOM-SrTiO3 composites 

The synthesis procedure of ternary CdS/Au/3DOM-SrTiO3 composites is shown 

in Scheme 1. 

Au nanoparticles were decorated on the surface of 3DOM-SrTiO3 through a 

chemical deposition method, and the typical synthesis procedure was described as 

follows. 0.15 g of 3DOM-SrTiO3 was dispersed into 75 mL of deionized water, and a 

certain amount of HAuCl4 solution (10 g/L) was added into this mixture at 110 °C 

under vigorous stirring for 0.5 h. Then, 1.5 mL of trisodium citrate aqueous solution 

(0.034 mol/L) was added to the flask twice every 15 min. After stirring for 1 h, the 

mixture was cooled down to room temperature. The purple Au/3DOM-SrTiO3 solid 
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sample was collected by centrifugation and washed with deionized water for once. 

The nominal Au loading amount in Au/3DOM-SrTiO3 samples was 0.5%, 1.0%, 1.5%, 

or 2.0% in weight. 

CdS/Au/3DOM-SrTiO3 composites were fabricated through a 

deposition-precipitation method. Au/3DOM-SrTiO3 was dispersed into 12 mL of 

Cd(NO3)2•4H2O aqueous solution under vigorous stirring for 0.5 h, and then Na2S 

aqueous solution was dropwise added. After stirring for 0.5 h, the obtained precipitate 

was collected by centrifugation, washed with deionized water for several times, and 

dried at 50 °C for 12 h. The obtained samples were marked as 

CdS/Au/3DOM-SrTiO3(200), CdS/Au/3DOM-SrTiO3(300), and 

CdS/Au/3DOM-SrTiO3(400). The nominal CdS loading amount in 

CdS/Au/3DOM-SrTiO3 samples was 5%, 15%, or 20% in weight. 

Because Au nanoparticles were deposited on the surface of 3DOM-SrTiO3 

through trisodium citrate reduction, the obtained Au nanoparticles were covered by 

citrate ions. Then these citrate ions could prior capture Cd2+ and further lead to the 

coverage of CdS on the surface of Au nanoparticles. This process has been reported 

by Zhao et al.[35]. 

For comparison, commercial SrTiO3 was used to prepare the ternary composite 

under the same synthesis procedure with CdS/Au/3DOM-SrTiO3. And the obtained 

photocatalyst was marked as CdS/Au/C-SrTiO3. 

2.5 Photocatalytic hydrogen evolution experiments 

The photocatalytic performance of as-prepared composite photocatalysts was 
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determined by the hydrogen evolution experiments at room temperature under visible 

light irradiation. In a typical process, 0.1 g of photocatalyst and 100 mL of water 

containing Na2SO3 (0.10 M) and Na2S (0.10 M) as the sacrificial reagents were added 

in a 150 mL quartz flask under stirring. After the reaction system was thoroughly 

degassed, the flask was irradiated by a 300W Xe lamp (CEL-HXUV300) with a UV 

cut-off filter (λ > 420 nm). The generated hydrogen was monitored by online GC. 

3. Results and Discussion 

3.1. Characterization of as-synthesized CdS/Au/3DOM-SrTiO3 composites 

The as-synthesized CdS/Au/3DOM-SrTiO3 photocatalysts were characterized 

by XRD, SEM, TEM, and DR UV-Vis. 

The XRD patterns of CdS/Au/3DOM-SrTiO3 and CdS/Au/C-SrTiO3 are shown 

in Figure 1. The characteristic diffraction peaks of 3DOM-SrTiO3 for three 

CdS/Au/3DOM-SrTiO3 samples can be well indexed to the (100), (110), (111), (200), 

(211), (220) and (310) crystal planes of pure cubic perovskite phase (JCPDS No. 

