
THE COMBINATORICS OF ABSTRACT CONTAINER DATA
TYPES

Dominic H. Tulley

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1997

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13472

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13472

The Combinatorics of Abstract
Container Data Types

O A

A thesis subm itted to the

UNIVERSITY OF ST ANDREWS

for the degree of

DOCTOR OF PHILOSOPHY

By

Dominic H Tulley

School of Mathematical and Computational Sciences

University of St Andrews

August 1996

ProQuest Number: 10167229

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167229

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

a -

'■Vi

“eleven plus two

twelve plus one”

I, Dominic H Tulley, hereby certify that this thesis, which is approximately 30,000

words in length, has been written by me, that it is the record of work carried out

by me, and that it has not been submitted in any previous application for a higher

degree.

date n\AC(iM __ signature of candidate

I was admitted as a research student in October 1993 and as a candidate for the

degree of Doctor of Philosophy in October 1994; the higher study for which this is

a record was carried out in the University of St Andrews between 1993 and 1996.

date ^ < 0 __________________ signature of candidate _

I hereby certify that the candidate has fulfilled the conditions of the Resolution and

Regulations appropriate for the degree of Doctor of Philosophy in the University of

St Andrews and that the candidate is qualified to submit this thesis in application

for tha t degree.

da te signature of supervisor !

In submitting this thesis to the University of St Andrews I understand that 1 am

giving permission for it to be made available for use in accordance with the regula­

tions of the University Library for the time being in force, subject to any copyright

vested in the work not being affected thereby. I also understand tha t the title and

abstract will be published, and that a copy of the work may be made and supplied

to any bona fide library or research worker.

date 1̂ ^ ^ ___ signature of candidate^

A b stra c t

The study of abstract machines such as Turing machines, push down autom ata and

finite state machines has played an important role in the advancement of computer

science. It has led to developments in the theory of general purpose computers,

compilers and string manipulation as well as many other areas. The language asso­

ciated with an abstract machine characterises an important aspect of the behaviour

of th a t machine. It is therefore the principal object of interest when studying such

a machine.

In this thesis we consider abstract container data types to be abstract machines. We

define the concept of a language associated with an abstract container data type and

investigate this in the same spirit as for other abstract machines. We also consider

a model which allows us to describe various abstract container data types. This

model is studied in a similar manner.

There is a rich selection of problems to investigate. For instance, the data items

which the abstract container data types operate on can take many forms. The input

stream could consist of distinct data items, say 1,2, . . . , 7i, or it could be a word

over the binary alphabet. Alternatively it could be a sequence formed from the

data items in some arbitrary multiset. Another consideration is whether or not an

abstract data type has a finite storage capacity.

It is shown how to construct a regular grammar which generates (an encoded form of)

the set of permutations which can be realised by moving tokens through a network.

A one to one correspondence is given between ordered forests of bounded height

and members of the language associated with a bounded capacity priority queue

operating on binary data. A number of related results are also proved; in particular

for networks operating on binary data, and priority queues of capacity 2 .

A cknow ledgem ents

I am greatly indebted to my supervisor, Professor Mike Atkinson. Without his

support, encouragement, insight and insistence on deadlines throughout the last

three years this thesis may well never have been written.

I also owe many thanks to Duncan Shand. Not the least of which is for managing

to share an office with me for three years. Without the many useful discussions,

plentiful advice and coffee this thesis would certainly not be as it is.

Ill

C ontents

1 Introduction 1

1.1 Definitions... 2

1.2 Thesis Overview ... 6

2 Transportation Networks 8

2.1 Problem Form ulation . . 9

2.2 A Network with Permutation I n p u t s ... 11

2.3 Example Analysis... 18

2.4 Binary Input Sequence... 22

3 Oblivious Abstract Container D ata Types 28

3.1 B uffers.. 30

3.2 D eques.. 39

3.3 S ta c k s .. 44

4 Priority Queues and D ouble Ended Priority Queues 46

4.1 Priority Queue with Permutation In p u ts .. 47

4.2 Permutation Inputs with Binary P rio rities .. 59

4.3 Binary In p u ts ... 73

4.4 Double Ended Priority Q u e u e s ... 88

5 Conclusions 91

5.1 Open P ro b lem s... 93

IV

N o ta tio n
(7 The input sequence to a data type

r The output sequence from a data type

n The length of the input sequence

N A general transportation graph

Bk A buffer of capacity k

Sk A stack of capacity k

Pk A priority queue of capacity k

k The storage capacity of the data type in question

L{D) The language associated with the data type D

Ln{D) The elements of length n in L{D)

S (r) The set of sequences cr such that (<r, r) is allowable

T(<j) The set of sequences r such tha t (cr, r) is allowable

5jt(r) The set of sequences a such that (cr, r) is Ai-allowable

Tk{cr) The set of sequences r such that (cr, r) is A;-allowable

s(r) \S{r)\

t(cT) |T(cr)|

Sk{r) |5̂fc(UI
4(0-) |21t(o-)|

â ' The reverse of a sequence a

â The complement of a sequence a

1 INTRODUCTION

1 In troduction

Abstract machines such as Turing machines, push-down automata, and finite-state

machines are well known and well understood in computer science. They have

been used to study general purpose computers, compilers, and string manipulation

although their importance goes well beyond these three applications. The central

theoretical issue for these and other machines is the characterisation of the languages

associated with them. The aim of this thesis is to study abstract container data types

in the same spirit.

Abstract data types are central to the point of view adopted in object-oriented

programming which now permeates all large software projects. Although abstract

data typing was initially adopted primarily for its use as a software design tool it has

always been recognised tha t each data type has a rigorous mathematical definition.

Each abstract data type is characterised by the set of operations tha t can be per­

formed on it. Therefore an abstract data type can be regarded as an abstract

machine whose instruction set is the set of operations it supports. Some of these op­

erations may supply input or output while others may examine or change the state

of the abstract data type. The precise specification of these instruction sets has been

studied in considerable depth by algebraic means, see [BMC092a, EMC092b] for a

survey. However, the classical abstract machines are studied at a much deeper level;

their behaviour in response to arbitrary sequences of instructions, or programs, is

studied and this behaviour is captured by the idea of the language recognised by the

machine. As yet, such a study has hardly begun for abstract data types although, as

indicated below, there is a very natural extension of the language notion to abstract

data types.

Our aim is to provide a framework to unify several important early ad hoc results

of Knuth, P ratt, Tarjan. Even and Itai [Knu73a, Pra73, Tar72, EI71]. Knuth and

P ra tt both investigated single abstract container data types (stacks and deques) and

successfully described the associated language (albeit using a different terminology).

Tarjan, Even and Itai generalised this investigation to allow networks of stacks and

queues but only found partial results. Our unifying framework places these results

1 INTRODUCTION

in a generalised context: that of associating a language with an abstract data type.

There are an infinite number of data types and it seems to be infeasible to give a

general theory of their associated languages which has deep implications for all of

them. However, in practice, only a small number of abstract data types, such as

stacks, queues, arrays and dictionaries, recur frequently in software and algorithm

design. Therefore it is perhaps more profitable to study only those which have

demonstrable software utility.

This thesis concentrates on abstract coniamer data types: those for which Insert and

Delete operations are defined. Such abstract data types act as data transformers,

outputting their input data in a permuted order. If, except for house-keeping opera­

tions, Insert and Delete are the only operations supported by the data type then the

functional behaviour of the abstract data type is essentially defined by the possible

ways in which it can permute the data. A sequence of Insert and Delete operations

constitutes a program for the abstract data type when it is regarded as a machine.

For such an abstract data type it is not desirable to define its associated language

to be the set of input sequences that lead to an accepting state, since that discards

so much essential information about the output. Instead, we propose tha t the asso­

ciated language should be defined to be the set of (input, output) pairs of sequences

tha t can arise from the execution of an abstract data type program. As we shall

see, there are a number of questions about the language associated with an abstract

data type whose formulation and solution require combinatorial machinery. These

questions form the basis of the work presented here.

1,1 D efin itio n s

Let A be any abstract container data type. We shall consider only programs for A

which begin and end with A in the empty state: this represents the normal way that

a container data type would be used. Such a program, formed only from Insert and

Delete operations, must satisfy two other conditions. The first is tha t every initial

segment must contain at least as many Inserts as Deletes to ensure that a Delete

operations is never executed when A is empty. The second is tha t the Insert and

1 INTRODUCTION

Delete operations in the program should be equinumerous to ensure tha t the final

state of A is the empty state. Let cr be any sequence of length n and let P be any

program with n Inserts and n Deletes satisfying the above conditions. The execution

of P with cr as the input sequence results in the members of a being inserted into A

in order of their occurrence in o’. It also results in the Delete operations generating

a sequence r which we call the output of P. A pair (cr, r) which is related by a

program P in this way is called allowable, or A-allowable when the abstract data

type cannot be deduced from context. As an example consider a stack operating

on the input sequence 1,2,3. If it executes the program “Insert Insert Delete Insert

Delete Delete” then the output sequence will be 2,3,1, and thus ((1,2,3), (2,3,1)

is a Stack-allowable pair. Direct enumeration of all valid programs for input length

3 quickly verifies that ((1,2,3), (3,1,2)) is not an allowable pair. The concept of

allowability and related notions are central to the work in this thesis.

One such related notion is the set of allowable pairs which is denoted by L{A) and

is called the language associated with the data type A, If two data types have the

same language over some alphabet then we say they are permutationally equivalent

In the study of these languages it is often necessary to partition them by the size of

the pairs. In this context the phraseology is a little counter intuitive; an allowable

pair of length n refers to an allowable pair (cr, r) with Length{a) — Length{r) = n.

Basic combinatorial questions about L[A) include:

1 . How many A-allowable pairs of length n are there?

2 . Is there a characterisation of the A-allowable pairs that enables them to be

recognised quickly?

3. Is there an efficient algorithm that, given an input sequence cr, can determine

how many A-allowable pairs (cr, r) there are? And, dually,

4. Is there an efficient algorithm that, given an output sequence r , can determine

how many A-allowable pairs (cr, r) there are?

It is often the case that an allowable pair can be produced by more than one pro­

gram. A queue computing the allowable pair (cr, cr) could execute the program

1 INTRODUCTION

[Insert Delete)'^ or it could execute the program Insert^ Delete^. These are but

two of the Cn = 1) programs which compute the pair. A stack on the

other hand can only compute each allowable pair in one way. When considering

the behaviour of these data types it is sometimes necessary to specify which of the

many possible programs is being executed. To this end we informally introduce a

standard computation. The idea of a standard computation is that, when attempting

to permute a into r , the data type never executes an Insert operation when it can

produce another element of the output using a Delete. This corresponds to the data

type storing as few data items as possible at all times. It is not possible to give a

formal definition of a standard computation which covers all the data types since

the definition is dependent on the data type. Where necessary we shall formalise

the definition.

In practice abstract container data types tend to have a bounded size, either enforced

by their implementation or the physical limits of the hardware. It therefore makes

sense to consider the above questions when no more than k data items can be stored

at any time in the abstract data type. We correspondingly introduce the idea of

k-allowability by defining the language L[Ak) of a k-bounded abstract data type A*.

We let L[Ak) denote the set of allowable pairs (cr, r) for which there is a program P

which can transform cr into r without requiring more than k data items to be stored

at any one time.

There are further variations we can introduce to the questions already raised. We

have not yet stipulated what form the input sequence takes; it could be taken as a

sequence of distinct elements, as a word over the binary alphabet, or as a reordering

of an arbitrary multiset. If it consists of distinct data items we can assume without

loss of generality tha t they are 1, 2 , . . . , M. Similarly, in the multiset case, we can

assume without loss of generality that the multiset is 5 = 2®^)..., r®'*}.

It is clear that if [cr, t) and (or, /3) are fc-allowable pairs then [aa, rjl) is ^-allowable.

In this case, when the data type is executing a program to transform the input into

the output, it is possible that it will become empty when r has been produced.

The converse of this is that if a data type becomes empty part way through a

program then the allowable pair it is computing can be reduced into two distinct

1 INTRODUCTION

and shorter allowable pairs. If it is not possible for the data type to become empty

when transforming cr into r then we say (<r, r) is irreducible otherwise we say it is

reducible.

As noted previously there are some data structures whose behaviour is independent

of the value of the data items being processed. In general, if the data structure is

oblivious to the data value and all the data items are distinct, it is not necessary

to consider allowable pairs. In this case, if (cr, 7r(cr)) is an allowable pair for some

permutation tt and some sequence cr, then (cr, ?r(cr)) is allowable for all n\ possible

sequences a. The language of a data structure is therefore characterised entirely by

the set of allowable permutations t t . In the cases where this is possible we shall use

the notation T(A) to refer to the set of allowable permutations rather than pairs.

Similarly we shall use L[Ak) in the bounded capacity case.

There are various methods for characterising allowable permutations. One of the

more successful techniques is tha t of pattern avoidance as used by P ra tt ([Pra73])

and Knuth ([Knu73a, 2.2.1; Q 5]). There are other applications of pattern avoidance

beyond allowability. In [KSW96] it is used to investigate (r, s) permutations. These

are the permutations which can be partitioned into r increasing and s decreasing,

possibly empty, subsequences. In [BBL93] a characterisation of the separable, or

(1, 1), permutations is given in terms of pattern avoidance. In [SS85] and [Rot76]

some work is done on counting the permutations avoiding certain patterns or sets of

patterns. A pattern of length m is a permutation p = pi, p2, • • •, Pm of 2 , . . . , m. A

sequence cr = <7i, £72, . . . , <J„ is said to contain the pattern p if there is a subsequence

cr' of cr such that |cr'| = m and p* < pj if and only if cr'- < cr'-. As an example, the

sequence 5,4, 2,3,1 contains the pattern 3,1,2 because it contains the subsequence

5 ,2 , 3, but on the other hand 5,4,3, 2,1 does not contain the pattern 1, 2 ,3. If p

does not occur within cr we shall say that cr avoids p.

It is shown in [BBL93] that the general pattern matching problem for permutation

patterns is NP-complete. All is not lost however, for it is also shown there that

special cases can have efficient solutions. In particular, as stated above, it is shown

tha t separable permutations, those which avoid 3142 and 2413, can be recognised

and counted in polynomial time.

1 INTRODUCTION

1.2 T hesis O verview

The work presented in this thesis falls into three categories. The first of these covers

transportation networks, the second covers the oblivious abstract container data

types and the third is non-oblivious abstract container data types. This reflects the

structure of the thesis, with a chapter devoted to each.

In Chapter 2 we introduce transportation networks. These are graph theoretic mod­

els representing the movement of data from a source node to a destination node

through a network of connected internal nodes. We show that the set of allowable

permutations for any fixed network is a regular set. We then give a method for

finding a grammar which generates encodings of the elements of tha t set. In the

binary case we show that any transportation network is permutationally equivalent

to a single buffer of some fixed capacity. A corollary of this is that bounded capacity

unrestricted deques, input restricted deques, output restricted deques and stacks are

all equivalent to buffers of some size in the binary case.

Oblivious abstract container data types are investigated in Chapter 3. Here we

consider buffers, deques and stacks. The allowable permutations of a bounded buffer

are characterised and counted. We also consider the binary input case and derive a

recurrence for the number of allowable pairs. For deques we apply the techniques of

Chapter 2 to the bounded capacity case for several fixed capacities. This gives rise to

some empirical data which behaves as we would expect. It also agrees with existing

results pertaining to the unbounded case. In the previous chapter stacks are shown

to be equivalent to buffers in the binary case. Here we apply the techniques from

Chapter 2 to a stack with permutation inputs and find the asymptotic behaviour of

the number of allowable pairs for stacks of capacity 1 ,2, . . . , 5. Finally, we point out

a result of [dBKR72] which applies here.

Chapter 4 covers the non-oblivious container data types; priority queues and double

ended priority queues. One of the original motivating problems for this thesis was

the analysis of a bounded capacity priority queue operating on permutation inputs.

In this chapter we present a recurrence and generating function for the number of

allowable pairs for a priority queue of capacity 2 on permutation inputs. We also

6

1 INTRODUCTION

have some success is analysing a priority queue of capacity 2 over multiset inputs.

We give a one to one correspondence between the multiset allowable pairs and trees

of a certain form. From this we then derive a recurrence for the number of these

trees satisfying certain conditions. Section 4.2 breaks slightly from the standard

model. We investigate the case where the priority queue has a permutation input

sequence but the priority of these data items is independent of the value. The

priorities are assigned separately and chosen from the binary alphabet. Here we

present the analysis of several special cases, a conjecture for the general result and

some numerical evidence to support it.

The next section of Chapter 4 investigates priority queues with binary inputs. We

characterise the allowable pairs and go on to give a one to one correspondence

between ^-allowable binary pairs and ordered forests of height at most /fe + 1 . A

closed form expression for the number of such forests is given in [dBKR72]. We

then consider the composition of priority queues before deriving algorithms to solve

questions 3 and 4 posed in Section 1.1 above. The final section of this chapter

presents a small number of results relating to double ended priority queues.

Finally, in Chapter 5, we present our conclusions and outline some areas which

warrant further investigation.

Some of the work in this thesis appears in [ATar, AT94, ALTar] for which my su­

pervisor was a coauthor. His contribution was no more than is normally expected

in a supervisory capacity.

2 TRANSPORTATION NETW O RKS

2 T ransportation N etw orks

Many problems in computer science involving the transfer of data items between

various locations can be modelled using directed graphs. The nodes of the graph

represent the locations where data can be stored and the edges represent the pos­

sibility tha t data might be transferred from one location to another. Examples

include:

1. Distributed Computing Networks. The nodes are computers, the edges are

high-speed data communication channels, and the data items are files or frag­

ments of files.

2. Parallel Computers. The nodes are processing elements, the edges are the

data highways represented by the architecture (hypercube, mesh, butterfly

etc.), and the data items are the bits, bytes and words which flow along the

highways.

3. Models of Transportation Systems. The nodes are cities, the edges are roads,

and the data items are commodities being shipped from one city to another.

4. D ata Structures. We shall say more about this example later but for now it

will be enough to consider binary search trees. The nodes are the memory

cells containing a key and associated values. The edges connect each node to

its left and right children, and the data items are the (key, value) pairs which

move around the tree as it is updated.

This chapter addresses some features common to all these situations. In the next

section we pose an abstract problem concerned with the movement of distinct tokens

around the nodes of a graph and the ways in which they may be permuted. Then,

in Section 2.2, we solve the problem in terms of regular sets, the theory for which

can be found in [HU79]. An example of the application of this solution is then given

in Section 2.3. Finally a more restricted case, where the tokens are chosen from the !

binary alphabet, is considered and a necessary and suflRcient condition for a pair of t

binary sequences to be allowable is found. Later, in Sections 3.2 and 3.3, the theory |

is applied to extend the work of [Knu73a], [Tar72] and [Pra73j. |

2 TRANSPORTATION NETW O RKS

2.1 Problem Form ulation

Let A be a finite directed graph with a designated input node and a designated

output node. The input node has no incoming edges and the output node has no

outgoing edges. The remaining nodes are called internal nodes. To avoid trivialities

we also assume tha t every internal node is on at least one path from the input node

to the output node. Such a graph will be called a transportation network.