35-0734). Expect the diffraction peaks of 3DOM-SrTiO3, the weak and wide 

diffraction peak at about 26.5° (marked with ◆ ) on the patterns of 

CdS/Au/3DOM-SrTiO3 could be resulted from overlapped diffraction peaks of the 

(100), (002), and (101) planes of the greenockite structured CdS, suggesting the 

presence of CdS. The diffraction peak of Au (111) at 38.1° is also observed from 

Figure 1, corroborating the successful deposition of Au nanoparticles on the surface of 

3DOM-SrTiO3. In addition, the XRD peak intensities of CdS/Au/3DOM-SrTiO3 

photocatalysts are modestly weaker than those of CdS/Au/C-SrTiO3 indicating a 
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lower crystallinity of 3DOM-SrTiO3. 

The morphology of the as-synthesized 3DOM-SrTiO3 and ternary 

CdS/Au/3DOM-SrTiO3 composites were visualized through SEM, and the related 

images are shown in Figure 2. Clearly, the well-ordered inverse opal structure can be 

observed for all the 3DOM-SrTiO3 materials with different pore sizes, and the average 

pore diameters of 3DOM-SrTiO3(200), 3DOM-SrTiO3(300), and 3DOM-SrTiO3(400) 

can be determined as 120 nm, 185 nm, and 245 nm, respectively, from Figure 2(a) to 

2(c). After decorating CdS/Au nanoparticles, the highly ordered periodic 3DOM 

structures were still maintained, and the CdS/Au nanoparticles were mainly dispersed 

into the macropores of 3DOM-SrTiO3 as seen in Figure 2(e) to 2(g). Furthermore, it is 

found from Figure 2(d) and 2(h) that the commercial SrTiO3 is made up of 

micro-sized particles with an average size of 500 nm, and the CdS/Au nanoparticles 

are mainly accumulated on the surface of SrTiO3 in the CdS/Au/C-SrTiO3 composite. 

SEM-EDS elemental mapping images of these CdS/Au/3DOM-SrTiO3 composites are 

shown in Figure S1 of Supplementary Materials. 

The TEM and HRTEM images, and EDS elemental mapping of the 

CdS/Au/3DOM-SrTiO3(300) composite are depicted in Figure 3. The inverse opal 

structure of 3DOM-SrTiO3(300) can also be clearly observed in the TEM image in 

Figure 3(a). The average size of the Au nanoparticles is ~20 nm. Moreover, as shown 

in Figure 3(b) and 3(c), the existence of Au and CdS in the ternary composite is 

directly confirmed through the measure lattice spacing corresponding to the CdS(002) 

and Au(111) planes. In addition, the EDS elemental mapping in a selected area 
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indicated that Au nanoparticles were covered by CdS, which further confirmed the 

heterojunction structure of ternary CdS/Au/3DOM-SrTiO3(300) composite. More 

HRTEM images of CdS/Au/3DOM-SrTiO3 composites are given in Figure S2 of 

Supplementary Materials. 

Figure 4 shows the DR UV-Vis spectra of 3DOM-SrTiO3(300), 

CdS/3DOM-SrTiO3(300), Au/3DOM-SrTiO3(300) and CdS/Au/3DOM-SrTiO3(300) 

samples. The optical absorption edge of 3DOM-SrTiO3(300) locates at around 380 nm. 

Au/3DOM-SrTiO3(300) exhibits a broad absorption peak at 550 nm, corresponding to 

the SPR absorption of Au nanoparticles. Because of the combination of CdS, both 

CdS/3DOM-SrTiO3(300) and CdS/Au/3DOM-SrTiO3(300) show a strong response in 

the range of 400~600 nm. It is worthy to note from Figure 4 that the absorption edge 

of the ternary CdS/Au/3DOM-SrTiO3(300) composite has an obvious redshift 

compared with other specimens, which can be attributed to the synergistic influence 

of CdS and Au. 

3.2. Effect of Au and CdS loading amount on the efficiency of photocatalytic hydrogen 

evolution 

In order to optimize the constituent of the ternary CdS/Au/3DOM-SrTiO3 

composites, the influence of Au and CdS loading amount on the photocatalytic 

efficiency of CdS/Au/3DOM-SrTiO3 has been investigated. A series of 

CdS/Au/3DOM-SrTiO3(300) composites with different mass percentages of Au (0.5%, 

1.0%, 1.5%, and 2.0%) and CdS (5%, 15% and 20%) were synthesized and used in 

the visible light photocatalytic water splitting. It can be found from Figure 5, the 
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hydrogen evolution rate over CdS/Au/3DOM-SrTiO3(300) obviously increases as the 

Au loading amount increases from 0.5 wt% to 1.0 wt%, suggesting the more efficient 

transfer of photogenerated carrier with increasing the Au loading amount. However, 

with further increase of the Au loading amount from 1.0 wt% to 2.0 wt%, the 

hydrogen evolution rate of CdS/Au/3DOM-SrTiO3(300) catalyst slightly decreases, 

which could be attributed to the increased particle size of Au nanoparticles. In 

addition, as shown in Figure 5, the highest hydrogen evolution rate could be obtained 

when the loading amount of CdS is 15 wt% in CdS/Au/3DOM-SrTiO3(300). 

Consequently, in this work, the optimized loading amounts of CdS and Au are found 

to be 15 wt% and 1.0 wt%, respectively. 

3.3. The slow photon effect on the efficiency of photocatalytic hydrogen evolution 

To study the influence of inverse opal structure on the photocatalytic activity of 

ternary CdS/Au/3DOM-SrTiO3 composites, the specimens with different pore sizes 

and CdS/Au/C-SrTiO3 were evaluated in the visible light photocatalytic water 

splitting for hydrogen evolution and the results are shown in Figure 6(a). It can be 

clearly observed that all the CdS/Au/3DOM-SrTiO3 catalysts exhibit notably higher 

photocatalytic hydrogen evolution rates than CdS/Au/C-SrTiO3. It indicates that the 

inverse opal structure of 3DOM-SrTiO3 can remarkably enhance the photocatalytic 

activity of these ternary composites, which can be mainly attributed to the following 

reasons. Firstly, the three dimensionally interconnected pore channels can facilitate 

the diffusion and mass transfer of aqueous solution containing S2- and SO3
2-, which 

can eliminate the photogenerated holes. Secondly, the skeletal wall thickness of 
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3DOM-SrTiO3 is nano-sized, which can shorten the diffusion length of 

photogenerated carriers so as to prevent carriers’ recombination. Finally, and most 

importantly, the 3DOM-SrTiO3 materials possess an amazing slow photon effect, 

which increases the interaction between photons and the catalyst, leading to the 

enhancement of light-energy conversion efficiency. 

As described in Figure 6(a), among these ternary CdS/Au/3DOM-SrTiO3 

composites, CdS/Au/3DOM-SrTiO3(300) exhibites the highest hydrogen evolution 

rate, up to 2.74 mmol/g•h, which is 3.2 times as high as that of CdS/Au/C-SrTiO3 

catalyst. Meanwhile, the hydrogen evolution rates of CdS/Au/3DOM-SrTiO3(200) 

and CdS/Au/3DOM-SrTiO3(400) are 1.76 mmol/g•h and 2.14 mmol/g•h, respectively. 

A photocurrent generation measurement for CdS/Au/3DOM-SrTiO3 and 

CdS/Au/C-SrTiO3 catalysts was performed under visible light irradiation, and the 

results are shown in Figure 6(b). All the samples show strong sensitivity to visible 

light irradiation and there is a dramatic rise for the photocurrent from the off 

illumination to the on illumination. In addition, the photocurrent response of 

CdS/Au/3DOM-SrTiO3 is remarkably higher than that of CdS/Au/C-SrTiO3, which 

indicates the notably enhanced separation efficiency of photogenerated carriers over 

the CdS/Au/3DOM-SrTiO3 composites. Among these ternary CdS/Au/3DOM-SrTiO3 

composites, CdS/Au/3DOM-SrTiO3(300) exhibits the highest photocurrent response, 

which is well consistent with the results of photocatalytic hydrogen evolution 

experiments. 