Each internal node is allowed to contain 0 or 1 tokens. In applications of this problem

the tokens are items of data but in our abstract formulation we shall assume only

tha t tokens are denoted by non negative, not necessarily distinct, integers.

The input node generates an ordered sequence a — (7i, (Tg, (Tg,. . . of tokens. How

this is done is unimportant at present; the tokens could be generated by local com­

putation at the input node or may have been received from an external source. The

tokens are then moved from one node to another along the directed edges of the net­

work until they arrive in some order at the output node. Tokens cannot be stored

on the edges of the network. A token on a node x can only move to a node y if

the following conditions hold:

1. there is an edge from x to y.

2 . X is the input node and tokens <7i, <72, . . . , have already been moved from

the input node or x is an internal node.

3. y is an internal node and y does not currently contain any token, or y is the

output node.

Condition 1 implies that tokens move from the input node to the output node along

a path in the network, condition 2 implies that tokens leave the input node in the

order specified by the input sequence <7i, <72, <73, . . . and condition 3 ensures that

every internal node contains at most one token at any time.

E xam ple 2.1 Figure 1 shows a simple network with 2 internal nodes and one pos­

sible movement of 3 tokens through it. The tokens arrive at the output node in the

order 3,1,2. It is not difficult to see tha t different choices of moves could result in

9

2 TRANSPORTATION NETW ORKS

any arrival order other than 3,2,1. The general technique developed in this chapter

allows us to show, for example, tha t if is the number of possible output orders of

n distinct tokens for the network in Figure 1 then

«0 = a-'i = 1,

TVrfi — Xfi—2) for ^ 2 .

I
Output Input

Time Step output b a input

0 123

1 1 23

2 1 23

3 1 2 3

4 3 1 2

5 31 2

6 31 2

7 312

Figure 1: Action of a simple network

If the input stream is a fixed, finite sequence and the tokens all arrive at the output

node then the output node will contain some reordering r of the input stream. We

say that r is generated by the transportation network from a and tha t (a, r) is N -

allowable or just allowable if N can be derived from the context. As noted before,

if we are using permutation inputs, we need only consider allowable permutations.

In this case we say r is A-allowable or simply r is allowable.

In the following sections we consider two separate problems derived from this model.

In Section 2.2 we consider permutation inputs and investigate the allowable per­

mutations. In this case the set of all permutations which can be generated by a

transportation network N will be denoted by L{N) and the set of all permutations

of 1 , 2 , . . . , n in L[N) will be denoted by Ln{N). The main result in this section is a

description of the set L{N) which allows the membership problem (given a sequence

10

2 TRANSPORTATION NETW ORKS

7T determine whether tt E L{N)) to be answered in time proportional to the length

of TT. It also permits |f',i(A)| to be calculated. Section 2.3 contains an example of

the use of this result.

The second problem is studied in Section 2.4. Here we allow the tokens in the input

sequence to be chosen from the binary alphabet. This means the input sequence

cannot be fixed as an arbitrary set of distinct tokens and so we must consider

allowable pairs (a, r) of binary sequences. We show that any transportation network

is permutationally equivalent to a single buffer of some specific capacity. It is also

shown that this equivalence applies to stacks, deques, input restricted deques and

output restricted deques.

2.2 A N etw ork w ith Perm utation Inputs

When the inputs are distinct we think of them simply as the integers and when there

are n of them we consider them to be 1,2 , . . . , n. In this and the following section

we shall take this as the input sequence and investigate the allowable permutations.

We show how a grammar may be defined which generates (an encoded form of) the

permutations in L{N). In the next section we work through an extended example,

showing how the technique can be applied.

Our technique depends on an encoding of the permutations in L(N) . For every

permutation r = T1T2 .. .r^ we define its encoded form %(r) = C1C2 . . . c„ by defining

Cj to be the rank of in TiVi+i.. For example the encoded form of 2761453

is 2651221. It is easy to see that every code sequence CiC2 . . . c„ which encodes

a permutation satisfies Cn~i < * + 1 and tha t every sequence of positive integers

of length n which fulfils this condition is the encoding of some permutation. We

let C{N) and Cn{N) denote the set of strings which are the encoded forms of the

elements of L{N) and Ln[N) respectively. Our main theorem in this section is

Theorem 2.1 C{N) is a regular set.

The proof of Theorem 2.1 is constructive. We show how a regular grammar can be

defined which generates C{N). We then use some standard constructions for regular

11

2 TRANSPORTATION NETW O RKS

languages to obtain a method for computing |C%(A)| = |L,i(A)|.

We label the internal nodes of N in an arbitrary order as 1, 2 , . . fc. As a sequence

1, 2 , . . . , n of tokens is transferred, step by step, through the transportation network

to the output node the network passes through a series of configurations. A config­

uration is a disposition of tokens among the internal nodes. Such a disposition may

be described by an occupancy function f : {1, 2 , . . . , fc} -> (0 , 1, 2 , . . . , n}; f (i) is the

token residing on node i except in the case /(«) = 0 which represents that node i

is empty. The configuration where f{i) = 0 for all i is denoted by e; it is both the

initial and the final configuration of the transportation network.

Two configurations with occupancy functions / , g are defined to be equivalent if

• /(O = 0 if and only if g{i) — 0

• /(«) < / (i) if and only if g{i) < g{j)

A state of the transportation network is defined to be an equivalence class of con­

figurations. The state corresponding to the equivalence class {e} is denoted by %.

L em m a 2.1 The number of states of a transportation network N is finite.

P roo f: Every configuration is equivalent to one in which the tokens on the in­

ternal nodes are l , 2 , . . . , h with h < k. The occupancy function then takes values

in {0,1,2, . . .A:} and there are at most {k -f 1)^ such functions. □

Let C denote the set of configurations, and E the set of edges of N. We shall define

a partial function v : C X E C X {1,2, , . . ,k, A}. Let c £ C and e = {i, j) E E.

Informally, z/(c, e) specifies the configuration that arises from configuration c if a

token is transferred from node i to node j , and the new symbol (if any) that is placed

at the output node. More precisely, v{c, e) is defined whenever, in configuration c,

node i contains a token t (if node i is the input node then t is the next input token

to be transferred from the input node) and either node j is empty or node j is the

output node. Under these conditions iy{c,e) is defined as [d,x) where

12

2 TRANSPORTATION NETW O RKS

• dis the configuration that would arise from configuration c if A was transferred

from i to j , and

• æ is the empty symbol A unless j is the output node in which case x is the

rank of t among all the tokens residing on internal nodes in configuration c.

L em m a 2 .2 A permutation r is in L{N) if and only if there is a sequence of

edges e i , 62, . . . , Cp and configurations e = ao, a j , . . . , = e such that , e*) =

(a*, Xi) for i ~ 1, 2 , . . . ,p, and X1X2 . . .Xp = xU)-

P roo f: Suppose T1T2 .. = r G L[N). Then there is a sequence of transfers

along edges ei, 62, . . . , Cp which causes tokens 1, 2 , . . . , n on the input node to move

through the transportation network until they have arrived on the output node in

the order ri, T2, . . . , Let e — ao, cii,. . . , «p = c be the sequence of configurations

induced in the transportation network by these transfers and let ti be the token

taking part in the f t r a n s f e r . Then, certainly, e*) = (ai,Xi) where

• if ti is not being transferred to the output, xi = A and

• if ti is being transferred to the output, Xi is the rank of ti among all the tokens

on internal nodes in configuration and since the tokens remaining in the

input node are greater than all these tokens Xi is actually the rank of ti among

all tokens not yet transferred to the output

Thus X1X2 . . .Xp has the property that the (non-empty) symbol is the rank of Tj

among Tj, , . . . , r„; in other words, X1X2 .. .Xp = x (r) .

For the converse suppose, for some permutation r = r i r 2 . . . r„ , there exist edges

6i , 62, . . . , Cp and configurations e = ao, « i , . . . , «p = e such that v[ai-\, Ci) — (a,, Xi)

for % = 1, 2 , . . . ,p, and x\X 2 .. .Xp = xU)* Then, by definition of p, it is possible to

move tokens 1, 2 , . . . , 72, from the input node in p transfers using edges 61, 62, . . . , Cp

in turn and passing through configurations «o, « i , . . . , &p. At a step which transfers

a token t to the output (corresponding to the equation z/(a -̂_i, ê -) = (o*, Xi) say) the

token has rank Xi among all tokens not yet placed in the output. Hence the per­

mutation 7T defined by the sequence of transfers satisfies x(^) = ^ 1X2 .. .Xp = x (t)

13

2 TRANSPORTATION NETW ORKS

and therefore r = 7r E L(N) as required. □

Lemma 2.3 Let a, b be equivalent configurations and lete be an edge of N . Suppose

that v{a, e) is defined and equal to (c, x). Then p{b, e) is defined and equal to (d, y)

where d is equivalent to c and y — x.

Proof: Let e be the edge (r, s) and suppose r is not the input node. Let / be the

occupancy function of a.

Suppose that s is not the output node. Then x — A, / (r) = t ^ Q , f (s) — 0 and the

occupancy function f of c differs from / only in that f { r) = 0, f '{s) — t. From the

equivalence of a and b the occupancy function y of 6 satisfies y (r) = tt 0 , y (s) = 0 .

It follows tha t pifi, e) is defined and has occupancy function y' differing from y only

in tha t y'(r) = 0,y'(s) = u. Therefore, for all %,y, we have f '[i) = 0 if and only if

g'{i) ~ 0 and f '[i) < f ' [j) if and only if g'[i) < g'{j). Thus c and d are equivalent

and y = X.

If s is the output node the equivalence of c and d follows in the same way. From the

equivalence of a and b the token tha t is being transferred from node r to the output

has the same rank among the tokens of the internal nodes of a as it does among

those of 6; that is, x = y.

When r is the input node the proof is similar. The new data item taken from the

input node is necessarily greater than any other data item stored in the network.

The equivalence of c and d again follows from the above argument, taking this into

account. In the case that s is the output node we have x — y since the data item

has the greatest value amongst all data items in the network. □

Let Q be the set of states. We define a partial function p. : Q X E Q x

{1,2, . . . , A:, A}. Let y E Q and e Ç. E. Thus q is an equivalence class of config­

urations. Let a be any configuration in this equivalence class. If p[a, e) is defined

and equal to (d, æ) then we define p{q, e) to be (r, x) where r is the equivalence

class of configurations that contains d. Lemma 2.3 guarantees that p is well-defined

14

2 TRANSPORTATION NETW ORKS

(independently of the choice of a in the equivalence class q). Lemma 2.4 follows

immediately from these definitions.

L em m a 2.4 Let ei, eg, . . . , Cp be any sequence of edges. Then there exists a se­

quence of configurations e = ao, « i , . . . , «p = e such that z/(ai_i, ê -) = (o*, Xi) for i =

1, 2 , . . . , p if and only if there exists a sequence of states qo,qi, .. .,qp = qo such that

p {q i-i , Ci) = (%, æi) f o r i = 1 ,2 , . . . , p. □

Lemmas 2.2 and 2.4 have the following consequence:

L em m a 2.5 A permutation r is in L[N) if and only if there is a sequence of edges

ei, eg,. . . , 6p and states 9l, - " , % = Qo such that p{qi-i,ei) = {qi,Xi) for i —

1,2, . . . ,p, and x^X2 . . . X p = %(T). □

P roo f: (of Theorem 2 .1) We define a context-free grammar (A, T, P, S) as follows:

• The set A of non-terminals is (indexed by) the set of states

• The set T of terminal symbols is {1 , 2 , . . . , k. A}

• The set of productions P contains productions of the form q xr for every

defined value p(y, e) = (r, x) of the function p together with a production

yo —>■ A

• The goal symbol S corresponds to the state yo

Derivations in this grammar have the form

yo —)■ xiyi —y « îxgyg —y . . . —y x^xg . . . Xpyp —¥ xixg . . . Xp

Such a derivation exists if and only if there is a sequence of edges ei, eg,. . . , ep for

which p{qi-i,ei) = (ŷ , x%), * = 1,2, . . . , p . Therefore, by Lemma 2.5, the strings

xixg .. .Xp generated by this grammar are precisely those strings of the form x (r)

for r € L{N), tha t is, they are the strings of C{N).

The grammar (A, T, P, S) is not itself regular since among its productions y —> xr

there may be some of the form q ^ r, when x = X. Standard results in language

15

2 TRANSPORTATION NETW O RKS

theory (see [HU79],p26, p218) show that there is, nevertheless, a regular grammar

which defines the same language; thus C{N), being generated by a regular grammar,

is a regular set. □

We turn now to the question of computing the numbers |L„(A)| for all values of

n. The method for calculating these numbers is a special case of a more general

treatm ent valid for any context-free grammar [CS63]. However, we reproduce that

part of this general theory here for convenience and to establish the basis for the

case-studies in Sections 2.3, 3.2 and 3.3. There is a well-known equivalence ([HU79],

p218) between regular grammars and finite state automata. In this equivalence

transitions from a state p to a state q occasioned by a symbol x correspond either

to productions p xq (if q is not a final state) or productions p ^ x (if y is a

final state). There is also a well-known construction ([HU79],p22) tha t produces an

equivalent deterministic finite state automaton from a non-deterministic one. The

regular grammar that is associated with a deterministic finite state automaton has

the property tha t the productions on each fixed non-terminal have distinct initial

terminals beginning their right-hand sides. The consequence of this is that C{N) can

be generated by a regular grammar with non-terminal symbols S = 8 1 , 8 2 , ‘ . . , Sh

and productions of the form

8 { — y t i U i \ t 2 U 2 \ • • • \ t w U w

where 4 , 4 , " - are distinct together with a production 5 —)■ A.

Let Sn^ be the number of terminal strings of length n that can be derived from

8 {. Note tha t = 1 if * = 1 (since 8 X) and = 0 otherwise. Let Z{j

be the number of productions of the form 8 i — t 8 j (i.e. there are Zij terminals t

tha t can appear in this form of production). Since the derivations tha t begin with

the production 8 i —> t 8 j produce a set of terminal strings tha t is disjoint from the

set of terminal strings tha t are derived beginning from any other production on 8 i

(because none of those terminal strings will begin with t) we have the recurrence

j=i
This gives us a set of h linear recurrences which, together with the h boundary

16

2 TRANSPORTATION NETW O RKS

conditions, completely define each In particular = |L„(A^)| can be found in

this way.

There are standard techniques for solving sets of recurrence equations ([Rob91] Sec­

tion 8.2). These methods tell us that the general solution depends on the eigen­

values of the matrix [zij]. The most straightforward case is when the eigenvalues

fj,i, jj,2 ^. ^f j -h are distinct and in that case has the form kijf '̂j where the

constants k{j are determined by the initial values. When there are repeated eigenval­

ues there is a similar expression for in which the kij are replaced by polynomials

in n of degrees depending on the multiplicities of the eigenvalues.

The outcome of this is that |Ln(iV')| is given by a formula of the form

+ P2{n)lJ.2 PP3{n)fJ>s + ...

where /^i,/U2, . . . are certain distinct constants and Pi{n),p2 {n) , . . . are certain poly­

nomials all of which can be calculated. We shall choose the notation so tha t

Iâ iI > 1̂ 2! > ••• and then |Ln(iV^)i is asymptotic to p (n)|^ i|” as n ->■ 00 (where

p{n) is the sum of those polynomials Pi{n) for which = {pil). We can therefore

conclude the following.

T h eo rem 2 .2 There exists a constant j/ îj depending only on N such that

i l og(|L,^ (iV) |) log | / z i l a s n ^ o o

C oro lla ry 2 .6

There is an information-theoretic interpretation of this result. We might consider

|L,i(iV)| as a measure of how much choice exists in moving n tokens from the input

node to the output node. The larger |L,^(7V)| is the more possible outcomes there

are from inserting 1, 2 , . . . , n into the network. Therefore the uncertainty of what

the result will be is directly related to \Ln{N)\. In information theory uncertainty

is measured in bits and we can define the entropy of the arrival permutation as

logg |T^(W)| which is asymptotic to nlog^ To put this in another way the

entropy per output token is logg By analogy with the results of [ALTar] we

17

2 TRANSPORTATION NETW O RKS

therefore define the entropy of the entire transportation network to be logg

The entropy is a rough measure of how much per mutational capability is possessed

by a transportation network.

It should be noted that the calculation of |T%(W)| has linear time complexity in n.

However this understates the difficulty of carrying out the calculation since there is,

potentially, a doubly exponential dependence on the size of N. This arises from a

combination of two steps employed in the derivation of the grammar. Firstly, the

number of states the network can reach can be exponential in the number of nodes

in the network. Also it is well known that the conversion to a regular grammar,

which is the next step in the derivation, generally results in an exponential increase

in the number of non-terminal symbols. In Sections 2.3 and 3.2 we shall see that

this combinatorial explosion can sometimes be contained. Section 3.3 presents some

empirical results which arise from another case where the explosion can be contained.

2.3 E x a m p le A n alysis

As an illustration of the above technique we analyse the binary tree network shown

in Figure 2. If we were to carry out the method in full we would have to consider

several hundred different states but common sense allows us to cut this down to

12 states grouped in various ways to give 7 non-terminal symbols. For instance,

from the empty state there are 5 different states which can be reached by inserting

a data item into the network. According to our definition of equivalence these 5

states are all different but it is clear that any one of them can be reached from any

of the others without consuming any input data items or producing any output. We

therefore allow ourselves to consider them equivalent. If we associated non-terminals

symbols B, C, 71, E & F with these 5 states and used A to represent the empty state

then we would have a production rather like A .. |2B |2C |2D |2E |2F |. . . in the

grammar. Due to their similarity the non-terminals B, C, D, E and F would all have

identical productions and so we can reduce the initial productions to A ^ . . . |2 B |__

The algorithm for converting the initial grammar into a regular grammar later on

in the process is usually described in terms of finite state machines. One of the

characteristic effects of this algorithm is the generation of superstates such as that

18

2 TRANSPORTATION NETW O RKS

described above. Intuition allows us to foresee their creation in some situations and

thus we can make our work easier by using them from the beginning.

e -

Figure 2: An example network

There is only one state in which the network contains no data items and we shall

associate the empty network with the non-terminal symbol A. The 5 possible states

we mentioned earlier, which contain one data item, we shall associate with the non­

terminal symbol B. The same holds for a network containing 2 data items, any state

is reachable from any other state without producing any output so we shall associate

all these states with the non-terminal symbol C. There are three essentially distinct

states containing 3 data items and these are shown in Figure 3. We shall associate

these with the non-terminal D. This grouping is not for the same reasons as the

previous ones however, if we keep them separate, the N F A to D F A construction

would create a state consisting of the union of all three so we may as well do it

here. There is no intuition involved in this step we have merely grouped together

all the possible distributions of the three tokens over the network. Similarly there

are 6 essentially different states containing 4 data items, shown in Figure 4, and

we associate these with the non-terminal E. Having set up some of the required

super-states we can begin to think what the grammar looks like. We begin with

transitions from the empty state, clearly if a data item with rank 1 is output then

the network will remain empty so A —)■ lA. If a data item of rank 2 is output then

a data item of rank 1 must be inserted into the network first and will remain there

after the 2 has been output. This single data item can be on any of the five nodes in

Figure 3: States associated with symbol D

19

2 TRANSPORTATION NETW ORKS

#

#

Figure 4: States associated with symbol E

the network and so we have A - 4- 2B. Similarly if any data item of rank 3 is output

there will be two data items left in the network and they can be distributed in any

way on the network so A —̂ SC. If the data item output is of rank 4 then the three

remaining data items can be distributed in three different ways as shown in Figure

3 so, since all three are reachable we can use the super-state non-terminal symbol D

instead of three separate non-terminal symbols. This gives A - f 4D When a data

item of rank 5 is output from the empty state there are only 6 ways in which the

four remaining data items can be distributed over the nodes of the network, these

are the ways shown in Figure 4. This final production gives us an overall production

from A which is A -> 1A\2B\SC\4D]6E\X.