In order to concretely analyze the influence of slow photon effect in the 
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CdS/Au/3DOM-SrTiO3 catalysts, the stop-bands of 3DOM-SrTiO3 materials were 

calculated using the modified Bragg’s law as described in Eq.(1)[57, 64, 65]. In this 

equation, λ is the wavelength of the photonic stop-band, D is the pore size derived 

from the inverse opals, nSrTiO3 and nWater are the refractive index of SrTiO3 and water, 

respectively, f is the SrTiO3 phase volume percentage, which is generally given as 

0.26, θ is the incident angle of light, which is in the range of 0-90° due to a varied and 

wide range of the incident angle under light irradiation for the photocatalysts in the 

reaction solution. Therefore the calculated stop-band of 3DOM-SrTiO3(300) (D=185 

nm) is in the range of 407~507 nm, while for 3DOM-SrTiO3(200) (D=120 nm) and 

3DOM-SrTiO3(400) (D=245 nm), the stop-band ranges are about 264~329 nm and 

533~663 nm, respectively. 

T2water
2

SrTiO
2 sin-f)-(1nfnD

3
22λ 3 �                Eq. (1) 

According to the related literatures[34, 66, 67], the group velocity of light could 

dramatically reduce at the edges of stop-band and result in the appearance of slow 

photons. Especially, the red-edge of stop-band for inverse opals is thought to be more 

important in photocatalysis because of the relative higher refractive index of skeletal 

material. In the present work, because of the varied incident angle in the range of 

0-90°, the stop-bands of these 3DOM-SrTiO3 materials were variable in a wide 

range[68, 69]. It would result in a wide slow photon region at the red-edges of stop-band, 

and this slow photon region was partially overlapped with its stop-band. Figure 7(a) 

depicts the UV-Vis spectra of these CdS/Au/3DOM-SrTiO3 composites. It can be 

found that the CdS/Au/3DOM-SrTiO3 composites exhibit a strong absorption at the 
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wavelength from 400 to 500 nm, which was exactly overlapped with the slow photon 

region of 3DOM-SrTiO3(300) material. However, the slow photon region of 

3DOM-SrTiO3(200) is in the range of ultraviolet light and the slow photon region of 

3DOM-SrTiO3(400) oversteps the absorption region of these CdS/Au/3DOM-SrTiO3 

composites. 

In order to further prove the influence of slow photon effect on the hydrogen 

evolution efficiency upon CdS/Au/3DOM-SrTiO3 catalysts, the controlled 

experiments over these composites were carried out under the certain wavelength 

light irradiation, including 435 nm, 475 nm, 550 nm, and 578 nm. It can be found 

from Figure 7(b) that CdS/Au/3DOM-SrTiO3(300) exhibits the highest photocatalytic 

hydrogen evolution rate under irradiation of 435 nm and 475 nm light. The result can 

be attributed to the proper slow photon region of 3DOM-SrTiO3(300), which could 

significantly increase the photon-matter interaction and further improve the 

photocatalytic performance of CdS/Au/3DOM-SrTiO3(300). When the water splitting 

experiments were carried out under the irradiation of 550 nm or 578 nm light, 

CdS/Au/3DOM-SrTiO3(400) exhibits slightly higher hydrogen evolution rates 

compared with the other two catalysts because of the overlap between incident light 

wavelength and slow photon region of 3DOM-SrTiO3(400). It is a direct experimental 

evidence for the slow light enhancement effect on these ternary 

CdS/Au/3DOM-SrTiO3 composites and also directly proves the conclusion that the 

overlap of slow photon region with the electronic absorption band would significantly 

improve the photocatalytic performance of CdS/Au/3DOM-SrTiO3 composites. 
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3.4. The roles of Au nanoparticles in ternary CdS/Au/3DOM-SrTiO3 composites 

Besides the slow photon effect of 3DOM-SrTiO3 materials, the efficient 

separation of photogenerated carriers and the SPR effect of Au nanoparticles in these 

ternary CdS/Au/3DOM-SrTiO3 photocatalysts are also important factors in enhancing 

the photocatalytic performance. In order to comprehend the roles of Au in ternary 

composites, 3DOM-SrTiO3(300) and binary composites, including 

Au/3DOM-SrTiO3(300) and CdS/3DOM-SrTiO3(300), were used as photocatalysts in 

water splitting experiments. In this experiment, CdS/3DOM-SrTiO3(300) was 

prepared through a deposition-precipitation method similar with that of 

CdS/Au/3DOM-SrTiO3(300), except that Au/3DOM-SrTiO3(300) was replaced by 

3DOM-SrTiO3(300). 

It is evident from Figure 8(a) that 3DOM-SrTiO3(300) is inactive in this 

visible-light-driven photocatalytic water splitting experiment due to its wide band gap. 

While Au/3DOM-SrTiO3(300) exhibites a very slight activity (1.86 μmol/g•h), which 

could be assigned to the SPR effect of Au nanoparticles[23, 30, 70]. As for 

CdS/3DOM-SrTiO3(300), a considerable hydrogen evolution rate (0.44 mmol/g•h) is 

obtained under visible light irradiation because of the heterojunction structure 

between CdS and 3DOM-SrTiO3(300) that extended the light absorption of 

3DOM-SrTiO3(300) and promoted the carrier separation efficiency. Compared with 

the three former photocatalysts, ternary CdS/Au/3DOM-SrTiO3(300) composite 

furnished the highest photocatalytic hydrogen evolution rate (2.74 mmol/g•h). This 

excellent performance of CdS/Au/3DOM-SrTiO3(300) could be attributed to the 
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synergistic effect of two factors. On the one hand, the SPR effect of Au nanoparticles 

could improve the performance of CdS/Au/3DOM-SrTiO3 through hot electron 

transfer[25-30]. On the other hand, the presence of Au nanoparticles between CdS and 

3DOM-SrTiO3 could obviously facilitate the transfer and separation of 

photogenerated carriers. 

In order to verify these two roles of Au nanoparticles in ternary 

CdS/Au/3DOM-SrTiO3 composites, a series of controlled experiments and 

characterizations were carried out in present work. Firstly, the SPR effect of Au 

nanoparticles can be observed from the DR UV-Vis characterization of obtained 

photocatalysts (as shown in Figure 4). The obvious absorption peaks centered at 550 

nm in the DR UV-Vis spectra of Au/3DOM-SrTiO3(300) and 

CdS/Au/3DOM-SrTiO3(300) can be associated with the SPR effect of Au 

nanoparticles. Taking into account of the absorption edge of binary 

CdS/3DOM-SrTiO3(300) composite located at 550 nm, a series of controlled water 

splitting experiments over binary CdS/3DOM-SrTiO3(300) and ternary 

CdS/Au/3DOM-SrTiO3(300) composites under the certain wavelength (including 435, 

550, and 578 nm) light irradiation were carried out to investigate the SPR effect of Au 

nanoparticles. It can be found from Figure 8(b), the hydrogen evolution rate of 

CdS/Au/3DOM-SrTiO3(300) was 2 times as high as that of CdS/3DOM-SrTiO3(300) 

when the radiation wavelength was 435 nm. However, when the radiation wavelength 

was 550 nm, the hydrogen evolution rate of CdS/Au/3DOM-SrTiO3(300) was 20 

times higher than that of CdS/3DOM-SrTiO3(300). Further increasing the radiation 
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wavelength to 578 nm, the hydrogen evolution efficiency ratio of 

CdS/Au/3DOM-SrTiO3(300) to CdS/3DOM-SrTiO3(300) reached up to 46 times. The 

notably enhanced photocatalytic performance of CdS/Au/3DOM-SrTiO3(300) under 

the light irradiation with wavelength of 550 and 578 nm can be derived from the 

contribution of Au SPR effect in ternary CdS/Au/3DOM-SrTiO3 composites. 