In a similar fashion we get productions for B, C and D and the grammar so far is

A —y 1A\2B\SC\4:D\BE\X

B -> 1A|2B|3C|4D|5E

a - 4- 1B |2B |3C |4D |5^

D IC\2C\SC\4D\5E

Things become a little untidy when we consider the super-state corresponding to

E . Consider what happens when we output a data item of rank 1 from any of the

states in Figure 4. It is immediately obvious that there are only two which allow

the 1 to be output, those on the left of the figure. Both of these result in the same

state, which is shown in Figure 5 and shall correspond to the non-terminal symbol

20

2 TRANSPORTATION NETW ORKS

— # — e

Figure 5: State F

^ #

Figure 6 : State G

F. Although this state is one of the ones contained in the super-state D it would not

be correct to use D because not all the states in D are reachable from E. Similarly,

when a data item of rank 2 is output the result is state F and when a data item of

rank 3 is output the result is state F. If a data item of rank 4 is output the result is

any state in Figure d so E AD and if a data item of rank 5 is output then network

will not change so we have E -4 lF\2F\^F\AD \bE.

From state F we see that if any of 1,2 or 3 is output the network returns to a state

where it contains only two data items and thus any distribution of them is possible

so it is in state C. If a data item of rank 4 is output the remaining data items

are unchanged so it remains in state F, Finally, if a data item of rank 5 is output

the network must enter one of the states shown in Figure 6 and we shall associate

this super-state with the non-terminal symbol G. Therefore we have the production

F 1C|2C|3C|4F|5G

Finally we consider the states reachable from G\ No data item of rank 1 or 2 can

be output from either of the states in G, if 3 or 4 is output then the result is state

F and if a data item of rank 5 is output the result is state G so we have the final

grammar for this network.

1A|25|3C|4D|5F;|A

B lA\2B\ZC\AD\bE

1B|2B|3C|4D|5E

21

A - f

B

C -)■

2 TRANSPORTATION NETW O RKS

D -)■ 1G|2C|3C|4D|5E

E 1F |2F |3F |4D |5E

F 1C|2C|3G|4F|5G

G 3F|4F|5G

From this grammar we can derive a set of mutual recurrence equations for calculating

the number of words of length n in the language generated by this grammar. The

recurrence equations are

ao = 1,

bo = Co = do = eo = fo ~ go — 0 ,

= O .n -1 + h n - l + C^-1 + d n ~ \ + 6^ -1 >

bfi — dji—i T 1 4" n̂—1 4“ d-fi—1 4" Cn—l}

Cn ~ ^bf i—i T Cn—\ df i—\ 4" n̂—Ij

dfi ~ ^Cn-1 4“ dn-1 4“ Cn-lj

Cfi — ^ fn—1 4" dfi—i 4" Cfi—iy

fn = 3c„_i + fn - l A g-n-l)

9n — ^ fn—1 4“ gn~l'

This recurrence can be represented in matrix notation and the characteristic poly­

nomial arising from this matrix is

GF(A) = 4-

From this we find that the largest eigenvalue is approximately 4.9258 and so the

number of allowable permutations for our tree network is 0 (5 ”) as n —>• oo.

2 .4 B in a ry In pu t S eq u en ce

In Section 2.2 we considered permutation inputs. We shall now look at a more

restricted scenario where the input sequence is chosen from the binary alphabet. In

contrast to the previous case the order of the data items in the input sequence is

important and so, instead of considering allowable permutations, we must consider

22

2 TRANSPORTATION NETW O RKS

allowable pairs. We shall give a necessary and sufficient condition for a pair of binary

sequences (cr, r) to be iV—allowable for some network N and from this prove that the

permutational power of a network over binary inputs is identical to a single buffer

of a certain size.

D efin ition 2.1 The Blocking Capacity, B{N), of a transportation network N is the

maximum number of data items the network can contain and still be able to move a

data item from the input to the output without outputting any other data item.

For example, in a network with no cycles, containing n internal nodes and with

m internal nodes on the shortest path from the input node to the output node we

would have B{N) = n ~ m.

As stated in Section 1.1 we now give formal definitions of irreducibility and stand­

ard computations which are valid for a transportation network operating on binary

inputs.

D efin ition 2 .2 A pair of binary sequences (cr, r) is irreducible i f it is not possible

to split it into two parts (o;, /3) and (7 , satisfying

• a — a j

• r = /36

• Lengthia) — Length{/3)

• Length{j) = Length{6)

• E = E A

•

In characterising the binary allowable pairs of a transportation network we shall only

consider an irreducible pair (cr, r) . This is a reasonable approach since any allowable

pair is either irreducible or formed from the juxtaposition of several irreducible pairs.

23

2 TRANSPORTATION NETW O RKS

D efin ition 2.3 A standard computation of an allowable pair (o-,r) is one in which

no data item is inserted into the transportation network if it is possible to produce

another element of r from the data items already contained in the network.

It follows from the irreducibility of (cr, r) and the use of a standard computation

tha t if the first data item in cr is a 1 then the network will contain a 1 for the entire

computation (and similarly for a 0). If this were not the case then the network could

have become empty at some point during the computation. Another consequence of

using a standard computation on an irreducible pair is that if the first data item of

the input is a 1 then there will never be more then one 0 in the network at a time.

Since a 0 will only be inserted when it is the next data item required on the output.

Similarly, if the first data item of the input is a 0 there will only ever be one 1 stored

in the network at any time.

To state and prove the following lemmas we introduce an alternative representation

of the pair (cr, r) . Let a be a vector where o* represents the position of the î ^̂ l in

cr. Similarly let b represent the I ’s in r , c represent the O’s in cr and d represent the

O’s in T .

L em m a 2.7 An irreducible pair (laO, 0/51) is N-allowable if and only if Ci — d{ <

B{N) for all i.

P roo f: Suppose q — di > B{N) for some i. To output the i* ̂ 0 it is necessary

to process all the data items which precede the 0 in a. There are — 1 such data

items, and only d{ — 1 of them can be output before the 0. Therefore we must

store the remaining C{ — di data items in the network. To output the 0 it would

be necessary to store more than B{N) I ’s in the network, input a 0, allow it to pass

through the network and output it. However it is only possible to store B{N) data

items and still move a new data item from the input to the output. Therefore the

above is a necessary condition for allowability.

To show that the condition is sufficient we shall show how the computation trans­

forming cr into r would proceed. Initially a number of I ’s must be read in and some

of these must be stored in the network until the first 0 is reached. All of these I ’s

24

2 TRANSPORTATION NETW O RKS

can be stored in the network and it is still possible to move a data item from the

input node to the output node. The 0 can then pass through the network and be

output. A number of the I ’s which are currently stored are then output; this is

possible since there is a path from every node to the output. The process is then

repeated, reading in I ’s until a 0 is reached, the 0 is output and then some I ’s are

output. Every time a 0 passes through the network the number of I ’s which must

be stored is c* - di and since this is no more than B{N) it will always be possible to

store the I ’s and allow a 0 through. Thus the pair is allowable and the condition is

sufficient. □

L em m a 2 .8 An irreducible pair (Ocul, 1/50) is N-allowable if and only if ai — 6* <

B{N)

P roo f: Since 0 and 1 are simply labels and the operation of the transportation

network is independent of their value we can exchange them. We then have a pair

(1q;O,O/01) where â is the complement of a. It also follows tha t a and b are the

positions of the O’s in â and r respectively. The result then follows immediately

from Lemma 2.7 □

L em m a 2.9 A pair of binary sequences (cr, r) is N-allowable if and only if, when

split into its irreducible parts (o;i,/5i),.. .(o,.,j5,.), each irreducible pair satisfies the

appropriate one of Lemma 2.7 or Lemma 2.8 depending upon the first data item of

(Xi.

P roo f: The necessity of the condition is clear. If (<r, r) is allowable then it can

be produced using a standard computation. Since, during a standard computation

the network holds the least number of data items possible, the network will become

empty at the end of each irreducible section. Therefore each irreducible section is

allowable independently of the other irreducible sections.

Sufficiency is also clear. If each irreducible section is allowable then there is a

computation Ci which produces A from a*. It is immediate that the computation

25

2 TRANSPORTATION NETW O RKS

C = C 1C2 - ‘ >Cr transforms a into r and so the pair is allowable. □

We now have a characterisation of the binary allowable pairs for a network N .

As noted earlier these networks can be used to model various oblivious abstract

container data types. Figures 7, 8 , 9, 10 and 11 show some typical examples.

e e

k nodes

1

Figure 7: Network representing a stack of capacity k

k nodes

Figure 8 : Network representing a buffer of capacity k

k nodes

Figure 9: Network representing a deque of capacity k

L em m a 2.10 Buffers, stacks, deques, input restricted deques and output restricted

deques of capacity k and networks with a blocking capacity B{N) — k — 1 have the

same set of binary allowable pairs.

P roo f: The proof follows immediately from the inspection of Figures 7, 8 , 9, 10

and 11. In each case the abstract container data type represented is one of capacity

26

2 TRANSPORTATION NETW O RKS

k nodes

Figure 10: Network representing an input restricted deque of capacity k

k nodes

Figure 11: Network representing an output restricted deque of capacity k

k and is represented by a network with blocking capacity A; — 1. □

27

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

3 O blivious A bstract C ontainer D ata T ypes

In this chapter we consider four well known abstract container data types whose

behaviour is independent of the value of the data items being processed. These

data types are the buffer, the queue, the deque and the stack. They are most easily

described by giving the rules for inputting and outputting data items. In three cases

the rule for inputting a data item is simply that if the data type is not full the data

item is inserted. A deque differs from this since there is some choice about where

the data item is inserted; it can insert data items at either the top or bottom of its

queue. A buffer can output any data item it contains. A queue can output only the

data item which has been in the data structure for longest and a deque can output

data items from either the top or bottom of its queue. Finally a stack can only

output the data item most recently inserted. There are two variations on a deque

which we also consider: the input restricted deque and the output restricted deque.

The input restricted deque can only input data items to the top of its queue but

can still output from either end, and the output restricted deque can input data

items to either end of its queue but can only output data items from the top. The

other obvious modification, an input and output restricted deque, we do not consider

because, if the input and output end of the queue are the same we have a stack and

if they are different we have a standard queue.

There are a variety of existing results for queues and deques. In [Pra73] it is shown

tha t two unbounded queues in parallel can produce = (^) / (n + 1) permutations

of 1, 2 ,. . , , n . It is shown in [EI71] that the least number of unbounded queues in

parallel required to produce a permutation <j is the minimum number of colours

required to colour the permutation graph II (cr) and it is stated in [ELP72] that

there are very efficient algorithms for solving this problem. Tarjan [Tar72] gives a

characterisation of the permutations which can be sorted using m queues in parallel

as those which avoid the pattern m + 1, m , . . . , 1. He also gives some partial results

for networks of the type in Chapter 2 but using unbounded queues instead of unit

buffers.

Knuth [Knu73a] shows that the generating function for the number of allowable

28

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

permutations for an output restricted deque is ^ ^3 — z — . He points

out tha t the set of permutations which can be computed by an input restricted deque

is in one to one correspondence with the set of permutations which can be computed

by an output restricted deque. Therefore any enumeration or characterisation for one

holds for the other with only minor modification. P ratt ([Pra73]) answers a question

of Knuth’s referring to honest trees, where every internal node has out degree at least

two, by giving a 2 — 1 correspondence between the allowable permutations of an

output restricted deque and honest trees. It is also shown that an output restricted

deque’s allowable permutations are characterised by avoiding the patterns 4231 and

4132 and that an input restricted deque’s allowable permutations are characterised

by avoiding the patterns 4231 and 4213. An infinite set of patterns is then given

which characterise the allowable permutations of an unbounded, unrestricted deque.

The stack data type has been widely studied by many people and significant con­

nections between it and other combinatorial objects have been found. It operates

a last in first out queuing strategy where the input and output operations are tra­

ditionally referred to as push and pop respectively. As with all oblivious abstract

container data types, for permutation inputs, we investigate allowable permutations.

The allowable permutations are closely related to the valid sequences of push and

pop operations. Indeed the number of valid computation sequences of length 2n is

the number of permutations of length n which the stack can produce and this is in a

one to one correspondence with the number of balanced bracket sequences of length

2n. There are then correspondences with trees ([Knu73a], [Rot75]), triangulations of

polygons ([CLR92]), Young Tableaux ([Knu73b]), lattice paths ([Moh79]) and ballot

sequences ([Knu73b], [RV78]). These connections are of great interest in the design

of efficient algorithms (see [Knu73b], [Pra73], [Tar72]) and all point to the stack’s

fundamental role in giving precise expression to informal concepts such as “nesting” ,

“structured decomposition” and “hierarchy” .

It is known from the many correspondences above that, given an input sequence

formed from distinct data items, there are possible output sequences. It is also

known tha t if the input sequence is 1, 2 , . . . , n then the allowable output sequences of

an unbounded stack are those permutations which avoid the pattern 312 [Knu73a].

29

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

3.1 B u ffe rs

The analysis of an unbounded buffer is trivial since any reordering of an input

sequence is possible whether it be a sequence of distinct data items, binary data

items or chosen from an arbitrary multiset. We need only insert the entire input

sequence and output the data items in the order we desire.

We therefore turn our attention to a less trivial case where the buffer has a fixed

capacity k.

T h eo rem 3.1 For an input sequence a ~ 1 ,2 , . . . , n and a buffer of capacity k there

are precisely k'^~^k\ allowable permutations.

P roof: At the point where i — 1 data items have been output, il i < n — k then

there remain at least k data items either in the buffer or still in the input stream. Of

these there are precisely k which could be the next data item in the output sequence.

If i > n — k then there are n — i 1 possibilities for the next output data item.

It follows from this tha t there are a total of k“̂~^k\ different output orders possible. □

T h eo rem 3.2 The allowable permutations of a bounded buffer of capacity k with

input sequence 1, 2 , . . . , n are precisely the sequences which avoid all patterns of

length fc + 1 which begin with their maximal element.

P roo f: Suppose an output permutation r contains a pattern of length A; + 1 which

begins with its maximal data item. It follows immediately that, to generate the

permutation, the k data items less than the maximal one, which form the pattern,

must all be stored in the buffer. The maximal data item must then be inserted

and removed from the buffer. This involves storing A; + 1 data items in a buffer of

capacity k and so the permutation cannot be generated by the buffer.

Suppose now that a permutation r does not contain a pattern of length A: + 1 which

begins with its maximal data item and consider how the i^^ data item can be gen­

erated. We assume t\ . . . T^_i have been produced and there are some data items

30

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

stored in the buffer, possibly including T*. If Ti is in the buffer then it can be pro­

duced immediately since a buffer can output any data item it contains. If Ti is not in

the buffer then we must read in some number of data items from the input until we

have read in r,-. This must be possible for, to fail, we would have to be forced to store

k or more data items before reading in r .̂ This implies that k data items less than Ti

occur in r after T* which contradicts the assumption that the patterns are avoided. □

This gives us a simple characterisation of the allowable pairs of a buffer of capacity k

but we introduce a second characterisation which we shall use in the proof of Lemma

3.2.

L em m a 3.1 The allowable permutations, t , of a buffer of capacity k with input

sequence 1, 2 , . . . , % are precisely those which satisfy T{ < i k ~ 1.

P roof: Suppose r does not satisfy the condition, then there is a data item Ti >

i + k ~ 1. Therefore at least i-\- k — 1 data items in r are smaller than r .̂ Since T*

appears in the position of r at least k data items smaller than Ti occur after the

î ^̂ position. It follows from Theorem 3.2 tha t r is not an allowable permutation for

a buffer of capacity k.

Alternatively, if r satisfies the condition, then r is allowable because it cannot con­

tain a pattern of length k-{-1 which begins with its maximal data item. Suppose it

did contain such a pattern and that r* is the left most data item in r which matches

the maximal data item in the pattern. Then all the data items to the left of Ti are

less than Ti and there are less than Ti ~~k of them because k of them must come after

Ti to form the pattern. So 2 < Ti-k-{-l which means Ti > i+fc —1; a contradiction. □

We can compose two buffers in series by connecting the output of one to the input of

the other. We now go on to consider systems formed in this way. We also consider

parallel composition, where two or more buffers can all take data items from the

input sequence and place them on a shared output sequence. This arrangement is

depicted in Figure 12 for two buffers.

31

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

L em m a 3.2 The serial combination of buffers of capacities fci, ^2, . . •, is equival­

ent to a single buffer of capacity J2i=i h - (r - 1)

P roo f: The result follows inductively if we show it holds for r = 2 and so we

consider only this case. Let L{BhBk) denote the set of permutations that can be

output by the series combination of two buffers of sizes h and k and L{Bh-i.k-i) the

set of permutations tha t can be output by a single buffer of size h-{-k—l. Let tt be any

permutation of L{BhBk). Then tt is the permutation composition 7ri7T2, where tti

and 7T2 are permutations that can be output by buffers of sizes h and k respectively.

It follows from Theorem 3.1 that 7t(î) = 7ri(7T2(«)) < 772(2) h — 1 < i + h k — 2

and thus, by Theorem 3.1 again, tt E L{Bh+k~i)‘

OutDUt

Figure 12: Two buffers in Parallel

h k

Spare Location

Figure 13: Two buffers in series simulating a single buffer

To show the reverse we use a simulation argument. We shall show how the two

buffers in series can behave as one buffer of size h-\- k — 1 by allocating one of the

locations in the second buffer as spare. The remaining spaces behave as a single buf­

fer of size h + k — 1. This arrangement is shown in Figure 13. It is always possible

to input a data item into the series arrangement so long as there are fewer than

h-^k — l data items already in the pair of buffers, although it may first be necessary

to transfer a data item from the first buffer to the second one. Further, any data

item among the h-\- k ~ 1 or fewer data items present in the system can be output.

If the data item is contained in the later buffer then it can be output immediately,

otherwise it can be moved from the earlier buffer into the spare location in the later

buffer and then output. This is the only time a data item is placed in the spare

32

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

location. It follows that the two buffers in series can perform any sequence of input

and output operations that the single buffer can perform. □

For parallel composition we have a similar result.

L em m a 3.3 The parallel combination of buffers of capacities fci, A:2, . . . , A:,, is equi­

valent to a single buffer of capacity

P ro o f: As with the proof for Lemma 3.2 we only need to show the result for r = 2

because a simple inductive argument extends this to an arbitrary number of buffers.

Suppose we have two buffers of capacities ki and k2 , both of which can take a data

item from the input sequence and can place a data item on the output sequence.

This system is depicted in Figure 12. Suppose a permutation r is allowable by a

buffer of size ki + k2 and is computed by some sequence, C, of input and output

operations. We show inductively that the parallel system of two buffers can directly

simulate the computation to produce the same permutation.