Secondly, the facilitated charge transfer and separation derived from Au 

nanoparticles can be confirmed through the PL and EIS measurements of 

3DOM-SrTiO3(300), CdS/3DOM-SrTiO3(300), and CdS/Au/3DOM-SrTiO3(300) 

materials. Figure 9(a) depicts the PL spectra of these samples. It can be seen that 

3DOM-SrTiO3(300) exhibited the highest intensity in the PL emission spectrum. After 

loading CdS, the intensity of PL emission spectrum arising from the recombination of 

free carriers obviously decreased, which indicated that the separation efficiency of 

electron-hole pairs was enhanced over the binary CdS/3DOM-SrTiO3(300) composite. 

When Au nanoparticles were introduced between CdS and 3DOM-SrTiO3(300) to 

form the ternary CdS/Au/3DOM-SrTiO3(300) composite, the PL emission intensity 

decreased to the lowest level compared with 3DOM-SrTiO3(300) and 

CdS/3DOM-SrTiO3(300), implying the notably improved separation efficiency of 

photogenerated electron-hole pairs in ternary composite. 

To further verify the efficient charge transfer in ternary composite, the EIS 

characterization of 3DOM-SrTiO3(300), CdS/3DOM-SrTiO3(300), and 

CdS/Au/3DOM-SrTiO3(300) were carried out and the results are shown in Figure 9(b). 

The EIS Nyquist plot of CdS/Au/3DOM-SrTiO3(300) exhibited the smallest diameter 
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of semicircle compared with 3DOM-SrTiO3(300) and CdS/3DOM-SrTiO3(300), 

suggesting that CdS/Au/3DOM-SrTiO3(300) provided more efficient charge transfer 

across the interface of the electrode and the electrolyte. The results of PL and EIS 

characterization indicated that the presence of Au nanoparticles in ternary 

CdS/Au/3DOM-SrTiO3(300) composite can significantly improve the transfer and 

separation of photogenerated carriers. 

3.5. The photogenerated carriers transfer mechanism of ternary 

CdS/Au/3DOM-SrTiO3 photocatalysts 

In order to investigate the transfer process of photogenerated carriers for ternary 

CdS/Au/3DOM-SrTiO3(300) composite under visible light irradiation, two Pt 

nanoparticles decorated CdS/Au/3DOM-SrTiO3(300) samples were prepared 

according to the reported method[31]. It should be noted that the loading position of Pt 

nanoparticle in these two samples was different. Scheme 2 depicts the synthesis 

procedure of these Pt deposited CdS/Au/3DOM-SrTiO3(300) photocatalysts. For the 

first sample, marked as CdS/Au/3DOM-SrTiO3(300)/Pt, Pt nanoparticles (0.7wt%) 

were photodeposited on the surface of 3DOM-SrTiO3(300) using methanol as the 

sacrificial agent under UV light irradiation before the combination of Au and CdS. 

For the second sample, named as Pt/CdS/Au/3DOM-SrTiO3(300), Pt nanoparticles 

(0.7wt%) were in situ photodeposited on the surface of CdS via a UV-Vis light driven 

Z-scheme process over CdS/Au/3DOM-SrTiO3(300) photocatalyst[33, 34, 38]. As seen in 

Figure 10, the decoration of Pt nanoparticles can significantly increase the hydrogen 

evolution rate of the CdS/Au/3DOM-SrTiO3(300) composite. Especially by using the 
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CdS/Au/3DOM-SrTiO3(300)/Pt catalysts, an extraordinarily high hydrogen evolution 

rate was achieved (up to 5.46 mmol/g•h) in visible light photocatalytic water splitting. 

The apparent quantum efficiency (AQE) value of CdS/Au/3DOM-SrTiO3(300)/Pt 

composite for hydrogen evolution was calculated by the following equation (2) under 

420 nm wavelength light irradiation, and the calculated AQE420nm value was 42.2%. 

Compared with the ever reported similar catalysts based on SrTiO3
[31, 71-80], this is a 

remarkably enhanced hydrogen evolution efficiency under the similar 

visible-light-driven water splitting conditions (the detailed comparison was described 

in Supplementary Materials). 

AQE = Number of reacted electrons
Number of incident photons × 100%     Eq. (2) 

In addition, CdS/Au/3DOM-SrTiO3(300)/Pt exhibited higher hydrogen evolution 

rate compared with Pt/CdS/Au/3DOM-SrTiO3(300) (5.46 vs. 4.72 mmol/g•h). It has 

been well known that Pt nanoparticles, as a co-catalyst, can provide trapping sites for 

the photogenerated electrons. The higher activity of CdS/Au/3DOM-SrTiO3(300)/Pt 

implies that the photogenerated electrons might move from CdS to 

3DOM-SrTiO3(300) by a cascade of energy states. In other words, more active sites 

for reducing H+ to H2 are generated on the surface of 3DOM-SrTiO3(300) instead of 

CdS. Therefore, it is logical to deduce that a favorable electron transfer pathway is 

CdS→Au→3DOM-SrTiO3(300). 

According to the above results, a graphic mechanism for the photocatalytic 

hydrogen generation process over the ternary CdS/Au/3DOM-SrTiO3 composites 

under visible light irradiation is illustrated in Figure 11. The redox potential of 
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conduction bands (CB) and valence bands (VB) of as-synthesized 3DOM-SrTiO3(300) 

and CdS semiconductor materials were detected through Mott-Schottky measurement 

as described in Figure S3 of Supplementary Materials. When the 

CdS/Au/3DOM-SrTiO3 composites were irradiated under visible light, the electrons 

and holes were generated on the CB and VB of CdS, respectively. Because of the 

more negative CB redox potential of CdS, the photogenerated electrons could transfer 

from the CB of CdS to that of 3DOM-SrTiO3 through the conducting of Au 

nanoparticles. At the same time, the plasnom-induced electrons in Au nanoparticles 

were generated under the visible light irradiation. The plasnom-induced hot electrons 

migrate to the interface between Au and 3DOM-SrTiO3, and then also transfer to the 

CB of 3DOM-SrTiO3. The photogenerated electrons in the CB of 3DOM-SrTiO3 

reacted with H+ in water to produce H2, and the photogenerated holes existed in the 

VB of CdS can oxidize the S2-/SO3
2- ions to S2

2-/SO4
2-. 

3.6. Photocatalytic stability of the ternary CdS/Au/3DOM-SrTiO3 composites 

The stability of the as-synthesized ternary CdS/Au/3DOM-SrTiO3 photocatalysts 

was evaluated in a cycling visible light water splitting experiment using 

CdS/Au/3DOM-SrTiO3(300) as a model catalyst and Na2S/Na2SO3 as scavengers. 

Obviously, CdS/Au/3DOM-SrTiO3(300) exhibites good stability in 

visible-light-driven water splitting hydrogen evolution experiments (Figure 12). At 

the fourth cycling experiment, the hydrogen evolution rate still remained more than 

2.65 mmol/g•h. The used CdS/Au/3DOM-SrTiO3(300) catalyst after 4th recycle were 

characterized through XRD and SEM. The results are shown in Figure S4 and Figure 
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S5 of Supplementary Materials. It can be found that the 3DOM structure and the 

crystallinity of used CdS/Au/3DOM-SrTiO3(300) catalyst were well maintained after 

4th recycle. 