The inductive hypothesis is that the parallel system contains exactly the same data

items as the single buffer. The base case is clearly true since both systems start in the

empty state. For the inductive step suppose the i^^ operation is an input operation,

then it must be the case that there are less than k\ + ^2 data items stored in the

single buffer. Therefore there are less than ki + &2 data items stored in the parallel

system and so there is space to input another data item into one of the buffers and

it does not matter which one is used. Alternatively, if the operation is an output

then the data item being output from the single buffer must be contained in one of

the two buffers in parallel and so it can be output from that system. Therefore r

can be produced by the two buffers in parallel.

An identical argument shows that the single buffer can simulate the two buffers in

parallel and so they have exactly the same allowable permutations. □

It is important to note tha t these two results do not combine together. The results

apply only to isolated systems formed as described. Consider as a counter example

33

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

the two networks in Figure 14. One might hope that the left hand system could

be reduced to the right hand one using Lemma 3.2. However, the permutation

(7,1,2, 3 ,4 ,5 ,6) can be produced by the left hand system but not the right.

1 1

Figure 14: Two inequivalent systems

When we restrict the input to the binary alphabet we can find similar results to

those above. First we present a recurrence for the number of binary allowable pairs.

L em m a 3.4 For a bounded dictionary of capacity k the number Xk,n of binary al­

lowable pairs of length n satisfies the recurrence

^k,n —' ^ ^ fo"̂ 22 ^ A:,

^k,n ~ ^ ^k,n—iO>k,i with r ~ | ^ | ,
i—1

Ok,Q = 1,
k — i \ (k ~ i

P roo f: The proof of the base case is trivial. If there are no more than k data items

to be input we can read them all in and output them in any order. Therefore there

are

allowable pairs.

For the general case fix k and let Wn ̂ be the number of allowable pairs of length n

of the form (0^o;,/5), then obviously Xk,n = and

wi+i = 2w^+i, for ?2 > 0 , (1)
A :— 1

^n+1 = for 72 > 2 > 0.
j=i

34

.J

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

The first of these two equations holds because the number of pairs of the form (Ocu, /?)

is the same as the number of pairs of the form (la,/5) and all allowable pairs have

one of these two forms.

For the second notice that all pairs (0*cv,/3), of length n + 1, either have the form

(Ô o;, 0/3') or (0*cv, 1^'). There are pairs of the first form because the first 0 is

input and immediately output, and then there are ways to complete the pair.

The second can be split into several further forms, (0-̂ 17 , 1/3') for i < j < k. For each

of these all j O’s and the 1 must be inserted and the 1 immediately output. There

are then Wn'̂ ways to complete the pair and thus there are Y/’jZ l allowable pairs

of the second form.

We can represent this recurrence more succinctly using matrix notation. Let

/

Wr Ak —

3 1 • •• 1 1

1 1 • •• 1 1

0 1 • 1 1

then recurrence equation (1) becomes

Hence, for any constants do, d i , .. .dt, di'^n+i = Ya=o diA\Wn. If we choose the

constants so that Ya =o diV is the characteristic polynomial of A then, by the Cayley-

Hamilton Theorem ([Lan69], pl31), we shall have = 0. We can derive

a recurrence equation for the characteristic polynomial, Uk-i{X) = det[Ak — AJ), of

Ak by subtracting the {k - 2)* ̂column of the determinant from the (k — 1)^ ̂column

and expanding it by the {k — 1)* ̂ column. It is then easily seen that

The initial cases

22m (A) — A(Wm—l(A) ”|~ îim—2(A)), foi’ all TTI ^ 3.

221(A) = 3 — A,

222(A) = Â — 4A -j- 2 .

35

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

are calculated directly.

From the recurrence it follows easily by induction on k tha t there exists polynomials

y2r and y2r+i each of degree r + 1 for which

222r(A) = X' ' ~^y2r {X) , (2)

U2r+l{X) = A ’ ’ y 2 r + l (A) , (3)

and that the polynomials satisfy

^2r(A) = - A y 2 r ~ l (A) ” 2/2r-2(A),

y 2 r + l(A) = —2/2r (A) — y 2 r - l (A) .

Now a standard inductive proof using binomial coefficient identities proves

yk-i(X) = where
i=0

»-= = = +

Combining this with (2) and (3) gives

«A

i=0

Therefore the sequence satisfies

= w here r = [f] ,
t=0

Since r + < k, Wn^ is a component of the vector Wn and Xk,n = = 2wi^\

we have for n > k

r

^k,n — ̂] ̂k,n—i (1)
i=l

□

Having counted the allowable pairs we now recall Lemma 2.10. From this we imme­

diately have

36

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

T h eo re m 3.3 For a buffer, stack, deque, input restricted deque or output restricted

deque of capacity k or a network N with blocking capacity B{N) = A; — 1 the number

of binary allowable pairs is given by

^k,n — ^ ^ ’ ./dr n ^ k,

r
^k,n ~ ^ y(l) d" Xk,n—iOk,i, with r ~ |*^ji

i=l
Ok,0 = 1,

□

Another consequence of Lemma 2.10 is tha t the characterisation of allowable pairs

given in Lemma 2.9 is valid for buffers, stacks, deques, input restricted deques and

output restricted deques. This characterisation provides the basis for a linear time

algorithm which checks the allowability of a pair of binary sequences.

The operation of the algorithm follows the characterisation of allowable pairs closely.

Given a pair of binary sequences of the form ((T,r) = (lo;0,0/5l) we scan both from

the left until the first data items of value 0 are located. If these occur at positions

i and j in the input and output sequences we then check if i — j < k. If z and j do

not satisfy this then the pair is not allowable; otherwise we scan for the next O’s and

repeat. If the pair has the form (Gal, 1/50) we scan for I ’s instead of O’s. Finally

there are some special cases to check for; pairs of the form (0 , 0) and (1, 1) and a

mismatch in the number of data items of value 1 in the sequences. These can all

be catered for in the single pass of the sequences and so the algorithm operates in

linear time.

As in the permutation case we now go on to investigate the power of several buffers

composed in series and in parallel. The results of this investigation are identical to

those for the permutation case. For buffers in series we have a version of Lemma

3.2.

T h eo rem 3.4 The serial composition of buffers of capacities k i , k 2 , . . . ,kr with bin­

ary inputs is equivalent to a single buffer of capacity — (r — 1)

37

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

P roo f: We show that this result is a direct consequence of Lemma 3.2. Suppose

(cr, r) is a binary allowable pair. It is possible for some fixed data item cr̂ to occur in

one of various different positions in r and for any one of these positions the output

sequence r can be produced. For example in the pair (110,101) the first 1 in the

output sequence could be either of the two I ’s in the input sequence. By attaching

unique labels 1, 2 , . . . , n to the data items in the input sequence we can see more

clearly what is happening. The input sequence becomes I 1I 2O3 and the output could

be either I 1O3I 2 or I 2O3I 1. In this case an abstract container data type can generate

101 from 110 if and only if it can produce one of the permutations 132 or 231. For

any binary pair there will always be at least one characterising permutation which

is allowable if and only if the binary pair is. We shall denote this permutation 7T(o-,t)-

The result is now immediate since a binary pair (cr, r) is allowable for a series system

of buffers if and only if is allowable for that system. By Lemma 3.2 this per­

mutation is allowable for the system if and only if it is allowable for a single buffer

of capacity ki — {r — 1). Finally, the permutation is allowable for this single

buffer if and only if the binary pair (cr, r) is allowable for the single buffer. □

For buffers composed in parallel we have a version of Lemma 3.3.

T h eo rem 3.5 The parallel composition of buffers of capacities ki, k2 , . . . , A?,, with

binary inputs is equivalent to a single buffer of capacity hi­

p ro o f: This proof is identical to that of Theorem 3.4. We apply the same labelling

technique and see tha t a binary pair {a, r) is allowable for a system of buffers in

parallel if and only if is allowable for that system. By Lemma 3.3 this is if

and only if is allowable for a single buffer of capacity Ya =i Finally the

permutation is allowable for the single buffer if and only if the binary pair (cr, r) is

allowable for the single buffer. □

38

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

3 .2 D e q u e s

Many of the problems relating to unbounded deques have already been solved; the al­

lowable permutations for input restricted, output restricted and unrestricted deques

have all been characterised by pattern avoidance, a generating function has been

given for the number of allowable permutations for an output restricted deque and

there is a two to one correspondence between allowable permutations of an output

restricted deque and honest trees which permits the derivation of a recurrence for

the number of allowable permutations.

We can, however, still contribute to the area by applying the technique developed

in Chapter 2 to some specific bounded deques. We present the grammars for unres­

tricted deques, as shown in Figure 9, for A; = 3,4 and 5. We also give the final result

of the analysis for k = 6 where the detailed derivation would be of little interest.

We then give some similar results for input and output restricted deques.

The grammar for a deque of capacity 3 is given in (4) and for capacity 4 in (5).

Both of these are very concise grammars with k non terminal symbols and a regular

structure. This leads to an easy analysis of the corresponding matrix resulting in

integral maximal eigenvalues which are 3 and 4 respectively.

(4)A 1A|2B|3C|A

B - 4 - 1A\2B\3C

C 1B\2B\3C

A —y 1A\2B\3C\4D\X

B -4 1A|2B|3C|4D

C -4 IB\2B\3C\4D

D -4 1C|2C|3C|4D

(5)

We may hope, after seeing the first two cases, that a deque of capacity 5 would

give rise to a grammar with 5 non terminal symbols and a corresponding largest

eigenvalue of 5 but unfortunately this is not the case. The grammar, shown in (6),

39

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

has 9 non terminal symbols and the largest eigenvalue is approximately 4.85577 (The

largest root of — 7.t^ + lOæ + 2)

(6)A -4 1A\2B\SC\4D\5E\X

B -4 1A|2B|3C|4D|5E

C 1B|2B|3C|4D|5E

D -4 1C|2C|3C|4D|5E

E —y lf |2 F |3 D |4 D |5 E

F -4 1C|3C|4F|5G

G -4 lF |3i7l4F |5G

H - 4 - 2C|3C|4i7|5J

I - 4 - 2 F |3 F |4 iï |5 /

The next case, where the capacity is 6 , results in a grammar containing 25 non

terminal symbols and the largest corresponding eigenvalue is approximately 5.483

(The largest root of — 20æ̂ ® + 169æ^ ̂- 788æ^^ + 2179æ^^ — 3390æ^^ + 1698æ^^ +

3988z^° - 8985æ^ + 6836æ® + 1335æ^ - 6592æ® + 3697æ^ + 1594a;'* - 2066.r^ - 168æ^ +

460æ + 100). It is clear tha t the rate of increase of the sequence of eigenvalues is

decreasing but nothing is known of the asymptotic behaviour.

We can carry out similar analysis for an output restricted deque and obtain the

following results. The grammar for an output restricted deque of capacity 3 is

identical to that for an unrestricted deque, given in (4). The grammar for output

restricted deques of capacity 4 and 5 are given in (7) and (8).

(7)A -4 1A\2B\3C\4D\X

B -4 1A|2B|3C|4D

C 1F |2B |3C |4F

D ->■ 1F|2F |3C |4D

E -4 1B |3F |4F

40

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

F -4 1F |3F |4F

A -4 1A|2B|3C|4D|5F|A

B -)■ 1A|2B|3C|4D|5F

C —y 1B|2H|3C|4D|5F

D - 4 - 1F |2F |3C |4D |5F

E -4 1G |2G |3F|4D |5F

F -4 1B |3F|47|5J

G -4 1F|4G|5K

H — y 1F |2F |4F |5T

I 1F |2 F |4 /|5 J

J - 4 - 1G|3G|47|5J

K -4 1G\4G\5K

L -4 lG\2G\4H\bL

(8)

The largest eigenvalues corresponding to these grammars are 3, 2 + \/S (approx­

imately 3.732) and 2 -j- \/5 (approximately 4.236) respectively. For an output re­

stricted deque of capacity 6 we find a grammar which contains 24 non terminal

symbols and gives a largest eigenvalue of approximately 4.586 (the largest root of

— 6.t^ + 6æ̂ -f 2x + 1). As we would expect these are slightly lower than the values

for the unrestricted deque. Again, the rate of increase appears to be decreasing.

Knuth shows in [Knu73a] that in the unbounded capacity, output restricted case

the number of allowable permutations is O ^(3-|-V^)”/ V ^ ^ . It follows tha t the

sequence of eigenvalues is bounded above by 3-|- \ / 8 , (approximately 5.8).

When we look at input restricted deques something quite surprising happens. The

direct correspondence between allowable permutations for an input restricted deque

and allowable permutations of an output restricted deque would lead us to expect

the grammars to be similar and possibly even to share the same structure. However

it turns out tha t the grammars for input restricted deques are very regular and for

41

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

capacity k the grammar has k non terminal symbols. Once again, for fc = 3, the

grammar is identical to that given in (4), For k = 4 and 5 the grammars are given

in (9) and (10).

A ->• 1A\2B\SC\4D\X (9)

B lA\2B\dC\4D

C — y 1B\2B\3C\4D

D —y 1CI3CI4D

A 1A|2j5|3C14D|5^|A (10)

B 1A\2B\3C\4D\5E

C 1B\2B\3C\4D\5E

D 1C|3C|4D|5E

E 1D\4D\5E

The following two lemmas allow us to write down the grammar for an input restricted

deque of any fixed capacity k. This grammar is shown in (11).

L em m a 3.5 I f an input restricted deque with input sequence 1 ,2 , . . . contains i data

items then those data items form an increasing sequence in the deque with the largest

data item being at the end attached to the input edge.

P roo f: For simplicity we assume the input edge goes to the top of the deque, as

depicted in Figure 10, Section 2.4. We proceed by induction; the base case being

clear since if the deque is empty all the data items are indeed in increasing order
1

towards the top. Suppose the deque contains i — 1 data items and the i* ̂ is just i

about to be inserted. Certainly the new data item is larger than all the others since I
the input sequence is 1 , 2 , . . . , n and since the existing data items are in increasing |

order towards the top end the new set of data items are in order as required. The

only other way in which the contents of the deque can change is if a data item is I

42 i

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

removed. Whether the data item is removed from the top or the bottom the remain­

ing data items are clearly still in increasing order towards the top of the deque. □

L em m a 3.6 An input restricted deque of capacity k with input sequence 1 ,2 , . . .

and which contains i data items can output only the data items of rank 1,%, . . . ,&

amongst those not yet output.

P roof; Lemma 3.5 tells us tha t there is essentially only one state that an input

restricted deque containing i data items can be in. Although there could be many

dispositions of the data items over the nodes of the deque they all have the data

items in increasing order from the bottom to the top.

A consequence of this is that the top and bottom data items of this sequence are

the only ones currently in the deque which can be output. These are the data items

of rank 1 and i among those which have not yet been output. The only other way

to output a data item is to read it in from the input and then output it. To output

a data item of rank j > i it is necessary to store j data items in the deque, being

those of rank 1,2, . . . , j in the set of data items not yet output. It follows tha t this

is possible lor j = i .. .k. □

We now construct the grammar using the above two lemmas. We shall use non

terminal symbols Sq ̂S i , .. .Sk where Si corresponds to the input restricted deque

containing i data items. Lemma 3.5 tells us we only need one non terminal for each

i and Lemma 3.6 tells us that the productions for Si are Si -> iS i - i , Si -4 iS i- i

and Si -> j S j - i for j — i 1. . .k. We add one extra production, 5"o -> A, and the

resulting grammar is shown in (11).

So —>■ lSo|2Si|3S2..-|fcSü_i|A (11)

Si -4

S2 lS i |2 S i |3 S 2 . . . | fc 5 i- i

43

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

Si -4- + I 5 i | ..

Sk~i — ISk-2\k — lSk -2\kSk- i

The matrix associated with this grammar is
/

1 1 1 1

1 1 1 1

0 2 1 1

0 0 2 1

1 1

1 1

1 1

1 1

0 0 0 0 2 1 /
Having a general form for the matrix allows us to automate the calculation of the

eigenvalues and so we can generate a significantly longer list than was possible in

the previous cases. The list is presented in Figure 15.

n Largest Eigenvalue n Largest Eigenvalue

3 3 11 5.345

4 3.732 12 5.411

5 4.236 13 5.464

6 4.586 14 5.508

7 4.836 15 5.545

8 5.019 16 5.575

9 5.156 17 5.601

10 5jG2 18 5.623

Figure 15: Eigenvalues for an input restricted deque

3 .3 S tac k s

We can apply the technique of Chapter 2 to bounded capacity stacks on permutation

inputs and we find that the grammars which are generated have a regular structure,

44

3 OBLIVIOUS A B STR A C T CONTAINER DATA TYPES

as was the case for an input restricted deque.

Figure 16 tabulates the value of the greatest eigenvalue for stacks of capacity 1 to

5. It is known tha t the Catalan numbers, c„ = + 1), are asymptotic to 4".

Since there are Cn allowable permutations for an unbounded stack on input length

n we know tha t —>■ 4 as fc —)■ oo.

Stack Capacity 0!k Numerical Estimate

1 1 1

2 2 2

3 3+/6
2 2.61

4 3 3

5 largest root of — 5æ ̂+ 6æ — 1 3.247

Figure 16: ak for small values of k

In [dBKR72] some work was done on finding the average height of planted plane trees

with a fixed number of nodes. This corresponds to the average capacity required by

a stack to compute a randomly chosen permutation of length n. The result is that,

on average,

fc = V Ï S _ i + 0 (^ l o g n)

stack locations are required.

45

4 PR IO R ITY QUEUES AND DOUBLE ENDED P R IO RITY QUEUES

4 P riority Q ueues and D ouble Ended P riority Q ueues

The study of priority queues warrants a separate chapter for two reasons; the first

is simply the quantity of results from this area, both existing and new. The second

reason is the more important; there is a fundamental difference between a priority

queue and any of the other container data types considered so far in this thesis.

This difference is that the behaviour of the priority queue is dependent on the value

of the priority attached to the data items it is processing as well their order in the

input sequence. Usually this priority is taken to be the value of the data item but

it may differ as we shall see in Section 4.2. The dependency on priority is clearly

illustrated by considering the behaviour of a priority queue on two input sequences,

1, 2 , . . . , n and its reverse n, n — 1, . . . , 1. With the first input sequence the possible

output permutations are those that an ordinary queue could produce, namely just

1 , 2 , Fr om the second input sequence a priority queue can produce precisely

the permutations which a stack can produce.

There are a great many existing results in this field, mostly based on binary and

permutation input sequences and exclusively based on unbounded priority queues.

For permutation inputs and an unbounded priority queue it is shown in [AT93] that

there are (n + 1)^"^ allowable pairs of length n. A combinatorial proof of this is

then presented in [AB94]. This paper also presents an 0{n) time algorithm for

finding s(r) and an O(n^) time algorithm for t{a). The language associated with

a priority queue can be thought of as a relation on sequences. With this viewpoint

the transitive closure of the allowability relation for a priority queue is found and a

one-to-one correspondence between the allowable pairs and labelled trees is given.

Independently and subsequently [GZ94] developed a different direct correspondence

between the allowable pairs of priority queue and labelled trees and an alternative

linear time algorithm for finding s(r).