4 Conclusions 

In summary, a series of promising ternary composite photocatalysts with inverse 

opal structure (CdS/Au/3DOM-SrTiO3) had been successfully fabricated and well 

demonstrated by the characterization of XRD, SEM, TEM, DR UV-Vis, and 

photoelectrochemical measurement. These ternary CdS/Au/3DOM-SrTiO3 

composites exhibited excellent performance in visible light photocatalytic water 

splitting for hydrogen evolution. Because of the synergistic enhancement of slow 

photon effect, efficient charge separation, and Au SPR effect, 

CdS/Au/3DOM-SrTiO3(300) exhibited a notably enhanced hydrogen evolution rate 

(2.74 mmol/g•h) under visible light irradiation. With further deposition of Pt 

nanoparticles as co-catalyst, an extraordinarily high hydrogen evolution rate of up to 

5.46 mmol/g•h was achieved. Apart from these, the charge transfer mechanism in the 

ternary CdS/Au/3DOM-SrTiO3 composites had been proposed in the present work. 

Moreover, these CdS/Au/3DOM-SrTiO3 photocatalysts were found to be stable and 

could be recycled for four times without obvious loss in activity. 
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Figure 1. Powder XRD patterns of (a) CdS/Au/C-SrTiO3, (b) 

CdS/Au/3DOM-SrTiO3(200), (c) CdS/Au/3DOM-SrTiO3(300), and (d) 

CdS/Au/3DOM-SrTiO3(400). 

Figure 2. SEM micrographs of (a) 3DOM-SrTiO3(200), (b) 3DOM-SrTiO3(300), (c) 

3DOM-SrTiO3(400), (d) C-SrTiO3, (e) CdS/Au/3DOM-SrTiO3(200), (f) 

CdS/Au/3DOM-SrTiO3(300), (g) CdS/Au/3DOM-SrTiO3(400), and (h) 

CdS/Au/C-SrTiO3. 

Figure 3. TEM image (a), HRTEM images (b, c) and HAADF-STEM-EDS elemental 

mapping (d) of CdS/Au/3DOM-SrTiO3(300). 

Figure 4. DR UV-vis spectra of CdS/Au/3DOM-SrTiO3(300), 

CdS/3DOM-SrTiO3(300), Au/3DOM-SrTiO3(300), and 3DOM-SrTiO3(300). 

Figure 5. The efficiencies of hydrogen evolution over CdS/Au/3DOM-SrTiO3(300) 

with different Au and CdS loading amounts under visible light irradiation (λ > 420 

nm). 

Figure 6. The efficiencies of hydrogen evolution (a) and photocurrent-time (I-t) 

curves (b) over the CdS/Au/C-SrTiO3 and CdS/Au/3DOM-SrTiO3 composites with 

different pore sizes. 

Figure 7. (a) DR UV-Vis spectra of CdS/Au/3DOM-SrTiO3 composites. (b) The 

efficiencies of hydrogen evolution over CdS/Au/3DOM-SrTiO3 under the certain 

wavelength light irradiation. 

Figure 8. The efficiencies of hydrogen evolution over (a) unary, binary, and ternary 

photocatalysts based on 3DOM-SrTiO3(300) and (b) CdS/3DOM-SrTiO3(300) and 
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CdS/Au/3DOM-SrTiO3(300) under the certain wavelength light irradiation. 

Figure 9. (a) PL spectra and (b) EIS Nyquist plots of 3DOM-SrTiO3(300), 

CdS/3DOM-SrTiO3(300), and CdS/Au/3DOM-SrTiO3(300). 

Figure 10. The efficiencies of hydrogen evolution over Pt decorated 

CdS/Au/3DOM-SrTiO3(300) composites and the Pt free composite as a reference. 

Figure 11. Illustration of photogenerated carrier transfer mechanism for 

CdS/Au/3DOM-SrTiO3 catalyst under visible light irradiation. 

Figure 12. Cycling tests of CdS/Au/3DOM-SrTiO3(300) for visible light 

photocatalytic hydrogen evolution from water splitting. 

Scheme 1. The synthesis procedure of ternary CdS/Au/3DOM-SrTiO3 composites. 

Scheme 2. The synthesis procedure of Pt deposited CdS/Au/3DOM-SrTiO3(300) 

photocatalysts.
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Figure 2. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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Figure 12. 
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Scheme 1. 
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Scheme 2. 

 

 

 