In [Atk93] a characterisation, the partial sum criterion, of the allowable pairs of an

unbounded priority queue with a binary input sequence is given. It is also shown

tha t there are allowable pairs of length n, this being the same as the number

of allowable permutations of length n -b 1 for a stack with permutation inputs.

46

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

Algorithms are presented which find s(r) and t(a) in O(n^) time and some symmetry

results are presented: a pair (cr, r) is allowable if and only if (r^, is allowable if

and only if (f , â) is allowable.

In [ALW95] some progress has been made in the case when the input is chosen

from a multiset. If the input and output sequences are reorderings of a multiset

5 = , k^kj then the number of allowable pairs is

1 IT ^
^ 1 iLi V

This is proved by giving a one to one correspondence between the allowable pairs

and fc-way trees. Algorithms are also presented which find t{<7) in time and

s(r) in 0(n^) time.

Double ended priority queues are studied in [Thi93] where various results are given

and some conjectures are stated. No closed formula or recurrence is found for the

number of allowable pairs of a double ended priority queue but a linear time allow­

ability test is presented. In [Lin94] an alternative characterisation of the allowable

pairs of a double ended priority queue is given in terms of the avoidance of pairs of

patterns.

In this chapter we further investigate priority queues for permutation, binary and

multiset inputs. The focus here is on bounded capacity priority queues although we

do present some new results in the unbounded case. We also present a few small

results relating to double ended priority queues with permutation inputs. Some of

this work is also presented in [ATarj.

4.1 P r io r ity Q ueue w ith P erm u ta tio n In pu ts

A bounded priority queue on permutation inputs is a very interesting case which

has turned out to be particularly difficult to solve. There is no general formula for

the number of allowable pairs of length n for a priority queue of size k given here,

nor is there a characterisation of the allowable pairs. We do, however, make some

progress for the special case k = 2.

47

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

L em m a 4.1 I f cr and r are permutations of 1 ,2 ,.. , ,n then {cr, r) is 2-allowable if

and only if there exist decompositions of a and r into substrings such that

a = anPy

T — 5(3ne

where each of (cK, 6) and (7 , e) are also 2-allowable

P roof: Suppose first that there is a sequence of Insert and Delete-Minimum

operations that, using a capacity 2 priority queue, transforms a into r. At the point

tha t the symbol n is inserted in the priority queue all the symbols of cr which precede

n (the segment a) will have been inserted and all except possibly one will have been

output; the remaining symbol of a, if any, will then be output immediately since it

is smaller than n and no Insert operation is possible if the priority queue contains

two items. Thus r will have an initial segment Ô with {a, 6) 2-allowable.

After S has been generated the priority queue will contain only the symbol n. Since

the priority queue has capacity 2 there must then be a number (possibly zero) of

pairs of Insert, Delete-Minimum operations followed by a Delete-Minimum which

copies a segment f3 of a into the output r and then outputs n. The priority queue

will now be empty and the remaining segment 7 of cr will be transformed into a final

segment c of r so that (7 , e) will be 2-allowable.

To prove the implication in the other direction suppose we have a pair of sequences

(cr, r) which have the required decomposition. It is clear from this decomposition

that the initial segment cr of cr can be transformed into 8. The priority queue is

then empty and it is clearly possible to transform njl into ^n . Finally 7 can be

transformed into e and so (<r, r) is allowable. □

C oro llary 4.2 I f a and r are permutations of 1 ,2 ,. .. ,n with a — an(3 and /? =

P1P2 ■ • - Pr then

T2{anP) - T2{a)T2{nP) (12)

T2(7t,9) = WT2(/3)U{/)i}r2(Ti/32.../3r) (13)

48

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

where juxtaposition X Y of sets denotes the set {xy\x € A, y G Y}

P roo f; Equation (12) follows from an application of Lemma 4.1, since we have

T2{anP) = 72(o){7?%T2(J) | 76 = /)}

= T2{a)T2(nP)

For equation (13) notice that T2 {nP) consists of those outputs arising from inserting

and immediately deleting n from the priority queue together with those that are

obtained by inserting n, inserting /3i, and then deleting Pi. The first of these sets is

{n]T 2 {P) and the second is {Pi}T2 {nP2 ...Pr)^ O

Since the union in (13) is a disjoint union we have the further corollary.

C oro lla ry 4.3

t2{anP) = t2{a)t2{nP)

t 2 { n P) = t2 i P) + t2 { n p 2 . ../3r)
r — 1

= I + ^ h i P i + l ^ - ’Pr)
i=0

The total number of 2-allowable pairs of permutations is the sum of t 2 (cr) over all

possible input sequences a. We therefore write

= (14)
<T

Although we have no closed form for we can find both a recurrence for the values

and the exponential generating function for the sequence (æ„).

T h eo rem 4.1 The exponential generating function of the sequence (æ„) is

u it) = Y . n\
1

1 + log(l - t)

P roo f: We shall express each permutation cr in the form anp in (14) and sum over

all possibles sizes of a. For each size we then consider the number of ways we can

49

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

choose the elements of a and sum over all permutations of those elements. Finally

we sum over all permutations of the remaining elements, /?, giving

Z) E ^ 2 (a) X t2{nP)
t=0 \ / |or|=i |/8|=n—Î—1

= E E (%(«) Y ,
î = 0 V / j a j= î \(3\=n—i—l

= E
(=0 \ / |/3|=n—Î—1

To handle the inner summation put

Hm — ^ 2 ^2(^ /^ l ' • 'Pm)
\P\=m

where P runs over all permutations of a fixed set of size m. Then

Vm “ y y ^2(/^l • ■ 'P m) 4“ ^2(^/^2 • • 'Pm)
\0\=m
m

“ ^ Z v ^2{Pi+l ' ' ' Pm)
i=zQ \B\=m

^ n - 1

So,

’̂n — 'y) ^ ̂ (16)

Equation (15) can be rewritten as

t=0

Using (17) we see that
Vn Vn—l

and thus

n\ {n - 1)! n!

 ̂ n! ̂ (n — 1)! ̂ n!

50

.£1

4 P R IO R ITY QUEUES AND DOUBLE ENDED P R IO RITY QUEUES

We now introduce a second generating function for clarity.

With this we can then write the above as

which, since xq = yo = 1, means

V i t) -
(1 - É)

The recurrence for Xn in (16) can be re-expressed as

1 (« - !) !

1 n-i~ l .

= ^E E I f (18)
^ î = o i = o

The left hand side of (18) is the coefficient of ̂ in U'{t) and the right hand side

is the coefficient of in U{t)V{t). It follows that

&r' (0 == (7(f)y(f)
U'^it)

~ 1 - t

which can be rewritten as

This equation is easily integrated, the constant of integration being determined from

the condition %o = 1 , and the proof is now complete. □

The generating function then allows us to find the asymptotic behaviour of the

sequence.

Lemma 4.4
e

Xn — O { n\ e - 1

51

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

P roo f: The only singularity of the analytic function U{t) is where l+ lo g (l—i) = 0,

which is when t — (e—l)/e . Hence the radius of convergence of n\ is (e—1)/e.

The radius of convergence, R, of a power series J2 is given by

R n-^oo

(See e.g. [Apo63], Theorem 13 — 21) We therefore have

lim
n—>oo ni

e
e — 1

and thus
X,

O
n\ V \e — 1 , .

□

The next corollary was pointed out by George Phillips and gives a somewhat simpler

recurrence for than occurs in the proof of Theorem 4.1. It also provides the basis

for an 0{n^) dynamic programming algorithm for finding

C oro lla ry 4.5 Let Zn ~ Xn/n\ then we have

zo = 1, and

for n > 0 .

P roo f: First note that

1 + log(l — t) — 1 —t — — — — .. .

Then the result follows from equating coefficients of in

□

L em m a 4.6 I f the pair [a, r) is 2-allowable then the pair (r^, oQ is also 2-allowable.

52

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

P roo f: Since a and r have decompositions as given by Lemma 4.1 we have

==

pr ==

By induction on the length of the permutations we may presume that and

are each 2-allowable and another application of Lemma 4.1 completes the

proof. □

Corollary 4.3 gives a recursive method for computing t2 {cr). If applied directly the

execution time of the resulting method would be exponential in n. However by

using the same dynamic programming technique used in [AB94] for the unbounded

case the calculation can be carried out in 0 (n'*) steps and, since S2 {r) = t 2 {r^), by

Corollary 4.6 we obtain

C oro lla ry 4.7 I f o and r are permutations of length n then both t 2 {cr) and S2(r)

can be computed in time 0 {n ‘̂)

For a priority queue Pk the language, L{Pk), associated with it can be thought of

as an allowability relation. With this view we consider the composition of bounded

priority queues. The results generally involve the composition of relations: given two

relations A, B the relation A B is the set of pairs {(%, |there exists z with (æ, z) G

A and {z, y) G B }. The following results are all related to the serial composition

of priority queues. We have no corresponding results for parallel composition. We

also work under the assumption tha t all the priority queues in the systems being

considered have capacity 2 or more. Any of capacity 1 can be removed without

altering the power of the system.

The next lemma refers to the weak order relation, Wn- An ordered pair, (<t, r) , of

permutations on n symbols are in Wn if and only if every pair of symbols of a which

are in increasing order are also in increasing order in r . The weak order relation

is an important tool for the study of geometric and combinatorial properties of the

symmetric group and it is discussed at length in [Bjo83].

53

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

L em m a 4.8

Ln(PiT~'^ / = PniPiT, for all i > 2 ,

L n ip y = i„(P,r = Wn, for all i , j > 2.

where * denotes the transitive closure of a relation.

P roof: The proof which follows is given in [AB94] to show tha t Ln{Poo)'^~^ i=-

Ln{Poo)^~^ = Ln{Poo)* — Wn and, as noted in its original form, it is valid for any

bounded priority queue of capacity greater than 1.

For (cr, r) G Wn let p{ct,t) be the smallest integer i such that all but the left most

i symbols of a and r agree. Observe that p is never equal to 1. In order to show

tha t Ln{Pi)'^~^ = Wn it suffices to show that for any (cr, r) G Wn with cr ^ r, there

exists a a' such that the following hold:

• (cr, a') G Ln {Pi)

• {cr', t) G Wn

• P{('̂^ 1") < p{cr, t)

To see this, write cr as and r as Sx'y such that = n — p(cr,r). Since

(cr, r) G Wni it follows that x must be larger than all symbols in p. Therefore,

cr' = aPx‘y satisfies the first of the three conditions above. The second condition is

also satisfied by o' since any pair of symbols in a' appear either in the same order

as in cr, or the same order as in r . Finally, since cr' and r both end with x j , the

third condition is satisfied. Since p cannot take the value 1, the sequence a ', a " , . . .

must reach r in at most n — 1 steps, proving Ln{Pi)'^~^ ~ Wn-

To complete the proof, we show that the pair {{n, n — I , . . . , 1) , { l , n ,n ~ 1 , . . . , 2)),

which clearly lies in Wn-, does not belong to Ln{Pi)'^~'^. Suppose it were possible to

transform n ,n — ! , . . . , ! into 1 , n, n - 1, . . . , 2 by a system of n — 2 priority queues

of capacity i in series. When the final element of the input has been placed in the

first priority queue the other n — 1 symbols must all be in the n — 2 priority queues

since none can be output yet. One of the priority queues must therefore contain

54

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

two of the symbols {2,3,...,?%}. This is clearly impossible since the two symbols it

contains would then have to be output in increasing order. □

L em m a 4.9

j / i -C j C (19)

For i > 1, if k < I then L(Fi)* C L(Fj)^ (20)

L(F:.+,_i) C L(F;.)L(F,) (21)

P roo f: In the proof of Lemma 3.2 we used the notion of simulation to show two

systems were equivalent. We make use of that approach again here.

The inclusion in (19) is clear since Pj can simulate the operation of Pi and so any al­

lowable pair of Fi is an allowable pair of Pj. Also the pair ((j, j ~ l , . . . , 1), (1,2, . . . , j))

is an allowable pair of Pj but not of Pi so the containment is strict.

To prove (20) we first note that Pj can clearly simulate P f by making no use of the

last I — k priority queues in the system. Under the assumption tha t i > 1, strict

containment is then given by the pair {{I, / — 1, . . . , 1), (1, — 1, . . . , 2)) which is an

allowable pair of Pj but not of Ph.

Finally, for (21), we begin by showing PrPs can simulate Pr+s-i- This argument

uses the same method as the proof of Lemmas 3.2 and 3.4 for showing simulation

is possible. A single storage location in the later of the two priority queues in series

is reserved to allow data items from the earlier priority queue to be output. Con­

sider an arbitrary allowable pair of P,.+5_i and the computation which transforms

the input into the output. Whenever this computation inserts a data item into the

priority queue we shall insert a data item into P,.. This is always possible although

we may first have to move a data item from Pr to Pg. The total capacity of the

priority queue Pr+s-i is r + s — 1 and so there is always at least one free location

in PrPs, and by only moving data items into Pg when there is no free location in

Pr we can guarantee that the free location is always in Pg. When a data item is

removed from P^+s-i we know that the same data item is in PrPs somewhere and

there is no smaller data item in the system. If the data item is in Pg we can simply

55

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

delete it and continue with the simulation. If it is in Pr we can move it into the free

location in Pg and then delete it. So we see that PrPs can simulate Finally,

assuming r, s > 1, the pair ((3,2,1), (1,3,2)) is an allowable pair of PrPg but not of

Pr+s~i and so containment is strict. □

L em m a 4.10 Z/(Pq)L(Fj2) .. = L{Pj^)L{Pj2) . . .L{Pjf) if and only if k = I

and ia = ja for a = 1,2, . . . , k

P roof: Suppose I > k, then the pair ((/,/ —1, . . . , 1), (1, — 1, . . . , 2)) is an

allowable pair of the right hand system but not the left so it must be the case that

I =■ k.

Now suppose ia > ja and le t s = fc — l + i a , p = f c - a - l then the following pair is an

allowable pair of the left hand system but not of the right; ((s, s — 1, . . . , 1), (1, s, s —

1, . . . , S — P , S — p — ia p l , s — p — ia A s — p — 1, S — p — ia , s — p — ia — 1, . . . ,2)) .

This concludes the proof of the implication in one direction. It is clear tha t the op­

posite direction holds since the two conditions imply that the systems are identical.

□

We now move from permutation inputs to inputs chosen from an arbitrary multiset.

In this case we present a one to one correspondence between the pairs allowable by

a capacity 2 priority queue and multi segment trees, described in Definition 4.1. We

then count these trees to find a recurrence for the number of 2-allowable pairs of

length n.

D efin ition 4.1 M { n , m) is the set of all multi segment trees accounting for n data

items chosen from { l , 2 , . . . ,m} . A multi segment tree in M { n , m) satisfies the

following:

I f n = 0 then the tree is empty, otherwise the root node consists of a maximum

element m ' < m and r segments, for some r < n . Each segment contains a sequence.

Pi, of symbols chosen from the alphabet {1, 2 , . . . , m ' — 1}, The node has r -|- 1

56

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

children, as shown in Figure 17, each of which is a multi segment tree in A4 (ui, mp

with mi < m ' and '^IPil + r = n.

P i P2 Pr

Figure 17: A Multi Segment Tree

L em m a 4.11 For a priority queue of capacity 2 and input of length n chosen from

the alphabet {1, 2 , . . . , m} there is a one to one correspondence between the allowable

pairs and the multi segment trees in A4(n, m).

P roo f: Suppose (a, r) is a 2-allowable pair with symbols chosen from {1,2, . . . , m}.

Then for some m ' < m it must have the form

(ctq m 'pi m'p2 • • • m'Pr Or , Tp Pi'm' n p2fo! . . . Prm' Tr)

with each (ctj, r)̂ being 2-allowable and only containing data items in {1 .. .m ' — 1}.

We define the root node of a multi segment tree from this structure as follows. The

sequences •. .,/^r are stored, in order, in the segments of the node and the

node also contains the maximum value m'. The child of this node corresponds

to (cr^_i, Ti_i) which is formed from the alphabet {1, 2 , . . . , m' — 1} and has length

Ui-i > 0. It follows inductively that there is a multi segment tree corresponding to

each {(7i, Ti) and it is in A 4{u i-i,m ' — 1). Clearly we have + Z) \Pi\ P r — n.

Therefore we have indeed generated a multi segment tree in A i{n ,m).

The construction is quite clearly reversible since the Pi sequences are completely

defined, the maximum element, which lies between each of those sequences, is given

and the (cr*-, Ti) pairs are all completely defined by the subtrees. The correspondence

is therefore bijective. □

57

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

From Lemma 4.11 it is clear that if we can count the number of trees in A4{n,m)

then we know how many 2-allowable pairs there are of length n over the alphabet

{1 , 2 , . . . , m} and so we have

T h eo rem 4.2 The number of allowable pairs of length n for a priority queue of

capacity 2 and input alphabet of size m is given by

a;(n, 1) = æ(0 ,m) = l,
n n m / « _ 1 \

x{n,m) = - 1)%/(?!- l , r 4- 1).
r ~ l i=r 1=2 \ /

where

y(n,m, 1) = x{n,m),

y{n,m,r) - Y ^ { x { i , m) y (n - %, m , r - 1)).
i=Q

P roof: The base cases are trivial; æ(n,, 1) = 1 because the only tree in M { n , l)

is the single node tree with n empty P sequences and 1 as the maximum element.

Similarly æ(0, m) = 1 because the only tree in vW(0, m) is the empty tree.

The general case is as follows. We shall count how many ways we can construct the

root node of a tree in M (n, m) and how many ways the subtrees can be arranged

from each such root. The root node can have between 1 and n sequences in it, we

shall assume it contains r sequences. With r fixed the root node can account for

between r and n of the n elements in the entire tree, we shall assume it accounts

for i of them. The maximum element can take any value between 2 and m and we

shall assume it takes value I. With all these values fixed we see tha t the sequence of

elements in the root node can be chosen in {I — 1)*“ '’ ways and this sequence can be

split into the r sequences in ways. The root has r + 1 children, some of which

may be empty, and between them they account for n — i elements chosen from the

alphabet {1,2, . . . , / — 1}. Suppose there are y{n — i , l — l , r P 1) ways to choose

children which satisfy this, then we see that
n n m

x{n,m) =
r = l i=r 1=2 V /

It remains to count the number of ways we can create the r -|- 1 children using n — i

elements over {1 ,2 , . . . , / — 1}. The base case is again easy; if there is only one child

68

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

then we have

y{n - i , l - 1,1) = x{n - i , l - 1)

For the general case, note that the first of the r+ 1 trees can account for 0 < i < n —i

elements, and the tree can take x(j , l — 1) different forms. The remaining trees

can then be constructed in y{n - i — j , l - 1, r) different ways giving us

n
y{n, m , r) - ^ x{j, m)y{n - j, m , r - l)

j—O

□

4 .2 P erm u ta tio n In p u ts w ith B in a ry P rior ities

Up to this point in the chapter we have worked under the assumption tha t the

priority of a data item, i, is simply its value. In general it is more likely that the

data items being processed by a priority queue will consist of a data part and a

separate priority. This allows a much more complicated situation where data items

can share the same priority, as in the binary case, but they remain distinguishable.

To model this we consider three sequences rather than a pair, although we shall

shortly see this is not entirely necessary. The first two sequences are the input, cr,

and the output, r . These are formed from distinct data items 1,2, . . .,n . The third

sequence, tt, is the priority assignment and contains the priorities of the data items

in a. The interpretation of the priority assignment is that cr* has priority tt^

There are various quantities we could investigate with this model. We shall focus

on the set of pairs which are allowable for at least one priority assignment. That is,

the set {(<T, r , 7r)} (tr, r) is allowable for some priority assignment t t } .

Since the values of the data items in a are completely independent of their behaviour

in the priority queue we assume a = 1,2, . . . , n . The total number of “allowable

tuples” will then be n\ times the number found with this restriction. We must

also introduce some relatively severe restrictions on the form of rr to make progress.

First we insist that the elements of tt are chosen from the binary alphabet so all data

items in a either have priority 1 or priority 0. Then we look at the special cases

59

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

when there are only 1,2 or 3 data items of priority 0 in cr. In these special cases we

shall consider the quantity Xn,z which is the number of allowable tuples of length n

containing z data items with priority 0 .

The labels 1 ,2 , . . . , n serve only one purpose in this situation. That is to allow us to

distinguish between different data items which have the same priority. It is therefore

sensible to change the notation to emphasise the attribute of each data item which is

of greatest significance: the priority. Rather than consider the symbol of the input

to be a data item with value cr̂ and priority TTi we shall consider it to be the symbol ttî

with a unique subscript. As an example the tuple ((1,2,3), (3,2,1), (1,0,0)) would

be represented as ((li , Oi, O2), (O2, Oi, l i)). Further, as we shall see in the analysis

which follows, it is not necessary to keep a close track of the data items of value 1.

We therefore only require unique subscripts on the O's.

Suppose there is only one data item which has priority 0 in the input sequence.

Then the distribution of priorities in (cr, r) will be (l*~^Oil™~% l “0 il”~““ ^), where

0 < a < i < n. It is clear from this that we can write down an expression for the

number of such pairs.

«n.i = Z IZ Z - o - 1)!
i= l a=0 V /

_ ^ — l)!a!(n — a — l)!(n —/)!

1 = 1 a=0 V

= (22)
i=l *

The third step in this derivation uses the identity

^ + _ / r + n + 1

è o V * A V "

which is given in [GK82]. We note this identity since it is used a great many times

in the following analysis.

60

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

From the final expression for Xn,i we obtain a recurrence.

L em m a 4.12

(«1,1 = 1,

Xfi,i —' 1,1 4" {p ~ 1)1.

P roof: We prove this by directly substituting (22) into the recurrence.

It is clear that in the summation x i ^ = 1 and in the general case we have

, A i
*«n,l — , .

i = l ^

1 . n!

= nXn-1,1 4“ (̂ ̂“ 1)1

as required. □

It is interesting to note that the numbers generated by this recurrence are the Stirling

numbers of the second kind, S{n, k), with the second parameter equal to 2 . 8{n, k)

is the number of ways of partitioning a set {1, 2 , into k non-empty sets, see

e.g. [Bry93]. The final thing to note in this case comes immediately from (22).

C oro lla ry 4.13 Xn,i = 0(%! log n,)

When there are two data items of priority 0 we can take the same approach as before.

The input sequence has the priorities distributed over it as l ^ " ^ O i a n d

the output sequence can have the priorities distributed in one of two ways; either

as l “0il^ 02l ”““~^''^ or as l “020i l ”'~“~^. We can write down a summation to count

all the allowable pairs of this form as follows. It is clear that i varies between 1

and n — 1, j varies between / 4-1 and n, a varies between 0 and i — 1 and b varies

between 0 and j — a — 2. For any fixed values i, j, a and b the first a elements of r are

chosen from the first i — 1 of cr and can appear in any order so we can have (^~^)a!

different initial segments of r . If 6 > 0 then the elements in the middle segment can

be chosen from j — a — 2 elements and can appear in any order so we have {^~*^~)̂b\

61

4 P R IO R ITY QUEUES AND DOUBLE ENDED PRIO RITY QUEUES

middle segments. Then, the remaining elements can appear in any order in the final

segment giving a total of {n — a — b — 2)\ different final segments. If 6 = 0 then we

have no middle segment and the final segment contains n ~ a — 2 elements but the

two data items of priority 0 can appear in either order in the output. This leads us

to the first summation expression for Xn,2

-n,. = E È s f E ' f ; " Ti=l j=i+l a=0 \ 6=1 \ “ / \ ̂ J

+ 2 ^ a!(n - a — 2)!^

We can substantially rewrite this formula and eliminate two of the summations

within it.

4 = 1 j=4+l « =

4 = 1 Jf=4 + 1
n—1 n

V f I
è i j ^ i \ { n - i P l) { n - j P l) n - i
n—1 44 / 2 ^

V (n - i + l) (« - i + l) ^ n (n - i)

" ' - I ' 1

/ 71 4 — 1 1 41 4 — 1 -| \

= - f s S ^ E - S g è)
41 4 — 1

+ E E -
« P p , ‘4

62

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

As before, from this expression we obtain a recurrence

L em m a 4.14

3:2,2 = 2 ,

(«41,2 — (̂«71—1,2 4” («71—1,1 4" 2)!.

P roo f: We prove this by direct substitution of the expressions for Xn,2 &nd Xn,i

into the recurrence.

îî(«7i-i,2 4-(«n-1 , 1 4 -(n - 2)! = n

71—1 2

P{n — 1)! ^ - 4” ” 2)!
■ 1 * 1=1

/ -J 71—1 1 — 1 1 71 — 1 1

Ü ± 7 ni n{n - 1)1=2 i = l *7 1=1

/ -1 71 1 — 1 1

^ • | l “ E + é S 7 7
1=2 j = l

□
Once again, from (23) we can find the asymptotic behaviour of the sequence ((«n,2)-

C oro llary 4.15

(«71,2 = O (?%! log n log n)

P roo f: We begin by noting that in

the dominant expression is the double summation. We then write

V*— \ T il
J-

l<j<i<n

63

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

nl r —\ 1

ra! / ^ 1 A 1

?((s4-4
0 (n!lognlog n)

since
7T̂

0 < Cn < — 6

□

When we allow three data items in the input sequence to have priority 0 we can still

apply the same technique as before although the results are significantly more com­

plex. The priorities are distributed over the input sequence in the form

ik -j-iQ ^in -k over the output sequence they can have any of the following six

distributions:

l “0 il^ 0 2 l^ 0 3 l”“ “"^"^“ ̂ r 0 i l^ 0 3 0 2 l’"~“"^"^ l “020 il^ 03 l^ " “~‘="̂

i “02030i P - “-^ i “0 3 0 i0 2 P ~ ““ ̂ r o 3020i r - “-^

In the input sequence we clearly have 0 < i < j < k < n . We also have 0 < a < / — 1,

— «I — 2 and 0 < c < A : — a — 6 — 3in the output sequence. For fixed i , j , k

and a there are some special cases; if 6 / 0 , c = 0 then the last two data items of

priority 0 can occur in either order, if 6 = 0 , c 7 ̂ 0 then the first two data items of

priority 0 can occur in either order and if 6 = c = 0 then the three data items of

priority 0 can occur in any of 6 different orders. This gives us the following, with

some annotation for clarity.

n—2 n—1 n

Xn,3 = ^ è
1 = 1 j = i + l k=j+l

64

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

k —a—b—3 _ J o\
^ ^ ̂ J c!(n - a — 6 - c — 3)!+(c=o) 2 (n — a — 6 — 3)!

k—a —3 / jç, _ ^ _ g \
+ (6 = 0)2 ^ ̂ j c!(n, — a — c — 3)! +(6,c=o) — a — 3)!

We can greatly simplify this as before and, for readability, we begin by looking at a

small subexpression.

k—a—b—3 / 1 r q \
f jc!(n — a ~ 6 — c — 3)! + (n — a — 6 — 3)!

c=0

= {k — a — b — 3)l{n — k)\

(n — a — b — 2)1

n ~ a — b — 2
k —a —b —3

n — k p 1

We now move out one summation and continue rewriting

{n — a —2)\

n — k p i

+ (n - a - 3)î
n — k p i

- s ’ C ' T ’ > - ») '

_ {j - a - 2 y . j n - j) ' J f n - a - b ~ 2 \
+ l \ j - a - b - 2)

n — a — 1
PX n - k p i) { n - j P l) n - j

Moving out another summation we then have

a = 0
Z 2 I \)a ! { (n - a - 2)!

n — a — 1
P(ti — A: + 1) (ti — J + 1) n — j

+ (^ - ^ Y P ' + H n - a - 3) l
n — k p i

65

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

+ ^ ^ j a ! 3 (n — a — 3) !

n — k p 1

(n — k P l) (n — j P 1) yi ~ i j n — j 1

— n\ { 7------ ——rr ;----- : : , . .v +{n - i P l) {n - j P l) {n - k P 1) n{n - i) { n - j)

+ . Jn{n ~ t) (n — + 1) n{n ~ l) {n — i — 1),

The expression for Xn,3 is now a triple summation of four parts and, to proceed

further, we consider the triple summation of each of these parts in turn. For the

first part we simply change the summation indices

n—2 n—1 n

= E E E +
i = 3 i = 2 f c = l

For the second we have

71— 2 71— 1 71 n !

n { n - i) { n - j)

n ' . j n - j)
P i j P i r ^ (n - i) (n - j)

~~ h i
n—2 „ • 1

= (24)

For the third part we write

66

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

n—2 n—1 n

E E E6 j S t i « (« - *) (" - + 1)
n—2 -1 / n—1 n -i

= (- :) ' E ; r & E E —

n—2 n—Î—1 /I -|

Î=1

We could simplify this further but notice that (24) is the same as part of the above

expression. Finally, for the fourth part, we have

71—2 71—1 n

E E E
^ 3 » ! (n - j)

- y _______^ _______ Y i n - j)
k "(« - 1)(" - ' - 1) i k k

 's— 3ïi! 1 ̂ . ^

= - 2)! E (" " 0
i=l

= ^ (n - 2)!(tï + l)(n - 2)

Combining these back into one expression we obtain

^n,3 -
i=3j~2k=l

t = l

+ “ (n - 2) ! (n + l) (n - 2)

Once again, from this expression we can find a recurrence

67

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

L em m a 4.16

3:3,3 = 6 ,

^n,3 ~ 'f^^n—1,3 ”i“ 7̂1—1,2 ^n—2,1 4~ 3)!.

P roof: The base case is clear and the general case is proved by direct substitution,

7lXn~l,3 T ^n~l,2 “h ^n—2,1 T 3(tî 3)!

h k k i
n - i - 2

i= l *
+ n (n - 2) !

+ ^ (? 2 - 3) l (n - 3) n ^

n—2 1
+ (n - 2) ! ^ .

i=i '
T 3 (? 2 — 3) !

[i=3 3=2 k - l j= 2 fc=l J

+ | n (n - 2)! ^ ^— - + (n - 2)!(?i - 2) + (n - 2)! ^
L 2=1 Î = 1 /

+ | ^ (’® — 3)!(ii - 3)n^ + 3(n — 3)! |

+ j (n - 3)1 — Sn^ + 4^

Y Y Y ^
id—iV f V 4 q

i=3 3—2 k= l

+
n — 2

- 1) n - 1

Y j { n - 3) \ { n - 2) { n ^ - n - 2) |

. if J / J j q h
i=3i=2A:=l

68

4 PR IO R ITY QUEUES AND DOUBLE ENDED PRIO RITY QUEUES

+ “ (n - 3)!(n - 2)(n^ - n - 2)

n % -ij-i I
_

idl — y ./m ini V 0 q Iç
i = 3 j = 2 k = l

, / . - m - 2n + 1 + Î
5 — ^ —

+ j (n — 3)!(n — 2){n^ — n — 2)

= Ê E E ^
i = 3 j = 2 k - l

n—2

+ (^ “
n — % — 1

i=i *

+ ^ (n - 3)!(n - 2)(n^ - n - 2)

as required. □

The expression for Xn,3 also allows us to deduce its asymptotic behaviour.

C oro lla ry 4.17 Xn,3 == 0 (n! log n log n log n)

P roof: The dominant term in Xn,3 is the triple summation for which we have

n!

l<kk<i<n
nl r —\ 1

® l< kkti< n ÿ *

= y f E 7 ^ - 3 E k + ^ t r s

nl

\l<i,j,k<n l<i,3<n i = l((Ê0
since

6

= 0 (n! log n log n log n — n! log n)

~ 0 (n! log n log n log n)

0 < C» < ((3)

69

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

where is the Riemann zeta function ([THB86]) and C(3) ~ 1.2 . □

We can continue this style of analysis for larger numbers of zeros and the only

difficulty which occurs is the exponential increase in formula complexity as we go

on. The initial summation expressions, final recurrences and asymptotic behaviour

for each case exhibit a very definite pattern. The next few recurrence equations are

conjectured to be

3:4,4 — 24,

^n ,4 ~ '^^n—1,4 ”f~ 3:̂ ,—1,3 T 3:̂ .—2,2 “h -{- 13(n 4)!.

3:5,5 = 120,

3:n,5 “ 'l^^n—1,5 ~f“ 3:^_i,4 4" ^n—2,3 "h 33:%—3,2 T 13®%—4,1 4" 71 (n 5)!.

3:6,6 = 720,

®%,6 — ^3:%-i^6 4“ ® n - l ,5 4" ® n -2 ,4 4* 3®%-3̂ 3 + 13®%-4,2 4" 71®%-5,i 4" 461(n — 6)!.

= 5040,

®%,7 — ^ 3:%—1^7 T ®%—1,6 4“ ®n—2,5 4" 3®%—3 4 4" 13®%—4,3 4" 71®%—5,2 4” 461®%—6,1

4-3447(71-7)1.

®8,8 = 40320,

®n,8 — ^ 3:%—1,8 4" ®%—1,7 4" ®n—2,6 4~ 3®%—3,5 4“ 13®%—4,4 4" 71®%—5,3 4* 461®%—̂^

4-3447®%—7,1 4" 29093(77, — 8)!.

and it is conjectured that in general

C o n jec tu re 1

^z,z — ^z,0 — ■2'lj

70

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

^n,z — '^^n—l,z 4" 'y O'i^n—itZ—i '
i=l

where

CL\ = 1,
m—1

Qijji — ?7l! ^ Î*
i-1

□

We have a second conjecture related to this problem. Below we present a method

for constructing a mathematical expression dependent on z and n. It is conjectured

tha t the expression constructed is a closed formula for Xn,z-

C o n stru c tio n : We describe how to construct a mathematical expression Wn,z-

The basic form of the expression is a series of z nested summations with indices

pi ,P2, .. The summand is an expression % (pi,P2, . We therefore have
n~z n —2+1 n

^n,z —Wrt..7L — ^ ̂ ^] • • • ^ y (^1 ; F2) • • • }Pz)
P l= l 7>2= P i + 1 P 2 = P 2 -1 + 1

The summand consists of 2^“ ̂ separate terms which can be gathered into z groups.

The such group contains Q lj) terms each of which is a fraction which has

(?% — g 4- 1) ! as a factor of its numerator. If we let Vg be the number of terms in the

gth group then we write the group as

The denominator of each fraction is a product of z —g 1 factors each corresponding

to one of P i, p2i • • «P2* Each denominator must have the factor corresponding to pi in

it; there are Vg ways to choose the other p /s and thus Vg fractions in the group. For

any fixed sequence of p/s, say pi = pi^, Pig j • • • > Pi^-g+i, we define gi to be the number

of elements in Pi ,P2) • • -Pi which are not in the chosen sequence. The denominator

of the fraction is then

{n — Pi Y I Y Qi — g){n — pi2 1 -\r Q2 — 9) ' ’ ' ~ Piz-g+i + 1 + flz-g+i ~ 9)

The numerator of each fraction is also dependent on the sequence of p /s it cor­

responds to. In the sequence there are generally several continuous blocks of p /s

71

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

missing. We define I1 J 27 > • > Jm to be the lengths of these blocks. The numerator is

then
m

i - 1

where the sequence a% is defined in Conjecture 1.

This completes the description of each fraction, the summand X {p i , p 2 , • .. ,Pz) and

thus the entire expression Wn,z- O

C o n jec tu re 2 The expression Wn,z described in the above construction evaluates to

Xn^z, the number of allowable pairs, with binary priorities, of length n with z data

items having priority 0 .

Although the construction is reasonably complex there is some very convincing nu­

merical data to support the conjecture. Table 18 contains the number of allowable

pairs for fixed n and z as computed using the conjectured expressions and as found

by direct enumeration.

n—J-
24. 10 9 8 7 6 5 4 3 2 1

1 10628640 1026576 109584 13068 1764 274 50 11 3 1

2 16019496 1495260 153404 17452 2224 321 53 10 2

3 17043884 1542392 152640 16633 2009 270 40 6

4 14886110 1314175 126359 13296 1534 192 24

5 11783123 1023250 96480 9892 1092 120

6 9056938 779800 72612 7248 720

7 7048888 604008 55296 5040

8 5646744 478080 40320

9 4625280 362880

10 3628800

Figure 18: Numerical Evidence for Conjectures 1 and 2

A consequence of Conjecture 2 is:

72

4 P R IO R ITY QUEUES AND DOUBLE ENDED P R IO RITY QUEUES

C o n jec tu re 3

Xn,z ~

4 .3 B in a ry In pu ts

We now turn our attention to binary input sequences and a bounded capacity priority

queue. Here we give some results analogous to those in [Atk93]. We extend the

partial sum criterion of tha t paper to bounded capacity priority queues. Using

this we investigate the case k — 2 and find a rather unexpected recurrence for the

number of allowable pairs. We then go on to give a one to one correspondence

between A?-allowable binary pairs and ordered forests. Work in [dBKR72] then gives

a closed formula for the number of such forests for fixed k and n. We continue by

giving results relating to the composition and closure of the allowability relations

of bounded capacity priority queues. This is followed by proofs of the existence of

quadratic time algorithms for finding s(r) and f(o-). Finally we show that one of

the symmetry results, mentioned at the start of this chapter, holds in the bounded

capacity case.

When a priority queue is producing r from some cr we can assume the priority queue

never contains more than one data item of priority 0. This is clear since the notion

of standard computation in Definition 2.3 is valid here. This definition combined

with the fact tha t 0 has a higher priority than 1 tells us that a 0 must be output

from the priority queue immediately after being inserted. We assume throughout

this section that all computations are standard.

We begin by extending the partial sum criterion of [Atk93] to characterise fc-allowable

pairs. Any pair of binary sequences (<j, r) can be written as

. . . 01^0

With this notation the extended partial sum criterion is

L em m a 4.18 A pair (cr, r) is k-allowable if and only if

3

< 'Y ^ S i - t i < k - l , 0 < j < r
î=0

73

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

with equality on the left when j = r.

P roo f: Suppose (<r, r) fails to satisfy the criterion in some way. There are two

ways this can occur, either we do not have equality when j = r ov there exists a j

for which Y)Lo 5* - < 0 or S{ - t i > k .

In the first case is is clear that, if we do not have equality when j = r, then r is not

a reordering of a and the pair cannot be allowable.

For the second case, suppose j is the least value at which the pair fails the criterion.

If JJi-o — U < Q then, at the point where the j + 0 is about to be input and

output the total number of I ’s output exceeds the total number input. This clearly

is not possible and so the pair is not allowable. The final case is if ~ ^

At the point where the j + 0 is about to be input and output the number of I ’s

which must be stored is the difference between the total number which precede the

0 in a and the total number which precede the 0 in r . The space required to store

these, plus one for the 0 which must pass through, is 1 + This value

exceeds the capacity of the priority queue and thus the pair is not allowable. This

concludes the proof of necessity.

It remains to show the criterion is sufficient and we shall do this by showing how

to construct r from a given that (cr, r) satisfies the criterion. Suppose we are car­

rying out the computation transforming a into r and that we have just output

the 0. We know there are a ~ Ya- q Si — t{ I ’s currently stored in the priority

queue, there are a further Sj+i to be read in and a further t j^ i to be output. Since

6 = — ti > 0 there are enough I ’s available to allow us to output tj+i of

them. Having done this there will be b I ’s which we must store. Since 6 < A: — 1

we can store them and have space to insert and delete a 0. The pair is therefore

allowable and the proof is complete. □

For the special case of a priority queue of capacity 2 we have the following unexpected

result; the numbers (®%) are every second Fibonacci number.

T h eo re m 4.3 The number of binary allowable pairs of length n for a priority queue

74

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

of capacity 2 is ®%, given by

X q — ' X J

X I = 2 ,

X f i — 3 ® % _ i ® % _ 2 -

P roof: We partition the set of allowable pairs of length n into 3 subsets according

to the first data item of the input sequence a and the first data item of the output

sequence r. Each pair of binary sequences has one of three possible structures

according to this partitioning

• (Ocr', Or')

• I t ')

• (1er', Or')

The first two classes can be counted easily; the number of pairs {wcr', wr') for some

w € {0,1} is precisely the number of allowable pairs (cr', r ') of length n —1. Therefore

there are ®%_i 2-allowable pairs in each of these classes. The third class does not

yield so easily and we must split it into further subclasses.

Any pair (cr, r) = (1er', Or') can be split into two unique pairs (lo;0,0/31) and (7 , 5)

where cr = lo;0 7 , r = 0/315. The point where this split occurs is defined by the

extended partial sum criterion; we evaluate the sum for each 0 < j < r and split the

pair at the 0, where i is the least value of j for which the sum evaluates to 0. To

count the total number of pairs we must fix the position of the split as occuring just

after the data item in the input and output sequences. Then we must count how

many possibilities there are for (lo;0,0/31) and (7 ,5). There is no restriction on the

second of these pairs except that it is 2-allowable and so there are X n - i possibilities.

For the first pair things are even easier since we are dealing with a priority queue of

capacity 2. Throughout the entire computation transforming laO into 0/31 there is

always a 1 held in the priority queue. If this were not the case then we would have

a contradiction for the extended partial sum would evaluate to 0 a t the first point

where no 1 was stored in the priority queue. Therefore the rest of the computation

75

Xfi—i
i - 2

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

must be a 1-allowable pair for a priority queue. This means (aO, 0/3) is a 1-allowable

pair, so aO = 0/3 = OttO. Further, if tt contains any I ’s at all we will again have

a contradiction since the partial sum would evaluate to 0 at the point where the 1

occurred in t t . We can therefore conclude that tt takes the form O*” ̂ and there is

only one choice for each i. The general form of a pair from the third class is now

(10*“ 7̂ ,0*” ^15) and so the total number of pairs is the sum

n

i=2

Recombining the three classes we get

n
®n — ^ ^

n

— ® n —1 T ^ y Xfi— i

i=l

and from this we easily have

n n—1

®n ®n—1 ~ ®n—1 T ^] ®n—z ®n—2 “ ^ ^
i—1

~ 2 ® % _ i — Xfi—2

which gives us

®n — 3®%—1 ®n—2

□

We now introduce the main result of this section.

T h eo re m 4.4 I f k > 1 there is a one-to-one correspondence between the set of k~

allowable pairs of binary sequences of length n and the set of ordered forests of height

at most k -\-l on n - \- l nodes.

The theorem is proved by studying in greater detail the process by which an input

sequence cr is transformed into an output sequence r. In general there is more than

one such transformation and the central idea of the proof is to identify a canonical

such transformation. This canonical transformation is the standard computation

76

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

referred to in Chapter 1. However, in order to do this we need to introduce, in

addition to the operations Insert and Delete-Minimum, an operation that we call

Transfer. A Transfer operation can only be used when the priority queue is empty

and the next input is a 1; it moves this next symbol directly from the input to

the output. Clearly, permitting Transfer operations does not affect the definition of

A:-allowability (at least, if A; > 1) since a Transfer operation can be simulated by an

Insert and Delete-Minimum.

Not every sequence of Insert, Delete-Minimum and Transfer operations makes sense.

As always, it is necessary that the Delete-Minimum operation is preceded by at

least i Insert operations and there must be, in all, equal numbers of Delete-Minimum

operations and Insert operations. In addition a Transfer operation is only permitted

if there are equal numbers of Insert and Delete-Minimum operations preceding it.

A sequence of Insert, Delete-Minimum and Transfer operations which satisfies these

two conditions will be called an extended computation. An extended computation

containing a total of n Insert and Transfer operations is said to have size n (on the

grounds tha t it would be applied to an input sequence of length n).

L em m a 4.19 The number of extended computations of size n is the (?7-f 1)* ̂

Catalan number.

P roof; Let e% be the number in question. The number of extended computations

of size n which have no transfer operation is known to be c% since they are simply

the valid stack computations mentioned in the introduction to Chapter 3. All other

extended computations of size n can be expressed uniquely in the form 0 T $, where

0 , $ are extended computations of sizes j and n —j ~ l for some j , 0 has no Transfer

operation, and T is a Transfer operation. Therefore

n —1

^ n — A ^] CjCn—j —l
i = 0

The inductive hypothesis = Cm+i for all m < n (which is true for m = 0) then

gives, since Cq = 1 ,

'n = 5 3 CjCn-j
i—0

77

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

Hence e% = c%+i by one of the standard identities satisfied by Catalan numbers. □

An extended computation is said to be standard for [a, r) if it transforms a into r and

never performs an Insert operation when it is possible to generate a further symbol

of T (by either a Delete-Minimum or Transfer operation). To clarify this definition

consider how a = 100 might be transformed into r = 001. An extended computation

necessarily begins by inserting 1 and then inserting 0 into the priority queue. It could

continue either with another Insert and then three Delete-Minimum operations or it

could have a Delete-Minimum, an Insert and then two Delete-Minimum operations.

Only the latter would be standard for (100,001) since it generates the output symbols

as soon as possible.

Notice tha t if an extended computation is standard for the pair (<j, r) and is applied

to cr then there is never more than one 0 in the priority queue at a time and as

soon as a 0 is inserted it must be removed. This is because once a 0 is inserted

it is necessarily the next symbol to be output and therefore, by the definition of

standard, must be output immediately.

For ease of exposition we shall express the fact that an extended computation C is

standard for the pair (cr, r) by writing C (cr, r). Then we have

L em m a 4.20 ~ defines a one-to-one correspondence between the set of allowable

pairs of binary sequences and the set of extended computations.

P roo f; First we show that for every binary allowable pair (cr, r) there exists a

unique extended computation C with C ~ (cr, r).

Since (cr, r) is allowable there exists some sequence S of Insert and Delete-minimum

operations that transforms a into r . S itself may not be standard for (cr, r) be­

cause at some point data items are inserted into the priority queue even though

further elements of r could have been generated by Delete-Minimum or Transfer

operations instead. However, we can change S into an extended computation, C,

tha t is standard for (cr, r) . To do this we first systematically defer Insert operations

until Delete-Minimum operations have generated whatever further elements of r are

possible. Then we replace every Insert, Delete-Minimum pair of operations which

78

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

inserts and deletes a 1 from an empty priority queue by a Transfer operation. Since

each operation performed by an extended computation that is standard for (<r, r) is

determined entirely by the next output symbol to be generated and the contents of

the priority queue, C is the unique extended computation with (cr, r) ^ C.

We may now define a map A from the set of allowable pairs of length n to the set

of extended computations of size n by setting A(t7, r) = C where C is the unique

extended computation with (cr, r) ~ (7.

This map is injective for suppose there were two different allowable pairs (<7, r) and

(q!, P) for which (<t, r) ~ C and (a, /3) C . Then a and a are different since r and

P are determined by cr, C and cr, C. Let a differ from cr first in the position.

The operation of C which removes cr„- and a { from the input cannot be a Transfer

operation because Transfer operations are applied only to the symbol 1. Thus the

operation of C which removes cr* and cr, is an Insert operation; let it be the

operation of C

• If Cj+i is an Insert operation then oi = 1 and so a* = 0, but then C is not

standard for (cr,/3).

• If Cj+i is a Delete-Minimum operation then consider how many I ’s are stored

in the priority queue at this time. Under the assumption that C is standard

for both pairs, both computations are storing only I ’s and this number is fixed

by C . If there are no I ’s stored then cr, = 0 so cr̂ = 1 and therefore C is not

standard for (cr,/3). If there are g > 0 I ’s being stored, then cr̂ = 0 again, so

a i = 1 and C is not standard for (cr,/3).

According to Lemma 2 of [Atk93] the number of allowable pairs of length n for an

unbounded priority queue is equal to c%+i, the number of extended computations

of size n. Therefore A is an invertible map and there is a bijection between the set

of allowable pairs of length n and extended computations of size n. Therefore ~ is

a one-to-one correspondence. □

L em m a 4.21 There is a one-to-one correspondence between extended computations

79

4 P R IO RITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

and ordered forests

P roo f; There is a well known correspondence between valid bracket sequences

and trees, see e.g. [vLW92]. This gives us a correspondence between computations

and trees as shown in Figure 19 since, clearly, we can let “(” correspond to the

iidiididddidid

Figure 19: The computation-tree correspondence

Insert operation i and “)” correspond to the Delete-Minimum operation d. This can

be further modified by starting a new tree every time a Transfer operation is en­

countered. For example, in Figure 20, the computation U corresponds to the tree W

and V corresponds to X . This gives us the final correspondence between extended

U T V

Figure 20: The full correspondence

computations and ordered forests and it is clear that the correspondence is bijective.

□

It remains to show tha t both the correspondences have the correct properties with

respect to A;-allowability and height of trees. Suppose (<r, r) is Ai-allowable. From

the construction of the function A in Lemma 4.20 the extended computation as­

sociated with ((7, r) can be carried out using a priority queue of capacity k. From

the construction of Lemma 4.21 the corresponding forest has height at most A: -t- 1.

Conversely, if A; > 1, every forest of height A: -f 1 is associated with a pair that is

A?-allowable. This is clear from the construction of the tree since, at a point I levels

below the root, the priority queue contains I data items. This can be proved induct­

ively since an Insert operation goes a level further down in the tree and increases

the number of data items stored in the priority queue by one and a Delete-Minimum

80

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

operation goes up a level and reduces the number of data items stored in the priority

queue by one. It is important to note that this argument does not hold for k ~ 0

since the forest of n single node trees has height 1 and corresponds to a succession

of n Transfer operations (which can be carried out by a 0-capacity priority queue);

yet the corresponding allowable pair is ((1, . . . , 1), (1, . . . , 1)) which needs a priority

queue of capacity 1.

This discussion completes the proof of Theorem 4.4 □

We now note that ordered forests of height -f 1 on n -{-1 nodes are in one-to-one

correspondence with ordered trees of height A; + 2 on n + 2 nodes and so we can

appeal to the theory developed in [dBKR72]. A generating function for the number

of trees with n nodes and height h or less is given there and from this the following

closed form for the number of such trees Tn,h is derived.

Tn./, = V 4'‘sin^(y7r(ft+l))cos^"”^(j7 r(ft+ l)), re > 2 (25)

From Theorem 4.4 and (25) we immediately have

C oro lla ry 4.22 The number of allowable pairs of binary sequences of length n for

a priority queue of capacity k is Tn+2 ,k+2 -

Having counted the number of A;-allowable pairs we now consider the behaviour of

systems of priority queues formed by serial composition. A system of this kind can

perform more types of operations than a single priority queue since it must move data

items internally. However, we shall ignore these extra operations and simply assume

they work in an intuitive manner. If a data item stored in the system is required

at the output we shall assume that it is moved there using internal operations. We

shall also assume data items are kept as near the input side of the system as is

possible without interfering with the operation of the system. We shall consider

an Insert operation to be possible if there is spare capacity in the earliest priority

queue of the system or if there is spare capacity in a later priority queue and the

system performs some internal operations to move a data item out of the earliest

priority queue. Similarly a Delete-Minimum operation removes the minimum data

item from the entire system of priority queues. If it is not possible to remove the

81

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO R ITY QUEUES

least data item, say because an intermediate priority queue is full, then we consider

the computation to have failed and not to have computed the pair.

In this case we have an analogous, but slightly weaker, notion of a standard com­

putation to that used for a single priority queue. We shall say a computation is

standard for a pair {a, r) if it transforms a into r , never performs an Insert oper­

ation when it is possible to generate a further symbol of r by a Delete-Minimum

and never moves a data item from an earlier priority queue to a later priority queue

unless it must.

It then turns out that the binary case is significantly easier than the permutation

case, for we have

T h eo rem 4.5 Over a binary alphabet L(Pk)L{Pj) — L{Pj^k - i)

P roo f: PkPj can be shown to simulate Pj+k-i using the same “spare location”

technique used to prove Lemma 3.2 and Theorem 3.4. It is therefore only necessary

to show that Pj+k-i can simulate PkPj. We prove by induction that at all steps

during a computation Pj+k-i can contain the same set of data items as PkPj and

can input or output whichever data item PkPj can. The base case is clear, with

both systems empty they are capable of precisely the same action - read in the first

data item. For the inductive step we assume that PkPj is performing a computation

which is standard for the pair it is processing. During the simulation both systems

always contain exactly the same set of data items, since Pj+k-i will mimic the in­

puts and outputs of PfcPj. Now we consider how the simulation could fail. If PkPj

outputs a 0 then it is clear tha t P j^k-i can also do so, since it must contain a 0 and

there is nothing with a higher priority to prevent it being output. Suppose now that

PkPj outputs a 1 but Pj+k~i is unable to. Then it must be the case that P j^k-i

has a 0 in it and so PkPj has a 0 in it also. Further, this 0 must be in the earlier of

the two priority queues. For this to occur, the 1 must have been in the later priority

queue before the 0 was read from the input, since there is no way for the 1 to bypass

the 0 otherwise. We have assumed that the operations are performed according to a

standard computation but this is a contradiction since the 1 could have been output

without reading in the 0. Therefore this condition cannot arise and the simulation

82

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

is possible. □

When forming these systems there is a point where, for any fixed input length n,

increasing the size of the system has no effect on the language it generates. At this

point any pair of length n or less which is allowable by an unbounded priority queue

is allowable by the system. Lemma 4.5 tells us when this maximum permutational

power is achieved.

C oro lla ry 4.23 In a system the maximum permutation power over in­

puts of length n is achieved when
r

y^k i ^uPr - l
Z = 1

In [Atk93] algorithms for calculating s(r) and (((%) in quadratic time are given but

these do not extend to the bounded capacity case. However we can find an alternative

algorithm to calculate Sfc(r) and tk{c) in quadratic time. We begin by considering

how to calculate Sk{r) and we shall then derive a method of calculating tk{cr) from

this.

As we saw in Chapter 2, a binary sequence a can be represented by a vector a where

ai is the position of the i^^ 0 in a. This vector represents infinitely many binary

sequences since there can be an arbitrary number of trailing I ’s at the end of the

sequence which are not described. However, for any fixed length, there can be at

most one sequence which corresponds to any given vector.

A vector a corresponds to a binary sequence of length n if and only if it satisfies

(26). We then say a pair of these vectors, (a, 6), is allowable (corresponding to the

allowability of the sequences they represent) if and only if it satisfies (26), (27) and

(28).

i < ai < ai^i < n, for all %, (26)

i <bi < bi^i < m, for all i, (27)

bi < tti, for all i. (28)

Condition (28) is a consequence of the partial sum criterion given in [Atk93]. We

can extend this condition, cis we extended the partial sum criterion in Lemma 4.18,

83

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

to encapsulate fc-allowability. Condition (29) is a direct translation of the extended

partial sum criterion into the notation we use here and so we have that (a, ^ is

A;-allowable if and only if it satisfies (26), (27) and (29).

bi < a{ <bi-{-k — I for all i (29)

If we now introduce a new vector g/ with — ai - i then condition 26 becomes

for all i and

0 < aj- < n - Î, for all i. (30)

and condition (29) becomes

0 < 6* — « < + A: — 1 — for all i. (31)

The problem of calculating Sk{r) is now the problem of finding, for a fixed vector

6, the number of vectors of satisfying (27), (30) and (31). We can define a partially

ordered set, P (6), of width two from b which encapsulates (27), (30) and (31) as

follows.

We shall create two independent chains (totally ordered subsets) and then place some

constraints between them. The first chain contains the same number of elements as

b and they are labelled a'i^a'2 .. These elements are placed in order as shown

in the left hand chain of Figure 21. The second chain is formed from the sequence

—1, 0 , 1 ,2 .. .n + A: — 1 with the b^s marked at their respective values, as shown in

the right hand chain of Figure 21. The additional constraints which we then add

are those which reflect condition (31), one set of these is shown in the figure.

Definition 4.2 A linear extension of a partial ordering <p is a total ordering <t

satisfying if x <p y then x <t y

A total ordering can be represented graphically in the same manner as a partially

ordered set, as shown in Figure 22. Using the construction for the partially ordered

set and Definition 4.2 we have the following;

Lemma 4.24 The linear extensions o fV { ^ are in one to one correspondence with

the vectors 0/ satisfying (27), (30) and (31).

84

4 PR IO R ITY QUEUES AND DOUBLE ENDED PRIO RITY QUEUES

n+k-l

a r

a 1

h - i - 1

Figure 21: The partially ordered set

P roo f: We begin by showing that for any linear extension of the partially ordered

set we can find a unique corresponding vector g/ which satisfies (27), (30) and (31).

Figure 22 shows a typical linear extension. From this we see that we can give each

a'- the value of the integer directly above it in the chain. In this way every a'- will

be given a value between 0 and n - r and all the orderings in the linear extension

of the partially ordered set will be honoured. It follows immediately from this that

(27), (30) and (31) are satisfied by the values assigned to the a /s .

To show this is unique, suppose there were two different linear extensions which

gave rise to two equal vectors and c'-. The linear extensions must differ in the

positioning of at least one of the a j’s or c ’̂s and suppose i is the least value where

they differ. Since they are in different positions the integer immediately above a(-

must differ from that above c(. This is a contradiction since the vectors are equal.

It remains to show that for any vector, of, which satisfies (27), (30) and (31) there

is a unique corresponding linear extension of the partially ordered set.

It is easy to see that there is a linear extension corresponding to the vector. We

begin with a chain constructed from the integers —l , G , l , 2 . . . n + A: — 1 and place

the elements of b on it as described in the construction. We then place each a'-

immediately below the integer corresponding to its value. In the case tha t two

85

4 P R IO R ITY QUEUES AND DOUBLE ENDED P R IO RITY QUEUES

elements of g/ have the same value we place them in order of their subscripts, least

at the bottom. To see this is a linear extension of the partially ordered set first note

tha t the elements of gf appear in the correct order relative to each other. Then note

tha t the elements of b appear in the correct order relative to each other. Since the

values in the two vectors satisfy condition (31) their placement satisfies the orderings

which appear between the two chains in the partially ordered set.

Finally, we must show tha t the linear extension is unique. Suppose two different

vectors gf and P both gave rise to the same linear extension. Further suppose that

the first position they differ in is the position. Then, when inserting the

element into the chain of integers, they will be placed in different positions. This is

a contradiction since the linear extensions are the same. □

n+k-l

bj-i+k-1

i-1

bj-i-1

1

0

- I

Figure 22 : A linear extension of the partially ordered set

Since the vectors b are in one to one correspondence with the sequence r and the

vectors g/ are in one to one correspondence with the vectors a and thus the sequences

a we immediately have.

C oro llary 4.25 For any binary sequence t of length n which is represented by the

vector b the number of linear extensions o /P (6) is equal to Sk{r)

86

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

Before showing the existence of an O(n^) algorithm for finding Sk{T) we present a

symmetry result.

L em m a 4.26 (<7,t) is k-allowable if and only if is k-allowable.

P roo f: We need to show that the pair (1*''0 .. .01*°, l̂ ’̂O .. .01®°) satisfies the

extended partial sum criterion of Lemma 4.18, given that (1®°0 .. .01®'', 1*°0 .. .01*'')

does. So we consider the sum U — S{. We know that

0 < Si - ti < - 1
i=0

and

From this it follows that

i - 1 r
— u + ' ^ s i - t i

i~0 i~ j
j —1 r

— ^ 1 ii ^ ̂I'i ~~
î= 0 i—j

= 0

0 < Y ^ t i - Si < k - 1
i= j

as required. □

The second symmetry result mentioned at the start of the chapter for the unbounded

case is tha t (<j, r) is allowable if and only if (f , â) is allowable. This does not hold

in the bounded case. A simple counter example is <r = 10000, r = 00001 with a

priority queue of capacity 2 .

[AC87] presents an algorithm which calculates the number of linear extensions of

a width two partially ordered set with constraints of the form used here. This

algorithm, combined with the correspondence given in Lemma 4.25 and Lemma

4.26 gives us

T h eo rem 4.6 There are algorithms which can find Sk{r) and tk{cr) in 0{n^) time.

87

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

4 .4 D o u b le E n d e d P r io r i ty Q u e u e s

Double ended priority queues are a more complex variety of priority queues since

they support one extra operation. In addition to Insert and Delete-Minimum they

allow Delete-Maximum which, as the name suggests, removes the largest data item.

The study of double ended priority queues is barely begun in this thesis but we

present some initial results; all of which are based on finding permutations with

certain properties. In addition to our choice of input type and capacity constraint for

the double ended priority queue we can fix the type of delete operations which occur.

As an example we could fix the delete sequence as P = ddD say. This would mean

tha t any computation adhering to this delete sequence would carry out a Delete-

Minimum operation the first two times it encountered a Delete instruction. The third

time it encountered a Delete instruction it would carry out a Delete-Maximum. With

this restriction any computation can be described by a simple sequence of Insert and

Delete operations and the delete sequence then describes which type of Delete is to

be performed at each stage. With this additional constraint we introduce two new

quantities, analogous to s(r) and t{a).

• s-p(r) = |{<t|((7, r) is allowable with delete sequence V}\

• tx>{o-) = |{r|(cr, r) is allowable with delete sequence V}\

We now consider these quantities and ask for which a and r are they maximal and

minimal. First we require some definitions;

D efin ition 4.3 a{V) is the sequence generated by inserting a = a i , a 2, .. into

a priority queue and then applying the delete sequence V to it. The special sequence

1, 2 , . . . , ri is denoted I.

As an example consider I{V):

E xam ple 4.1

IfP* = D

' k If Vi — d

4 PR IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

Where j is the number of D's in P i, P 2, . - -, P«-i and k is the number of d's in

P i , P 2; .. . ,Pî_i . So I{dDdd) = 1423 and I{ddDDd) — 12543.

D efin ition 4.4 /(P) is defined as the sequence generated as above but from the

complement of V , where all Delete-Minimum instructions are replaced with Delete-

Maximum instructions and vice versa.

L em m a 4.27 s-p (r) attains its unique maximal value, n\, with the sequence r =

7(P).

P roo f; It is clear that any input can be transformed into I (P) simply by inputting

all n data items and then applying the delete sequence. Therefore it gives the max­

imum value for sx>{t). T o show it is the unique maximum suppose we have another

output (5 ^ -f(P) and suppose it first differs from r in the position. If P* = D

then Ti > f3i and since this is the first position in which the two outputs differ, n

must appear later in p. However, there exists a <j in which Ti precedes fii and so it

is not possible to produce fi from cr. The case Vi = d is almost identical. □

L em m a 4.28 s t){ t) attains its not necessarily unique minimal value with the se­

quence T = I{V)

P roo f; We show tha t the only input for which {a, t) is P-allowable is the case

a = T. Suppose cr 7̂ i(P) and it first differs at position i. Consider if Vi = D then

Ti = maximum o f l . . / n not in r i .. .r^-i and cr* < r*. Clearly cr* must be input be­

fore the output of any computation involving cr can be produced. Therefore it is

not possible to produce r as an output from cr. A similar argument holds for the case

P* = d. To see that this minimum is not necessarily unique consider P = dDd. It is

clear tha t both 213 and 312 have exactly one input which forms an allowable pair. □

L em m a 4.29 ii>(cr) attains its unique minimal value, 1, with the sequence a = I{V) I

I
P roof; We show that the only possible output is cr. If P* = D then, by the defin- |

ition of /(P) , cr* =maximum of all data items in 1 . . .n not in r i .. . T * _ i . Therefore |

89

4 P R IO R ITY QUEUES AND DOUBLE ENDED PR IO RITY QUEUES

ai will be the next data item output. Similarly if T>i = d then cr* will be the next

data item output. Therefore there is only one possible output for the input cr. To

show this is a unique minimum we simply note that for any cr, the pairs (cr, cr) and

(cr,/(P)) are allowable. □

90

5 CONCLUSIONS

5 C onclusions

111 this thesis we have investigated the behaviour of several well known abstract

container data types under a variety of conditions. We considered cases where the

data type has finite capacity and cases where it has infinite capacity. In addition

we investigated their behaviour on various forms of data: binary sequences, per­

mutation sequences and arbitrary sequences. We have drawn a distinction between

oblivious abstract container data types such as stacks, queues and deques and non-

oblivious abstract container data types such as priority queues and double ended

priority queues. The distinction is simply that the operation of an oblivious ab­

stract container data type is independent of the relative values of the data items it

is processing and the operation of a non-oblivious abstract container data type is

not. We also introduced transportation networks, a graph theoretic model of data

movement from a source node to a destination node on a graph. These can be used

to represent data transmission from one machine to another on a packet switched

network. More importantly, in the context of this thesis, an infinite number of finite

capacity oblivious abstract container data types can be described using this model.

In analysing the behaviour of both the abstract container data types and the trans­

portation networks we have viewed them as abstract machines. These machines

execute programs formed from Insert and Delete instructions. An Insert instruction

causes the machine to read a data item from the input sequence. Similarly a Delete

operation causes the machine to delete a data item and place it at the end of the

output sequence. To a great extent the rules governing which data items can and

cannot be deleted from the machine completely characterise its operation. As the

machine executes instructions the input sequence is gradually consumed and, if it

is finite, will eventually become empty. At this point the only possible action for

the machine is to execute Delete instructions until it is empty. The output sequence

then contains every data item that was in the input sequence, but not necessarily

in the same order. Any pair of sequences (cr, r) in which a can be transformed into

T in this way is called an allowable pair.

In the study of abstract machines it is usual to define and study the language of

91

5 CONCLUSIONS

the machine. In keeping with this we define the language of an abstract container

data type to be its set of allowable pairs. The aim of this thesis has been to count,

characterise and find algorithms for recognising the members of a given language.

The investigation of transportation networks in Chapter 2 introduced a method of

encoding permutations of 1,2, . . . , n . For permutation inputs we noted that since

the network is oblivious we need only consider the input sequence 1, 2 , . . . , n and

count the number of permutations which form an allowable pair with this sequence.

We call these allowable permutations and the total number of allowable pairs is n\

times the number of allowable permutations. We then showed tha t for any fixed

network the set of encodings of allowable permutations is a regular set. The proof

of this was constructive and gave rise to a method for constructing an unambiguous

regular grammar. This grammar generates a set of strings which are in a one to one

correspondence with the allowable permutations of the network. From this grammar

we can also derive a recurrence relation for the number of allowable permutations

and find the asymptotic behaviour of the number of allowable permutations as the

length tends to infinity.

It was also shown in Chapter 2 tha t for binary inputs a network can be simulated by

a finite buffer. That is, for any network N , there is a buffer of some fixed capacity

k with L{N) ~ L{Bk)> We also showed tha t the network was equivalent to a stack,

deque, input restricted deque or output restricted deque. In Chapter 3 we gave a

recurrence for the number of binary allowable pairs of a bounded buffer. This com­

bined with the equivalence result of Section 2.4 to give us a method of calculating

the number of binary allowable pairs for finite capacity buffers, stacks, deques, input

restricted deques, output restricted deques and transportation networks. The count­

ing result for buffers on binary inputs was then extended by showing that systems

formed by serial or parallel composition of buffers are equivalent to a single buffer of

some greater capacity. This also applied to the other abstract container data types

mentioned above due to their equivalence with buffers.

Chapter 4 was devoted to non-oblivious abstract container data types. Here we

have investigated a priority queue of capacity 2 with permutation inputs. We found

a recurrence and generating function for the number of allowable pairs and the

92

5 CONCLUSIONS

asymptotic behaviour of these numbers as the input length tends to infinity was

given. We also gave some consideration to a priority queue of capacity 2 whose

input sequence is chosen from an arbitrary multiset. A multi segment tree was

defined and it was shown that these trees, with certain restrictions, are in one to

one correspondence with the allowable pairs. From the structure of these trees we

then derived a recurrence for the total number of allowable pairs. When the input

sequence was chosen from the binary alphabet we gave a more general result. We

showed there is a one to one correspondence between the binary allowable pairs of

length n for a priority queue of capacity k and ordered forests of height no more

than A: + 1 on n + 1 nodes. A closed formula for the number of such forests is given

in [dBKR72].

We then went on to consider the situation where the priority queue has permutation

inputs but the priority of each data item is independent of its value. We restricted

the priorities to the binary alphabet and looked at the cases when there were 1,2 or

3 data items of priority 0 in the input. Expressions for the number of allowable pairs

in these cases were derived and several more were stated without proof. We then

presented two conjectures, one of significant complexity, stating how to construct

the above expressions for any fixed number of data items of priority 0 .

5.1 O p en P rob lem s

There is a wealth of problems still to be investigated in this area. One of the

original and still unsolved problems is the case of a priority queue of capacity k

and permutation inputs. In this thesis we presented the solution for A; = 2 but the

general case, and indeed the case A; = 3, appears significantly more complex.

Conjectures 1 and 2 in Section 4.2 appear hard to prove and so far there has been

no progress in that direction. Indeed it is hard even to find any intuition for the

result. The only structural link between the problem and conjectured solution is the

sequence an defined there. This sequence is the number of connected permutations of

length n; those which have no prefix a i, <T2, . . . , cr* which is a permutation of 1, 2 , . . . ,%

for i < n. The analysis presented in this thesis categorises the allowable pairs by

their structure, according to how many O’s are “bunched” together in the output

93

5 CONCLUSIONS

part of the allowable pair. The numbers a„ appear to correspond to the number

of ways in which the O’s can bunch together. The numerical evidence presented in

Figure 18, however, is by far the most convincing justification of the conjectures to

date.

There are several areas within this work which have been mentioned but require more

work. The first is the unbounded, unrestricted deque. Some empirical data has been

found using the technique in Chapter 2 for the bounded case but no limit has been

found for the eigenvalues. The allowable permutations have been characterised by

pattern avoidance in [Pra73] but no method of counting them, other than direct

enumeration, has been found.

The study of double ended priority queues as a whole is only touched upon in this

thesis. It seems likely tha t some results should come with relatively little effort.

However, a completely general solution would involve an extra degree of complexity,

since it must encompass all possible choices of delete sequence.

Another significant area which this thesis has touched upon is that of composition

of data structures. There are some results in the serial and parallel composition

of buffers and, in the binary case, priority queues, stacks, deques and networks.

Unfortunately the ultimate goal, a method for describing the permutational power of

systems formed by the arbitrary composition of data structures, seems unattainable.

Lemma 4.10, for instance, shows that a system of priority queues in series is not

permutationally equivalent to any other system of priority queues in series. It seems

likely that parallel composition would prove no better. Intuitively, it seems likely

tha t if there were any concise method for describing the permutational power of such

a system it would be close to the methods used for reasoning about transportation

networks. Unfortunately, even here such results seem improbable. Consider two

networks, one with three nodes in series and one with two nodes in series. These two

networks are clearly permutationally equivalent since they cannot permute the input

sequence at all. Suppose now we have a third network, even something as simple

as a single node, and place it in parallel with each of the previous two networks.

Immediately we see tha t they are now longer equivalent since the pair (1234,4123)

is allowable by one but not the other.

94

5 CONCLUSIONS

The problems involving multiset data have received little attention both in this

thesis and in the existing literature. Initially these problems appear significantly

more complex than the equivalent cases with permutation and binary data. One

might expect them to inherit the difficulties associated with both the other types

of data considered. By restricting the problem some progress has been made in the

priority queue case. This could be furthered by relaxing the restrictions, perhaps by

considering capacity 3 and 4 priority queues. Hopefully this would lead to a more

general result. Buffers, stacks and deques appear less complex than priority queues

overall. The corresponding problems should then yield solutions more readily.

95

REFERENCES

R eferences

[Apo63] T M Apostol. Mathematical Analysis. Addison Wesley, 1963.

[Atk93] M D Atkinson. Transforming binary sequences with priority queues.

Order, 10:31-36, 1993.

[AB94] M D Atkinson and R Beals. Priority queues and permutations. Siam

J. Comput., 23:1225-1230,1994.

[AC87] M D Atkinson and H W Chang. Computing the number of mergings

with constraints. Information Processing Letters, 24:289-292, 1987.

[ALW95] M D Atkinson, S A Linton, and L A Walker. Priority queues and

multi-sets. Electronic Journal Combinatorics, 2(Paper R24), 1995.

[ALTar] M D Atkinson, M J Livesey, and D Tulley. Permutations generated by

token passing in graphs. Theoretical Computer Science, to appear.

[AT93] M D Atkinson and M Thiyagarajah. The permutational power of a

priority queue. BIT, 33:2-6, 1993.

[AT94] M D Atkinson and D Tulley. The combinatorics of some abstract data

types. In Proc. IMA Conference on Applications of Combinatorics,

1994.

[ATar] M D Atkinson and D Tulley. Bounded capacity priority queues. The­

oretical Computer Science, to appear.

[Bjo83] A Bjorner. Orderings on Coxeter groups. In Proceedings of Confer­

ence on Combinatorics and Algebra, Providence, RI, 1983. American

Mathematical Society.

[BBL93] P Bose, J F Buss, and A Lubiw. Pattern matching for permutations.

Lecture Notes in Computer Science, 709:200-209, 1993.

[Bry93] V Bryant. Aspects of Combinatorics. Cambridge University Press,

1993.

96 I

REFERENCES

[CS63] N Chomsky and M P Schutzenberger. The algebraic theory of context-

free languages. Computer Programming and Formal Systems, pages

118-161, 1963.

[CLR92] T H Cor men, C E Leiserson, and R L Rivest. Introduction to Al­

gorithms. McGraw-Hill, Cambridge, Mass., 1992.

[dBKR72] N G de Bruijn, D E Knuth, and S O Rice. The average height of planted

plane trees. In R C Read, editor. Graph Theory and Computing, pages

15-22. Academic Press, 1972.

[EMC092a] H Ehrig, B Mahr, I Classen, and F Orejas. Introduction to algebraic

specification, part l:formal methods for software development. Com­

puter Journal, 35:451-459, 1992.

[EMC092b] H Ehrig, B Mahr, I Classen, and F Orejas. Introduction to algeb­

raic specification, part 2 :from classical view to foundations of systems

specifications. Computer Journal, 35:460-467, 1992.

[EI71] S Even and A Itai. Queues, stacks and graphs. In Z Kohavi and A Paz,

editors. Theory of Machines and Computations, 1971.

[ELP72] S Even, A Lem pel, and A Pnueli. Permutation graphs and trans­

itive graphs. Journal of the Association for Computing Machinery,

19(3):400-410, 1972.

[GZ94] M Golin and S Zaks. Labelled trees and pairs of input-output per­

mutations in priority queues. In Proc. 20th International conference on

Graph-Theoretic Concepts in Computer Science (WG), Munich, Ger­

many, June 1994.

[GK82] D H Greene and D E Knuth. Mathematics for the Analysis of Al­

gorithms. Birkhauser, Boston - Basel - Stuttgart, 2nd edition, 1982.

[HU79] J E Hopcroft and J D Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

97

REFERENCES

[KSW96] André E Kézdy, Hunter S Snevily, and Chi Wang. Partitioning per­

mutations into increasing and decreasing subsequences. Journal of

Combinatorial Theory (A), 73(2);353-359, 1996.

[Knu73a] D E Knuth. Fundamental Algorithms, The Art of Computer Program­

ming. Addison-Wesley, Reading, Mass, 1973.

[Knu73b] D E Knuth. Sorting and Searching, The Art of Computer Programming.

Addison-Wesley, Reading, Mass, 1973.

[Lan69] P Lancaster. Theory of Matrices. Academic Press, 1969.

[Lin94] S Linton. Private communication. May 1994.

[Moh79] S G Mohanty. Lattice path counting and applications. Academic Press,

New York - London, 1979.

[Pra73] V R Pratt. Computing permutations with double-ended queues, par­

allel stacks and parallel queues. 5th ACM Symposium on Theory of

Computing, pages 268-277, 1973.

[Rob91] D J S Robinson. A Course in Linear Algebra with Applications. World

Scientific, 1991.

[Rot75] D Rotem. On a correspondencebetween binary trees and a certain type

of permutation. IPL, 4:58-61, 1975.

[RV78] D Rotem and Y L Varol. Generation of binary trees from ballot se­

quences. JACM, 25:396-404, 1978.

[SS85] R Simion and F W Schmidt. Restricted permutations. European

Journal of Combinatorics, 6:383-406,1985.

[Tar 72] R E Tar j an. Sorting using networks of queues and stacks. JACM,

19:341-346, 1972.

[Thi93] M Thiyagarajah. Permutational power of priority queues. M aster’s

thesis. School of Computer Science, Carleton University, 1993.

98

REFERENCES

[THB86J E C Titclimarsh and D R Heath-Brcî Theory of the Riemann

zeta-function. Clarendon Press, 2nd ^986.

[vLW92] J H van Lint and R M Wilson. A C ourT Cambridge

University Press, 1992. ^

